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Abstract

We consider a jurisdiction formation problem on the plane uniformly populated by
a continuum of agents. This could be interpreted either as a real two-dimensional space
where these agents live, or alternatively as a space of pairs of the two parameters of a
public good on which the agents may have horizontally differentiated preferences. In the
latter case, any agent is identified with the point of his best variety.

We study jurisdiction formation under transferable utility paradigm, and the main
focus is on contribution schemes which lie in the core of a corresponding cooperative
game. The proper core turns to be empty, and we consider the minimal ε-core. We show
that, essentially, it contains only one allocation, namely the egalitarian (or Rawlsian)
contribution scheme under which all agents are left with one and the same level of utility.
It turns out that the minimal ε is extremely small — approximately, 0.0018.
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1 Introduction

We consider a heterogeneous society whose population has to make selections from a two-

dimensional space <2 of horizontally1 differentiated public projects of Mas-Colell (1983). We

assume that members of a society have heterogeneous preferences over <2, and that these

preference relations are single-peaked, with respect to the standard Euclidean metric. This

assumption could be interpreted as the existence of transportation costs. We identify each

individual with the location of his best project on <2, and assume uniform distribution of

(best projects of) citizens over <2.

For instance, population of a big city has to fix locations of several libraries, the overall

number of which being also a matter of choice. Then, each citizen will be assigned to one

and only one library. All the individuals assigned to one and the same library form a subset

called “a jurisdiction”; as a result, we have a “jurisdiction structure” which is a partition of

the society (or, equivalently, of the space <2) into pairwise disjoint jurisdictions.

Following the choice of a jurisdiction structure, including selections of libraries in all juris-

dictions, the contribution scheme towards costs of libraries must be chosen. We will assume

budget balancing within every formed jurisdiction. In addition to these monetary costs, each

citizen bears his personalized costs of being “far” from the library to which he is assigned.

We assume that the monetary expression of a transportation cost is just the distance between

the location of a citizen and the location of the library to which he is assigned.

Thus, the group choice of the locational problem described here consists of three items:

• - jurisdiction structure, which is a partition P of the space <2 into subsets of individuals,

jurisdictions, assigned to the same library;

• - libraries locations in each jurisdiction, and

• - sharing rule, that is a choice of a contribution scheme in order to cover the cost of a

1For the analysis of vertically differentiated projects, see Guesnerie (1995), Guesnerie and Oddou
(1981,1988), Greenberg and Weber (1986), Jehiel and Scotchmer (2001), Weber and Zamir (1985), West-
hoff (1977), Wooders (1978,1980).
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library in every jurisdiction.

Our approach is that of transferable utility (TU) assumption.2 First question of the analysis

is that of a core, i.e. under which jurisdiction structures and subsequent contribution schemes

the society will be stable, in a sense that no group of its members would wish to secede and

form a new jurisdiction, in which total cost of every member is being decreased?

It turns out that the core is empty, i.e. there are no secession-proof partitions3 and

contribution schemes. Even if the most efficient partition of the society is chosen, which is

the hexagonal partition (see below), there is no way to assign cost burden such that stability

is assured.

Then, a natural question arises of how far we are from the core? Namely, if the government

of the city decided to intervene and compensate a certain share of costs to citizens in case an

efficient partition of <2 is being implemented, what would be the minimal possible intervention

necessary to reinforce secession-proofness?

We show that: (i) The minimal possible intervention is remarkably negligible, namely, it

is sufficient to cover less than 0.002 per capita cost to reinsure stability, and (ii) Rawlsian (i.e.

egalitarian) allocation, where everyone ends up with the same total cost (monetary plus trans-

portation), plays a major part, being the unique allocation which is stable under the minimal

necessary government intervention. Last observation provides an additional justification for

egalitarism, together with (Bogomolnaia et al 2005a).

Results obtained here generalize (Le Breton et al 2004) to the simplest multi-dimensional

case, which is the case of two dimensions. When the dimensionality is greater than 1, we

encounter a problem of inner geometry of the space under consideration. Namely, we observe

that the form of the optimal jurisdiction is not consistent with the space <2 itself, in the

sense that we cannot partition <2 into most efficient jurisdictions (in fact, circles). This very

fact is responsible for the emptiness of the core and, as a result, there is a case for exogenous

2For a treatment of NTU-case in the uni-dimensional setting, see (Bogomolnaia et al 2005).
3We will use terms jurisdiction structure and partition interchangeably, throughout the paper.
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(government) intervention.

2 The Model

Let us specify a formal model. We assume that individuals are located uniformly over

the whole (unbounded) space <2. The volume of an arbitrary measurable4 subset S will be

denoted by λ[S], or simply by |S|:

λ[S] = |S| =
∫
S

dt, (1)

which is a real number from the closed segment [0, +∞].5 Here, t = (t1, t2) is a two-dimentional

coordinate on <2.

The cost of every library is given by a positive parameter g. The transportation cost

incurred by individual6 t, assigned to a library located at point p, is given by a cost function

d(t, p) =
√
|t1 − p1|2 + |t2 − p2|2 which is the Euclidean distance on <2.

Let us now introduce a concept of n-partition of an arbitrary measurable subset S ⊂ <2

to an arbitrary positive or countable number n of its parts, jurisdictions:

Definition 1: An n-partition P = (Si)1≤i≤n is a jurisdiction structure that consists of n

bounded measurable sets of a positive finite measure, pairwise disjoint up to a null-set,

the union of which being equal to the entire subset S.7 The set of all n-partitions P of

4An arbitrary subset is measurable if and only if its intersection with every measurable subset of a finite
measure is measurable; hence, we allow for infinite-measured measurable subsets.

5Throughout the paper, the following agreement will be made. Namely, when we calculate average values
of functions over the whole space <2, or over its Cartesian powers, or over an infinite-measured subset, we
often write them as ratios of the two infinite integrals. This always makes sense in our story, since we impose
sufficiently rigorous restrictions on all the functions used; namely, we require periodicity of allocations, sharing
rules etc. so that we interpret these ratios as evaluated on the (finite-measured) periodicity generating set.

6We will not distinguish between individual t and an individual located at point t ∈ <2.
7Restrictions on the measure and size of possible jurisdictions are imposed with the aim at having costs

of all citizens uniformly bounded from above. If one allowed for null-set jurisdictions, then all its members
would incur infinitely high costs; as for unbounded jurisdictions (including those of infinite measure), there is
always the case that costs of members of such jurisdictions are unbounded from above.
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a subset S will be denoted by Pn(S); the set of all partitions of S is denoted by P(S):

P(S) =
+∞⋃
n=1

Pn(S)
⋃

P∞(S). (2)

Concerning partitions of S = <2, we observe that they all contain infinite number of juris-

dictions, according to Definition 1. Therefore, P(<2) = P∞(<2), and we omit subscripts and

superscripts, denoting the set of all partitions of <2 by simply P .

For the analysis of the location problem at hand, we construct a TU -game with the set

of players coinciding with <2, and the class of coalitions coinciding with all measurable sets,

either finite- or infinite-measured. This will be done in two steps. As a first step, for each

bounded measurable subset S of <2 of a positive measure (which is a possible jurisdiction),

denote by D[S] the value of the following minimization problem:

D[S] := min
m∈<2

∫
S

d(t,m)dt. (3)

This is called “MAT(S)” in Mathematical Programming, which is Minimal Aggregate Trans-

portation of the set S. For obvious reasons, solution(s) to this problem exist (the integral

in (3) is continuous in m, and for m → ∞ the value of a program goes to +∞). Any so-

lution to (3) is called a median location of S, and we denote the set of all solutions to this

program by M(S) (by analogy with the uni-dimentional case where the set of solutions to the

corresponding problem is

M(S) =

{
p ∈ < : λ ({t ∈ S : t ≤ p}) = λ ({t ∈ S : t ≥ p}) =

1

2
λ(S)

}
, (4)

i.e. coincides with the set of all medians of the uni-dimentional subset S). Once we have a

possible jurisdiction S, its members would like to minimize transportation costs by placing

their library to one of the points in M(S). Next Lemma holds for the two-dimentional case

under our consideration.

Lemma 1: For any possible jurisdiction S ∈ <2, the set M(S) is a singleton.

5



Due to Lemma 1, we will denote the unique median of a jurisdiction S by m(S). As

the second step, for an arbitrary possible jurisdiction S ⊂ <2 we will define its per capita

characteristic function (in terms of costs) as follows:

c[S] :=

(
1

|S|

)
(g + D[S]) . (5)

So, we defined a characteristic function on the class of measurable subsets in <2 with a

positive finite measure. Alternatively, we could have allowed any group S to partition itself

in an efficient way and not just to function as a unique jurisdiction; this is a concept of a

cover-game. However, on this way we would not get any additional insights, in the sense that

if a given allocation does not belong to the core of a cover-game, it will not be in the core of

a simple game (see below).

At the same time, for the grand coalition, we of course partition it in the efficient way when

consider stable contribution schemes. Efficiency here means minimizing the per capita total

cost which we denote by c̄. We have the following result, due to (Ballobas and Stern 1972;

Haimovich and Magnanti 1988), see the discussion therein.

Theorem 1: Given the (uniformly populated) society <2 with some g as fixed cost of a

library, we have:

(i) c̄ = c[H], where H is a hexagon of an optimal size;

(ii) Any partition P̄ ∈ P of <2 into hexagons of the optimal size is efficient.

At the next step, we recall the notion of a core for this game, following a standard definition.

Fix an arbitrary efficient partition P̄ ∈ P that consists of hexagons of the optimal size. Denote

any of these hexagons by H. First, we introduce a concept of a contribution scheme, or

equivalently of a sharing rule (these two terms are being used interchangibly, in what follows).

Namely, a sharing rule, x(t) describes monetary contribution of each individual t towards the

cost of the library in his jurisdiction in the partition P̄ . We assume that each jurisdiction in
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P̄ balances its budget:8

∀H ∈ P̄

∫
H

x(t)dt = g. (6)

In addition, we assume for simplicity that any sharing rule is a periodic function, i.e. is a

replication of one and the same sharing rule adopted within any jurisdiction.9

An allocation c(·) corresponding to a sharing rule, x(·), is the distribution of total costs in

a population, after the rule x(·) is implemented:

c(t) = x(t) + d(t,m(H t)), (7)

where H t ∈ P̄ is the hexagonal jurisdiction containing t, and m(H) is the center of the

hexagon H (which is the location of a public good in a jurisdiction H). An allocation is

uniquely defined up to a null-set where different jurisdictions can intersect. Now, we say that

a given function c(·) is a feasible cost allocation, if there exists a sharing rule x(·) such that

c(·) corresponds to x(·) via (7).

For any feasible allocation c(·) and an arbitrary measurable subset S ⊂ <2 we define

average costs of members of S, given the allocation c(·), by the following formula:

c̄ {S, c(·)} =

(
1

|S|

) ∫
S

c(t)dt; (8)

when the allocation c(·) is fixed, we will abbrevate to write simply c̄S := c̄ {S, c(·)}. For the

grand coalition S = <2, we of course have the following identity:

c̄
{
<2, c(·)

}
≡ c̄, (9)

for any feasible allocation, taking into account (6) and (7) — average total cost of all citizens

under any feasible allocation following the efficient partition of the grand coalition <2 equals

the minimal per capita total cost c̄.

8Since they all have the same form, there is no point in inter-jurisdictional transfers.
9This assumption simplifies calculus of the proof, while not being essential for the main result.
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Now, we are ready to introduce a core of our cooperative game. The definition below simply

says that if for some allocation c(·) there exists a coalition S such that c̄ {S, c(·)} > c[S], then

this coalition S will secede and form a new jurisdiction, decreasing its overall cost.

Definition 2: Given the society <2, we say that an allocation c(·) lies in the core (notation:

c(·) ∈ C[<2]) if for any possible jurisdiction S ⊂ <2 we observe that

c̄ {S, c(·)} ≤ c[S]. (10)

Next definition introduces an allocation r(·) which plays a major part in what follows.

This is the allocation for which the utility of the most disadvantaged individual is maximized

(which allows us to name this allocation after Rawls). Under transferable utility, this implies

equating costs, so that this allocation is also called egalitarian, and we use these two terms

inter-changibly.

Definition 3: By the Rawlsian, or egalitarian allocation we mean the allocation r(t) ≡ c̄.

3 The main result

Now we are ready to state and prove main findings of our study. First, we demonstrate that

the core C[<2] is empty. This mere fact leaves us non-satisfied concerning questions “what

then to do” and “what we expect to be the outcome of the game”. When the core is empty, one

is sometimes searching for a solution which is mostly close to being in the core. For instance,

we may have assumed that there is a fixed per capita cost of a secession by any subgroup

S 6= <2; alternatively, one can consider the “government intervention” which compensates a

certain fraction of a total cost to every citizen, in case they do not form seceding coalitions.

Both approaches are essentially equivalent; using the latter approach, we come to a following

definition of an ε-core:
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Definition 4: Given the society <2, we say that an allocation c(·) lies in the ε-core (notation:

Cε[<2]), if for any measurable subset S ⊂ <2 of a positive finite measure, we have

(1− ε)c̄ {S, c(·)} ≤ c[S]. (11)

In other words, if people are following “the agreement” of the grand coalition, then the ε-part

of costs is covered “from outside”; if, however, a certain coalition, S poses a threat for a

secession, then their members have to bear costs on their own.

This definition relaxes the constraints which determine the core, and leaves us with a

hope that, for certain values of ε non-emptiness of the core is being reinforced. Formally, we

consider the value ε̂ such that

• Cε̂[<2] 6= ∅;

• For every ε < ε̂, we observe that Cε[<2] = ∅.

We will demonstrate that this value exists, and even more, we give its full characterization.

For the ε̂-core, we have yet another name: we call it a minimal ε-core, and denote by C.

In order to formulate the main result of the analysis, it is left to introduce the notion of

an optimal jurisdiction form. Consider the following minimization problem over the class of

all measurable subsets S ⊂ <2 of a positive finite measure:

min
S⊂<2

c[S]. (12)

That is, we search for jurisdictions that minimize total per capita costs of its members. Denote

any potential solution to (12) by Ŝ. We have the following result.

Lemma 2: Denote m(Ŝ) by α ∈ <2. Then, up to a null-set, Ŝ coincides with a circle Bl
α

centered at the point α, and of an optimal radius l. (Therefore, all the solutions of (12)

are parametrised by points in <2, namely, centers of these circles: {Bα}α∈<2 . When

referring to optimal jurisdictions, we omit the superscript l, writing them as simply Bα.

9



Denote by ĉ the value of the problem (12), that is, ĉ = c[Ŝ], for any Ŝ solving the prob-

lem (12). We are prepared to state and prove the main result of our analysis.

Theorem 2: Given the (uniformly populated) society <2, we have:

(i) ε̂ = 1− ĉ

c̄
6= 0;

(ii) C = Cε̂ = {r(·)} — a singleton, up to a null-set.

Summing this up, we state that the proper core is empty, and that the minimal ε-core is

single-valued, containing ONLY the Rawlsian allocation.
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