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OBJECT OF STUDY 

In a real separable Hilbert space ( , ),X   dim ,X 
 
consider the semilinear parabolic equation 

( )tu Au F u  
                                               

( )  

Here  

1. : ( )A D A X  is a linear self-adjoint  positive operator with compact inverse 1A .  

2.  :F H X  is a smooth nonlinear function with domain ( ), 0 1, ,
H

H D A u A u      

( ) ( ) ( )
H

F u F v K r u v     for  
H

u r , 
H

v r . 

3. There exists
  

a smooth dissipative phase semiflow : .t H H   

The dissipativity means the existence of an absorbing ball in the phase space .H  Since the 

nonlinearity exponent 1, 
 
we see that the function F  is “weaker” than the operator ,A

 
which means 

that Eq. (*) is semilinear.
 
 We have H X  if 0.   

Nonlinearities :F H X  with the properties described above will be called admissible 

nonlinearities. The compact attractor А H  is the collection of all complete bounded trajectories.  
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INERTIAL MANIFOLDS  

OF PARABOLIC EQUATIONS 

 

The inertial manifold of the semilinear parabolic equation ( )  is a smooth finite-dimensional 

invariant surface M H  that contains the global attractor and attracts all trajectories at large time 

with exponential tracking. Usually, M  have globally Cartesian structure and M  is diffeomorphic to 

n . The restriction of the parabolic equation to M  is an ordinary differential equation (inertial 

form) in n  which completely describes the eventual dynamics of the system.  

The existence of an inertial manifold implies that the eventual behavior of an infinite-dimensional 

dynamical system is controlled by finitely many parameters.  

CONCLUSION: a system with infinitely many degrees of freedom essentially has finitely 

many degrees of freedom as t  . 
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HISTORY OF THE TOPIC 

The term “inertial manifold” was introduced in the note [1]. Essentially, this object had 

already been considered in [2,3].  Mane’s paper [4] is apparently the first study on the topic. 

The contemporary state of the topic: [5]. 

PARADOX: Nothing is known about inertial manifolds for a majority of equations of 

mathematical physics. 

Namely, it has been possible to establish the existence of inertial manifolds for a 

narrow class of parabolic equations, while known examples [6,7] in which there is no 

inertial manifold seem to be artificial and are not related to practically important 

problems.  

[1] C. Foias, G.R. Sell, and R. Temam. C. R. Acad. Sci. Paris I, 301:5 (1985), 139–141. 

[2] D. Henry.  Geometric theory of semilinear parabolic equations,  Lecture 

      Notes in Math., 840, 1981. 

[3] X. Mora. Contemp. Math., 17 (1983), 353–360. 

[4] R. Mane. Lecture Notes in Math., 597, 1977, 361–378. 

[5] S. Zelik. Proc. Roy. Soc. Edinburgh, Ser. A, 144:6 (2014), 1245–1327. 

[6] A.V. Romanov. Math. Notes, 68:3–4 (2000), 378–385. 

[7] A. Eden, V. Kalantarov, and S. Zelik. Russian Math. Surveys, 68:2 (2013), 99–226. 
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The main goal of the study 

is to construct examples of parabolic equations of 

mathematical physics that do not have  

an inertial manifold 
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INERTIAL MANIFOLDS: SUFFICIENCY 

The only general sufficient condition for the existence of an inertial manifold M H  of 

the equation  ( )tu Au F u  
 
for an arbitrary admissible nonlinearity F  is the spectrum 

sparseness condition for the linear part of the equation (e.g., see [1]): 

1

1 1

sup n n

n n n
 

 

 



 


 


,  where 1 2{0 ...} ( ).A     

 

For the reaction–diffusion equation 

( , )tu u f x u     

in a bounded domain 
m , one has 

2/, 0, ,m
nA cn     so that the spectrum  

sparseness condition 1
1

sup ( )n n
n

 


  

 

holds only in one-dimensional and (rarely) two-

dimensional problems.  

For the Beltrami–Laplace operator on the sphere 
mS  the spectrum  sparseness 

condition

 
1

1

sup ( )n n
n

 


  

 

holds 2m  !  

[1] S. Zelik. Proc. Roy. Soc. Edinburgh, Ser. A, 144:6 (2014), 1245-1327. 
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HOW CAN WE AVOID THE SPECTRUM  SPARSENESS CONDITION ? 

The spatial averaging principle for the Laplacian   in bounded domain ( 3)m m   suggested 

in [1] sometimes permits one to construct inertial manifolds avoiding the spectrum  sparseness condition. 

It is the following property: for 
2( )h H    operator ( )h x  can be well approximated by h   over 

“large segments” of 
2( ),L   where 

1(vol ) ( ) .h h x dx


    This property follows from the spectrum  

sparseness condition. The corresponding method was used in [1] to prove the existence of an inertial 

manifold for the scalar reaction–diffusion equation  

3( , ), ,tu u f x u f C      

in cube 3(0,2 )   and in rectangle (0, ) (0, )a b   with boundary conditions (N), (D) or (P). 

Analogical results were obtained [2] for some bounded domains ( 2,3).m m    The abstract scheme of 

this method was suggested in [3] and successfully applied in [4] to the Cahn–Hilliard equation 

3( ( )), ,tu u f u f C       

on the 3D torus.  

[1] J. Mallet-Paret and G.R. Sell. J. Amer. Math. Soc., 1:4 (1988), 805–866. 

[2] H. Kwean. Int. J. Math. Math. Sci., 28:5 (2001), 293–299. 

[3] S. Zelik. Proc. Roy. Soc. Edinburgh, Ser. A, 144:6 (2014), 1245–1327. 

[4] A. Kostianko and S. Zelik. Comm. Pure Appl. Anal., 14:5 (2015), 2069–2094. 
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TRANSFORMATION OF THE EQUATION 

 

The other way to avoid the spectrum sparseness condition is to transform (some change of 

variables) the parabolic equation in order to decrease the nonlinearity exponent  . The 

summetry property of the linear part of the equation must be preserved. In this way J. 

Vukadinovic has constructed inertial manifolds [1, 2] for a Smoluchowski equation – a nonlinear 

Fokker–Planck equation on ( 1,2)mS m   and [3] for a class of diffusive Burgers equations on 

torus [0,2 ] ( 1,2)m m  . In paper [3] the Cole–Hopf transform has been employed.  

 

But the last two methods are not being general. We can avoid the spectrum sparseness 

condition in some special cases only. 

 

[1] J. Vukadinovic. Nonlinearity, 21 (2008), 1533–1545. 

[2] J. Vukadinovic. Comm. Math. Phys., 285:3 (2009), 975–990.  

[3] J. Vukadinovic. Discr. Cont. Dyn. Syst., 29:1 (2011), 327–341. 
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INERTIAL MANIFOLDS: NECESSITY 

For a fixed admissible nonlinearity F , there is only one known necessary condition [1, 2] for the 

existence of an inertial manifold M H  for the equation ( )tu Au F u   . For u H , we introduce the 

following notation:  

1. ( )F u is the Fréchet or Gâteaux derivative of the function F . 

2. ( )uS is the spectrum of the linear operator ( )uS F u A   with compact resolvent.  

3. E is the set of stationary points : ( ) 0u Au F u   . 

4. ( )l u  is the number (counting algebraic multiplicity) of eigenvalues 0   in ( )uS  for .u E  

5. { : ( ) ( ,0] }uE u E S      . 

NECESSITY LEMMA [1]. If the equation ( )tu Au F u  
 
admits an inertial manifold M H , 

then the number 1 2( ) ( )l u l u  is even for any two points 1 2,u u E .  

Sketch of proof. Let uY T M be the tangent space to M  at a point u E , then uS Y Y . As 

M attractor, then ( )u Y
S  contains exactly ( )l u  real values. Since dim dim ,Y M  it follows that the 

number dim ( )M l u is even for any u E . 

[1] A.V. Romanov. Math. Notes, 68:3–4 (2000), 378–385. 

[2] A. Eden, V. Kalantarov, and S. Zelik. Russian Math. Surveys, 68:2 (2013), 199–226. 
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EQUATION WITH NONLOCAL DIFFUSION  

 WITHOUT AN INERTIAL MANIFOLD 

Consider the integro-differential parabolic equation 

                                 (( ) ) ( , , ) ( )t x x xu I B u f x u u     

on the unit circle .   Here 
2( ),X L  idI  , x , 

2: ,f    and 

1
( )( ) ln sin ( ) ( ).

2

x y
Bh x h y dy h X









   

The self-adjoint operator 0I B   plays the role of a nonlocal degenerate diffusion 

coefficient, and ,xB J   where 
1

( )( ) cot ( )
2 2

x y
Jh x h y dy









   is a slightly modified 

Hilbert integral operator. 

THEOREM [1]. For an appropriate choice of the function f C , Eq. ( )  generates a 

smooth dissipative semiflow in ( ), 3/ 4 1H D A    , and does not admit an inertial 

manifold M H . 

[1] A.V. Romanov. Math. Notes, 96:4 (2014), 548–555. 
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EQUATION WITH NONLOCAL DIFFUSION  

 WITHOUT AN INERTIAL MANIFOLD – 1 

 

     In the course of proof, we use the properties of a Hilbert integral operator [1] and 

the perturbation theory technique [2] to construct a function ( , , )f x s p  such that Eq. ( )  

has stationary solutions 1 2 1 20, 1, , ,u u u u E    with 1 2( ) 0, ( ) 1.l u l u   Then we 

apply the necessity lemma.  

     This example of a parabolic equation without an inertial manifold is much more 

realistic than the earlier-known examples but still is not completely natural.   

 

[1] P.P. Zabreiko, et al. Integral Equations. A Reference Text. 1975. 

[2] T. Kato. Perturbation Theory for Linear Operators, 1966. 
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NORMALLY HYPERBOLIC INERTIAL MANIFOLDS 

       For inertial manifolds with additional normal hyperbolicity properties [1], nonexistence 

examples can be constructed in the class of reaction–diffusion systems.  

        DEFINITION. An inertial manifold M H  of the equation ( ), ( ),tu Au F u H D A     

is said to be normally hyperbolic if, for some (invariant with respect to the derivative t  of 

semiflow :t H H  ) vector bundle MT H TM N  , where TM  is the tangent bundle of M , 

one has (for 0t  ) the estimates 

11( ) ( ),t
t uHH

u C e T M      

   
2( ) ( ) ( )t

t uHH
u Ce N       

for u M  with constants 1C   and 1 20     depending on M and u .  

THE SENSE: the linearized semiflow contracts N  more sharply then .TM  

       It is well known [1, 2] that normally hyperbolic invariant manifolds of dynamical systems are 

structurally stable. 

[1] M. Hirsch, G. Pugh, and M. Shub. Invariant manifolds, Lecture Notes in Math., 583, 1977. 

[2] V.A. Pliss and G.R. Sell. J. Diff. Equat., 169, (2001) 396–492.  
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NORMALLY HYPERBOLIC INERTIAL MANIFOLDS:  

SUFFICIENCY 

If 1 2, ,C    in relations ( )  are independent of u , then we say that the manifold M  is absolutely 

normally hyperbolic. If relations ( )  hold for u E , then we say that M  is hyperbolic at the stationary 

points. 

THEOREM [1]. The spectral sparseness condition  

1

1 1

sup n n

n n n
 

 

 



 


 


,  where 1 2{0 ...} ( ),A     

 

for the semilinear parabolic equation  

( ) ( )tu Au F u     

with the nonlinearity exponent [0,1) 
 
in Hilbert space X  implies the existence of an absolutely normally 

hyperbolic inertial manifold M
 
in the phase space ( )H D A .  

THEOREM [2]. The scalar reaction–diffusion equation 3( , ), ,tu u f x u f C      in cube 

3(0,2 )   and in rectangle (0, ) (0, )a b   with boundary conditions (N),(D) (P)or  has normally 

hyperbolic at the stationary points inertial manifold 2( ).M L   

RECENTLY [3]: the spatial averaging principle (abstract scheme) for Eq. (**) implies the 

existence of an normally hyperbolic inertial manifold in the phase space. 

[1] R. Rosa, R. Temam. ACTA Applicandae Mathematicae, 45 (1996), 1–50. 

[2] J. Mallet-Paret, G.R. Sell, and Z. Shao. Indiana Univ. Math. J., 42:3 (1993), 1027–1055. 

[3] A. Kostianko and S. Zelik. Comm. Pure Appl. Anal., 14:5 (2015), 2069–2094. 
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NORMALLY HYPERBOLIC INERTIAL MANIFOLDS:  

NECESSITY  

Let M H  be an inertial manifold of the equation ( )tu Au F u   ,  let   , and let ( , )H u   be 

the finite-dimensional invariant subspace of the operator ( )uS F u A   corresponding to the part of the 

spectrum ( )uS  with Re .   

NECESSITY LEMMA [1]. If M  is normally hyperbolic on E , then 

( ) 0: dim ( , ) dim .u E u H u M         

Here 1 2( ) ( ( ) ( ))/2,u u u     the invariant subspaces uT M  and uN  correspond to the parts of ( )uS  with 

1Re ( )u   and 2Re ( )u  , respectively, and 1 20 ( ) ( )u u    in the definition of normal 

hyperbolicity. If M is absolutely normally hyperbolic, then the constants 1 2, ,    are independent of .u M   

THEOREM [1]. There exists a real-analytic function f  such that the reaction–diffusion equation 

4( , ), (0, ) , 0t nu u f x u u


         

dissipative in 
2( )H L  , does not admit a normally hyperbolic inertial manifold .M H   

The proof is based on the necessity lemma and uses the large multiplicity of the spectrum ( )   in 

4(0, ) . The corresponding function 4: (0, )f     (polynomial in u ) is not constructed explicitly. 

[1] J. Mallet-Paret, G.R. Sell, and Z. Shao. Indiana Univ. Math. J., 42:3 (1993), 1027–1055. 
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PROBLEM:   

Find 3D reaction–diffusion equations with polynomial nonlinearity of 

degree ≤ 3 that do not admit a normally hyperbolic inertial manifold  

 

The restrictions on the dimension of the problem and the form of the nonlinearity 

are typical of the equations of chemical kinetics. 
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3D REACTION–DIFFUSION SYSTEMS 

Consider the system of equations  

1 1 1 1 2 2 2 2 1 2( , ), ( , ), ( )t tu u f u u u u f u u          

dissipative in 
2 2 3( ( )) , (0, ) ,H L     with the condition 0nu 

   and with a smooth function 

2 2: .f   For a stationary point 
2p  of the vector field f , we set 1 2( ) Re( ) ,p     where 

1 2,  are the eigenvalues of the Jacobian matrix ( )f p . Note that ( ) 0p   for multiple or complex  . The 

scalar operator   has  (for 1 2 3( , , )x x x x  )  the  eigenfunctions         and 

the eigenvalues 
2 2 2
1 2 3 }n jl l l l     

 
with multiplicity n . It is well known [2] that 11 3.n n     

One has the orthogonal decomposition 

0

, , dim 2 .n n n n n n

n

H H H H H 




       

OBSTRUCTION LEMMA [1]. Assume that the vector field 1 2( , )f f f  has four stationary points 

2 ( 0,1,2,3)jp j   with ( )jp j  . Then system ( )  does not have a normally hyperbolic inertial 

manifold M H . 

[1] A.V. Romanov. Math. Notes, 68:3–4 (2000), 378–385. 

[2] G.H. Hardy, E.M. Wright. An introduction to the theory of numbers, 1979. 

3

1

( ) cos ( 0)k k k

k

x l x l


 
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SKETCH OF PROOF 

We have                 0 0 0( ( )) ( , 0),f p s i s        

( ( )) / 2 (1 3, ).j j jf p s j j s        

Subspaces nH  are invariant for the operators ( ), 0 3.j jS f p j      The spectrum 

( )jS  is the union over of 0n   the spectra of all (2 2) matrices 

( ) ( id):n jI f p I     

0 0 0 1 1 0( ) { } , ( ) { 1/2} ,n n n nS s i S s              

2 2 0 3 3 0( ) { 1} , ( ) { 3/2} .n n n nS s S s             

Let                   0 0(0, ) card{ ( ): Re + },mm S s         

( , ) card{ ( ): + / 2},j n jj n S s j          

( , ) card{ ( ): + / 2},j n jj n S s j          

where , 0, 1 3,m n j    and points of the spectrum are counted with multiplicities. 

Accordingly necessity lemma it is sufficiently to refute the conjecture: 

, 0 (1 3) : (0, ) ( , ) or (0, ) ( , ).j j jm n j j m j n m j n           

It may be done by arithmetical analysis of many variants. 
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EXAMPLE OF NONEXISTENCE OF A NORMALLY HYPERBOLIC  

INERTIAL MANIFOLD 

 

Consider the system 

1 1 1 1 2 2 2 2 1 2( , ), ( , )t tu u f u u u u f u u         

in cube 3(0, ) ,   under the condition 0nu 
   with the polynomial vector field  

2 2 2 2
1 1 2 1 1 2 2 1 2 2 2 1( , ) (1 ), ( , ) (1 )f v v kv av v f v v kv bv v      , 

where 1, , 0,a k b   are constants. Dissipativity in 
2 2( ( ))H L   (“vector sign 

condition”): squares 1 2,v R v R 
 
are positively invariant for ODE ( )tv f v  when 

0 0.R R   

PROPOSITION [1].  There exist , ,k a b such that this system does not have a 

normally hyperbolic inertial manifold M H . 

 

[1] A.V. Romanov (unpublished). 
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SKETCH OF PROOF 

 

Let us single out four stationary points 

1/ 2 1/ 2

1/ 2 1/ 2
0 1 2 3

1 1
(0,0), ( ,0), , , (0, )

1 1

b a
p p a p p b

ab ab
 

     
             

 

of the vector field 
2 2:f  . We have 

2 2
1 2 1 2

2 2
1 2 1 2

1 3 2
( )

2 1 3

av v v v
f v k

v v v bv

  
   

   
 

for 
2,v  and 1 1

0 1 30, (3 ), (3 ),k a k b         

2 2
2 2
2 2 2

4 ( 1)( 1)
16 ,

( 1) ( 1)

k a a b
k

ab ab


 
 

 
 

if the right part 0  (otherwise 2 0  ). We have 3 1/ 3,  
 
if /(6 3)b a a  . Let 

2 1( ) ( ) / ( ),g a a a 
 
then [1, ),g C  (1) 3/ 4,g  ( ) 4g  

 
and so ( ) 2g a 

 
for some 1.a   

Let now /(3 1),k a a 
 
then we see that ( ) (0 3)jp j j    .  

The proposition follows now from the obstruction lemma. 
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PROBLEM:   

Find   3D  reaction–diffusion equations with an inertial manifold that is not 

normally hyperbolic  
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INERTIAL MANIFOLD THAT IS NOT NORMALLY HYPERBOLIC 

Consider the system 

      1 1 1 1 2 2 2 2 1 2( , ), ( , ), ( )t tu u f u u u u f u u          

dissipative in 
2 2 3( ( )) , (0, ) ,H L     with the boundary condition 0nu 

   and 

with the polynomial vector field 

1 1 2 1 1 1 2 1 2 2 2 2( , ) ( )( ), ( , ) ( )( ),f v v v a v v b f v v v c v v d       

where , , ,a b c d are constants.   THIS IS AN UNCOUPLED SYSTEM! 

 

PROPOSITION [1].  For 2, 3, 6, 2a b c d    , system ( )  has an inertial 

manifold M H  but does not have a normally hyperbolic inertial manifold in H . 

 

     Thus, we have presented an inertial manifold of system ( )  without the normal 

hyperbolicity property. 

 

[1] A.V. Romanov (unpublished). 
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PROOF 

By [1], each of the two equations in the system has an inertial manifold 2( )jM L   with 

Cartesian structure, and hence 1 2M M M   is an inertial manifold of the system in H . At the stationary 

points  

0 1 2 3(0,0), ( , ), ( , ), ( , )p p b d p a c p b c     

of the vector field 
2 2:f  , we have 

0

0 2 3 0
( ) ,

0 0 2 3

ab
f p

cd

   
     

    
 

1

( ) 0 2 3 3 0
( ) ,

0 ( ) 0 2 3 2

b a b
f p

d c d

   
     

    
 

2

( ) 0 2 3 4 0
( ) ,

0 ( ) 0 2 3 6

a b a
f p

c d c

   
     

    
 

2

( ) 0 2 3 3 0
( ) .

0 ( ) 0 2 3 6

b a b
f p

c d c

   
     

    
 

We see that ( ) (0 3)jp j j    , and the desired assertion follows from the obstruction lemma.  

 

[1] J. Mallet-Paret and G.R. Sell. J. Amer. Math. Soc., 1:4 (1988), 805–866. 
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IS THE SPECTRUM  SPARSENESS CONDITION 

EQUIVALENT TO THE ABSOLUTELY NORMALLY HYPERBOLIC INERTIAL 

MANIFOLD EXISTING ? 
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ABSOLUTELY NORMALLY HYPERBOLIC  

INERTIAL MANIFOLDS 

Let us discuss the existence of such manifolds for the semilinear parabolic equation 

( ) ( )tu Au F u     

in Hilbert space X  with the phase space ( ), 0 1.H D A      

PROBLEM.  Find a relationship between the following properties:  

(A) The spectrum sparseness condition for the linear part Eq. ( ) : 

1

1 1

sup n n

n n n
 

 

 



 


 


, where 1 2{0 ...} ( );A       

(B) For any admissible nonlinearity F , Eq. ( )  has an absolutely normally hyperbolic inertial manifold 

M H .  

(C) For any admissible nonlinearity F , Eq. ( )  has an inertial manifold M H  absolutely normally 

hyperbolic at the stationary points.  

(D) For any admissible nonlinearity F , Eq. ( )  has an inertial manifold .M H  

PROPOSITION. Properties (A), (B), (C) and (D) are equivalent.  

The implication (A) (B) is known [1] and the implications (B) (C),  (C) (D) are trivial. The 

implication (D) (A) has been obtained in [2].  

[1] R. Rosa, R. Temam. ACTA Applicandae Mathematicae, 45 (1996), 1–50. 

[2] A. Eden, V. Kalantarov, and S. Zelik. Russian Math. Surveys, 68:2 (2013), 99–226. 
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THE PARTICULAR CASE 

One has slightly other picture for special classes of semilinear parabolic 

equations. Let us consider the scalar reaction–diffusion equation 

( ), 0, ( )tu u f u        

in a bounded domain ( 3)m m   with the condition 0nu 
    and with a 

smooth function .f  We assume that Eq. ( )  is dissipative in 2( ).H L 
 
Let  

1 2{0 ...} ( ).      
 

PROPOSITION [1].  Let 1 , 0,n n K n     and 0 1( ) ( ) 0f p f p a     

for some 0 1 0 1, , ( ) ( ) 0.p p f p f p   Then Eq. ( )  with /K a   have no 

inertial manifold M H
 

absolutely normally hyperbolic at the stationary 

points. 

For Eq. ( )  we can affirm the equivalence of properties (A), (B), (C) only. 

[1] A.V. Romanov. Math. Notes, 68:3–4 (2000), 378–385. 
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POSSIBLE GOALS 

1. Construct an example of a reaction–diffusion system without an 

inertial manifold. 

2. Comprehensively study a relationship between the spectrum 

sparseness condition and absolutely normally hyperbolic inertial 

manifold existing for semilinear parabolic equations. 

3. Successfully advancement of the spatial averaging principle 

(abstract scheme). 

4. Comprehensively study the topic “inertial manifolds” for  

2D Navier–Stokes equations.  

5. The study of the topic “inertial manifolds” for reaction–diffusion 

equations on close manifolds. 



28 

THANKS FOR ATTENTION 


