И.К. Бусяцкая

Задачник

Дополнительные задачи к курсу Линейная алгебра.

Предисловие.

Задачник предназначен студентам, желающим углубить свое понимание курса лекций по Линейной алгебре и расширить свой математический кругозор путем решения дополнительных задач, отличных от типовых и вычислительных, разбираемых на семинарах.

При составлении задачника были использованы

- 1. И.В. Проскуряков. Сборник задач по линейной алгебре. СПб. Издательство "Лань ".2010г.
- 2. А.И. Кострикин. Сборник задач по алгебре. М. МНЦМО. 2009г.
- 3. Д.К.Фаддеев, И.С.Соминский. Сборник задач по высшей алгебре. М. "Наука ".1977г.
- 4. Г.Е.Шилов. Математический анализ (конечномерные линейные пространства). М." Наука ". 1969г.

Глава 1. Алгебра матриц.

- 1. E_i^j —базисная матрица. Найти а) E_i^j E_k^m , b) A E_i^j
- 2. Найти все квадратные матрицы такие, что
 - а) $E_i^1 A = E_i^1$ для всех i=1,2,...,n
 - b) $E_i^i A = A E_i^i$ для всех i=1,2,...,n
- 3. След квадратной матрицы это сумма ее диагональных элементов. $\operatorname{tr} A = \sum_{i=1}^n a_i^i$.
- а) доказать, что след произведения двух матриц не зависит от прядка сомножителей.
- b) найти все квадратные матрицы A такие, что trAX =0 для всех матриц X того же порядка.
- c) A и B квадратные матрицы одного порядка. Может ли выполняться равенство AB BA = E?
- 4. A^{T} транспонированная матрица, т.е. матрица строками которой служат столбцы матрицы А. Доказать, что

- a) $(AB)^{T} = B^{T} A^{T}$
- b) если $AA^{T} = 0$, то A = 0.
- 5. Квадратная матрица называется симметрической, если $A^{T} = A$.
- а) будут ли сумма и произведение симметрических матриц симметрическими матрицами?
- b) доказать, что матрицы AA^{T} и $A^{\mathsf{T}}A$ симметрические для любой квадратной матрицы A.
- 6. Квадратная матрица называется кососимметрической, если $A^{T} = -A$. А и В кососимметрические матрицы. Будет ли их произведение
 - а) кососимметрической матрицей?
 - b) симметрической матрицей?
- 7. Доказать ,что любую квадратную матрицу A можно представить , и притом единственным образом в виде A = B +C, где B –симметрическая матрица, а C –кососимметрическая матрица.
- 8. Матрицы A и B имеют порядок n. AB=BA для любой матрицы B. Доказать, что $A=\lambda$ E.
- 9. Представить матрицу $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ как произведение элементарных матриц.
- 10. Решить систему матричных уравнений $\begin{cases} X+Y=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \\ 2X+3Y=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \end{cases}$
- 11. Выяснить, что происходит с матрицей А при умножении справа на элементарную матрицу.
- 12. Однозначно ли определен ступенчатый (главный ступенчатый) вид матрицы?
- 13. Найти все матрицы, коммутирующие с матрицей $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$
- 14. Найти все верхние треугольные матрицы третьего порядка, коммутирующие со всеми верхними треугольными матрицами того же порядка.

15. Вычислить
$$A^n$$
, где $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

Глава 2. Системы линейных уравнений и линейные пространства.

- 1. Пусть система векторов $\mathbf{a_1}$, $\mathbf{a_2}$ из пространства \mathbf{R}^{n} линейно независима. При каких λ система векторов $\lambda \mathbf{a_1} + \mathbf{a_2}$, $\mathbf{a_1} + \lambda \mathbf{a_2}$ будет линейно независимой?
- 2. Доказать, что любая часть линейно независимой системы векторов пространства Rⁿ также линейно независима. Верно ли аналогичное утверждение для линейно зависимой системы векторов?
- 3. В каком случае конечная система векторов $\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_k}$ пространства \mathbf{R}^n имеет единственный базис?
- 4.Система $x_1 + x_2 + x_3 + x_4 = 0$ состоит из одного уравнения. Указать два различных базиса в подпространстве решений.
- 5. Векторы a_1 , a_2 , a_3 являются базисом линейной оболочки $L(a_1, a_2, a_k)$. Будут ли векторы a_1 , $a_1 + a_2$, $a_{1+} a_2 + a_3$ базисом этой оболочки?
- 6. Сравнить размерности линейных оболочек векторов L(a_1 , a_2 ,..., a_k) и L(a_1 , a_2 ,..., a_n) .
- 7. Задать линейную оболочку векторов a_1 = (1020) и a_2 =(1101) системой линейных уравнений.
- 8. L_1 и L_2 линейные подпространства в R^n . Будет ли линейным подпространством множество а) $L_1 \cap L_2$, б) $L_1 \cup L_2$?
- 9. L₁ и L₂−линейные подпространства в R¹ , L₁ \subset L₂ . Доказать, что dim L₁ \leq dim L₂ .
- 10. L_1 и L_2 линейные подпространства в R^n . L_1 ⊂ L_2 ,dim L_1 =dim L_2 . Доказать, что L_1 = L_2 .
- 11. L_1 и L_2 линейные подпространства в R^n , dim L_1 +dim L_2 > dim R^n Доказать, что $L_1 \cap L_2$ содержит ненулевой вектор.
- 12. Проверить, что множество М является линейным подпространством в R_5 , и задать его системой однородных линейных уравнений. Найти базис и размерность множества М.

a)
$$M = \begin{cases} x = \begin{pmatrix} \alpha \\ \alpha \\ \beta \\ \beta \end{pmatrix}; & \alpha, \beta \in R \end{cases}$$
, b) $M = \begin{cases} x = \begin{pmatrix} \alpha \\ \beta \\ \alpha \\ \beta \end{pmatrix}; & \alpha, \beta \in R \end{cases}$

c) M=
$$\left\{ \mathbf{x} = \begin{pmatrix} \alpha \\ \beta \\ \beta \\ \beta \\ \alpha \end{pmatrix}; \quad \alpha, \beta \in R \right\}.$$
 d) M= $\left\{ \mathbf{x} = \begin{pmatrix} \alpha \\ \alpha \\ \alpha \\ \beta \\ \beta \end{pmatrix}; \quad \alpha, \beta \in R \right\}$

- 13. Векторы a_1 , a_2 , a_3 линейно зависимы, **в** принадлежит линейной оболочке этих векторов. Сколькими способами можно представить вектор **в** как линейную комбинацию векторов a_1 , a_2 , a_3 ?
- 14. Докажите, что ранг суммы матриц не превосходит суммы рангов этих матриц.
- 15. Найти решение системы $\begin{cases} \lambda x_1 + x_2 = 1 \\ x_1 + \lambda x_2 = 1 \end{cases}$ при различных значениях параметра λ .

Глава 3. Теория определителей.

- 1. Как изменится определитель матрицы порядка n ,если у всех его элементов изменить знак на противоположный?
- 2. Как изменится определитель матрицы порядка n, если его строки написать в обратном порядке?
- 3. Многочленом степени n от квадратной матрицы A называется выражение $f(A)=a_n\ A^n+a_{n-1}\ A^{n-1}+...+a_1\ A+a_0\ E$.
- а) Доказать, что для каждой квадратной матрицы существует многочлен f(x) такой ,что f(A)=0. ($n\geq 1$)

Такой многочлен называется аннулирующим многочленом матрицы А.

- b) Доказать, что аннулирующих многочленов данной матрицы бесконечно много.
- 4. $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ квадратная матрица второго порядка. Доказать, что многочлен $f(x) = x^2 trA \ x + det \ A$ будет аннулирующим для матрицы A.
- 5. $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ квадратная матрица второго порядка, причем $A^2 = O$. Найти trA cлед матрицы A.

- 6. Как изменится определитель матрицы порядка п, если его строки написать в обратном порядке?
- 7. $A^{T} = A$, det $A \neq 0$. Будет ли A^{-1} симметрической матрицей?
- 8. $A^T = -A$, det $A \neq 0$. Будет ли A^{-1} кососимметрической матрицей?
- 9. A^T A = E. Yemy paseh det A?
- 10. A целочисленная обратимая матрица. В каком случае матрица A⁻¹ будет целочисленной?
- 11. Решить уравнение $\begin{pmatrix} 1 & 1 & \dots & 1 \\ 0 & 1 & \dots & 1 \\ \dots & \dots & \dots & 1 \\ 0 & 0 & \dots & 1 \end{pmatrix} X = \begin{pmatrix} 1 & 2 & \dots & n \\ 0 & 1 & \dots & n \\ \dots & \dots & \dots & n \\ 0 & 0 & \dots & n \end{pmatrix}$
- 12. Решить уравнение $\begin{vmatrix} 1 & x & x^2 & x^3 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{vmatrix} = 0$
- 13. Найти сумму алгебраических дополнений всех элементов определителя

$$\begin{bmatrix} a_1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & a_n \end{bmatrix}$$

14. Вычислить определитель
$$\begin{vmatrix} a^2 & (a+1)^2 & (a+2)^2 & (a+3)^2 \\ b^2 & (b+1)^2 & (b+2)^2 & (b+3)^2 \\ c^2 & (c+1)^2 & (c+2)^2 & (c+3)^2 \\ d^2 & (d+1)^2 & (d+2)^2 & (d+3)^2 \end{vmatrix}$$

- 15. Как изменится А-1, если в матрице А переставить две строки?
- 16. Как изменится A^{-1} , если в матрице A умножить строку на число, отличное от нуля?
- 17. Как изменится A^{-1} , если в матрице A к одной строке прибавить другую строку, умноженную на число?
- 18. Чему равен определитель целочисленной матрицы, если ее обратная матрица целочисленная?
- 19. А- квадратная матрица. $A^2 + 2A + E = 0$.
- а) доказать, что А- невырожденная матрица.
- в) найти А⁻¹.

- 20. (E+A)⁻¹A невырожденная диагональная матрица. Доказать, что А диагональная.
- 21. A^k =О. Доказать, что матрица E-A обратима и (E-A)⁻¹ =E+A+A²+...+ A^{k-1} . Будет ли обратимой матрица A + E?
- 22. Три прямые на плоскости $A_1x + B_1y + C_1=0$, $A_2x + B_2y + C_2=0$ и

 $A_3x + B_3y + C_3 = 0$ пересекаются в одной точке. Чему равен определитель

матрицы
$$\begin{pmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{pmatrix}$$
?

Глава IV. Комплексные числа и многочлены.

- 1. Доказать неравенства:
- a) $|z_1 + z_2| \le |z_1| + |z_2|$
- b) Если |z| < 1, то $|z^2 z + i| < 3$.
- 2. Доказать, что если $z+z^{-1}=2\cos\varphi$, то $z^n+z^{-n}=2\cos n\varphi$
- 3. Совпадают ли множества?

a)
$$\sqrt{\,z_1z_2}\,$$
 и $\sqrt{z_1}\,\sqrt{z_2}\,$, b) $\sqrt[3]{\,z_1\,z_2}\,$ и $\sqrt[3]{z_1}\,\sqrt[3]{z_2}\,$.

- 4. Как расположены точки z_1 , z_2 , z_3 на комплексной плоскости, если $|z_1|$ = $|z_2|$ = $|z_3|$ = 1, a z_1 + z_2 + z_3 =0.
- 5.Изобразить кривую на комплексной плоскости $z=rac{1+ti}{1-ti}$, $t\in R$.
- 6. Найти произведение всех корней степени n из 1.
- 7. Доказать тождество $|z_1+z_2|^2+|z_1-z_2|^2=2|z_1|^2+2|z_2|^2$ и указать его геометрический смысл.

7.

8.Изобразить на комплексной плоскости множество точек z, удовлетворяющих условию

a)
$$1 \le |z - i| \le 2$$
, b) $\frac{\pi}{4} \le \arg i\overline{z} \le \frac{\pi}{2}$, c) $\operatorname{Re}(z+1)=1$, d) $\operatorname{Im} \frac{1}{i\overline{z}}=1$.

- 9. Доказать, что многочлен $x^3 \sin\alpha$ -4x $\sin 3\alpha$ +8 $\sin 2\alpha$ делится на x^2 -4x $\cos \alpha$ +4.
- 10. При каких а и b многочлен $p(x) = a x^{n+1} + b x^n + 1$ делится на $(x-1)^2$.
- 11.Доказать, что многочлен $p(x) = x^{3m} + x^{3n+1} + x^{3p+2}$ делится на $x^2 + x + 1$.
- 12. Какой многочлен делится на свою производную?

- 13. Найти кратность корня x=1 многочлена x^{2n} -n x^{n+1} +n x^{n-1} -1.
- 14. Решить уравнение $8x^3$ - $12x^2$ -2x+3=0, зная, что его корни образуют арифметическую прогрессию.
- 15.Определить соотношения между коэффициентами уравнения $x^3+px+q=0$, если его корни связаны соотношением $x_1 = \frac{1}{x^2} + \frac{1}{x^3}$.
- 16.Показать, что многочлен x^5+ax^3+b не может иметь корней, отличных от нуля, выше второй кратности.
- 17. При каком условии многочлен x^5+ax^3+b имеет корень кратности два, отличный от нуля.
- 18. При каком а многочлен x^5 ax^2 -ax+1 имеет -1 корнем кратности не ниже второй.
- 19. Решить уравнение $36x^3$ - $12x^2$ -5x+1=0 ,если известно, что один из корней равен сумме двух других.
- 20. Найти сумму квадратов корней уравнения $x^5+10x^4+25x^3-10x^2-5x+7=0$.
- 21.Пусть x_1, x_2, \dots, x_n корни многочлена $p(x) = a_n x^n + \dots + a_1 x + a_0$.
 - а. Найти корни многочлена $a_n x^n a_{n-1} x^{n-1} + \dots + (-1)^n a_0$.
 - b. Найти корни многочлена $a_0 x^n + \dots + a_{n-1} x + a_n$.
- 22. Число называется алгебраическим, если оно корень многочлена с целыми коэффициентами. Будет ли число $\sqrt{2}+\sqrt{3}$ алгебраическим?
- 23. Доказать, что множество матриц вида $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ а,b \in R операциями сложения и умножения матриц образуют поле и найти в нем матрицу Ј такую, что J^2 =-E.
- 24. Разложить многочлен x^5 1 на неприводимые множители над полем R

Глава 5. Евклидовы пространства.

- 1. V- $\{\alpha \in R; \alpha > 0\}$ множество положительных вещественных чисел с операциями сложения " $\alpha+\beta$ "= $\alpha\beta$ и умножения на число $\lambda \in R$ " $\lambda\alpha$ " = α^{λ} .
 - а). Будет ли V с указанными операциями линейным пространством?
 - в). Найти базис пространства V.
 - c). Найти dim V.

- d). Будут ли пространства V и R^1 изоморфны? Если да, то указать изоморфизм.
- 2. L_1 , L_2 L_3 линейные подпространства в линейном пространстве V. Верно ли, что $L_1 \cap (L_2 + L_3) = L_1 \cap L_2 + L_1 \cap L_3$?
- 3. L_1 , L_2 ... L_n линейные подпространства в линейном пространстве V такие, что $L_i \cap L_i = \{0\}$. Будет ли сумма этих подпространств прямой ?
- 4. $L_1 = \{ \mathbf{x} \in \mathbb{R}^n \ , \ x_1 + ... + x_n = 0 \}$, $L_2 = \{ \mathbf{x} \in \mathbb{R}^n \ , \ x_1 = x_2 = ... = x_n \ \}$. Доказать, что $\mathbb{R}^n \mathbb{R}^n = \mathbb{R}^n + \mathbb{R}^n = \mathbb{R}^n =$
- 5. Доказать что для любого линейного подпространства L_1 в пространстве R^n найдется линейное подпространство L_2 такое, что R^n прямая сумма L_1 и L_2 .Однозначно ли определено подпространство L_2 ?
- 6. Пусть V= $L_1 \oplus L_2$.Доказать, что dim $L_1 + \dim L_2 = \dim V$.
- 7. f(L)-функция, определенная на множестве линейных подпространств в Rⁿ, обладающая свойствами
- а) $f(L_1 + L_2) = f(L_1) + f(L_2)$, если $L_1 \cap L_2 = 0$. b) Если dim(L) = 1, то f(L) = 1.

Доказать, что f(L) = dim L.

- $8.V=P_2[x]$ —линейное пространство многочленов степени не выше второй . L —линейная оболочка многочленов t-1, t²+2, 2t²+3t+1. Найти базис пространства V, содержащий базис подпространства L.
- 9.Скалярное произведение в пространстве R^2 задано матрицей Грама $G(\mathbf{i},\mathbf{j})$ = $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$.Найти
- а) длину векторов і и ј и угол между ними.
- б) длину вектора **a**= (1,1).
- в) проекцию вектора а на линейную оболочку вектора і.
- г) ортонормированный базис в пространстве R².
- 10.Скалярное произведение в пространстве R^3 задано матрицей Грама $G(i,j,\kappa)=\begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$. L- линейная оболочка векторов $\mathbf{a_1}$ =(1,0,1) и $\mathbf{a_2}$ =(-1,1,1). Найти
- а) ортогональное дополнение к пространству L.
- б) проекцию вектора і на линейное подпространство L.

- в) длину ортогональной составляющей вектора і.
- 11. В пространстве R³ скалярное произведение задано матрицей Грама

G(i, j, k) =
$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 3 \end{pmatrix}$$
.

Найти проекцию вектора **a** = (1, 1, 1) на плоскость $x_1+2x_2-2x_3=0$.

12. В пространстве R³ скалярное произведение задано матрицей Грама

G(i, j, k) =
$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$$
.

Найти проекцию вектора **a** = (1, 0, 0) на прямую $\begin{cases} x+y+z=0 \\ x-z=0 \end{cases}$.

13.В пространстве R³ скалярное произведение задано матрицей Грама

G(i, j, k) =
$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$$
.

Найти ортогональное дополнение к плоскости x+ y+ z =0.

14. В пространстве R³ скалярное произведение задано матрицей

G(i, j, k) =
$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$$
.

Найти ортогональное дополнение к прямой $\begin{cases} x+y+z=0 \\ x-z=0 \end{cases}$.

Глава 6. Линейные операторы.

- 1.Доказать, что линейный оператор переводит линейно зависимую систему векторов в линейно зависимую. Верно ли аналогичное утверждение для линейно независимой системы?
- 2. Описать все линейные операторы в ${\sf R}^1$ и в ${\sf C}^1$. Указать их геометрический смысл.
- 3.Доказать, что всякое линейное подпространство является ядром некоторого линейного оператора. Однозначно ли определен этот оператор?
- 4. Доказать, что всякое линейное подпространство является образом некоторого линейного оператора.

5.Пусть ф- линейный оператор, определенный на линейном подпространстве L пространства R^n .Доказать, что существует бесконечно много линейных операторов в пространстве R^n совпадающих с ф на L.

6.Доказать, что образ линейного подпространства под действием линейного оператора также является линейным подпространством. Как связаны размерности этих двух подпространств?

- 7. ф оператор умножения слева на матрицу $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ в пространстве M_2 . Найти его матрицу в базисе $E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
- 8. ф оператор умножения справа на матрицу A = $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ в пространстве M $_2$. Найти его матрицу в базисе E $_1$ = $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, E $_2$ = $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, E $_3$ = $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, E $_4$ = $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
- 9.ф оператор транспонирования в пространстве M_2 . $\varphi(A) = A^T$. Доказать его линейность и найти его матрицу в базисе $E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$,

$$\mathsf{E}_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \text{, } \mathsf{E}_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \text{.}$$

- 10. Линейный оператор отображает базис пространства Rⁿ снова в некоторый базис этого пространства. Будет ли оператор обратимым?
- 11.ф оператор умножения на матрицу $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ в пространстве R^2 .Каков его геометрический смысл?
- 12.ф оператор умножения на матрицу $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ в пространстве R^2 .Каков его геометрический смысл?
- 13.ф оператор умножения на матрицу $\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ в пространстве R^2 .Каков его геометрический смысл?
- 14. А = $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ матрица линейного оператора в базисе **i** ,**j** . Найти матрицу этого оператора в базисе **j** ,**i**.
- 15.Доказать, что множество линейных операторов в пространстве R² относительно операций сложения и умножения на число является линейным пространством. Найти его размерность и какой-нибудь базис.
- 16. Доказать, что в пространстве R^2 существует единственный линейный оператор, переводящий векторы $\mathbf{a_1}$ =(1,1), $\mathbf{a_2}$ =(1,0) соответственно в векторы

- $\mathbf{b_{1=}}(0,1)$, $\mathbf{b_{2}=}(1,-1)$. Найти матрицу этого оператора в базисе **i,j**. Верно ли это утверждение для произвольного набора векторов $\mathbf{a_{1}}$, $\mathbf{a_{2}}$, $\mathbf{b_{1}}$, $\mathbf{b_{2}}$?
- 17. Оператор ф отображает R^3 в R^3 по формуле $(x_1, x_2, x_3) \rightarrow (x_1 + 3, x_2 5, x_3)$. Найти ядро Kerф . Будет ли оно линейным подпространством? Как это согласуется с теорией?
- 18.Найти матрицу линейного оператора ф в базисе $\mathbf{e_1}$, $\mathbf{e_2}$,..., $\mathbf{e_k}$,..... $\mathbf{e_n}$, где $\mathbf{e_1}$, $\mathbf{e_2}$,..., $\mathbf{e_k}$ \in Kerф. Будут ли векторы ϕ (, $\mathbf{e_{k+1}}$)...... ϕ (, $\mathbf{e_n}$) линейно зависимыми?
- 19. ϕ оператор поворота на плоскости на угол α , ψ симметрия относительно прямой у=0. Найти операторы $\psi \phi$ и $\phi \psi$. (Описать их геометрически).
- 20. ф оператор умножения на матрицу $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ в пространстве R^2 . Aⁿ=O (n> 2). Доказать, что Φ^2 =0.
- 21. Линейный оператор ϕ , действующий в пространстве R^n , называется идемпотентным, если $\phi^2 = \phi$. Доказать , что если ϕ идемпотентный оператор, то
 - а) оператор $\psi = id \phi$ идемпотентный,
 - b) $\operatorname{Ker} \varphi = \operatorname{Im} \psi$, c) $\operatorname{Im} \varphi = \operatorname{Ker} \psi$,
 - d) $V = Ker \phi \oplus Im \phi$.

Выяснить геометрический смысл идемпотентного оператора.

(проектирование на линейное подпространство вдоль другого линейного подпространства).

- **22**. Линейный оператор ϕ , действующий в пространстве R^n , называется инволютивным, если ϕ^2 =id.
 - а). Найти Кегф и Ітф.
- в). Проверить, что $L_1=\{x; \varphi(x)=x\}$, $L_2=\{x; \varphi(x)=-x\}$ инвариантные подпространства оператора φ .
 - с). Доказать, что $R^n = L_1 \oplus L_2$
- d). Выяснить геометрический смысл инволютивного оператора. (симметрия относительно L_1 вдоль L_2) .

23. Доказать, что ранг произведения матриц не превосходит ранга каждого сомножителя.

Глава 7. Канонический вид линейного оператора.

- 1. Все ненулевые векторы пространства R^3 собственные векторы линейного оператора ф. Что это за оператор?
- 2. φ ненулевой линейный оператор в пространстве R^2 , такой что φ^2 =0. Каким может быть канонический вид матрицы этого оператора?
- 3. Линейный оператор ф необратим. Доказать. что у него есть собственные векторы.
- 4. Линейный оператор φ обратим. Доказать. что φ и $\varphi^{\text{-1}}$ имеют одни и те же собственные векторы .
- 5. Доказать, что характеристические многочлены матриц A и A^{T} совпадают.
- 6. ф линейный оператор в пространстве матриц M_2 . ф: $A \to A^T$. Найти его собственные векторы и собственные значения.
- 7. ф- оператор в пространстве многочленов $P_n[x]$. ф(p(x))= x p'(x). Проверить линейность этого оператора, найти его матрицу в стандартном базисе, собственные векторы и собственные значения.
- 8. ф- оператор в пространстве многочленов $P_n\left[x\right]$. $\varphi(p(x))=p(ax+b)$. Проверить линейность этого оператора, найти его матрицу в стандартном базисе, собственные векторы и собственные значения.
- 9. φ оператор умножения на матрицу $A=\begin{pmatrix} a & 0 \\ 0 & B \end{pmatrix}$ в пространстве R^2 . $M=\left\{\begin{pmatrix} x \\ y \end{pmatrix}; \ x^2 \ + y^2 \ = 1\right\}$ подмножество в пространстве R^2 .Найти образ этого подмножества. Описать его геометрически.
- 10. Пусть операторы ϕ и ψ коммутируют, тогда собственное подпространство V_{λ} оператора ϕ инвариантно относительно оператора ψ .
- 11. Пусть λ^2 —собственное значение оператора Φ^2 , тогда одно из чисел λ или λ является собственным значением оператора Φ .
- 12. Доказать, что собственный вектор оператора ф будет собственным вектором оператора ϕ^2 .

- 13. Найти инвариантные подпространства оператора дифференцирования в пространстве многочленов $P_n[x]$.
- 14. Описать все инвариантные подпространства оператора умножения на Жорданову клетку.
- 15. В каком случае матрица A = $\begin{pmatrix} 0 & 0 & a \\ 0 & b & 0 \\ c & 0 & 0 \end{pmatrix}$ подобна диагональной? 16. ф оператор умножения на матрицу A = $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ в пространстве R³.

Будет ли оператор диагонализируемым? Найти Жорданову форму матрицы А.

17. ф – оператор умножения на матрицу А = $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$. Будет ли

оператор диагонализируемым? Найти канонический вид матрицы оператора φ.

18. ф – оператор умножения на матрицу А = $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$. Будет ли

оператор диагонализируемым? Найти Жорданову форму матрицы А.

19. ϕ – оператор умножения на матрицу А = $\begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$. Будет ли

оператор диагонализируемым? Найти Жорданову форму матрицы А.

- 20. ϕ линейный оператор в R^n , переводящий линейно независимые векторы $a_1, a_2, ..., a_n$ в векторы $b_1, b_2, ..., b_n$. А и В- матрицы, в столбцах которых стоят координаты соответственно векторов a_1, a_2, a_n и $b_1, b_2, ..., b_n$ в стандартном базисе e_1 , e_2 , e_n . Найти матрицу оператора ϕ в базисах a_1 , a_2 a_n и e₁,e₂,..., e_n.
- 21. Линейный оператор ϕ в пространстве R^n имеет n различных собственных значений. Найти все инвариантные подпространства оператора ф. Сколько их?

Глава 8. Линейные операторы в евклидовых пространствах.

- 1. Доказать, что фф * самосопряженный оператор, спектр которого лежит на полуоси $x \ge 0$.
- 2. Доказать, что если $|\mathbf{x}| = |\varphi(\mathbf{x})|$ для любого вектора **x**,то ф- изометрический оператор.
- 3.Пусть ф и f самосопряженные операторы, причем фf=fф. Доказать, что фfсамосопряженный оператор. Верно ли обратное утверждение?
- 4.Доказать, что Kerф* является ортогональным дополнением к Im ф.
- 5.Доказать, что Imф* является ортогональным дополнением к Ker ф.
- 6. Евклидово пространство E прямая сумма линейных подпространств L_1 и L_2 . φ оператор проектирования на L_1 вдоль L_2 . Найти φ * .
- 7. Евклидово пространство E прямая сумма линейных подпространств L_1 и L_2 φ оператор проектирования на L_1 вдоль L_2 . Доказать, что φ = φ * тогда и только тогда, когда линейные подпространства ортогональны.
- 8. Доказать, что если ϕ самосопряженный оператор, спектр которого лежит на полуоси $x \ge 0$, то существует самосопряженный оператор f, спектр которого также лежит на полуоси $x \ge 0$, и такой, что $f^2 = \phi$.
- 9. Линейный оператор ф в вещественном евклидовом пространстве называется кососимметрическим, если ф=-ф*. Доказать, что любой линейный оператор в вещественном евклидовом пространстве является суммой симметрического (самосопряженного) и кососимметрического операторов. Обобщить это утверждение на комплексный случай.
- 10. Доказать, что если векторы **х** и **у** в евклидовом пространстве имеют одинаковую длину, то существует изометрический оператор, переводящий **х** в **у**.
- 11. Линейный оператор в евклидовом пространстве самосопряженный и изометрический одновременно. Каков его геометрический смысл?
- 12. V = R^3 , ф-оператор поворота на угол 90° против часовой стрелки вокруг оси OX, ψ оператор поворота на угол 90° против часовой стрелки вокруг оси OX. Выяснить
 - а) коммутируют ли операторы ф и ψ?
 - в) коммутируют ли операторы $\, \varphi^2 \, \mu \, \psi^2 ? \,$
 - с) каков геометрический смысл произведений фф и фф?

Глава 9. Квадратичные формы и поверхности второго порядка.

- 1.f(x) –линейная форма на пространстве V, dim V = n. Ker f= $\{x; f(x)=0\}$ ядро формы .Доказать, что если Ker f_1 =Ker f_2 , то f_1 = λ f_2 .
- 2.Доказать, что Ker f линейное подпространство в V, и найти его размерность.
- 3. Доказать, что для любой ненулевой линейной формы в V существует базис, в котором матрица формы имеет вид A_f =(100....0).
- 4.Доказать, что множество линейных форм на V образует линейное пространство относительно операций сложения и умножения на число, и найти его размерность.
- 5.Пусть f_1 и f_2 линейные формы на V, причем f_1 (x) f_2 (x)=0. Доказать,что одна из форм нулевая.
- 6. $V=P_n[x]$ пространство многочленов степени не выше n. f(p(x))=p(0).
- а) проверить, что f- линейная форма.
- в) найти ее матрицу в базисе $1, x, ..., x^n$.
- 7. V=P_n[x]- пространство многочленов степени не выше n. $f(p(x)) = \int_0^1 p(x) dx$
- а) проверить, что f- линейная форма.
- в) найти ее матрицу в базисе $1,x,...,x^n$.
- $8.V=M_2$ –пространство матриц второго порядка. f(A)=TrA- след матрицы A.
- а) проверить, что f- линейная форма.
- в) найти ее матрицу в базисе $E_i^{\ j}$ i,j=1,2.
- 9 .Е-евклидово пространство над полем действительных чисел, ф-линейный оператор с матрицей A_{φ} в стандартном базисе, $f(x,y)=(x,\varphi(y))$.
- а) проверить, то f-билинейная форма.
- в) будет ли эта форма симметрической?
- с) найти ее матрицу в стандартном базисе.
- 10.Е-евклидово пространство. ϕ -линейный оператор с матрицей A_{ϕ} , f(x,y)-билинейная ϕ орма с матрицей A_f в стандартном базисе, $g(x,y)=f(\phi(x),(y))$.
- а) проверить, то g-билинейная форма.

- в) будет ли эта форма симметрической?
- с) найти ее матрицу в стандартном базисе.
- 11. Найти симметрическую билинейную форму, соответствующую квадратичной форме F(x)=f(x,x), где $f(x,y)=2x_1y_1-3x_1y_2-4x_1y_3+x_2y_1-5x_2y_2+x_3y_3$.
- 12.Доказать, что симметрические билинейные формы образуют линейное пространство относительно операций сложения и умножения на число. Найти размерность этого пространства.
- 13.При каких значениях λ квадратичная форма $F(x)=5x_1^2+x_2^2+\lambda x_3^2+4x_1x_2-2x_1x_2-2x_1x_3-2x_2x_3$ будет положительно определенной?
- 14. При каких значениях λ квадратичная форма $F(x)=-x_1^2+\lambda x_2^2-x_3^2+4x_1x_2+8x_2x_3$ будет отрицательно определенной?
- 15. $V=M_2$ —пространство матриц второго порядка, f (A,B) = Tr(AB). Проверить, что f билинейная форма. Пусть F(A)-соответствующая ей квадратичная форма. Найти ее индексы инерции.