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Foreword

I am very happy to have this opportunity to present the work of Boris Mirkin, a
distinguished Russian scholar in the areas of data analysis and decision making
methodologies.

The monograph is devoted entirely to clustering, a discipline dispersed through
many theoretical and application areas, from mathematical statistics and combina-
torial optimization to biology, sociology and organizational structures. It compiles
an immense amount of research done to date, including many original Russian de-
velopments never presented to the international community before (for instance,
cluster-by-cluster versions of the K-Means method in Chapter 4 or uniform par-
titioning in Chapter 5). The author’s approach, approximation clustering, allows
him both to systematize a great part of the discipline and to develop many in-
novative methods in the framework of optimization problems. The optimization
methods considered are proved to be meaningful in the contexts of data analysis
and clustering.

The material presented in this book is quite interesting and stimulating in
paradigms, clustering and optimization. On the other hand, it has a substantial
application appeal. The book will be useful both to specialists and students in the
fields of data analysis and clustering as well as in biology, psychology, economics,
marketing research, artificial intelligence, and other scientific disciplines.

Panos Pardalos, Series Editor.
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Preface

The world is organized via classification: elements in physics, compounds in chem-
istry, species in biology, enterprises in industries, illnesses in medicine, standards
in technology, firms in economics, countries in geography, parties in politics —
all these are witnesses to that. The science of classification, which deals with the
problems of how classifications emerge, function and interact, is still unborn. What
we have in hand currently is clustering, the discipline aimed at revealing classifica-
tions in observed real-world data. Though we can trace the existence of clustering
activities back a hundred years, the real outburst of the discipline occurred in the
sixties, with the computer era coming to handle the real-world data.

Within just a few years, a number of books appeared describing the great
opportunities opened in many areas of human activity by algorithms for finding
“coherent” clusters in a data “cloud” put in a geometrical space (see, for example,
Benzécri 1973, Bock 1974, Clifford and Stephenson 1975, Duda and Hart 1973, Du-
ran and Odell 1974, Everitt 1974, Hartigan 1975, Sneath and Sokal 1973, Sonquist,
Baker, and Morgan 1973, Van Ryzin 1977, Zagoruyko 1972).

The strict computer eye was supposed to substitute for imprecise human vision
and transform the art of classification into a scientific exercise (for instance, numer-
ical taxonomy was to replace handmade and controversial taxonomy in biology).
The good news in that was that the algorithms did find clusters. The bad news
was that there was no rigorous theoretical foundation underlying the algorithms.
Moreover, for a typical case in which no clear cluster structure prevailed in the
data, different algorithms produced different clusters. More bad news was the lack
of any rigorous tool for interpreting the clusters found, which yielded eventually
to the emergence of the so-called conceptual clustering as a counterpart to the
traditional one.

The pessimism generated by these obstacles can be felt in popular sayings like
these: “There are more clustering techniques suggested than the number of real-
world problems resolved with them”, and “Clustering algorithms are worth a dime
a dozen.” However, the situation is improving, in the long run. More and more

iii
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real-world problems, such as early diagnostics in medicine, knowledge discovery and
message understanding in artificial intelligence, machine vision and robot planning
in engineering, require developing a sound theory for clustering.

In the last two decades, beyond the traditional activity of inventing new clus-
tering concepts and algorithms, we can distinguish two overlapping mainstreams
potentially leading to bridging the gaps within the clustering discipline. One is
related to modeling cluster structures in terms of observed data, and the other
is connected with analyzing particular kinds of phenomena, such as image pro-
cessing or biomolecular-data-based phylogeny reconstructing – even though in the
latter kind of analyses, clustering is only a part, however important, of the entire
problem.

Within the former movements, initially, the effort was concentrated on develop-
ing probabilistic models in a statistical framework (see, for example, monographs
by Breiman et al. 1984, Jain and Dubes 1988, McLachlan and Basford 1988),
leaning more to testing rather than to revealing the cluster structures. However,
all along, work was being done on modeling of clusters in the data just as it is,
without any connection to a possible probabilistic mechanism of data generation.
In this paradigm, probabilistic clusters are just a particular clustering structure,
and the clustering discipline seems more related to mathematics and artificial in-
telligence than to statistics. The present book offers an account of clustering in
the framework of this wider paradigm.

Actually, the book’s goal is threefold. First, it is supposed to be a reference
book for the enormous amount of existing clustering concepts and methods; second,
it can be utilized as a clustering text-book; and, third, it is a presentation of the
author’s and his Russian colleagues’ results, put in the perspective of the current
development.

As a reference book, it features:

(a) a review of classification as a scientific notion;

(b) an updated review of clustering algorithms based on a systematic typology
of input-data/output-cluster-structures (the set of cluster structures considered is
quite extensive and includes such structures as neural networks);

(c) a detailed description of the approaches in single cluster clustering, parti-
tioning, and hierarchical clustering, including most recent developments made in
various countries (Canada, France, Germany, Russia, USA);

(d) development of a unifying approximation approach;

(e) an extensive bibliography, and

(f) an index.
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To serve in the text-book capacity, the monograph includes:

(a) a dozen illustrative and small, though real-world, data sets, along with
clustering problems quite similar to those for larger real data sets;

(b) detailed description and discussion of the major algorithms and underlying
theories;

(c) solutions to the illustrative problems found with the algorithms described
(which can be utilized as a stock of exercises).

It should be pointed out that the data sets, mostly, are taken from published
sources and have been discussed in the literature extensively, which provides the
reader with opportunity to look at them from various perspectives. The examples
are printed with a somewhat smaller font, like this.

The present author’s results are based on a different approach to cluster anal-
ysis, which can be referred to as approximation clustering, developed by him and
his collaborators starting in the early seventies. Some similar work is being done
in the USA and in the other countries. In this approach, clustering is considered
to approximate data by a simpler, cluster-wise structure rather than to reveal the
geometrically explicit “coherent clusters” in a data point-set. The results found
within the approximation approach amount to a mathematical theory for clustering
involving the following directions of development: (a) unifying a considerable part
of the clustering techniques, (b) developing new techniques, (c) finding relations
among various notions and algorithms both within the clustering discipline and
outside – especially in statistics, machine learning and combinatorial optimization.

The unifying capability of approximation clustering is grounded on convenient
relations which exist between approximation problems and geometrically explicit
clustering. Based on this, the major clustering techniques have been reformulated
as locally optimal approximation algorithms and extended to many situations un-
treatable with explicit approaches such as mixed-data clustering. Firm mathe-
matical relations have been found between traditional and conceptual clustering;
moreover, unexpectedly, some classical statistical concepts such as contingency
measures have been found to have meaning in the approximation framework. These
yield a set of simple but efficient interpretation tools. Several new methods have
been developed in the framework, such as additive and principal cluster analyses,
uniform partitioning, box clustering, and fuzzy additive type clustering. In a few
cases, approximation clustering goes into substantive phenomena modeling, as in
the case of aggregating mobility tables.

The unifying features of the approximation approach fit quite well into some
general issues raised about clustering goals (defined here in the general classifica-
tion context) and the kinds of data tables treated. Three data types – column-
conditional, comparable and aggregable table – defined with regard to extent of
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comparability among the data entries, are considered here through all the material
in terms of different approximation clustering models.

Though all the mathematical notions used are defined in the book, the reader
is assumed to have an introductory background in calculus, linear algebra, graph
theory, combinatorial optimization, elementary set theory and logic, and statistics
and multivariate statistics.

The contents of the book are as follows. In Chapter 1, the classification forms
and functions are discussed, especially as involved in the sciences. Such an analysis
is considered a prerequisite to properly defining the scope and goals of clustering;
probably, it has never been undertaken before, which explains why the discussion
takes more than two dozen pages. The basic data formats are discussed, and a
set of illustrative clustering problems is presented based on small real-world data
sets. In Chapter 2, the data table notions are put in a geometrical perspective.
The major low-rank approximation model is considered as related to data analysis
techniques such as the principal component and correspondence analyses, and its
extension to arbitrary additive approximation problems is provided. In Chapter
3, a systematic review of the clustering concepts and techniques is given, some-
times accompanied by examples. Chapters 4 through 7, the core of the book, are
devoted to a detailed account of the mathematical theories, including the most cur-
rent ones, on clustering, with three kinds of discrete clustering structures: single
cluster (Chapter 4), partition (Chapters 5 and 6), and hierarchy and its extensions
(Chapter 7). There are not too many connections between the latter Chapters,

4 5 6 7

3 2

1

Review

Partition Partition Hierarchy
(Square) (Rectangular)

Data Geometry

Class/Cluster

Single Cluster

Figure 1: Basic dependence structure.



Preface vii

which allows us to present the structure of the book in the following fan-shaped
format (see Fig.1).

The Sections are accompanied by reviewing discussions while the Chapters’
main features are listed as their preambles.

The following are suggested as subjects for a college course/seminar, based on
the material presented: a review of clustering (Chapters 1 through 3), clustering
algorithms (any subset of algorithms presented in Chapters 3 through 6 along with
the illustrative examples from these chapters and corresponding data descriptions
from Chapter 1), and combinatorial clustering (Chapters 4 through 7).

Last, but not least, the author would like to acknowledge the role of some re-
searchers and organizations in preparing of this volume: my collaborators in Russia,
who participated in developing the approximation approach, especially Dr. V. Ku-
pershtoh, Dr. V. Trofimov and Dr. P. Rostovtsev (Novosibirsk); Dr. S. Aivazian
(Moscow), who made possible the development of a program, ClassMaster, im-
plementing (and, thus, testing) many of the approximation clustering algorithms
in the late eighties; Ecole Nationale Supérieure des Télécommunications (ENST,
Paris), which provided a visiting position for me at 1991-1992, and Dr. L. Lebart
and Dr. B. Burtschy from ENST, who helped me in understanding and extending
the contingency data analysis techniques developed in France; Dr. F.S. Roberts,
Director of the Center for Discrete Mathematics and Theoretical Computer Science
(DIMACS, a NSF Science and Technology Center), in the friendly atmosphere of
which I did most of my research in 1993-1996; support from the Office of Naval
Research (under a grant to Rutgers University) that provided me with opportuni-
ties for further developing the approach as reflected in my most recent papers and
talks, the contents of which form the core of the monograph presented; discussions
with Dr. I. Muchnik (Rutgers University) and Dr. T. Krauze (Hofstra University)
have been most influential for my writing; the Editor of the series, Dr. P. Pardalos,
has encouraged me to undertake this task; and Mr. R. Settergren, a PhD student,
has helped me in language editing. I am grateful to all of them.
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Chapter 3. Clustering Algorithms: a Review

3.2. A Survey of Clustering Techniques

3.2.5. Conceptual Clustering

Tolstoy

Presentat

InMon

DirectThought

Behav

NoYes

Figure 2.2: A concept tree for L. Tolstoy novel class.

Let us consider the learning task of separating the Leo Tolstoy masterpieces using the
two qualitative variables from the Masterpiece data in Table 12, p. 192. The goodness-
of-split criterion should address the problem as it is, thus relating only to the separated
class s, without involving the non-Tolstoy class.

Since no criterion for that has been suggested in the literature, let us consider a
criterion averaging the squared differences between the general probability ps of the class
and its probabilities p(s/t) in the decision classes t created: the larger the absolute value
of the difference, the clearer presence or absence of s in t:

W ({St}) =
∑

t

(p(s/t) − p(s))2p(t)/(T − 1)

where p(s), p(t), and p(s/t) are (empirical) probabilities of the corresponding events. This
measure is consistent with the following assignment rule: a terminal node, t, is labeled
by the Tolstoy class mark s if the difference p(s/t)− p(s) is considerably high; otherwise,
t is assigned with a no-s label.

In the literature, usually, the value p(s/t) itself is considered a good assignment index
(see, for example, Breiman et al 1984) which is fair when p(s) is relatively small. When
p(s) is relatively large, values p(s/t) tend to be also large for each t. The absolute
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probability change p(s/t) − p(s) seems a more flexible measure, in this case (Mirkin
1985).

To decide which of the two variables, InMon or Presentat, has to be used for splitting

of the entire set of the masterpieces by its categories, let us calculate the criterion value

for each of them:

W (InMon) = [(2/5 − 1/4)25/8 + (0 − 1/4)23/8]/1 = 0.0375, and

W (Presentat) = [(2/3 − 1/4)2 + (0 − 1/4)21/4 + (0 − 1/4)23/8]/2 = 0.0521, which

implies that splitting by the latter variable is somewhat better. Having now three subsets

corresponding to the categories Direct, Behav, and Thought, we can see that only the first

of them is of interest for sequential splitting; the other two just contain no Tolstoy novels.

Then, we have only the possibility of splitting class Direct by categories of InMon, which

produces decision tree presented in Fig.2.33 along with the only conjunctive conceptual

cluster “Presentat=‘Direct’ & InMon=‘Yes’ ” corresponding to the Tolstoy novel class.
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FEATURES

• The concept of classification, along with its forms and pur-
poses, is discussed.

• A review of classification in the sciences is provided empha-
sizing the current extension-driven phase of its development.

• Clustering is considered as data-based classification.

• Three kinds of table data, column-conditional, comparable
and aggregable, are defined.

• A set of illustrative data sets are introduced, along with
corresponding clustering problems.
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154 CLASSES AND CLUSTERS

0.1 Classification: a Review

It is a common opinion that narrative becomes science when it involves classifica-
tion.

A definition of classification, going back to J.S. Mill (1806-1873) is this:

“Classification is the actual or ideal arrangement together of those which are
like, and the separation of those which are unlike; the purpose of this arrangement
being primarily

(a) to facilitate the operations of the mind in clearly conceiving and retaining
in the memory the characters of the objects in question,

(b) to disclose the correlations or laws of union of properties and circumstances,
and

(c) to enable the recording of them that they may be referred to conveniently.”
(Sayers 1955, p.38-39).

Agreeing with the definition in principle, I suggest a different set of purposes:

Classification is the actual or ideal arrangement together of those which
are like, and the separation of those which are unlike; the purpose of
this arrangement being primarily

(1) to shape and keep knowledge;

(2) to analyze the structure of phenomena; and

(3) to relate different aspects of a phenomenon in question to each
other.

In the definition framed, item (b) from the former definition has been split into
items (2) and (3), while items (a) and (c) have been merged into (1). This change
reflects the present author’s opinion on the relative importance of the purposes.

Aristotle (384-322 B.C.) has been recognized as the first scientist to introduce
a scientific meaning to the concept of classification. In particular, he proposed
using the the so-called Five Predicables to describe the logic of classifying: genus,
species, difference, property, and accident.

A genus is a class of entities called species serving as divisions to the genus.
For example, “Sciences” (genus) consists of “Mathematics,” “Physics,” “Biology,”
and so on (species). Any genus can be presented in two different ways. The first,
extension, concerns all the things covered by the genus as they are. The second,
intension, refers to the meaning of the genus concept as it is expressed by sequence



0.1. CLASSIFICATION: A REVIEW 155

description. Using a modernized terminology, we could say that extension of the
genus refers to enumeration of the set of all related objects, while its intension is
just its description written in semantically loaded language. Roughly, the intension
can be presented as a set of descriptors, that is, values (or gradations, or grades,
or categories) of some variables (or attributes or features).

Five Predicables:

1. Genus: a set of species.

2. Species: an element of a genus.

3. Difference: an attribute added to the genus name to specify a
species.

4. Property: a species modality which is characteristic to the genus,
although not involved in the genus definition.

5. Accident: a species attribute, modalities of which differ for differ-
ent species.

Aristotle’s concepts should not be considered as being of a historic interest
only. The five predicables still seem valid, though their meaning should be ad-
justed slightly. The notion of the phenomenon/process in question stands for the
concept of genus, though the meaning of the former one is much more indefinite
than that of genus. Distinguishing between intension and extension has become
quite essential. Due to tremendous progress in observational facilities and com-
puter techniques, a necessity has emerged to deal with (huge) empirical data about
phenomena lacking clear theoretical concepts and definitions, to say more about
the regularities unknown. In such a case, classification becomes a principal tool
and aim of the analysis. This is the case when a marketing researcher investigates
consumer behavior using data on factual or intentional purchases, or a sociologist
studies the life-style of a social group, or a geologist wants to predict the mineral
stock of a territory based on a data set of some other territories already inves-
tigated. Important, still mainly unresolved, questions arise in such a framework:
What are the criteria for classification? How can the entire set of the data available
be taken into account? How can one judge the importance of a particular variable?
How can one produce an extension-driven classification when there is no theory to
provide the Aristotelian differences? How can one make a clear interpretation of
the classes found?

Previously, such questions would arise quite rarely. The traditional intensional
classification completely depends on substantive theories of the phenomena classi-
fied following those in every single operation. The only logical concept of difference
is involved as the only way for producing the classes from the genera: specifying
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them by their differences. No specific theories of the classification process itself is
necessary, in this framework. This is why, in the present author’s opinion, for the
two millenia after Aristotle no general classification theory has been developed.

In Aristotelian terms, the genus extension can be available for studying even
when no clear definition of the genus (intension) has been provided. It must be a
theory of classification developed to meet the challenge.

Some extended versions of the concepts of property and accident seem quite
relevant to at least certain of the extensional classification problems. The accident
should be understood as a variable having no strong association to the classification
while the property should be considered a strongly associated variable. Thus, the
accident represents a stock of the variables to be used for the subsequent divisions
of the classes while the property is a stock of the variables to be used for the
interpretation purposes.

0.1.1 Classification in the Sciences

Let us discuss, in brief, some of the classification ideas developed and employed in
the sciences.

Library Science and Information Retrieval

This is the only field where authors allow themselves to title their monographs
with the name of “Classification”, as they feel they are the only people dealing with
“classification in general” because they classify the knowledge universe. To do that,
two problems must be solved. The first is to express relationships between different
subjects (as in the book title “Behavior of Animals”) with a classification of knowl-
edge; the second, to relate that classification to printed matter (especially, in view
of syntactic interrelations between subjects in the documents such as “Statistics of
State” and “State of Statistics”). The first contemporary classification made was
what can be called conceptual one.

Conceptual classification is a hierarchy of classes, each subdivided ac-
cording to the hierarchical structure of the corresponding concept, as
in Melvin Dewey’s (1851– 1932) or the Universal Decimal Classification
(UDC) system.

Completeness, simplicity, extendibility and other advantages of UDC and sim-
ilar classification systems are at odds with their shortcomings implied by the lack
of their reflecting many important kinds of relationships between subjects and/or
documents such as the form of presentation, the process involved, comparison,
time/space, and so on. Any aspect of this kind, (called a facet), can be added to
classification code as a “parallel” characteristic to be applied to all classes, which
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is complementary to the hierarchical structure of conceptual classification.

Modern key-word or reference-cited descriptions can be considered as faceted
ones. Using these along with modern computing facilities suggests a new perspec-
tive for providing and maintaining specialized classifications. For example, Classifi-
cation itself, as a subject, is spread over all subdivisions of the library classifications
in use. To cope with such a situation, the Editorial Board of Classification Litera-
ture Automated Search Service (Day 1993) maintains a list of relevant publications
(currently, of 82 items), called a profile, as well as a list of relevant key-words.
A journal paper is considered relevant to the field if it meets the following two
criteria: 1) it cites at least one item from the profile; 2) its title contains at least
one key-word from the list. Obviously, such an idea could be extended to create an
update classification of a discipline based on cross-citations and key-word associa-
tions in such a way that any sub-discipline can be singled out as presented by a set
of papers with high internal and low external key-word and citation associations.

Current problems of the information storing and retrieving in computers much
resemble those in library science for both seek making comprehensive search and
retrieval of information in either format, files or printed matter.

There is a great activity in many industries and institutions to create and
maintain large data bases to keep records of specific things, like bank accounts or
chemical compounds, in computers. Computer scientists have analyzed problems
related to maintaining data bases; they have developed rather universal principles
and concepts to describe relations between the records of any structure (like those
reflected in the relational data base model); and, currently, various software tools
based on those concepts and principles (see, for instance, Dutka and Hanson 1989).

The data base usually is organized as a set of files concerning different items or
their characteristics to provide an easy interface with the user activities concern-
ing various inquiries and easy insertion/deletion of data and/or attributes. Such
an organization very much resembles our intuitive meaning of the notion of “clas-
sification”: a subject field is divided into partly overlapping divisions somehow
associated with each other providing the user with facilities for all the classifica-
tion purposes mentioned. This is why the knowledge base discipline has emerged
as a development of the data base field to serve, basically, as a classification tool
(see, for example, Clancey 1985, 1992).

The practice of developing computer programming languages leads step by step
to the inclusion of more and more classification structures: the richer the structures,
the more powerful the language; the latest version is C++ and the like (see, for
instance, Andrews 1993).

Mathematics

Mathematics comprises two kinds of activities: computations (finding exact or
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approximate solutions to various equations and optimization problems) and deduc-
tions on the properties of mathematical concepts (which are frequently related to
computational purposes).

The deductive part of mathematics can be considered as an art to con-
struct, analyze and connect classifications of mathematical objects by
means of logical tools.

Let us consider, for example, mathematical problems associated with the square
algebraic equation

x2 + px + q = 0

where p, q are given reals, and x stands for an unknown value (“root”) which
satisfies the equation. Figure 3 represents a great part of the equation theory
arranged as a classification made in terms of the coefficient-based variables related
to classes described in terms of the properties of the roots.

A

same sign zero root

positive

p  <  4q2p  >=4q2

q < 0q= 0

p  <  0

q >  0

different
signs

sign
negative
   sign

2  real
 roots

2 complex
roots

p > 0

Figure 3: Set of all the equations (A) hierarchically classified with regard to the
number of real/complex roots and pattern of signs of the real roots; the classes
being exactly described in terms of the equation coefficients.

This example should be considered as a representative model of mathematical
theorems regarding existence (no-solution subclass is empty), necessary conditions
(a class includes another one), necessary and sufficient conditions (a class coincides
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with another one), and classification. It should be pointed out that, actually, there
are two coinciding classifications presented in Figure 3: one is described in terms
of the properties of the roots (number of roots, their nature, signs of the roots),
and the other, in terms of the coefficients (parameters p, q, p2 − 4q).

It is not always so; sometimes a result could concern one classification only
(like, for example, the theorem stating that there exists only one isomorphic class
of n-dimensional linear spaces [in linear algebra], or “Classification Theorem” in
the theory of finite groups [Gorenstein 1994]).

The observation above leads to clarifying the possible uses of the classification
nature of mathematics: artificial intelligence research in mathematics should be
based upon the extensional issues, as it has been done by K. Appel and W. Haken
1977 for solution of the well known “Four Color Problem” in graph theory. The
intensional approach related to automatical deduction was unsuccessfully tried
many times in recent decades.

Classification in Physics and Chemistry

After Thales, who claimed existence of a constant matter underlying all the
changeable things in nature and called it “water”, it was Empedocles who dis-
tinguished between four basic elements: earth, water, air, and fire – classification
which was strongly supported by Plato and his school. Currently, these “elements”
are related to the states of matter: solid, liquid, gas and plasma. Yet, we have
accumulated a deeper knowledge fixed in more refined classifications.

The Periodic Law belongs among the most profound achievements in the
discipline, as it links four aspects of the elements: the internal structure
of the atoms, their bondage into molecules, their chemical interaction
properties, and their physical features.

The Periodic Chart (Fig. 4) was designed (D.I. Mendeleev 1869) as a purely
empirical observation (involving 56 elements available at that time). Beyond its
use as a form of knowledge maintenance, “ Chart provides a stimulus and a guide
in chemical research, constantly suggesting as it does new experiments to be tried
and providing a basis for critically evaluating and checking information already
obtained. ... The very existence of the Periodic Law as an empirical principle
provided a tremendous stimulus to the development of our knowledge of atomic
structure and greatly accelerated the growth of our understanding of the relation-
ship of the structure and the properties of matter.” (Sisler 1963, p.34.)

Currently, scientists face even a greater challenge: what is the association be-
tween the structure of a molecule and its physical and chemical properties? One
of the most impressive cases when such an association has been established based
on a classification is the theory of symmetric crystal forms. Though the crystals
may have different shapes, their symmetries are considered only in terms of the



160 CLASSES AND CLUSTERS

1

H

3

Li

4

Be

1 2

H He

11 12

Na Mg

B

5 6 7 8 9 10

C N O F Ne

13 14 15 16 17 18

Al Si Cl Ar

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

K Ca Sc Ti   V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

55 56 57- 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

Cs Ba 71 Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

87 88 89-
103

1a 7a   0

2a 3a 4a 5a 6a

3b 4b 5b 6b 7b 8b 1b 2b P S

Fr Ra

Figure 4: A version of the Periodic Chart from Sisler 1963, p.32.

isometries, that is, the symmetrical transformations of a sphere. There exist only
32 different (non-isomorphic) finite groups of isometries in the three-dimensional
space: 5 of them are rotations about an axis through an angle nα where n is an
integer and α is equal to 360◦, 180◦, 120◦, 90◦, or 60◦, respectively; 6 groups are
formed by combining rotations (around different axes) as the base elements; and
21 groups are obtained by adding (rotary) reflections about planes to the rotations.
These point groups form the basis of the other classifications of the crystals, based
either on their refinement (with permitted transformations of translation added)
to the 230 so–called space (or, Fedorov) groups, or on their aggregation in 6 (or
sometimes 7) so-called crystal systems (see Senechal 1990).

Geology

The science of earth deals with all earth structures: minerals, rocks, soils,
glaciers, water, mountains, etc, as well as with many associated phenomena: the
moon and planets, magnetic field, earthquakes, climate, etc. Each of these can
be observed in such varied forms, that neither purposeful use nor understanding
of their nature can be accomplished without classification representations, which
have been made for the latest hundred years quite extensively.
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The most impressive achievements of classification in geology are in the
line of relationship between structure and history (origin and evolution)
rather than between structure and function (properties), as it has been
in physics and chemistry.

The following principles underlie that. The rocks, ordinarily, are organized
in layers (strata) that are rather clearly distinguished; any layer is considered as
older than the layer just above (“law of superposition”); when originally formed,
the strata were laterally continuous; the fossils found in the rock are remains of
the organisms living in the time of the formation of the rock.

A general method, both based on these principles and supporting them, has
been developed, called “geological correlation”, leading to finding many oil or coal
deposits in practice, as well as to some theoretical breakthroughs, like periodization
of the geological time (see Table 1).

Tropical forest
deposits

Marginal marine

deposites

Serra Geral lavas

Thin marine beds

Wind-blown sands

Erosion: no deposits

Coal

Glacial deposits

Sands, clays

Erosion: no deposites

Old rocks

500

400

300

200

100

0
Tropical forest

deposits

Marginal marine

deposites

Serra Geral lavas

Thin marine beds

Wind-blown sands

Erosion: no deposits

Coal

Glacial deposits

Sands, clays

Erosion: no deposites

Old rocks

500

400

300

200

100

Marginal marine

deposites

Thin marine beds

Wind-blown sands

Erosion: no deposits

Coal

Glacial deposits

Sands, clays

Erosion: no deposites

Old rocks

Karroo lavas

Desert sands

Figure 5: Simplified columnar section of rocks from SE Brazil (left) and SW Africa
(right): great similarity before 100 mln years ago (based on figure 19-6 from Put-
nam 1978, p. 610).
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The principle of correlation allows for concluding that, for any given well
(considered as a vertical column), the sequence of the strata in a well
nearby will be (almost) the same; moreover, the fact that the sequence
of the strata in a well is almost the same, yields that its place belongs
in the same formation as the first one (see Fig. 5).

ERA PERIOD LIFE FORMS
Cenozoic Quaternary Rise of mammals and appearance

(Recent life) Tertiary of modern marine animals
Cretaceous Abundant reptiles

Mesozoic Jurassic (including dinosaurs)
(Middle life) Triassic more advanced marine invertebrates

Permian
Pennsylvanian First reptiles

Paleozoic Mississippian
Devonian First land animals (amphibia)

(Ancient life) Silurian
Ordovician First fish
Cambrian Primitive invertebrate fossils

Precambrian Meager evidence of life

Table 1: Relative geological time scale, based primarily on superposition and char-
acter of fossils; after Putnam 1978, p. 16.

There are many other classifications in geology. In classification of rocks, in-
stead of an exact description of the class, the so–called stratotype method is used,
involving “case-based” comparison of a rock with a typical standard, which is much
easier when the system of the categories is not well described.

Biology

Classification in biology can be employed to analyze the relationship between
all three kinds of aspects noted above: structure, function, and history.

Although natural languages distinguish rather clearly between many of the
living organisms and taxa (for example, “the bird flies” and “the fish swims”), the
first systematic effort in biological taxonomy was done by C. Linnaeus (1707–1778)
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who completed his descriptive catalogues for plants and animals at 1758.

Biological taxonomy consists of the following four parts:
1) a hierarchical classification of the organisms arranged in distinct
classes — taxa (plural of taxon);
2) the descriptions of the taxa;
3) nomenclature; that is, a list of the names of those taxa;
4) identification keys to relate the particular organisms to the classifi-
cation (see Abbott, Bisby, and Rogers 1985).

The biological taxonomy is a live, changing system; scientists are eager to
reconsider extensions of many taxa, sometimes in rather high levels. For instance,
no convenient classification of viruses has been created yet.

From the theoretical point of view, the most important feature of taxonomy is
that, although it is created by the observable character resemblance (called phe-
netic), the classification hierarchy reflects evolutionary, phyletic relations between
taxa. However, the phenetic classification (based on phenetic similarities) and
phyletic classification (based on evolutionary considerations, see Fig. 6) are not
coinciding. For example, salmon and lungfish are much more phenetically similar
to each other than to cows, which contradicts the generally accepted opinion that
it was salmon diverged from the common ancestor of the cow and lungfish (see
Abbott, Bisby, and Rogers 1985, p. 228-229).

It appears, for many taxa in phyletic classification, that it has been impossible
to find any specific set of characters to single out a particular taxon. To deal with
that, a new concept of class as a “polythetic”, not a “monothetic” one, has been
developed (Sokal and Sneath 1973).

A polythetic class, defined with a set of attributes, consists of the objects,
each of which holds a majority of attributes from the set, while any of
the attributes occurs at majority of the objects.

Such a concept immediately led to developing various machineries for finding
polythetic classes in real data sets. The methods developed belong to the core of
this book and will be discussed further. What is important here is that the concept
involves a preassumption of the “equal weight” of all the attributes considered,
which contradicts the traditional view that some of the attributes are essential and
others are not, expressed in the concept of monothetical class.

In contrast to the initial expectations, a sound progress achieved in the math-
ematical classification and clustering methodology has not led to a corresponding
effect in the biological classification. The cause, perhaps, is that no adequate
progress in development of the theory of the biological characters (variables) has
been achieved yet.
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The term character refers to a variable related to a part of a living organism
under consideration (like the structure or the length of leaf-blades in a plant, or
color of eye of an animal). To compare two taxa, one needs to compare the states
(that is, categories or values) of the characters related to homologous parts (or-
gans) of the taxa members. But how one can decide which organs are homologous,
that is, “alike”? Are the wings of fly homologous to the wings of bird or to the
arms of man? To date, the homology concept is considered as just the structural
correspondence (Sneath and Sokal 1973, p. 77), having no theoretical support. It
may be that the support desired can be based on representing the living organ-
ism as a system consisting of subsystems that are responsible for providing some
specific supporting goals (functions): nutrient procurement, gas exchange, internal
transport, regulations of body fluids, coordination of regulatory activity, motion,
reproduction, control, etc. The subsystems may be divided into sub-subsystems
corresponding to their subgoals (subfunctions, or tasks), etc. Homologous subsys-
tems should be defined in terms of similarity of their functions/goals, which could
eventually lead to a threefold organization of the biology taxonomy instead of the
singular current structure.

The threefold taxonomy should consist of the three hierarchies corre-
sponding to each other: hierarchy of the goals (functions), hierarchy of
the subsystems responsible for those functions, hierarchy of taxa defined
in terms of the characters based on the subsystems. This would make
associations between structure and function in living organisms explicit.

Linguistics

Everybody who has read an impressive overview of the work undertaken to
transform English into “Newspeak”, described by George Orwell in his novel 1984
(see also Atkinson 1988, p. 29), will understand that language can be considered
as a natural classification machinery created for shaping and keeping a portrayal
of the world via human thoughts and communications. The language is an excel-
lent model for investigating and learning how classification works in the human
world. In its potential capability toward the future mathematical classification
developments, language could be likened to mechanical motion as the major nat-
ural phenomenon studied for developing the modern mathematical theories for
analyzing real variable functions. All of the various of the elementary functions
(exponent, logarithm, sine, tangent, etc) as well as the most important operations
(derivatives and integrals) were found to be useful in the analysis of motion phe-
nomena. Likely, the most interesting classification forms and operations could be
found through and for analyzing language phenomena.

Among linguistic classifications, we must distinguish between those involved
in the language phenomena as they are and those created by the scientists. The
word meanings in a language, the sentence parts (reflecting classification of the
world phenomena by variables: who (what), what does (did), when, why, where,
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Figure 6: A phylogeny for eighteen human populations based on genetic distances
measured in number of bases (after M. Nei and T. Ota from Osawa and Honjo
1991, p.421).

etc.), the speech parts (nouns for things, verbs for actions,...), etc. are examples
of the natural language classifications. Classification of the word constituents such
as phonemes and morphemes (for a kind of “Phonetic Chart” see Atkinson, Kilby,
and Roca 1988, pp. xiv-xv, 71-86, 105-123) and evolutionary classification of the
languages are examples of the scientific classifications.

Some work combines these two kinds of classification. For example, there are
so-called “implicational universals” found in some language families (Sherzer 1976,
Ch. 15). An implicational universal is a predicate of the form “attribute X implies
attribute Y for all of the languages from a given group”.

Psychology

Living organisms classify and generalize real world phenomena with sim-
plifying categories to perceive, learn, predict, and to behave (see, for
instance, Ornstein 1985).

All psychological systems depend very heavily on their physiological construc-
tion, which can be interpreted in terms of the structure (physiology) underlying the
function (psychology). One of those devices, neuron and neural network, gave rise
to an interesting concept in the pattern recognition theory, and was later extended
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into many other disciplines in the computer sciences.

Several para-scientific classifications emerged on the premise of a close rela-
tionship between anatomical features and the character (an example of such a
classification, nail forms, is presented in Fig. 7).

Short nails:

Short nails, broader than they are long

Broad, long nails, rounded at the tip:

:

Energetic, curious,

intuitive, logical

Critical, quick-

tempered

Clear, sound

judgement person

Long, almond-shaped nails:

Very large, square nails:

Wedge-shaped nails:

A placid

and easy-going

person, a dreamer

Cold and

selfish

Over-sensitive

Figure 7: Nail forms and corresponding personality traits as claimed in Bosanko
1983, p. 11.

There have been made several ground-breaking discoveries on the nature of the
categorization and classification in the human mind. Currently, the psychologists
seem to prefer analyzing the processes of categorization with mathematical model-
ing. Initially, they developed models based on the similarity concept: any pattern
is considered as a point of an “internal feature space” in such a way that any ex-
emplar could be related to the most similar “prototype” (Shepard 1988). Then,
models based on logical rules (“production systems”) became popular: each rule
is an expression like “if the exemplar pattern is A, the category must be B” (see
Estes 1994).

A lot of work has been done to analyze the differences among the personalities.
The best known psychological classification has come out from ancient times, as-
signing people by their temper to four types: choleric, sanguinic, phlegmatic, and
melancholic. These types were derived from a theory which dominated in medieval
Europe that the human body contained four kind of fluids: bile, blood, phlegm,
and black bile; the dominance of one of them supposedly predetermined the tem-
per and character of a person. In contrast to the classifications involving quite
definitely bounded classes (discussed for the other sciences above), this concept
suggests patterns, like the concept of stratotype in geology or the nail form in
Fig 7, rather than partitions the people. Since the theory of four fluids failed, a
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Temper Humor Reaction
Strength Speed

Choleric Bile High High
Sanguinic Blood Low High
Phlegmatic Phlegm High Low
Melancholic BlBile Low Low

Table 2: Medieval and modernized presentation of the common character types.

modernized explanation of the typology appeared relating it to the strength and
speed of nervous reactions (see Table 2) (Nebylitsyn 1972). The principal feature
of this presentation is the same: patterns, not subsets, are fixed; yet technically
it is different: all combinations of the unidimensional patterns are considered here
(in 2-variable space) while only unidimensional patterns uncombined have been
presented in the medieval typology (in 4-variable space).

Social Theme Investigative Theme
Typical Traits:

Ethical, responsible, kind,
generous, friendly, under-
standing, concerned for the
welfare of others

Analytical, curious, independent,
rational, original, creative

Interests and Preferences:
Training, teaching, curing,
helping others

Science, gathering
and analyzing information, working
on their own

Particular Skills Developed:
Interpersonal skills, verbal
ability, listening, empathy

Writing and mathematical skills,
critical thinking

Typical Work Activities:
Teaching, training, coaching,
leading discussions, group
projects

Solving problems through thinking,
scientific or laboratory work, collect-
ing and organizing data

Preferred Lifestyles and Work Situations:
Religious organizations, fam-
ily life, helping professions,
working in groups, personnel
offices, volunteering

Computer-related industries,
achievement-oriented organizations,
unstructured organizations that al-
low freedom in the work styles

In the box above, an inventory of investigative type versus social type from
Brew 1987 is presented in a similar pattern-wise fashion, which is quite charac-
teristic for the modern empirically-driven theories of personality (see, for exam-
ple, Ornstein 1985, Good and Branther 1974). We can see how the classification
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presented connects three different aspects of the personality: function (Typical
traits), attitude (Interests and Preferences), and action (Skills, Work Activities
and Preferred Lifestyles and Work Situations). This adds two more aspects to
the “history/structure/function” framework above, thus yielding a fivefold system:
“history/structure/function/attitude/action”.

There exists a growing area related to developing technical sensory and data
processing systems dealing with classification-wise problems: systems of pattern
recognition (to read and process printed or hand-written letters, to recognize
sounds, to perceive pictures, to analyze and compare cardiograms, etc), machine
learning, robot vision, and so forth.

Social and Political Sciences

In social and political sciences the classification paradigm involves four basic
dimensions: history/structure/attitude/action:

Structure

The concept of social class underlies much of the social and political theory and
practice (Edgell 1993). Strata differentiating people by income, power, prestige and
perhaps other dimensions is another classification concept involved. Yet one more
classification concept developed in sociology is of the ideal type (M. Weber [1864-
1920]). The ideal type is such a combination of characteristics that no real entity
can satisfy all of them, though the entities can be compared by their proximity to
the ideal type.

The class structure is influenced by an external factor — economy and tech-
nology. There should be several other basic social structures considered as also
determined mainly by the outer factors: states and nations (by geography), race,
kinship, gender and age (by biology).

Attitude and Action

Society functions through institutions and organizations (family, education,
polity, economy, religion, law, etc) that are heavily associated with classification
(see, for example, an account of organization systematics in McKelvey 1982). More-
over, a great part of societal control is made through classifications. It is especially
clear in the case of the so–called socialist countries, like the USSR, where all as-
pects of social life were arranged via classifications mixing the party/administrative
hierarchy with the industry/organization/location ranking used as the basis of a
priority system for distributing limited goods and services (from meat and cars, to
housing, to medicine, recreation and education). However, this phenomenon can
be seen in any other society.

History
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Amazingly, societal classifications themselves are an important part of the evo-
lutionary description. For instance, aboriginal Australian tribes were found to
classify the universe according to a simple classification of their society in marriage
groups; that classification “extends to all facts of life; its impress is seen in all the
principal rites” (Durkheim and Mauss 1958, p. 14-15). The social borders and
their “sparseness” is another important classification parameter of the evolution
(Indian castes, medieval aristocracy, etc.).

A review of societal taxonomies is presented by Lenski 1994.

0.1.2 Discussion

1. A definition of classification is given; it is an arrangement of the entities in
question, which is instrumental in analyzing the structure, relating different
aspects to each other, and keeping the knowledge.

2. The ancient concepts of the five predicables are discussed and their modern
meanings are suggested.

3. The former developments in classification theory were intension-driven: it
was not much to develop in the classification context; everything had to be
considered in the framework of substantive sciences. Currently, the sciences
face a new, extension-driven phase of their developments, which raises corre-
sponding problems of classification theory.

4. Some classificational ideas in sciences may lead to an impact both in
the substantive disciplines and classification theory. It concerns, primar-
ily, classificational interpretation of certain mathematical results, the his-
tory/structure/function associations in biology, and the fivefold system his-
tory/structure/function/attitude/action in human sciences. The classifica-
tions are designed within these aspects in such a way that they are closely
related or interact across the aspects.

5. Several extension-driven classification concepts which emerged in the sciences
are: polythetic class and the “equal-weight-of-the-attributes”, in biology;
factor score, cluster, and type in psychology; ideal type, in sociology; ex-
tensionally found production rule “A includes (implies) B”, in mathematics,
linguistics and psychology.
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0.2 Forms and Purposes of Classification

0.2.1 Forms of Classification

Based on the material above, we can quite clearly distinguish between the class
and type concepts.

The unity of its intensional and extensional descriptions underlies the
concept of a “classical” class, while there is no such unity in the concept
of type: type can be represented as a combination of the attribute values
or a particular “prototype” entity, and it may have no attachment to
the empirical entities presumed.
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Figure 8: Unidimensional typology forms.

Let us take a closer look at some of the simplest forms of type-based classifi-
cation, typology. Let us consider a quantitative variable with respect to a set of
individuals, for instance, “the education level”, to distinguish among various forms
of the typology of the individuals made by this variable. In Fig. 8, five of the
unidimensional typology forms are presented on the vertical axis representing the
variable, with its range limits shown by the horizontal lines. The forms (a) and
(b) correspond to the situation when the types are represented by some particular
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“typical” values either taken either from theoretical considerations or character-
izing some particular entities, real (a) or ideal (b). The other three drawings
correspond to the case when the types are represented by the variable intervals:
ideal (c) or real, (d) and (e). In both of the (d) and (e) pictures, the intervals cover
all the range of the variable. The nonoverlapping pattern in (d) causes the set of
type intervals, I, II, and III, to form a partition of the range as, for instance, “less
than one year of studies” (type III), “from one to eight years of studies” (type
II), and “more than eight years of studies” (type I). With this particular form,
the concept of typology overlaps the classical classification concept since here the
types are exactly described both intensionally and extensionally, and thus they
are classical classes, in this case. Some other unidimensional forms of typology
can be considered employing the concepts of probabilistic distribution or fuzzy
membership functions, as well as nonquantitative variables.

Two major kinds of the classification structures are hierarchical and non-
hierarchical.

Classification is hierarchical if it is nested like the conceptual library classifi-
cations or taxonomy in biology. The examples mentioned present two important
types of classification. A typical library classification, such as Dewey’s or Universal
Decimal Classification, can be considered as arranged in the Aristotelian style: the
part of the universe in question is divided in certain subparts that, in their turn, are
subdivided in sub-subparts, etc., in such a way that the divisions are made based
on some logical concepts. The notion of the logical concept can be expressed more
or less formally using the so-called nominal variables. A nominal variable maps
the entities of a class into its categories (values) in such a way that any entity
corresponds to one and only one category; no relations among the categories are
assumed as, for example, among different occupations in sociology. The concept
of nominal variable is an abstract one since, in the real world, the variables rarely
satisfy the definition exactly: some individuals could have several occupations or
no occupation at all, some occupations admit comparisons, etc.

Another type of hierarchical classification, called systematics, is based on an
opposite process of combining smaller classes into larger ones due to their similarity
with regard to various and/or different attributes. The biology taxonomy has
been constructed in such a way, which is reflected in that fact that the major
classes, such as Chordata and Mollusca, are described in distinctive but rather
indefinite terms (“largely marine invertebrates” [Mollusca], “all vertebrates and
certain marine animals having notochord” [Chordata]) because there are too many
special cases to be involved in a general definition. The conceptual classification
may have empty classes as defined by logical combinations of the categories some
of which can never be met in the context considered; the systematics class may not
be empty since it is based on the generalization of the empirical facts.
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There are two major kinds of the hierarchical classifications: concep-
tual classification and systematics. The conceptual classification corre-
sponds to that considered by Aristotle and defined with the top-bottom
sequential divisions by nominal variables. The systematics is defined
bottom-up and, usually, lacks the unambiguously dividing variables.

Two types of non-hierarchical classifications can be distinguished rather clearly:
typology and structural classification. The concept of typology is defined through
one or several of the essential variables for the domain classified. Some explicit
models of the unidimensional typology have been considered just above (Fig.8).
Multidimensional typologies usually are created from the unidimensional ones us-
ing, basically, either of the two approaches met in the temper classifications, me-
dieval and modernized (see Table 2). When all the combinations of the cate-
gories/intervals of the variables participating are considered as multidimensional
types, the typology can be called faceted. The other extreme is when every mul-
tidimensional type is defined by a corresponding single prevalent variable (so, the
number of the types here equals the number of the variables), as was done in the
medieval typology. Such a typology is called characterological in psychology. The
difference between faceted and characterological typologies can be easily seen in
Fig. 9 where two variables are taken to define a characterological typology (a)
based on the corresponding prevalent variable, A or B, and a faceted typology (b)
based on all the four combinations, AB, Ab, aB, and ab, of the unidimensional
types A, a and B, b.

a A

b

BaB

ab

AB

Ab

B

A

Figure 9: Patterns of twovariate typology.
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The structural classification concept relates to situations when classes corre-
spond to subsystems of the domain classified, which is considered as a complex
system in such a way that subsystem-to-subsystem interactions must be included
in the classification as its class-to-class interrelations. For example, the set of the
national economy industries is structurally classified when the sectors of energy,
primary sources, processing industries, consumer goods, service sectors are consid-
ered.

A particular type of non-hierarchical classification, which can be considered
both as a typology and as a structural one, is the stratification introduced to
reflect inequality between entities rather than similarity. Stratification in society
based on correlated variables as income, power and prestige, can be defined through
corresponding range intervals (see Fig. 10 where four strata are presented within
a cone representing the feasible domain).

I

II

III

IV

Low High

Figure 10: Pattern of strata in a stratification.

There are three major kinds of non-hierarchical classifications: typol-
ogy, structural classification, and stratification. Unidimensional typol-
ogy can be defined either with standard point (prototype) indication or
with variable intervals (categories). Three important kinds of typologies
are: real type, ideal type and partition typology.
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0.2.2 Purposes of the Classification

In the beginning, the purposes of classification have been listed as follows:

1. to analyze the structure of phenomena;

2. to relate different aspects of a phenomenon in question to each other; and

3. to shape and keep knowledge.

Now, we can update these items in more detail.

To clear the first two purposes, let us refer to the quintet revealed: his-
tory/structure/function/attitude/action. Classification of the domain considered
by any of these dimensions helps in understanding the structure of the domain
as well as in revealing its relationship to the other dimensions. While moving
from the “dead” nature to living organisms to human society, the relative im-
portance of the particular dimensions moves from the left to the right part of
the quintet. In physics and chemistry (and in mathematics), the most impor-
tant dimensions are structure/function; in geology, structure/history; in biology,
structure/history/function; in psychology, structure/function/attitude/action; in
sociology, history/structure/attitude/action; and in technology (though omitted
from the current review), attitude/action. Moreover, while moving from the right
to the left of the quintet, the associations between the dimensions become less
rigid, and also change their causal one-way dependencies for two-way feedback re-
lations. The most rigid relations are in mathematics: two different descriptions
of a class must relate to the same set of objects. In physics, the relationship is
still quite hard, though it can be rather indefinite in some exceptional boundary
cases. Those relations become rather indefinite in a human society: a human’s
motives and behavior only partly depend on her/his family or class membership
(structure): a complicated motivation sphere controls all these.

Relating different dimensions of a phenomenon can be done in either way. For
example, the classification by structure, the place in the Periodic Chart (currently,
the atom number), determines the functional, physical and chemical properties of
an element. On the other hand, classification of the square equations by their roots
(function) is used to determine the corresponding coefficient-based (structural)
variables describing the classes.

Actually, it is the classes and their descriptions (when possible, in different vari-
able spaces) that represent the knowledge kept and shaped in the classifications.
As is known, knowledge can be presented, somewhat simplistically, as a set of con-
cepts (notions) and associations between them, expressed, mostly, through logical
statements (rules) A → B involving the concepts A, B. Any concept corresponds
to a class of phenomena; moreover, combining like phenomena into the same class,
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we facilitate perceiving, recording and analysis of the phenomena as a whole. In
this respect, we can say that knowledge is nothing but a set of interrelated classi-
fications.

In practice, classification, as any kind of knowledge, is used for prediction and
control. Prediction of behavior of a member of class is based on description of
this class imprinted in interrelations among the variables. Control actions can be
undertaken in a reasonable way when the class reactions can be predicted.

0.2.3 Content of the Classification

Classification, as a natural phenomenon, has rather indefinite contents. Still, we
can distinguish the following seven aspects of classification as its rather separated
parts: (a) domain of the universe classified; (b) underlying theory, (c) nomencla-
ture: the names of the classes, (d) structure: the structure (and names) of relations
between classes; (e) description: the definitions of the classes; (f) key: operational
rules for identification of the entities as belonging to corresponding classes, (g)
membership: the lists of the entities which are class members or representatives,
for any class.

Seven components of a classification: (a) domain, (b) underlying theory,
(c) nomenclature, (d) structure, (e) description, (f) key, (g) membership.

In particular types of classifications, different items can be presented differently.
The biological taxonomy, for example, has all the sections nonempty, while an ideal
type typology may have the sections (d), (e), and (f) empty.

Let us indicate the items in the librarian and biology classifications, respec-
tively: (a) domain: set of the printed matters, manuscripts and documents, or, set
of the living organisms; (b) theory: presentation of the universe according to the
structure of the sciences, culture, technologies, and activities in the society, or an
understanding of the reproduction and other biology processes (from rather prim-
itive at the time of Lamarck to much more sophisticated contemporary theories);
(c) nomenclature: see the volumes of the library catalogues, or the lists in biological
manuals; (d) structure: in both classifications, hierarchy, although in the library
classification there are some “horizontal”, faceted relations; (e) and (f): description
and key: the description is an intensional form of the definition as expressed in
a narrative style to be understood by public at large, and the key is a rigid form
of the description defining the class in an algorithmic style; biological descriptions
(see, for example, Abbott, Bisby, and Rogers 1985, p. 23 - 31) are more strict
than the rather vague indications in the library classifications; (g) membership:
no common membership lists are provided for the library classifications, and in
biology, any species is arranged as a top-bottom series of the including classes.
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0.2.4 What is Clustering?

Clustering is a mathematical technique designed for revealing classifica-
tion structures in the data collected on real-world phenomena.

A cluster is a piece of data (usually, a subset of the objects considered, or a
subset of the variables, or both) consisting of the entities which are much “alike”,
in terms of the data, versus the other part of the data.

Earlier developments of clustering techniques should be credited, primarily,
to three areas of research: numerical taxonomy in biology (Sneath and Sokal
1973), factor analysis in psychology (Holzinger and Harman 1941), and unsuper-
vised learning in pattern recognition (Duda and Hart 1973). In the seventies, a
number of monographs were published demonstrating emergence of the discipline
(see Jardine and Sibson 1971, Duran and Odell 1974, Everitt 1974, Clifford and
Stephenson 1975, Hartigan 1975, Van Ryzin 1977); the most important methods
of clustering — moving centers (K-Means) and agglomerative techniques — were
included in major statistical packages as BMDP, SAS and SPSS. The principal idea
of the various clustering techniques developed is this: measure somehow similarity
value between any two of the entities classified, and then design clusters in such a
way that the entities within the clusters are similar to each other while those in
different clusters are dissimilar. In the eighties, the research continued, concentrat-
ing primarily on the questions of substantiation of the techniques developed both
experimentally and theoretically (Jain and Dubes 1988, McLachlan and Basford
1988).

The purposes of clustering are primarily the same as of classification in general,
although applied to data, not to real-world phenomena.

Purposes of clustering:
1) to analyze the structure of the data;
2) to relate different aspects of the data to each other; and
3) to assist in classification designing.

The last item here has substituted the first item (“shaping and keeping knowl-
edge”) in the list of classification purposes, since clustering is an empirical, data-
based tool for classification developing through performing the other two tasks.

So far, the mainstream of work in clustering has been concentrated on the
first of the purposes, which is much reflected in the material of this monograph.
The second purpose will be considered also, though quite moderately. As to the
third, it has not been formalized yet since we have no clear understanding what
“classification designing” means.
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0.2.5 Discussion

1. Though the concept of classification as a way to structurize and understand
the real-world phenomena and relationships could be treated in a very wide
meaning (Clancey 1985, Zacklad and Fontaine 1993), here a much narrower
class of classificational structures is considered as the genuine classifications:
the hierarchical and partition-wise non-hierarchical ones.

2. Among the hierarchical classifications, the conceptual one and systematics
are picked out, while typology, structural classification, and stratification are
distinguished from the non-hierarchical classifications.

3. The concept of typology comprises a wide set of classifications pertaining to
such seemingly different items as a set of prototype individual entities, or a
partition of the domain along with the intensional descriptions of the classes
as the variable categories (intervals) combined.

4. The classical concept of class, involving both intensional and extensional de-
scriptions, pertains to quite distinctive and well understood natural entities,
like the chemical elements or the biological species. Some relaxed versions
of that concept, the type included, are quite useful when an understudied
domain is analyzed.

5. The knowledge kept in classifications is the relations among the classes, most
common forms of which can be expressed as logical implication or equivalence
statements (rule base).

6. Since a classification is a real-world object, its contents cannot be charac-
terized quite definitely, although the seven components listed above can be
distinguished.

7. Clustering is a part of the classification process pertaining to analysis of a
set of data; the clustering goals are just those of the classification applied
in a limited area; the clustering forms should match those in the general
classification.

0.3 Table Data and Its Types

0.3.1 Kinds of Data

The following kinds of the real-life data are the main interest for mathematical
and computational processing: pictures (images), graphics (signals), texts (letter
and word series), chemical formulas (graph structures), maps (spatial structures),
and tables. Although images are of the most importance in medicine and machine
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vision, graphics and signals, in engineering and seismography, chemical formulas,
in pharmacy and chemistry, and spatial structures, in meteorology and navigation;
only tables will be considered in this book. First, tables are the most universal form
of information storage in numerical computational devices (the only kind which is
currently available): any other kind of information can be presented in a table
form. Second, the specifics of the former kinds of data require specific theories for
their analysis, which cannot be covered in this, quite general, presentation. Third,
the diversity of table data forms is so extensive that even for this particular kind
of data, too much remains to be done.

A quite suitable classification of data tables has been suggested by Tucker 1964
based on two numerical variables: the number of ways and the number of modes.
A formal account of the classification is this. Let I1, I2, ..., In be sets of some
entities: kinds of plant, kinds of bird, geographical sites, periods of times, etc. It is
permitted that some of the sets be coinciding, with k the number of different sets
among the given n sets. An n-dimensional array of, usually numeric, code values
a(i1, ..., in) given for any combination of i1 ∈ I1, i2 ∈ In, ..., in ∈ In, is referred to
as a n-way k-mode table. For example, a similarity matrix aij between the entities
i, j ∈ I is a two-way one-mode table, while a rectangular entity-to-variable matrix
xik where i ∈ I, k ∈ K, and I is set of the entities and K is set of the variables, is
a two-way two-mode table.

In this book, mostly two-way, two-mode and one-mode, data tables are consid-
ered. We will also lean upon the following subdivision of data tables concerning
comparability of the entries:

1. Column-Conditional table.

2. Comparable table.

3. Aggregable table.

The first two are well-known (see, for instance, in Arabie, Carroll, and De
Sarbo 1987 where comparable data are referred to as unconditional); the latter
seems to have never been singled out before. We discuss them in the following
three subsections.

0.3.2 Column-Conditional Data Table

Primarily, such a two-way table is an entity-to-variable table, that is, a rectangular
array like that one presented in Table 3, having the rows corresponding to the
entities and columns corresponding to the variables, with the entries coding the
values of the variables at the entities. The variables are called also attributes,
features, characteristics, parameters, etc. Such terms as case, object, observation,
or instance are in use as synonymous to the “entities”.
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Planet Distance Diameter Period Day Moons Matter EBalance
kilomile mile year amount

Mercury 36 3000 0.24 59 0 Solid Negative
Venus 67 7500 0.62 243 0 Solid Negative
Earth 93 7900 1 1 1 Solid Negative
Mars 142 4200 1.88 1 2 Solid Negative
Jupiter 483 89000 12 0.42 17 Liquid Positive
Saturn 885 74600 30 0.42 22 Liquid Positive
Uranus 1800 32200 84 0.67 15 Mixed Positive
Neptune 2800 30800 165 0.75 8 Liquid Positive
Pluto 3660 1620 248 6.40 1 Solid Negative

Table 3: Planets: Planets of the Solar system along with some of their character-
istics; EBalance is the difference between the received and emitted energies.

Table 3 is an update of a table cited by W.S. Jevons (1835-1882) in his account
of the classification subject (Jevons 1958). This format of data often arises directly
from experiments or observations, from surveys, from industrial or governmental
statistics, and so on. This is a most conventional form for presenting data base
records.

It must be noted that, usually, no evident data structure can be seen in the
table directly, in contrast to the case of Table 3 which shows an obvious two-class
pattern: the first four planets have each of the variables presented quite differently
from the following four planets. For instance, the planets of the first group have
just a few moons while there are at least 8 moons at the planets of the second group.
This poses two challenging problems still unresolved: (1) What is the regularity
underlying such a huge difference? (2) How can the deviant behavior of the most
recently discovered Pluto be explained?

Often the entity-to-variable data table is considered as a raw data for trans-
forming it into the other table formats.

The entity-to-variable data table can be denoted as X = (xik), i ∈ I, k ∈ K,
(where I is the set of entities, K is the set of variables, and xik is the value of the
variable k ∈ K for the entity i ∈ I).

Basically, any variable k ∈ K can be considered as a mapping of the set of
the entities into its value set, xk : I → Xk, with xk(i) = xik. For example, in
Table 3, the value set of the first variable, Distance (the average distance from
Sun to the planet), is X1 = [36, 3600], the interval between (and including) 36 and
3600 thousand miles. The value set for the variable Matter (kind of the surface) is
X6 = {Solid, Mixed, Liquid}. In both cases, only data-related values are included
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since the data as they are do not provide any information about whether there
exists any planet with its distance from Sun beyond the range [36, 3600], or with
its surface consisting of a different kind of matter. The question might be asked:
why is the interval [36, 3600] considered the value set, and not just particular
values placed in the table (36, 67, 95,...)? The answer is that it is only a matter
of convenience since the quantitative variable values are supposed to be averaged
or/and compared with some other values.

A distinctive feature of the variable-to-entity table is that its values are
compared only within the columns (variables).

Having in mind that a cluster corresponds to a subset of the entities, it is quite
useful to have its intensional description in terms of the variables. For instance,
the group of planets S = {Mercury, V enus, Earth, Mars} can be characterized as
the set of planets whose distance from Sun is less than 150 kilomiles. More vague
description is presented with a type-wise indication that the distance is approxi-
mately 85 kilomiles (which is the average distance). These are the most popular
descriptions currently in use in clustering. Obviously, any intensional cluster de-
scription, while looking quite theoretical, has an empirical nature since it is based
only on the data table under consideration. Any intensional description to an ex-
tensional cluster obtained somehow is referred to as its interpretation. Consistent
interpretations become parts of the theory of the corresponding phenomena.

There exist also two-way one-mode column-conditional data, as, for instance,
a table A = (aij) of inter-industrial supply, where aij is the supply of the industry
i product to industry j (i, j ∈ I) measured in natural units such as coal supply in
tons, electricity supply in kilowatts.

0.3.3 Comparable Data Tables

Comparable Rectangular Table

Table 4 represents an extract from the results of the following sorting experiment:
each out of 50 respondents partitioned 20 terms related to the human body by
intuitive similarity, and, for any two terms, the number of subjects who did not put
them in the same category, was considered their dissimilarity (the experiment was
carried out by G. Miller (1968) as reported in Rosenberg 1982). The columns relate
to the “larger” body parts, “Head”, “Arm”, “Chest”, and “Leg”, respectively, while
the rows represent the other 16 body terms as presented in Table 4.

Again, this is a matrix X = (xik), i ∈ I, k ∈ K, where I and K do not overlap.
But, this time, all the values xik across the table are comparable. This means that
operation of averaging the values, within a part of the table corresponding to or
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No Term Symbolic Head Arm Chest Leg
1 Body Bo 45 50 37 50
2 Cheek Ch 19 50 49 50
3 Ear Ea 18 49 50 49
4 Elbow El 49 8 50 47
5 Face Fa 14 48 47 48
6 Hand Ha 48 14 50 46
7 Knee Kn 49 47 50 8
8 Lip Li 18 49 50 49
9 Lung Lu 48 49 17 49

10 Mouth Mo 19 49 50 49
11 Neck Ne 31 45 38 45
12 Palm Pa 50 16 49 48
13 Thigh Th 47 45 48 5
14 Toe To 49 47 50 13
15 Trunk Tr 42 46 19 45
16 Waist Wa 44 45 26 46

Table 4: Body: An extract from Miller’s sorting data (1968): number of subjects
(out of 50) who did not put any given row-terms into the same category with the
four column terms. (Treated: pp. 543 - 547.)

considered as a cluster, may be considered meaningful, at least for the close values.
For instance, the dissimilarities between the four face parts and Arm and Chest,
in the following subtable,

Arm Chest
Cheek 50 49
Ear 49 50
Lip 49 50
Mouth 49 50

have 49.5 as their average, which can be considered an aggregate characteristic of
the subtable.

A great source of comparable data tables is rating the entities by various fea-
tures (see Table 11 as an example).

Comparable data can be treated also just as a general entity-to-variable table,
especially if such a treatment can help generating intensional descriptions of the



182 CLASSES AND CLUSTERS

No Genus Human Chimpanzee Gorilla Orangutan
2 Chimpanzee 1.45
3 Gorilla 1.51 1.57
4 Orangutan 2.98 2.94 3.04
5 Rhesus monkey 7.51 7.55 7.39 7.10

Table 5: Primates: The mean number of nucleotide substitutions per 100 sites of
5.3 kb of noncoding DNA globin regions from Li and Grauer 1991, p.122. (Treated:
pp. 281, 293, 508, 513, 518, 519.)

clusters in terms of the columns considered as the variables.

Proximity/Dissimilarity Data

In Table 5, the data on genetic distances between Human and four ape genera from
Li and Grauer 1991 are presented. The data relate to a long discussed issue of the
Human’s origin: one view, by Darwin, claimed that the African apes, Chimpanzee
and Gorilla, are man’s closest relatives; another view was in favor of the Asian
Orangutan as of the Homo clade; and yet another, homocentric, view gave the
man a family of its own.

The data is a typical square matrix D = (dij) of the dissimilarity values between
entities i, j ∈ I; both the rows and columns relate to the same entity set I while
all the values dij are measured in the same scale and thus comparable across the
table. (Only subdiagonal distances, dij with i > j, are presented in Table 5.)

Such a table can be found as a result of transforming an entity-to-variable table
into entity-to-entity (or variable-to-variable) proximity matrix.

Sometimes, square association matrices can be observed directly, for instance,
in sociometry, when individuals somehow rate their feelings about the other group
members, or in labor statistics (occupational mobility tables), or in genetics (results
of recombination testing) or in national economy statistics (inter-industrial input-
output flows), etc. Graphs, binary relations, and weighted graphs can be considered
as special cases of this type of data.

To interpret extensional clusters S ⊂ I, supplementary information on the rele-
vant variables of the entities is necessary. For the human origin problem considered,
this kind of data can be expected from paleontology or physiology research.

Sometimes, an interpretation can be provided in terms of the structure of the
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data revealed (especially in structural classification problems when data reflect
interactions between the subsystems sought). Sometimes, an interpretation can be
found considering the columns and the rows to be different entities, thus doubling
I into two nonoverlapping copies, Ir, for the rows, and Ic, for the columns, and
referring to the data as just a comparable rectangular table.

Yet another peculiarity of the proximity data comes from its size, which is just
the number of the entities squared (or a half of it when the proximities are sym-
metrical). This makes it difficult to process large proximity data tables involving
thousands or more entities.

0.3.4 Aggregable Data Tables

Rectangular Aggregable Data

Let us take a look at Table 6 (from L. Guttman (1971), cited by Greenacre 1988)
which cross-tabulates 1554 Israeli adults according to their living places as well
as, in some cases, that of their fathers (column items) and “principal worries”
(row items). There are 5 column items considered: EUAM - living in Europe or
America, IFEA - living in Israel, father living in Europe or America, ASAF - living
in Asia or Africa, IFAA- living in Israel, father living in Asia or Africa, IFI - living
in Israel, father also living in Israel. The principal worries are: POL, MIL, ECO -
political, military and economical situation, respectively; ENR - enlisted relative,
SAB - sabotage, MTO - more than one worry, PER - personal economics, OTH -
other worries.

EUAM IFEA ASAF IFAA IFI
POL 118 28 32 6 7
MIL 218 28 97 12 14
ECO 11 2 4 1 1
ENR 104 22 61 8 5
SAB 117 24 70 9 7
MTO 42 6 20 2 0
PER 48 16 104 14 9
OTH 128 52 81 14 12

Table 6: Worries: The original data on cross-classification of 1554 individuals by
their worries and origin places. (Treated: pp. 206, 236, 252, 376, 477-478.)
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The columns and the rows of such a matrix correspond to qualitative categories,
and its entries represent counts or proportions of the cases fitting both the column
and the row categories. In clustering constructions this kind of matrix still has been
used rather rarely, though it has obvious advantage of using a quite homogeneous
(counting) scale only! Both of the drawbacks of the proximity data are neatly
avoided: 1) the size of the data matrix is relatively small because it is determined
by number of the categories, not entities themselves; 2) the row and column items
here are quite important aids to the interpretation purposes, being connected-to-
data categories (in the area the data are from), not just ordinary cases.

The cross-classification data are called usually contingency data (tables). An
extraordinary feature of this kind of data, distinguishing it from the general ho-
mogeneous data tables, is its aggregability property: the row or/and column items
can be aggregated, according to their meaning, in such a way that the corre-
sponding rows and columns are just summed together. For instance, let us ag-
gregate the columns in Table 6 according to person’s living places, thus summing
up the columns IFEA, IFAA, and IFI into the aggregate column I (living in Is-
rael) while aggregating their worries into two basic kinds: the worries coming
outside their families (OUT=POL+MIL+ECO+SAB+MTO) and inside the fami-
lies (FAM=ENR+PER); the other worries row OTH remains non-aggregated. The
resulting data set:

EUAM I ASAF
OUT 506 147 223
FAM 152 74 165
OTH 128 78 81

The table still counts 1554 individuals. Such an aggregability seems quite im-
portant in cluster analysis problems since it makes a natural aggregated represen-
tation for any data part as related to a cluster.

It remains to say that the aggregable data can be of the one-way data format,
too, as, for instance, the data in Table 7 related to inter-generational mobility in
the USA in 1973 (Hout 1986).

This table, though too aggregate for any real-world use, can be employed for
an illustrative discussion of the Weberian issue: whether the social classes can be
determined as being self-cohesive in the inter-generational mobility process, or not?
This will be done using the original 17 × 17 mobility table (see Table 21, p.207)
which has been aggregated into Table 7.

Similar interaction matrices can be drawn on industrial interactions (industry-
to-industry commodity flows) or on international trade (nation-to-nation trade
flows), etc. Note that the latter two examples bring another scale of counting
(money, not just pieces) which still has the aggregability property. Actually, any
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Son’s Occupation
Father’s Upper Lower Upper Lower Total
Occupation Nonma Nonma Manual Manual Farm

Upper Nonmanual 1,414 521 302 643 40 2,920
Lower Nonmanual 724 524 254 703 48 2,253
Upper Manual 798 648 856 1,676 108 4,086
Lower Manual 756 914 771 3,325 237 6,003
Farm 409 357 441 1,611 1,832 4,650

Total 4,101 2,964 2,624 7,958 2,265 19,912

Table 7: Mobility 5: Cross-classification of father’s occupation by son’s first full-
time civilian occupation for U.S. men 20 to 64 years of age in 1973, from Hout
1986, p. 11. (Treated: pp. 281-284, 287, 288, 289, 290, 294, Section 4.6.)

parameter of mass or volume (not just of intensity) of interaction between the
row/column items in a two-way table, creates an aggregable data table.

0.3.5 Discussion

In this section, a classification of the data tables is considered. One base of the
classification involves the number of different entity sets involved (ways) and the
number of those of them which are different (modes). Most attention will be given,
in the remainder, to two-way data tables, of which one-mode tables are usually
similarity/interaction/distance data while two-mode tables are usually entity-to-
variable or contingency data.

The second base involves degree of comparability of the entries across the table
permitted: (1) column-conditional data (within-column comparing and averaging),
(2) comparable data (overall comparing and averaging), (3) aggregable data (over-
all comparing and adding up to the total volume). There are also the so-called
Boolean, or binary data combining peculiarities of all the three kinds.

0.4 Column-Conditional Data and Clustering

0.4.1 Boolean Data Table: Tasks and Digits

In Table 8 (cited by Rosenberg, Van Mechelen and De Boeck 1995) seven persons
are described in terms of their success/failure patterns on a set of six tasks.
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Task Voca- Syno- Jigsaw Mathem. Planning Geography
bulary nims puzzles problems routes problems

Olivia 0 0 1 0 0 0
Ann 0 0 1 0 0 0
Peter 1 1 0 1 0 0
Mark 1 1 1 0 1 1
John 1 1 1 0 1 1
Dave 1 1 1 1 1 1
Andrew 1 1 1 1 1 1

Table 8: Tasks: Hypothetical example of persons’ success/failure (1/0) pattern
on a set of tasks. (Treated: p. 299)

The columns of the table can be considered as the so-called Boolean, or binary
variables.

A Boolean (binary) variable shows presence/absence of a quality or fea-
ture or an attribute.

A convenient way of perceiving a Boolean variable is to think of it as a yes-or-no
question. Can Olivia solve the jigsaw puzzles? Yes. Can Peter? No. (See 1 (for
Yes) and 0 (for No) in Table 8.)

Clustering the rows in Table 8 by similarity may reveal some “typical” task
resolving patterns, thus assigning individuals to types, implying that there should
be some basic strategies or skills involved in forming the patterns. Similarly, the
column-clusters could reveal individuals performing similarly on the within-cluster
tasks, again implying that there must be some basic solution strategies involved.
This allows us to think of simultaneous clustering of both the rows and columns
to reveal the task patterns and the individuals employing them, keeping in mind
that the cluster structure found could lead to skill/strategy interpretation of the
clusters.

Yet another example, in Table 9, shows presence/absence of the seven enumer-
ated segments in the rectangle in Fig 11 used to draw numeral digits in a stylized
manner (this example was considered by many authors, Breiman et al. 1984 and
Corter and Tversky 1986 included). The seven binary variables correspond to the
columns of the data matrix, and the digits, to the rows. No-answer is presented
with missing entries in Table 9.

Two kinds of problems may involve row-clustering in Table 9. The first is find-
ing a cluster structure (patterns of similar rows) in the table as it is; then, the
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Figure 11: Digits: Integer digits presented by segments of the rectangle.

clusters found are to be interpreted in terms of some substantive properties of the
numerals, like being odd/even or prime/composite. Although the digit character
images seem quite arbitrary, trying such an approach (finding clusters with subse-
quent interpretation of them in terms of different variables) is a traditional use of
clustering.

Problems of the second kind come out of the opposite direction: initially, clus-
ters are found in terms of a different set of variables (say, by the digit confusion
data in Table 16); then, they are to be interpreted in terms of the Boolean segment
variables of Table 9.

Binary data emerge usually as a result of preliminary processing of some more
complicated primary data like images (with their pixels dark or light) or ques-
tionnaires (with their categories of answers coded). Also, they are an important
way for presenting specific structures and relations as simplified models for real-life
situations.

0.4.2 Examples of Quantitative Entity-to-Variable Data:
Iris, Disorders and Body

Quantitative (multivariate) entity-to variable data is a rectangular matrix having
the rows corresponding to the entities (cases or objects or observations or items
or elements, and so on), and the columns corresponding to the variables, with the
entries coding the values of the variables for the entities.
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Digit e1 e2 e3 e4 e5 e6 e7
1 1 1
2 1 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1
5 1 1 1 1 1
6 1 1 1 1 1 1
7 1 1 1
8 1 1 1 1 1 1 1
9 1 1 1 1 1 1
0 1 1 1 1 1 1

Table 9: Digits: Segmented numerals presented with seven binary variables corre-
sponding to presence/absence of the corresponding segment in Figure 11. (Treated:
p. 464.)

This kind of data often arises directly from experiments, from surveys, from
industrial or government statistics, and so on. Often such data are considered as
a primary source for transformation into other table formats.

Table 10 may be considered the most popular data set in classification, machine
learning and data analysis research. The data is composed of 150 iris specimens,
each measured on four morphological variables: sepal length v1 and width v2
and petal length v3 and width v4, as collected by a botanist, E. Anderson, and
published by R. Fisher in his founding paper (Fisher 1936). There are three species,
Iris setosa (diploid), Iris versicolor (tetraploid), and Iris virginica (hexaploid), each
represented by 50 consecutive entities in the table.

Treated: pp. 310,
352, 354, 354, 356,
457, 457, 464, 467,
468, 469

Two kinds of problems are associated with Anderson-Fisher data.

The first problem is developing clustering techniques that find a cluster struc-
ture which is in good accord with the division of the specimens in the species. It
is well known from the previous studies that the two latter species are not well
separable in the space of the four variables presented (look, for example, on spec-
imens 28, 33 and 44 from class 2 and 18, 26, and 33 from class 3 which are more
similar to each other than to other specimens of the same species). This leads to



0.4. COLUMN-CONDITIONAL DATA AND CLUSTERING 189

Entity in Class 1 Class 2 Class 3
a Class Iris setosa Iris versicolor Iris virginica

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4
1 5.1 3.5 1.4 0.3 6.4 3.2 4.5 1.5 6.3 3.3 6.0 2.5
2 4.4 3.2 1.3 0.2 5.5 2.4 3.8 1.1 6.7 3.3 5.7 2.1
3 4.4 3.0 1.3 0.2 5.7 2.9 4.2 1.3 7.2 3.6 6.1 2.5
4 5.0 3.5 1.6 0.6 5.7 3.0 4.2 1.2 7.7 3.8 6.7 2.2
5 5.1 3.8 1.6 0.2 5.6 2.9 3.6 1.3 7.2 3.0 5.8 1.6
6 4.9 3.1 1.5 0.2 7.0 3.2 4.7 1.4 7.4 2.8 6.1 1.9
7 5.0 3.2 1.2 0.2 6.8 2.8 4.8 1.4 7.6 3.0 6.6 2.1
8 4.6 3.2 1.4 0.2 6.1 2.8 4.7 1.2 7.7 2.8 6.7 2.0
9 5.0 3.3 1.4 0.2 4.9 2.4 3.3 1.0 6.2 3.4 5.4 2.3

10 4.8 3.4 1.9 0.2 5.8 2.7 3.9 1.2 7.7 3.0 6.1 2.3
11 4.8 3.0 1.4 0.1 5.8 2.6 4.0 1.2 6.8 3.0 5.5 2.1
12 5.0 3.5 1.3 0.3 5.5 2.4 3.7 1.0 6.4 2.7 5.3 1.9
13 5.1 3.3 1.7 0.5 6.7 3.0 5.0 1.7 5.7 2.5 5.0 2.0
14 5.0 3.4 1.5 0.2 5.7 2.8 4.1 1.3 6.9 3.1 5.1 2.3
15 5.1 3.8 1.9 0.4 6.7 3.1 4.4 1.4 5.9 3.0 5.1 1.8
16 4.9 3.0 1.4 0.2 5.5 2.3 4.0 1.3 6.3 3.4 5.6 2.4
17 5.3 3.7 1.5 0.2 5.1 2.5 3.0 1.1 5.8 2.7 5.1 1.9
18 4.3 3.0 1.1 0.1 6.6 2.9 4.6 1.3 6.3 2.7 4.9 1.8
19 5.5 3.5 1.3 0.2 5.0 2.3 3.3 1.0 6.0 3.0 4.8 1.8
20 4.8 3.4 1.6 0.2 6.9 3.1 4.9 1.5 7.2 3.2 6.0 1.8
21 5.2 3.4 1.4 0.2 5.0 2.0 3.5 1.0 6.2 2.8 4.8 1.8
22 4.8 3.1 1.6 0.2 5.6 3.0 4.5 1.5 6.9 3.1 5.4 2.1
23 4.9 3.6 1.4 0.1 5.6 3.0 4.1 1.3 6.7 3.1 5.6 2.4
24 4.6 3.1 1.5 0.2 5.8 2.7 4.1 1.0 6.4 3.1 5.5 1.8
25 5.7 4.4 1.5 0.4 6.3 2.3 4.4 1.3 5.8 2.7 5.1 1.9
26 5.7 3.8 1.7 0.3 6.1 3.0 4.6 1.4 6.1 3.0 4.9 1.8
27 4.8 3.0 1.4 0.3 5.9 3.0 4.2 1.5 6.0 2.2 5.0 1.5
28 5.2 4.1 1.5 0.1 6.0 2.7 5.1 1.6 6.4 3.2 5.3 2.3
29 4.7 3.2 1.6 0.2 5.6 2.5 3.9 1.1 5.8 2.8 5.1 2.4
30 4.5 2.3 1.3 0.3 6.7 3.1 4.7 1.5 6.9 3.2 5.7 2.3
31 5.4 3.4 1.7 0.2 6.2 2.2 4.5 1.5 6.7 3.0 5.2 2.3
32 5.0 3.0 1.6 0.2 5.9 3.2 4.8 1.8 7.7 2.6 6.9 2.3
33 4.6 3.4 1.4 0.3 6.3 2.5 4.9 1.5 6.3 2.8 5.1 1.5
34 5.4 3.9 1.3 0.4 6.0 2.9 4.5 1.5 6.5 3.0 5.2 2.0
35 5.0 3.6 1.4 0.2 5.6 2.7 4.2 1.3 7.9 3.8 6.4 2.0
36 5.4 3.9 1.7 0.4 6.2 2.9 4.3 1.3 6.1 2.6 5.6 1.4
37 4.6 3.6 1.0 0.2 6.0 3.4 4.5 1.6 6.4 2.8 5.6 2.1
38 5.1 3.8 1.5 0.3 6.5 2.8 4.6 1.5 6.3 2.5 5.0 1.9
39 5.8 4.0 1.2 0.2 5.7 2.8 4.5 1.3 4.9 2.5 4.5 1.7
40 5.4 3.7 1.5 0.2 6.1 2.9 4.7 1.4 6.8 3.2 5.9 2.3
41 5.0 3.4 1.6 0.4 5.5 2.5 4.0 1.3 7.1 3.0 5.9 2.1
42 5.4 3.4 1.5 0.4 5.5 2.6 4.4 1.2 6.7 3.3 5.7 2.5
43 5.1 3.7 1.5 0.4 5.4 3.0 4.5 1.5 6.3 2.9 5.6 1.8
44 4.4 2.9 1.4 0.2 6.3 3.3 4.7 1.6 6.5 3.0 5.5 1.8
45 5.5 4.2 1.4 0.2 5.2 2.7 3.9 1.4 6.5 3.0 5.8 2.2
46 5.1 3.4 1.5 0.2 6.4 2.9 4.3 1.3 7.3 2.9 6.3 1.8
47 4.7 3.2 1.3 0.2 6.6 3.0 4.4 1.4 6.7 2.5 5.8 1.8
48 4.9 3.1 1.5 0.1 5.7 2.6 3.5 1.0 5.6 2.8 4.9 2.0
49 5.2 3.5 1.5 0.2 6.1 2.8 4.0 1.3 6.4 2.8 5.6 2.2
50 5.1 3.5 1.4 0.2 6.0 2.2 4.0 1.0 6.5 3.2 5.1 2.0

Table 10: Iris: Anderson-Fisher data on three classes (species) of Iris specimens.
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yet another problem, of the so-called constructive induction: deriving some new
variables from the given ones to allow a better discriminating between the classes.

The second kind of problems is easier: can we describe somehow the classes
presented intensionally, in terms of the variables given? Here the classes are con-
sidered as they are given, and no development of any techniques for class finding
is required.

Analogous problems, (1) adjusting the cluster structure and (2) intensional de-
scribing the classes, can be considered for the data presented in Table 11. The en-
tities are “archetypal psychiatric patients” fabricated by experienced psychiatrists
from Stanford University along with the list of seventeen variables, as follows:

w1. Somatic concern w10. Hostility
w2. Anxiety w11. Suspiciousness
w3. Emotional withdrawal w12. Hallucinatory behavior
w4. Conceptual disorganization w13. Motor retardation
w5. Guilt feelings w14. Uncooperativeness
w6. Tension w15. Unusual thought content
w7. Mannerisms and posturing w16. Blunted effect
w8. Grandiosity w17. Excitement
w9. Depressive mood

The values of the variables are severity ratings from 0 to 6. The patients
are partitioned into four classes, each containing eleven consecutive individu-
als considered typical for each of the following four mental disorders: depressed
(manic-depressive illness), manic (manic-depressive illness), simple schizophrenia,
and paranoid schizophrenia, respectively. The table is published in Mezzich and
Solomon 1980 along with a detailed description of the data on pp. 60-63.

Treated: pp. 352,
366, 461, 461, 463,
467, 471

Some may doubt whether the Disorders data really is column-conditional: all
the variables are measured in the same scale, which makes all the values comparable
with each other. Others may dispute this opinion, explaining that the severity
ratings cannot be compared because the variables refer to different aspects.

Another example of the comparable data which will be treated here as a column-
conditional one is Body (Table 4, p. 181). The natural hierarchy of the body parts
should be reflected in the underlying cluster structure.
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No w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17
1 4 3 3 0 4 3 0 0 6 3 2 0 5 2 2 2 1
2 5 5 6 2 6 1 0 0 6 1 0 1 6 4 1 4 0
3 6 5 6 5 6 3 2 0 6 0 5 3 6 5 5 0 0
4 5 5 1 0 6 1 0 0 6 0 1 2 6 0 3 0 2
5 6 6 5 0 6 0 0 0 6 0 4 3 5 3 2 0 0
6 3 3 5 1 4 2 1 0 6 2 1 1 5 2 2 1 1
7 5 5 5 2 5 4 1 1 6 2 3 0 6 3 5 2 3
8 4 5 5 1 6 1 1 0 6 1 1 0 5 2 1 1 0
9 5 3 5 1 6 3 1 0 6 2 1 1 6 2 5 5 0

10 3 5 5 3 2 4 2 0 6 3 2 0 6 1 4 5 1
11 5 6 6 4 6 3 1 0 6 2 0 0 6 4 4 6 0
12 2 2 1 2 0 3 1 6 2 3 3 2 1 4 4 0 6
13 0 0 0 4 1 5 0 6 0 5 4 4 0 5 5 0 6
14 0 3 0 5 0 6 0 6 0 3 2 0 0 3 4 0 6
15 0 0 0 3 0 6 0 6 1 3 1 1 0 2 3 0 6
16 3 4 0 0 0 5 0 6 0 6 0 0 0 5 0 0 6
17 2 4 0 3 1 5 1 6 2 5 3 0 0 5 3 0 6
18 1 2 0 2 1 4 1 5 1 5 1 1 0 4 1 0 6
19 0 2 0 2 1 5 1 5 0 2 1 1 0 3 1 0 6
20 0 0 0 6 0 5 1 6 0 5 5 4 0 5 6 0 6
21 5 5 1 4 0 5 5 6 0 4 4 3 0 5 5 0 6
22 1 3 0 4 1 4 2 6 3 3 2 0 0 4 3 0 6
23 3 2 5 2 0 2 2 1 2 1 2 0 1 2 2 4 0
24 4 4 5 4 3 3 1 0 4 2 3 0 3 2 4 5 0
25 2 0 6 3 0 0 5 0 0 3 3 2 3 5 3 6 0
26 1 1 6 2 0 0 1 0 0 3 0 1 0 1 1 6 0
27 3 3 5 6 3 2 5 0 3 0 2 5 3 3 5 6 2
28 3 0 5 4 0 0 3 0 2 1 1 1 2 3 3 6 0
29 3 3 5 4 2 4 2 1 3 1 1 1 4 2 2 5 2
30 3 2 5 2 2 2 2 1 2 2 3 1 2 2 3 5 0
31 3 3 6 6 1 3 5 1 3 2 2 5 3 3 6 6 1
32 1 1 5 3 1 1 3 0 1 1 1 0 5 1 2 6 0
33 2 3 5 4 2 3 0 0 3 2 2 0 0 2 4 5 0
34 2 4 3 5 0 3 1 4 2 5 6 5 0 5 6 3 3
35 2 4 1 1 0 3 1 6 0 6 6 4 0 6 5 0 4
36 5 5 5 6 0 5 5 6 2 5 6 6 0 5 6 0 2
37 1 4 2 1 1 1 0 5 1 5 6 5 0 6 6 0 1
38 4 5 6 3 1 6 3 5 2 6 6 4 0 5 6 0 5
39 4 5 4 6 2 4 2 4 1 5 6 5 1 5 6 2 4
40 3 4 3 4 1 5 2 5 2 5 5 3 1 5 5 1 5
41 2 5 4 3 1 4 3 4 2 5 5 4 0 5 4 1 4
42 3 3 4 4 1 5 5 5 0 5 6 5 1 5 5 3 4
43 4 4 2 6 1 4 1 5 3 5 6 5 1 5 6 2 4
44 3 5 5 5 2 5 4 5 2 4 6 5 0 5 6 5 5

Table 11: Disorders: Data on archetypal patients measured on 17 psychopatho-
logical items from Mezzich and Solomon 1980, p.62.
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0.4.3 Mixed Variable Tables: Planets and Russian Master-
pieces

In Table 12, some illustrative data are presented on eight masterpieces of Russian
literature along with the values of 5 variables, which are: 1) LenSent - Average
length of sentences (number of words); 2) LenDial - Average length of dialogues
(number of sentences); 3) NChar - Number of principal characters in the novel;
4) InMon - Does the author use internal monologues of the characters or not; 5)
Presentat - Principal way of presentation of the subject by the author.

The variables 1 to 3 are quantitative, which means that, typically, statements
involving quantitative comparisons of their values or quantitative transformations
of those, are meaningful. Variable 4 is Boolean (binary); its categories are Yes
or No. Variable 5 is nominal: it has three categories (called also grades): Direct
- meaning that the author prefers direct descriptions and comments, Behav - the
author prefers expressing his ideas through behavior of the characters, and Thought
- the subject is shown, mainly, through characters’ thoughts. Actually, any nominal
variable can be considered as a partition-wise classification. It is important from
the technical point of view since it allows thinking of partitional classifications as
nominal variables: a partition-wise clustering structure may be thought of as a
nominal variable approximating the variables given.

Title LenSent LenDial NChar InMon Presentat
Eug.Onegin 15.0 16.6 2 No Direct
Doubrovski 12.0 9.8 1 No Behav
Captain’s
Daughter 11.0 10.4 1 No Behav
Crime and
Punishment 20.2 202.8 2 Yes Thought
Idiot 20.9 228.0 4 Yes Thought
A Raw Youth 29.3 118.6 2 Yes Thought
War & Peace 23.9 30.2 4 Yes Direct
A.Karenina 27.2 58.0 5 Yes Direct

Table 12: Masterpieces: Russian masterpieces of 19th century: the first three
by A. Pushkin, the next three by F. Dostoevski, and the last two by L. Tolstoy.
(Treated: pp. 228, 246, 258, 267, 304, 455, 464, 464, 468, 471.)
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The following two problems could be related to the data in Table 12:

1. Classify the set of the masterpieces in groups (clusters) that would be ho-
mogeneous in terms of the variables presented and, simultaneously, describe the
clusters in terms of the most “important” (for the classification) variables. In the
particular case presented, the clusters should be connected to the authors, which
could be interpreted as the variables measured indeed underlie the authors’ writing
manners.

2. Reveal interrelations between the following two aspects of writing style: (a)
style features (as presented by two of the variables, LenSent and LenD), and (b)
presentation features (the other three variables), via clustering. We expect, in this
particular case, to have a high correlation between the aspects since both of them
seem to be determined by the author personalities.

0.4.4 Discussion

Seven small data sets are presented to illustrate the following general classification
problems:

(1) (extensional) finding a cluster structure (Tasks, Digits, Body, Masterpieces);
the list of the cluster structures to seek includes partition (Digits and Masterpieces),
hierarchy (Body), and bipartition/bihierarchy, that is, simultaneous clustering of
both the row and column sets (Tasks).

(2) finding intensional description of clusters given extensionally (all),

(3) adjusting variables to a pre-given cluster structure (Digits, Iris, Disorders),

(4) finding interrelation between entity and variable sets (Tasks) or between
some variable subsets (Masterpieces) via clustering.

0.5 Clustering Problems for Comparable Data

0.5.1 Entity-to-Entity Distance Data: Primates

This kind of data is represented by Table 3 Primates, p. 179. It is obtained usually
from the entity-to-variable data tables by calculating the inter-entity distances in
the variable space as discussed in Section 1.1.

The basic clustering problem related to this kind of data is revealing its clus-
ter structure based on the following principle: within-cluster distances should be
smaller than those between the clusters. Typical questions answered are: which
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objects belong to the same clusters and which to the different ones? The problem
of human origin is of this kind.

Cluster structures of interest can be of the following kinds: 1) just one cluster
containing the human, 2) a partition, and 3) hierarchical clusters (to speculate on
the species evolution).

Function ex lnx 1/x 1/x2 x2 x3 √
x 3

√
x

lnx 7
1/x 1 1
1/x2 1 1 7
x2 2 2 2 2
x3 3 2 1 1 6√
x 2 4 1 2 5 4

3
√

x 2 4 1 1 5 3 5
|x| 2 3 1 1 5 2 3 2

Table 13: Functions: Similarities between nine elementary functions rated by a
high-school mathematics teacher. (Treated: pp. 411, 373.)

0.5.2 Entity-to-Entity Similarity Data: Functions

Similarity measures differ from distance in that they have opposite direction: the
greater the similarity, the more alike are the entities, while the greater the distance,
the less alike are the entities.

Psychologists measure similarity by asking the respondents to evaluate similar-
ity between some stimuli, subject to the respondent’s personal feeling.

For example, an educational research team in Russia has proposed a nontradi-
tional methodology for knowledge control and testing based on the respondent’s
evaluation of the similarities between the basic concepts of the discipline tested
rather than on traditional direct questioning on substantive topics. The basic idea
is that there exists a (cognitive) structure of semantic relationship among the con-
cepts, which must be acquired by learning; the discrepancy between a student’s
personal structure and that one to be acquired may be used for scoring the stu-
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dent’s knowledge degree (Satarov 1991). The working tool is a concept-to-concept
similarity matrix as produced by the respondent.

The Table 13 of similarities between 9 elementary algebraic functions has been
produced by a high-school teacher of mathematics as supposedly related to the
correct cognitive structure.

Usually, corresponding semantic structure is sought with quantitative methods
of multidimensional scaling and ordination, aimed at finding such a conceptual
variable space that the entities can be embedded there with the inter-entity dis-
tances conforming to the given similarities. However, the dimensions of the spaces
found (along with corresponding concepts) usually correspond to some entity clus-
ters, which means that the metric structure recovered is not informative, but only
the clusters are meaningful. There are two problems to resolve, in the approach
to knowledge control considered: (1) finding a cluster structure from a similarity
matrix; (2) measuring the difference between the student’s cluster structure and
the standard one.

0.5.3 Three-way similarity matrix: Kinship

This is a list of fifteen kinship terms:

1. Aunt 6. Granddaughter 11. Nephew
2. Brother 7. Grandfather 12. Niece
3. Cousin 8. Grandmother 13. Sister
4. Daughter 9. Grandson 14. Son
5. Father 10. Mother 15. Uncle

Kim and Rosenberg (1975) asked the respondents to sort the kinship terms by as
many classes as they wanted; the data on dissimilarities between the terms derived
from six sorting experiments are taken from Arabie, Carroll, and DeSarbo 1987.
The dissimilarity index is the number of the respondents who put the terms in ques-
tion in different classes. There are six matrices presented by their under-diagonal
elements, two digits each, in Tables 14 and 15. The first two matrices relate to
groups of females and males, respectively, who made a single sorting; the other four
matrices contain results of each of two sorting experiments conducted repeatedly
in a female group (matrices three and four) and in a male group (matrices five and
six). The data, actually, is a three-way table (aijt) where i and j relate to the
kinship terms while t relates to the different respondent groups.

The problem here is to find out whether there exists any unique clustering
structure of the kinship terms underlying the six matrices presented? If yes, what
are the deviations of each of the six groups from that?
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Similarities Number

79 1
5670 2
366671 3
76227863 4
3473702577 5
763575763261 6
36787534761748 7
7727717131491763 8
336876155031763077 9
57335574387437783080 10
1375543279317738733945 11
384870206728773474217735 12
77207248167035772662327266 13
4738597932783777357513577938 14
76 1
5563 2
605673 3
70427852 4
5774724478 5
725876764557 6
54797852702929 7
7454706855283056 8
526480242954704577 9
51524872617159785380 10
2671495380527859706126 11
582365346553795873437152 12
77357128256853754651547155 13
2856547750775574596926527559 14
78 1
5362 2
546671 3
73337263 4
5274754974 5
755270734852 6
48777652732731 7
7848697250302552 8
456077363150744776 9
58484572547451764780 10
3075524977497552745330 11
513269426149775275347447 12
78416728367251744763477467 13
3151477746774875517429577853 14

Table 14: Kinship I: Dissimilarities between fifteen kinship terms as based on
Kim and Rosenberg (1975) data taken from Arabie, Carroll, and DeSarbo 1987.
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Similarities Number

74 1
6056 2
545767 3
66366862 4
5169653478 5
685369743962 6
43787447693431 7
7445616750343562 8
406274333250683976 9
64414567526549753978 10
3867514180397549665330 11
523162276340775169366840 12
78326335346849773763406757 13
2850547940764469516639637753 14
83 1
3877 2
796183 3
79558443 4
7982826983 5
847684837348 6
78838474823811 7
8573818074133848 8
726384341374827383 9
49745381778078847383 10
4283537485728579797912 11
771078526373837682558176 12
85528214348074836943748161 13
1077398572857884797942498379 14
84 1
5573 2
716780 3
76428261 4
7177795582 5
846981816660 6
70828265804621 7
8560797366214361 8
635983441966816382 9
59695879727971856485 10
4582596485638472807220 11
722175476159836876468267 12
84498022447565815660658064 13
1771558463857084727646608470 14

Table 15: Kinship II: Dissimilarities between fifteen kinship terms based on Kim
and Rosenberg (1975) data (continued). (Treated: pp. 374, 535.)
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It should be noted also that in spite of the fact that the entries are just counts,
the data is not aggregable since there is no meaning in summation of the entries
across the table.

0.5.4 Entity-to-Entity Interaction Table: Confusion

Table 16 represents results of an experiment on confusion between segmented nu-
merals (similar to those presented in Figure 11), reported in Keren and Baggen
1981. A digit appeared on a screen for a very short time (stimulus), and a subject
was to report the digit name. For every stimulus, the frequencies of the digits
claimed stand in the corresponding row of Table 16. The matrix has two formal
features: (1) it is asymmetric (as every interaction table), (2) its principal diagonal
entries cover the most part of its “mass”, which is a feature of the steady-state
interaction processes (most part of the observations falls within the states).

Response
Stimulus 1 2 3 4 5 6 7 8 9 0
1 877 7 7 22 4 15 60 0 4 4
2 14 782 47 4 36 47 14 29 7 18
3 29 29 681 7 18 0 40 29 152 15
4 149 22 4 732 4 11 30 7 41 0
5 14 26 43 14 669 79 7 7 126 14
6 25 14 7 11 97 633 4 155 11 43
7 269 4 21 21 7 0 667 0 4 7
8 11 28 28 18 18 70 11 577 67 172
9 25 29 111 46 82 11 21 82 550 43
0 18 4 7 11 7 18 25 71 21 818

Table 16: Confusion: The Keren and Baggen 1981 data on confusion of the
segmented numeral digits. (Treated: pp. 239, 412, 419, 464.)

The problem here is to find out general patterns of confusion and, then, to
interpret them using some other data as, for instance, segment-based Boolean
variables in Digit data table 9, p. 188.
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0.5.5 Variable-to-Variable Correlation Table: Activities

Analysis of the structure of interrelation between variables via cluster analysis in
variable-to-variable correlation tables was an important stage in the evolution of
clustering methodology; moreover, the term itself emerged just to denote sets of
mutually interrelated variables to be interpreted as being manifestations of the
same “interior personality factor”, like ability or aggressiveness. Such a clustering
was considered as a fast but not quite proper (quite suspicious) way to get a
sense of the underlying factors when exact computation of the factor scores was an
issue because of the lack of appropriate computing facilities (Tryon 1939). Though
computing routines are currently readily available, there are still situations when
analysis of the structure of a correlation matrix might be useful. Such a situation
arises, for instance, when correlations between the variables are low. In such a
case, no analytical factor analysis model could work; still clusters could show a
qualitative picture of interrelations.

Work Eat Cook Clea Laun Serv Gard Farm Nurs Leis
Sex 59 266 326 175 97 77 4 49 40 44
Age 7 5 20 7 8 6 8 36 110 38
Job 45 88 125 91 60 57 15 32 37 40
Family 9 4 26 7 3 3 5 15 7 78
Kids 0 0 1 1 0 0 2 0 78 1
UFemale 5 24 26 16 6 7 3 4 1 2
Home 2 1 3 4 2 1 3 12 5 1
DTech 1 2 1 0 0 0 0 3 3 1
Income 6 10 6 7 6 14 9 14 37 9
College 34 40 74 34 32 6 8 64 31 22
School 3 10 9 23 15 18 3 54 63 19
Farm 27 14 9 9 2 37 6 78 14 10
SWeek 114 9 6 7 11 29 10 70 16 9

Table 17: Activity: Correlation data between socio-economic variables of the
agriculture personnel and the modes of their time-spending, in 0-1000 scale range
(from Mirkin 1985, p.149). (Treated: p. 296.)

A rectangular variable-to-variable matrix with rather low correlation entries
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(which is a feature of the sociological large-scale surveys, in the present author’s
experience) is presented in Table 17 (Mirkin 1985, p. 149). The set of row-variables
consists of some socio-economical parameters taken from a survey of 1024 employ-
ees in rural settlements at Novosibirsk region (Russia, 1979); all 13 variables pre-
sented have been categorized and considered as qualitative variables. These are as
follows:

1. Sex.

2. Age (by decades).

3. Job Status (6 ranks).

4. Marital Status (4 categories).

5. Children in House (yes, no).

6. Unworking Female in Household (yes, no).

7. House Quality (good, bad).

8. Domestic Devices Available (combinations of vacuum cleaner, washing ma-
chine and refrigerator).

9. Income (7 intervals).

10. College/Technical Education Level (four grades, “no at all” included).

11. Years Spent at School (four grades).

12. Farmyard at Home (yes, no).

13. Number of Shifts a Week (6 grades).

The set of column-variables reflects the time spent for the following aggregated
activities covering more than 70% of all the activities of the respondents: 1. Work
at an enterprise. 2. Eating. 3. Cooking. 4. House cleaning. 5. Laundry. 6.
Getting service (like hair-cut, mail, etc). 7. Gardening at home farmyard. 8.
Work at home farmyard (poultry, cattle, etc). 9. Nursing children. 10. Leisure.

The problem is to find which patterns of association exist between the row and
column variables based on the pair-wise correlation coefficients presented in Table
17.

0.5.6 Category-to-Category Proximity Table: Behavior

Let us consider a 15 × 15 table of proximities between 15 kinds of situations and
15 kinds of human behavior, based on the appropriateness of the behavior to the
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Behavior
Situation Run Talk Kiss Write Eat Sleep Mumble Read
Class -1.99 1.70 -2.41 3.66 -0.28 -0.91 -0.89 2.76
Date 0.49 4.05 4.22 -0.89 3.28 -0.74 -1.39 -1.63
Bus -3.07 3.57 -0.24 0.36 0.97 2.53 0.66 2.66
FDinner -1.95 4.01 0.41 -1.93 3.93 -2.22 -1.97 -0.55
Park 3.43 3.91 3.20 2.49 3.62 1.12 0.89 3.26
Church -3.13 -1.22 -2.13 -1.66 -3.13 -2.74 -0.99 -0.93
JInterv -2.57 3.95 -3.43 0.34 -2.78 -3.76 -3.20 -2.03
Sidewalk 1.07 3.68 0.24 -1.13 0.32 -3.05 0.45 0.30
Movies -2.05 0.47 1.70 -1.78 2.97 -0.43 -0.38 -2.78
Bar -2.55 3.74 0.66 0.87 3.16 -1.61 1.70 0.20
Elevator -2.88 2.89 0.28 -1.47 0.59 -3.20 0.61 -0.03
Restroom -1.68 2.74 -1.70 -1.05 -2.16 -1.68 0.53 0.24
Own room 1.64 4.07 4.01 3.78 3.43 4.34 3.16 4.07
DLounge -0.11 3.37 2.03 3.22 2.68 1.57 0.99 4.05
FBGame -0.39 3.57 0.57 0.05 3.53 -1.53 0.72 -0.82

Fight Belch Argue Jump Cry Laugh Shout
Class -3.30 -2.74 0.82 -2.72 -2.30 1.72 -2.57
Date -0.93 -2.28 -0.01 -0.09 -1.47 3.49 -0.72
Bus -2.99 -2.36 -0.34 -1.39 -1.43 2.59 -1.51
FDinner -2.84 -2.01 -1.26 -2.22 -1.30 2.62 -2.55
Park -1.45 0.49 0.55 2.91 0.70 3.59 2.41
Church -3.89 -3.09 -2.59 -2.80 -1.38 - 1.91 -3.18
JInterv -3.47 -3.30 -2.68 -3.03 -3.14 1.37 -2.86
Sidewalk -3.05 -1.70 -0.43 -0.97 -0.80 2.89 0.37
Movies -3.14 -1.93 -2.80 -2.20 2.64 3.43 -2.09
Bar -2.61 0.53 -0.20 -0.76 -1.07 3.72 -0.38
Elevator -2.93 -1.97 -1.93 -2.39 -1.03 2.26 -2.78
Restroom -2.74 0.61 -1.03 -0.86 0.28 1.39 -0.99
Own room -0.26 2.30 3.01 2.22 3.49 3.66 1.93
DLounge -2.11 -0.51 0.37 0.07 -0.63 3.24 -0.91
FBGame -2.47 -0.66 0.47 2.61 -0.20 3.39 3.43

Table 18: Behavior: Situation-Behavior centered appropriateness rates by Price
and Bouffard (1974) from Eckes and Orlik 1993. (Treated: pp. 374-375.)

situation (rated on a scale from 0 to 9 by fifty-two subjects in an experiment by
Price and Bouffard 1974 reported in Eckes and Orlik 1993, p. 66). The data in
Table 18 are deviations of the raw proximities from their grand mean.

The basic motivation is to find which classes of the columns correspond to
specific classes of the rows. The problem is quite similar to that in the preceding
section; the only difference is that the data here are taken from the subjects directly
while, in the former table, the correlation values have been derived from a raw table
of entity-to-variable format, which might be taken into account in mathematical
modeling of the problem.



202 CLASSES AND CLUSTERS

0.5.7 Graphs and Binary Relations

A graph is a mathematical concept modeling a set of interconnected elements.
A graph G consists of a nonempty set V (G) of its vertices and a set E(G) of
unordered pairs e = uv of the vertices called edges; edge e = uv is said to join
its ends u, v ∈ V (G). Graphs are so named because they are usually represented
graphically: each vertex is indicated by a point, and each edge by a line joining
the points which represent its ends.

Data tables are a natural vehicle for deriving graphs representing them, at
least partly. Let us consider any similarity/dissimilarity matrix A = (aij), i, j ∈ I,
for instance, the similarity matrix Functions (Table 13, p. 194), and specify a
similarity threshold, say, t = 4. This gives rise to threshold graph G having the
entity set I as its vertex set V (G); edge ij joins those and only those entities i and
j for which the similarity aij ≥ t. In our example, the threshold graph is presented
in Figure 12 (in terms of the functions).
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Figure 12: Threshold graph for Functions similarity data (t = 4).

Yet another way to represent graphs is through adjacency matrices. A square
|V (G)| by |V (G)| symmetric matrix rG = (ruv) is the adjacency matrix if ruv = 1
when uv ∈ E(G) and ruv = 0 when uv �∈ E(G). For instance, the threshold graph
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presented in Figure 12 has its adjacency matrix

rG =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 1 0 0 0
1 1 0 0 0 0 1 1 0
0 0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 0 0
0 1 0 0 1 1 1 1 0
0 1 0 0 1 0 1 1 0
0 0 0 0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

which can be written also in its “lower triangular” form:

rG =

2 1
3 0 0
4 0 0 1
5 0 0 0 0
6 1 0 0 0 1
7 0 1 0 0 1 1
8 0 1 0 0 1 0 1
9 0 0 0 0 1 0 0 0

1 2 3 4 5 6 7 8

.

There is another kind of graph, the so–called directed graphs which have their
vertices joined by directed arcs rather than undirected edges. An arc is an ordered
pair (u, v) ∈ V (G)×V (G) of the vertices reflecting the direction of the arc. Directed
graphs also can be represented by diagrams (the joining lines are provided with
arrows to show direction of the arc) and square Boolean adjacency matrices which
are not necessarily symmetric.

Directed graphs can arise as the threshold graphs for asymmetric data tables as
the graph in Fig. 13, which represents the levels of confusion between the numeral
digits larger than 40 in Table 16. The twofold role of the threshold graphs can be
seen quite clearly: on one hand, they present information on interrelation between
the entities; on the other hand, the information is cleared of unnecessary details to
allow observation of its most important parts. We can see, for example, that 9 is
the greatest source for confusion while 3 and 0 are important confusion targets. In
this latter aspect, threshold graphs are a result of preprocessing the data, which
sometimes gives a lot of information about the data structure.

Two-mode data tables lead to the so-called bipartite graphs. A graph G =
(V (G), E(G)) is called a bipartite graph if the set of its vertices can be partitioned
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Figure 13: Directed threshold graph for digit Confusion data (t = 40).

in two subsets, V1 and V2, in such a way that no edge (or arc) joins the vertices
within either of these subsets.

For example, data Task in Table 8 can be presented by the bipartite graph in
Fig. 14 for which the data is its adjacency matrix. In contrast to the previous
picture, this drawing does not give too many hints about the data structure. The
reader is invited to draw the bipartite threshold graph for data Activities (Table
17), with threshold level, say, t = 60, to see what kind of structure can be found
for that.
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Figure 14: Bipartite graph for Task data.
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Graphs can arise also as primary information from substantive research such
as, for instance, in social psychology (sociometric matrices reporting results of
mutual choices among the members of a small group) or in engineering (a scheme
of connections between the elements of a device).

Considering a threshold graph is a simplest way to analyze the structure of the
data if it is simple enough. This is why graphs could be considered sometimes as
structures rather than data. We prefer thinking of arbitrary graphs as the data
since, in our experience, the threshold graphs are too complicated to be considered a
final result: this is a structure to be analyzed rather than described. Yet, in graph
theory, there are several concepts (such as connected component, bicomponent,
clique, coloring, tree) related very closely to clustering.

0.5.8 Discussion

Four out of six presented illustrative data sets are one-mode dis-
tance/similarity/interaction data (Primates, Functions, Kinship and Confusion)
while the other two are two-mode similarity data (Activities and Behavior). The
Kinship data set is special: it is the only three-way data set included.

One-mode data clustering is just to reveal the data structure in terms of a single
cluster (Primates), or a partition (Primates and Confusion), or a set of possibly
overlapping clusters (Functions and Kinship), or a partition along with associations
between its classes (Confusion). Two-mode similarity data clustering is to reveal
pairs of associated row/column subsets (“box clustering”).

0.6 Clustering Problems for Aggregable Data

0.6.1 Category-to-Category Data: Worries

Let us consider contingency table for data Worries (Table 6 in Section 0.3.4) ob-
tained from the original cross-classification by dividing each of its entries by the
total number of the counted entities (1554 individuals). The results (which are
the frequencies of the corresponding events, multiplied by 1000) are presented in
Table 19. Its (i, j)-th entry can be denoted by pij , while the totals of the rows and
columns called marginals, by pi+, i ∈ I (rows) and p+j, j ∈ J , respectively.

It is supposed that living place influences the principal worry structure; the
question is then how to analyze the influences based on the contingency table.

Traditionally, conditional probabilities p(i/j) = pij/pj, not primary co-
occurrence frequency values pij , are considered as reflecting the influences, though
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EUAM IFEA ASAF IFAA IFI Total
POL 76 18 21 4 5 124
MIL 140 18 62 8 9 237
ECO 7 1 3 1 1 13
ENR 67 14 39 5 3 128
SAB 75 15 45 6 5 146
MTO 27 4 13 1 0 45
PER 31 10 67 9 6 123
OTH 82 33 52 9 8 184
Total 505 113 302 43 37 1000

Table 19: Cross-classification from Table 6 presented as a contingency table.

care should be taken to use the conditional probabilities in a proper way. For ex-
ample, the main worry for the EUAM individuals, according to Table 6 or 19, is the
military situation with p(MIL/EUAM) = 140/505 = 27.7%; and the main worry
for ASAF is the personal economy problems with p(PER/ASAF ) = 67/302 =
22.1%. Would this mean that the influence in the first case is higher than in the
second? Not necessarily. To come to a reasonable conclusion, let us compare the
conditional probability p(i/j) to the average rate pi of i for all 1544 observations.

To make the comparison, absolute change p(i/j)−pi, or relative value p(i/j)/pi,
or relative change qij = (p(i/j) − pi)/pi could be used. The relative value
p(i/j)/pi = pij/(pipj) called the (marginal) odds ratio, is a standard tool in con-
tingency data analysis (see, for instance, Reynolds 1977).

Value MIL/EUAM PER/ASAF
p(i) 237 123

p(i/j) 277 221
p(i/j) − p(i) 40 98
p(i/j)/p(i) 1168 1804

qij 168 804

Table 20: Column-to-row interaction measured by different indices.
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Son’s First Full-Time Occupation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 25 107 20 11 3 27 8 8 8 8 5 12 11 4 7 2 1
2 8 395 64 42 9 116 40 34 59 15 40 61 75 20 30 4 16
3 14 317 116 89 6 144 68 40 56 31 33 82 89 16 60 5 7
4 7 120 34 45 2 73 27 13 25 7 11 31 33 5 21 1 4
5 19 187 69 52 33 112 82 34 50 36 35 69 103 24 63 11 14
6 4 203 41 26 4 145 42 23 49 19 34 74 95 28 42 3 13
7 5 77 20 20 2 57 47 13 23 8 12 48 46 11 19 3 4
8 7 208 49 33 2 174 52 151 67 29 59 104 262 81 75 8 16
9 6 215 54 38 5 172 54 65 195 53 57 195 175 47 110 6 34

10 6 132 29 20 6 131 51 54 71 170 43 142 158 39 130 4 40
11 8 122 47 24 3 170 49 56 65 36 126 130 174 51 110 6 37
12 5 142 33 18 6 184 71 55 102 49 81 391 239 67 149 11 58
13 9 160 37 28 1 188 75 108 93 36 89 171 529 118 123 10 36
14 2 33 5 5 0 40 13 26 22 13 25 55 97 92 38 1 26
15 4 54 11 8 6 86 24 37 42 30 53 101 126 47 142 6 45
16 13 252 58 34 10 188 94 86 145 121 102 323 399 150 259 457 981
17 2 39 8 3 3 39 23 27 42 21 40 96 114 46 83 18 376

Table 21: Mobility 17: Intergenerational mobility in the USA 1973 (males, aged 20

to 64) with seventeen status categories presented in Table 22; rows correspond to fa-

ther’s occupation (at son’s sixteen birthday) and columns to son’s first full-time civilian

occupation. (Treated in Section 4.6.)

All three of these values (see Table 20) show that the conditional probability
in the second case deviates from the average more than in the first case. This
means that the influence of EUAM to MIL is less than the influence of ASAF to
PER, in spite of the fact that the conditional probability in the first case is higher.
This shows that the value qij = (p(i/j)− pi)/pi, referred to as Relative Change of
Probability of i when j is taken into account, or RCP(i/j), is worth considering as
a proper measure of influence.

Analysis of patterns of the column-to-rows influences via clustering can be
done in both of the following directions: 1) analysis of within-row or -column set
similarities, 2) analysis of between-row and -column set interrelations.

Similar problems can be addressed in many other areas of application: market-
ing research (for example, in analysis of association of a set of foods [rows] with
their characteristics [columns] by the respondents’ answers [counted observations]);
attribution of texts’ authorship (a set of texts, among them those to be attributed,
as the row sets; a set of characteristic words/phrases as the column set, the entries
are counts of occurrences of the words in the texts); ecology (sites as the rows,
species as the columns, an entry is the count of the occurrences of a species in a
site).
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No Occupation Aggregate

1 Professionals, self-employed
2 Professionals, salaried Upper
3 Managers nonmanual
4 Sales, other

5 Proprietors Lower
6 Clerks nonmanual
7 Sales, retail

8 Crafts, manufacturing Upper
9 Crafts, other manual

10 Crafts, construction

11 Service
12 Operatives, other Lower
13 Operatives, manufacturing manual
14 Laborers, manufacturing
15 Laborers, other

16 Farmers Farm
17 Farm laborers

Table 22: Occupations in Table 21 and aggregation of them in Table 7 Mobility 5.

0.6.2 Interaction Data: Mobility and Switching

The Mobility data in Table 7, as well as the original 17 by 17 data table on inter-
generational occupational mobility in the USA in 1973 collected by Featherman and
Hauser (1978) and reported by Breiger 1981 (Table 21), are interaction aggregable
data tables.

This kind of data, primarily, can be used in the analysis of the patterns of
interaction between the social groups represented by the occupational groups (see,
for example, Breiger 1981, Goodman 1981, and Hout 1986). Clustering may be a
tool for an aggregate analysis of the interactions and the social structure, although
it should comply with the statistical considerations on the subject made previously
(see, for instance, the citations above).

Similar kinds of data concerning consumer switching between various brands
available in a market segment (such as cars, cereals, food snacks, CD-players,
etc.) is quite popular in marketing research. Let us consider data on switching
between soft drinks from an experiment conducted in 1972. Every entry in Table 23
represents the number of times a respondent used the column drink after drinking
the row drink (once again, many of the occurrences are in the principal diagonal,
concerning loyal consumers).
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Soft drinks Coke 7-Up Tab Like Pepsi Sprite DPepsi Fresca
Coke 188 33 3 10 41 17 4 11
7-Up 32 77 1 11 24 17 2 8
Tab 2 3 4 9 2 1 2 2
Like 4 7 4 7 11 2 6 5
Pepsi 47 35 2 8 137 20 7 10
Sprite 8 13 2 5 11 23 2 6
DPepsi 4 2 8 4 5 4 11 5
Fresca 17 7 4 8 11 8 5 15

Table 23: Switching: Switching (from row to column product) data on soft
drinks from Bass, Pessemier, and Lehmann 1972 (DPepsi is Diet Pepsi). (Treated:
pp. 360, 377.)

The problem is to find general patterns of consumption, and clustering may be
well used for that.

0.6.3 Discussion

A two-mode data set (Worries) is considered along with two classes of the problems:
(1) row (or column) similarity clustering, (2) finding associated row-to-column
subsets. One-mode interaction data tables are to be aggregated with least violation
of the pattern of interaction (Mobility) or/and to have the patterns of interaction
revealed (Switching).
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Geometry of Data Sets

FEATURES

• Entity-to-variable data table can be represented geometri-
cally in three different settings of which one (row-points) per-
tains to conventional clustering, another (column-vectors), to
conceptual clustering, and the third one (matrix space), to
approximation clustering.

• Two principles for standardizing the conditional data tables
are suggested as related to the data scatter.

• Standardizing the aggregable data is suggested based on the
flow index concept introduced.

• Graph-theoretic concepts related to clustering are consid-
ered.

• Low-rank approximation of data, including the popu-
lar Principal component and Correspondence analysis tech-
niques, are discussed and extended into a general Sequential
fitting procedure, SEFIT, which will be employed for approx-
imation clustering.

211
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1.1 Column-Conditional Data

1.1.1 Three Data/Clustering Approaches

All the column-conditional data will be considered as presented in a quantitative
table format. A quantitative data table is a matrix X = (xik), i ∈ I, k ∈ K, where
I is the set of entities, K is the set of variables, and xik is the value of the variable
k ∈ K at the entity i ∈ I. The number of the entities will be denoted as N , and
number of the variables, as n, which means that N = |I| and n = |K|. Based on
the matrix X , the data can be considered in any of the following three geometrical
frameworks: (1) Space of the Entities, (2) Space of the Variables, and (3) Matrix
Space. Let us consider them in more detail.

(1) Space of the Entities.

The data is considered to be a set of the entities, i ∈ I, presented with cor-
responding row-vectors xi = (xik), k ∈ K, as the elements of a space, usually
Euclidean space Rn (where n = |K|) consisting of all the n-dimensional vectors of
the form x = (x1, x2, ..., xn).

Euclidean space Rn involves the so-called scalar product operation: for any
x = (xk) ∈ Rn and y = (yk) ∈ Rn, their scalar product (x, y) is defined as

(x, y) =
∑
k∈K

xkyk.

The square root of the scalar product of a vector x ∈ Rn with itself is called
its (Euclidean) norm and is denoted as ||x|| = (x, x)1/2 =

√∑
k x2

k. Geometri-
cally, ||x|| is the distance between x and 0, the vector having all zero components
(called also the origin of the space). Such an interpretation corresponds to the
multidimensional analogue of the Pythagorean Theorem.

The Euclidean distance d(x, y), x, y ∈ Rn, can be defined as the norm of the
difference x − y = (x1 − y1, ..., xn − yn):

d(x, y) = (
∑
k∈K

(xk − yk)2)1/2.

Sometimes this n-dimensional space is referred to as the variable space since its
dimensions correspond to the variables.

In Fig. 1.15 (a), the rows from the 6 by 2 data table presented in the first two
columns of Table 1.24 are shown as 6 points of the 2-dimensional Euclidean plane
of the variables x1, x2. The other two pictures in Fig. 1.15 show the same entities
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Figure 1.15: The row entities presented at a visual display; tentative clusters are
shown with dotted ovals.

as they are represented in the variables y and z which are simple transformations
of the variable space: a traditional standardization (along with shifting the space
origin to the mean point and scaling the variables according to their standard
deviations, see details in Section 1.1.2) is presented in (b), and (c) shows the
points in space (z1, z2) where z1 = x1 and z2 = 5x2 which means that values of x2

have been increased 5 times, while x1 has been left unchanged. We can see how
the inter-point distances and point clusters vary depending on which space, x, y,
or z, is considered.

This instability reflects the principal contradiction between the major feature of
the data, column-conditionality, and the nature of the geometrical representation
which presumes comparability of all its dimensions. The comparability is involved
in the definition of the scalar product and, correspondingly, the distance between
two points. The problem of finding a relevant way to aggregate incomparable
variables in the scalar product or distance is a major problem of the theory of
clustering.

In terms of the space of entities, clusters are “compact”, “dense” groups of the
row-points which can be determined in terms of the inter-point distances. However,
the distances are subject to transformations of the variables.
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Point x1 x2 y1 y2 z1 z2

1 0 1 -1.07 -1.21 0 5
2 0 2 -1.07 0.24 0 10
3 1 1 -0.27 -1.21 1 5
4 1 2 -0.27 0.24 1 10
5 3 2 1.34 0.24 3 10
6 3 3 1.34 1.70 3 15

Table 1.24: Points: Six two–dimensional points as given originally (variables x1

and x2), traditionally standardized (columns y1, y2), and scale-changed (columns
z1, z2).

The two items — inter-point distances, and transformation of the variables —
seem to be the most important mathematical concepts in the space-of-the-entities
paradigm.

Space of the entities, or the variable space, is the most common geomet-
rical representation of data sets: the axes are the variables, the entities
are the points (vectors), and the clusters are the “compact” groups of
points. The problem is that the inter-point distances heavily depend on
the variable measurement scales and the metric chosen.

There is a straightforward extension of the Euclidean space concept in terms
of the so-called Minkovski norm family. For every p > 0, norm lp on Rn is defined
as follows:

lp(x) = (
∑
k∈K

|xk|p)1/p.

Having the Minkovski lp norm defined, the corresponding distance measure is just
dp(x, y) = lp(x − y).

The most popular among Minkovski norms are l2 (Euclidean norm), l1 (City-
block, or Manhattan norm), and l∞ (Uniform, or Chebyshev norm); corresponding
distances have the same names. For any x ∈ Rn, l2(x) = ||x||, l1(x) =

∑
k∈K |xk|,

and l∞(x) = maxk∈K |xk| (which is determined as the limit of lp(x) when p → ∞).
The differences of these three norms are illustrated in Fig. 1.16 where, for x =
(4, 3) ∈ R2, l2(x) =

√
42 + 32 = 5, l1(x) = 4 + 3 = 7, and l∞(x) = max(3, 4) = 4.

A distinctive feature of Euclidean space is that, for any x, y ∈ Rn, the following
equality holds:

||x − y||2 = ||x||2 + ||y||2 − 2(x, y)

which can be easily derived just from the definition of scalar product. This equality
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Figure 1.16: Minkovski p-distances 5, 7=3+4 and 4 for p = 2, 1 and ∞, respectively.

leads to the following two observations, quite important in data analysis applica-
tions.

The first observation concerns the geometrical meaning of the scalar product
(x, y) which is just (x, y) = ||x||||y|| cosαxy where αxy is the angle between vectors
x and y, and cosα is the cosine of angle α.

The second one involves the concept of orthogonality. The vectors x, y ∈ Rn

are called orthogonal if (x, y) = 0. When x and y are orthogonal, the squared
norm of their sum x + y is decomposed as ||x + y||2 = ||x||2 + ||y||2, which can be
extended to the sum of any number of mutually (pair-wise) orthogonal vectors.

(2) Space of the Variables.

In this approach, the data matrix is considered to be a set of the variables,
k ∈ K, presented by corresponding N -dimensional column-vectors, xk = (xik), i ∈
I, N = |I|. The vectors are considered along with certain basic statistical co-
efficients, such as the mean (average), variance, standard deviation, covariance
and the correlation. Although the coefficients listed have been introduced in a
specific statistical context, they can be defined also in terms of the geometrical
space, via the scalar product operation. The mean, or average value of a vector
x = (xi), i ∈ I, is x̄ =

∑
i∈I xi/N = (x, u)/N where u = (1, ..., 1) is the vector with

all its components equal to 1. The (empirical) variance of x is defined as

σ2(x) = ||x − x̄u||2/N = (x − x̄u, x − x̄u)/N =
∑

i∈I(xi − x̄)2/N

where x̄u is the vector with all its components equal to x̄. The standard deviation
is just σ =

√
σ2 = ||x− x̄||/√N which has also a statistical meaning as an average

deviation of the variable’s values from the mean.
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The covariance coefficient between the variables x and y considered as vectors
in the space RN , x = (xi) and y = (yi), can be defined as

cov(x, y) = (1/N)(x − x̄u, y − ȳu).

Obviously, cov(x, x) = σ2(x). The covariance coefficient changes proportionally
when the variable scales are changed. The scale-invariant version of the coefficient
is the correlation coefficient (sometimes called Pearson’s product-moment coeffi-
cient) which is the covariance coefficient normalized by the standard deviations:

r(x, y) = cov(x, y)/(σ(x)σ(y)) = (1/N)(x − x̄u, y − ȳu)/(σ(x)σ(y)).

A somewhat simpler formula can be obtained when the data are first standard-
ized by subtracting their average and dividing the result by the standard deviation:

r(x, y) = cov(x, y) = (x′, y′)/N

where x′
i = (xi − x̄)/σ(x), y′

i = (yi − ȳ)/σ(y), i ∈ I.

Thus, the correlation coefficient is nothing but the mean of the component-to-
component product when both of the vectors are standardized as above, For the
variables x1, x2 in Table 1.24, their standardized versions x′

1, x
′
2 are the variables

y1, y2 in the Table.

Relationships between the variables (column-vectors) in Table 1.24 can be illus-
trated with Fig. 1.17 as featured in the lengths of the vectors and the angle between
them since, as was stated above, the cosine of the angle is equal to the scalar prod-
uct of the corresponding normalized variables; thus, cos(y1, y2) = Nr(x1, x2).

x 1

x 2

y
1

y
2

z
1

z
2

0 0 0
(a) (b) (c)

Figure 1.17: Variables x1 and x2 as vectors in the space of the variables.
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A motivation for the statistical concepts introduced can be suggested in a geo-
metrical setting, also. Let us consider a problem of description of one of the vari-
ables, y, as a linear function of the other, x. The question is this: is it possible to
represent column y as y = ax+b for some real a and b? Usually not, since the data
are empirically observed. This means that the residual vector e = y−ax−b should
not be expected to be zero, for any real a and b. Then, the question arises, which
values of a and b minimize ||e|| or equivalently ||e||2 (linear regression problem)?
Obviously, the minimizing values of a and b make e orthogonal to ax + b (see Fig.
1.18), which implies the Pythagorean decomposition, ||y||2 = ||ax + b||2 + ||e||2.
The optimal values of a and b are easily derived by setting the derivatives of
||e||2 = ||y − ax − b||2 with regard to a and b to zero:

a = r(x, y)σ(y)/σ(x), b = ȳ − ax̄.

With these values substituted, the minimum ||e||2 becomes

||e||2 = N(1 − r(x, y)2)σ2(y).

y

e

ax + b

Figure 1.18: Geometry of the linear regression.

This means that the so-called residual variance δ = ||e||2/N (which is the
variance of the residual vector e since its mean ē = 0) may be considered to be
the residual part of the variance σ2(y) after y’s linear expression via x has been
removed. The correlation coefficient squared, r2(x, y), called the determination
coefficient, shows the extent of decreasing the variance of y, σ2(y), when y’s best
linear expression through x is subtracted. The value r2(x, y) belongs to the interval
[0,1]. When r2(x, y) = 1 nothing remains, the residual is zero and y = ax+b where
sign of a equals the sign of r(x, y) = ±1; when r2(x, y) = 0, or, equivalently, the
scalar product (x, y) = 0, there is no decrease of σ2(y) at all (this is the case of
the so-called non-correlate variables).
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Clusters of the variables can be recognized by the structure of correlation be-
tween corresponding column-vectors. As to the row-clusters, there is no way of
revealing them straightforwardly. However, at least two not-so-direct approaches
can be indicated. One, the traditional approach, is based on modeling the data
with a density function, f(x1, ..., xn), which is a function of the variables, char-
acterizing, quite loosely speaking, the probability of randomly getting particular
row-vectors x = (x1, ..., xn). The density function allows defining and determining
some particular cluster concepts as related to “high-density” regions of the vari-
able space (see more detail in Section 2.2.7). The other, more recent approach, is
based on considering the fact that the cluster structure sought can be thought of
as another variable (or a set of variables) which approximates the variables given.
If, for example, a row cluster structure which is a two-class partition is sought,
the structure can be represented as a Boolean variable, with a Yes value for one
class, and a No value for the other. To consider the approximation problem math-
ematically, one needs a common representation for both the original variables and
the sought classification variable(s). This is why the approach has been developed,
mostly, for the case when the variables are qualitative, thus allowing a simpler way
for comparing them with the cluster structure sought (see, for instance, Breiman
et al. 1984). This idea will be elaborated in more detail further (see p. 268 and
Sections 2.2.5 and 5.3.2).

The space of the variables paradigm has been employed mostly for devel-
oping the probabilistic clustering approach as based on the multivariate
distribution/density function. Though nobody has claimed developing
methods for approximating the variables by cluster structures, the con-
ceptual clustering methods can be thought of as filling in this niche.

(3) Matrix Space.

This is the N × n matrix X = (xik) itself considered as an element of a N ×n-
dimensional space.

Formal representation of a cluster structure in terms of the matrix space is quite
different from both representations above, in terms of the space of the entities and
the space of the variables. To be definite, let us consider a two-cluster structure for
the subtable (x1, x2) in Table 1.24. Each cluster is represented with its list of the
entities, S, and a standard element (called also center or centroid or prototype)
cS ∈ Rn. Let the first cluster be S1 = {1, 2, 3, 4}, the second, S2 = {5, 6}, and
their prototypes, just the vectors of the means, c1 = (0.5, 1.5) and c2 = (3, 2.5).
This structure can be represented by the following N × n matrix C as an element
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of the matrix space:

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 1.5
0.5 1.5
0.5 1.5
0.5 1.5
3.0 2.5
3.0 2.5

⎞
⎟⎟⎟⎟⎟⎟⎠

Matrix C contains c1 in all the rows from S1 and c2 in all the rows from S2.

Actually, the following matrix equation can be suggested to maintain the cluster
structure: ⎛

⎜⎜⎜⎜⎜⎜⎝

0 1
0 2
1 1
1 2
3 2
3 3

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0.5 1.5
0.5 1.5
0.5 1.5
0.5 1.5
3.0 2.5
3.0 2.5

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.5 −0.5
−0.5 0.5

0.5 −0.5
0.5 0.5

0 −0.5
0 0.5

⎞
⎟⎟⎟⎟⎟⎟⎠

where the last matrix entries are the errors (additive residuals) of representation
of the original matrix X through “idealized” cluster structure matrix C. This
equation means that X = C + E where E is the residual matrix. Looking at
E, we can see that all the residuals are within ±0.5 range, although only two
of them are zero. If we wish to decrease the number of non-zero residuals along
with requirement that all of them are non-negative, we may take other centroids,
c1 = (0, 1) and c2 = (3, 2), which leads to the equation⎛

⎜⎜⎜⎜⎜⎜⎝

0 1
0 2
1 1
1 2
3 2
3 3

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1
0 1
0 1
0 1
3 2
3 2

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0
0 1
1 0
1 1
0 0
0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

where more than half of the residuals are zero, although the non-zero residuals are
larger than in the preceding matrix equation.

Such a representation allows formalizing clustering problems as problems of
approximation of the data matrix by an “idealized” cluster structure matrix subject
to appropriate choices of the residuals. This is the paradigm in which the present
author did his research for years (see, for example, Mirkin 1985, 1987a, 1990, 1994,
Mirkin and Muchnik 1996 and references therein), and will be described in detail
in Chapters 4 through 7.

Matrix space representation allows treating the clustering problem as
just a problem of approximation of a given data matrix with a matrix
corresponding to a cluster structure.
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The matrix space representation has the advantage of allowing its interpretation
to be in either or even both of the preceding representations, the spaces of the
entities and variables, which will be employed thoroughly in the corresponding
considerations (see Sections 3.4, 5.1.1 and 5.3). This is based on the following
observation.

Let us consider a most important geometrical characteristic of the data

Lp(X) =
∑
i∈I

∑
k∈K

|xik|p

which will be referred to as the p-scatter of the data and is nothing but the p-th
power of the Minkovski norm of the data matrix, Lp(X) = lp(X)p.

L2(X) =
∑

i∈I

∑
k∈K x2

ik, 2-scatter, is usually called the squared data scat-
ter while L1(X), is the module data scatter. The value L∞ may be defined, by
continuity, as L∞ = maxi∈I,k∈K |xik|.

The data scatter characterizes the spread of the data entries around zero, which
has a statistical meaning when the zero-point represents important characteristics
of the data concentration, such as, for instance, the means of the variables; in that
latter case, the data scatter is proportional to the total data variance (when p = 2)
or absolute deviation (when p = 1). In matrix equations representing the data, X ,
through a “theoretical” matrix A and residuals E, X = A+E as above, the scatter,
sometimes, can be decomposed in two scatter-wise parts, one depending on A, the
other, on E; these parts are interpreted as explained part of the scatter and non-
explained, respectively, which allows estimating the contribution of the model A to
the data scatter along with further partitioning into smaller parts corresponding to
the elements of the model. This plays an important role in interpreting the results.

Obviously, for any finite p, the following decompositions hold:

Lp(X) =
∑
i∈I

dp
p(0, i)p =

∑
k∈K

lp(xk)p (1.1)

where dp(i, 0) is Minkovski norm (distance from zero) of row-vector i ∈ I and xk

is the column-vector, k ∈ K. These equalities may be employed in reinterpreting
the matrix-based contributions in terms of either the variables or entities or both.
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There are three types of geometrical representation of the entity-to-
variable quantitative data format:
1. Space of the entities: the rows (entities) are considered as points in
n-dimensional variable space.
2. Space of the variables: the columns (variables) are considered as
vectors in N -dimensional entity space.
3. Matrix space: the data matrix is considered as a point in N × n -
dimensional data space.
Clustering problems sound quite different depending on the paradigm
accepted.

1.1.2 Standardization of Quantitative Entity-to-Variable
Data

Let us consider a quantitative entity-to-variable matrix X = (xik), i ∈ I, k ∈ K,
like that presented in data set Points (Table 1.24), Iris (Table 10), or Disorders
(Table 11).

Before processing such a data set, it is traditionally standardized into a data
matrix Y = (yik), i ∈ I, k ∈ K, where

yik =
xik − ak

bk
, i ∈ I, k ∈ K, (1.2)

A common example of the Fahrenheit measured temperature x being transformed
into Celsius scale y with formula y = (x−32)/1.8 may help in perceiving the direct
meaning of the standardization parameters: ak denotes shift of the origin while bk,
change of the scale factor. In data analysis, the shift of the origin, ak, usually
is recommended to be a central value of vector xk while the change of the scale
factor, bk, reflects scatter of the components of xk. Among the central values, the
following are known: mean x̄k =

∑
i∈I xik/N , midrange mr(xk) = (maxi∈Ixik +

mini∈I xik)/2, and median m(xk) which is the middle term in the ordered series
x(1) ≤ x(2) ≤ ... ≤ x(N) of the components of xk. More precisely, m(xk) = x(N+1)/2

if N is odd or m(xk) is any real between x(N/2) and x(N/2+1) if N is even; in the
latter case, we take m(xk) = (x(N/2) + x(N/2+1))/2, to be definite. Among the
scatter measures, there are standard deviation, σ(xk) =

√∑
i∈I(xik − x̄k)2/N ,

absolute deviation, ad(xk) =
∑

i∈I |xik − x̄k|/N , range, ra(xk) = maxi∈I xik −
mini∈I xik, etc.

Although, in experiments, the structures revealed are much more relevant to
the substantive meaning of the data when the data have been standardized rather
than not, there is still no theory for data standardizing when, as it frequently
happens, there is no theory available on how the data have been generated.
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In quite vague terms, some may (and do) say that the standardization should
be made to make the variables comparable by presenting each of the variables
in the most natural scale, with the variable’s central point as the origin and its
scatter measure as the scale factor. This sounds like an incantation rather than
explanation: Why are the central points and the scatters so important? How they
can be combined? Is there any connection with the subsequent treatment of the
data?

The following account may be suggested to address at least some of these issues.

The variables are considered as measured in the interval scale (Luce, Bush and
Galanter 1963, Roberts 1979). Somewhat differently, let us say that a variable
y : I → R is referred to as measured in interval scale if any statement involving y
does not change its meaning if y is substituted by the transformed variable x = φ◦y
(which means that x(i) = φ(y(i)), for any i ∈ I) for any function φ(y) = by + a,
where a, b are reals and b > 0. Such a transformation φ is associated with change
of both the scale factor (multiplication by b) and the origin (adding of a) of the
original variable y. The fact that it is the interval scale which is assigned to a
variable may be interpreted as that, actually, no linear mapping x = by +a (b > 0)
may change meaning of the variable.

We assume that there are some “natural” scale parameters assigned to the
variables to make them all compatible with each other. So, the variables observed,
xk, are considered to be linear functions of the “naturally” scaled variables yk,
xk = bkyk + ak and yk = (xk − ak)/bk (k ∈ K). To choose values ak, bk properly,
we suggest that it is the scatter of the data which should be involved, along with
its decompositions (1.1). Obviously, Lp(yik) = Lp([xik − ak]/bk). This makes
meaningful the following two principles.

P1. Equal Contribution to the Data Scatter.

The variables yk (k ∈ K) have equal contributions to the data scatter.

This principle can be considered as a mathematical form of the intuitive idea of
the “equal importance” of the variables underlying most of the clustering method-
ology (see Sokal and Sneath 1973). This form of the “equal importance” postulate,
however simple it is, does not appear to be too obvious or unanimously accept-
able. Usually, the equal importance principle is claimed to be provided by equal
contributions of the variables to the inter-entity similarities/distances calculated
from them (see, for instance, Romesburg 1984). Mathematical formulation of this
latter requirement must be different; moreover, it is not easy to formalize that in
a convenient way: say, if two points are parallel to an axis (related to a variable
in the variable space), than, obviously, the distance depends on that variable only,
and still it is subject to the scale change.

Based on the right part of decomposition in (1.1), the principle immediately
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implies that the only bk which may be used for this purpose is bk = C(
∑

i∈I(xik −
ak)p)1/p = Clp(xk − ak) where C is a positive constant. For p = 2 or p = 1, this is
proportional to the standard or absolute deviation of xk, respectively.

The second principle concerns the other part of (1.1), decomposition of the
scatter by the distances from the origin to the entities. Geometrical considerations
(see, for example Fig.1.15) show that the requirement of putting the origin in an
equidistant point (to make all dp(0, i), i ∈ I, equal to each other) may be too
challenging a goal. A somewhat weaker, but achievable goal is as follows.

P2. Minimum Data Scatter.

The origin of the variable space should be a minimizer of the data scatter.

The data p-scatter concept is a generalization of the moment of inertia concept
in mechanics (which corresponds to the squared data scatter of a system of material
points). Rotation of a system requires minimum force when the center of rotation
minimizes the moment of inertia since the axes of rotation, in that case, are most
natural. Analogously, the principle above can be interpreted as a way of getting
most “natural” directions to the axes of the set (“cloud”) of the entity points.

The problem of minimizing Lp by ak (p is supposed to be positive here) may be
difficult, in general case. However, it is resolved quite easily when p = 1 or p = 2.
Indeed, the derivative of Lp([xik −ak]/bk) by ak is equal to −p/|bk|p

∑
i∈I fp(xik −

ak) where f2(x) = x and f1(x) = sgn x (sgn x = 1 if x > 0, sgn x = −1 if x < 0,
and sgn 0 = 0). This leads to ak equal to mean or median of xks when p = 2 or
p = 1, respectively.

The principles P1 and P2 above suggest that both the shift of the origin and
the scale factor must be chosen based on p-scatter for the same p. When p = 2,
this leads to the usual standardization rule: the origin is the mean while the
standard deviation is the scale factor, which will be referred to as square-scatter
standardization (it is called sometimes z-score transformation). When p = 1, the
origin must be median while the scale factor is the absolute deviation, which will
be referred to as module-scatter standardization.

A speculation can be provided for the L∞ case: L∞(Y ) may be approximately
presented as

Lp∞(Y ) =
∑

k∈K maxi∈I |(xik − ak)/bk|p,
for sufficiently large p. Since the items in the sum each depend only on corre-
sponding ak, they can be minimized (by ak) independently. This implies that the
optimal ak are midranges, ak = (maxi∈Ixik +mini∈I xik)/2. The principle of equal
contribution, applied to the resulting formula, implies that bk is proportional to
the range, bk = C(maxi∈I |xik − mini∈I |xik)p) where C is a positive constant.
The standardization, putting the origin in midrange with the scale factor being
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proportional to the range, will be called infinity-scatter standardization.

Point x1 x2 y1 y2 z1 z2 u1 u2

1 0 1 -1.07 -1.21 -1 -2 -1 -1
2 0 2 -1.07 0.24 -1 0 -1 0
3 1 1 -0.27 -1.21 0 -2 -0.33 -1
4 1 2 -0.27 0.24 0 0 -0.33 0
5 3 2 1.34 0.24 2 0 1 0
6 3 3 1.34 1.70 2 2 1 1

Table 1.25: Points: Six two–dimensional points as given originally (variables x1

and x2), square-scatter standardized (columns y1, y2), module-scatter standardized
(columns z1, z2), and infinity-scatter standardized (columns u1, u2).

To illustrate the three standardizing options suggested, let us refer again to
the data set Points (see Table 1.24). The Table 1.25 presents the original data
set (x variables) along with its square-, module-, and infinity-scatter standard-
ized versions represented by the variables y, z, and u, respectively. The module-
standardization of x1 and x2 is done with 1 and 2 as their respective medians and
1 and 0.5 as their absolute deviations. The midranges of the variables are 1.5 and
2, while their ranges are 3 and 2. In the latter case, infinity-standardization, the
half-ranges, 1.5 and 1, have been used as the normalizing factors bk, to have both
of the variables’ contributions equal to 1.

Corresponding entity-points are presented in Fig. 1.19. It should be pointed
out that some experimental observations show that normalizing by range may
be superior to normalizing by the standard deviation, in clustering (Milligan and
Cooper 1988), at least with some clustering methods. In the present author’s
opinion, in the clustering procedures that heavily rely upon the scatter of the
data (as those discussed in Chapters 4 and 6), the experimental results cannot be
considered conclusive since the methods involved in the experiment have not been
adjusted to the scatter of the data (see also Sections 5.1.1 and 6.6).
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Figure 1.19: Difference in cluster structures depending on the choice of standard-
ization option.

Standardizing the data is an option which can make revealing the struc-
tures in them easier. It can be considered as a way to make all the vari-
able scales compatible with each other. The approach suggested requires
the variables to be standardized to make the data scatter minimum while
maintaining equal contributions of the variables to the scatter.

1.1.3 Quantitative Representation for Mixed Data

Any nominal variable can be considered as a set of Boolean variables, each corre-
sponding to a category. In particular, variable Presentat in Masterpieces set (Table
12) can be presented with three Boolean variables: 1) Is this Direct? 2) Is this
Behavior? 3) Is this Thought?

Theoretically, a variable y : I → R is referred to as measured in nominal scale
if any statement involving y does not change its meaning when y is substituted by
the transformed variable x = φ ◦ y (where x(i) = φ(y(i)), for any i ∈ I) for any
one-to-one function φ : R → R. In general, any nominal variable y is associated
with a partition of the entity set into non-overlapping classes corresponding to
particular categories. In the example considered, the first class (“Direct”) consists
of three entities: two novels by L. Tolstoy and “EugOnegin” by A. Pushkin; the
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Num LenSent LenD NumCh InMon Direct Behav Thought
1 15.0 16.6 2 0 1 0 0
2 12.0 9.8 1 0 0 1 0
3 11.0 10.4 1 0 0 1 0
4 20.2 202.8 2 1 0 0 1
5 20.9 228.0 4 1 0 0 1
6 29.3 118.6 2 1 0 0 1
7 23.9 30.2 4 1 1 0 0
8 27.2 58.0 5 1 1 0 0

Table 1.26: Quantitative presentation of the Masterpieces data as an 8 by 7 entity-
to-variable/category matrix.

second class (“Behav”) comprises the other two novels by A. Pushkin; and the
third contains the three novels by F. Dostoevski.

An interesting question, not only of theoretical importance, arises from the cor-
respondence between Boolean, two-category nominal and interval scale variables.
The point is that any one-to-one mapping of a two-category nominal variable y can
be presented in linear form φ(y) = by + a, where a, b are reals (since there are only
two values to map). Such a transformation φ is associated with change of both
the scale factor (multiplication by b) and origin (adding a) of the original variable
y. This allows treating such a two-category qualitative variable as measured in
the interval scale. On the other hand, any nominal two-category variable corre-
sponds to two mutually complementary Boolean variables, which requires a specific
standardization rule and makes the difference between these kinds (Boolean and
two-category nominal) of variables.

Nevertheless, based on considerations above, we may think of all the categories
as 1/0 quantitative columns. So, any mixed data table involving both quantitative
and nominal variables can be presented as a quantitative matrix X = (xiv), i ∈
I, v ∈ V , where I is the entity set considered, V is set of the all quantitative/binary
variables and of the all categories of the nominal variables; any binary variable is
presented in zero-one quantitative format: 1 for Yes, 0 for No (see Table 1.26).

In this work, we limit ourselves to only two kinds of qualitative variables: nom-
inal and Boolean. In particular, we do not deal with two other important kinds of
qualitative variables: a) multiple choice, and b) rank order.

The multiple choice variable is a nominal variable which may have overlapping
categories. For example, in a survey, a question may be asked on the newspaper
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preferred; some respondents may indicate several of the items, and the sets chosen
could have a complicated structure of overlaps. To process this kind of data with
the methods presented below, one must consider any of the categories as a partic-
ular Boolean variable (though, some results described in Chapter 6 suggest that
the multiple choice categories can be treated together, see, for instance, p. 443).

The rank order variable is a qualitative variable which has the set of its cat-
egories ordered like, for example, college examination grades (from A to F), or
answers to an attitude question (from “do not like” or even “hate it” through
“indifferent” to “like very much”). Usually, this kind of variable is considered as
quantitative (when the variable is similar to testing scores), or as nominal (when
the variable is similar to the attitude relations), or, maybe at best, as a set of
Boolean variables corresponding to the categories such as this: “Is the entity bet-
ter than or indifferent to the category a ?” On the other hand, in the context of
similarity or interaction matrices, rank-order variables could be treated genuinely,
as well as some other, non-standard, qualitative structures of data (which will not
be covered in this work, see Mirkin 1985).

After the mixed data have been presented in a quantitative format, they should
be standardized according to the two principles in the preceding section.

Let us consider the square-scatter standardization for the nominal variables.
The minimum data scatter principle, P2, in this case, works the same way as for
quantitative variables: the shift of the origin value av is determined to be the mean
of the corresponding column xv. Obviously, this is nothing but pv, the relative
frequency of the category, which is just the proportion of ones in the column.

Choosing the scale factor, bv, is not as unambiguous. Let us calculate the
contribution of category v, after av = pv has been subtracted, to the square scatter
of the data. Obviously, there are Npv entries 1− pv and N(1− pv) entries −pv, in
the column v. This gives the contribution to the square scatter equal to Npv(1 −
pv)2+N(1−pv)p2

v = Npv(1−pv). Thus, if v belongs to a #k-grade nominal variable
k, the total contribution of the variable k is

∑
v Npv(1 − pv) = N(1 −∑v p2

v).

The value δ2(k) = 1−∑v p2
v is not unknown in data analysis. It is referred to as

the Gini index, or qualitative variance of the variable k and has a nice interpretation
as the average error of the so-called proportional prediction rule (see p. 388).

Thus, taking bv = δ(k) for any category v of the variable k makes contribu-
tion of the variable to the square scatter equal to that of the square-standardized
quantitative variable.

However, there are other options leading to the same result. Let us take, for
instance, bv =

√
(#k − 1)pv which differs from δ(k) in that that it depends on

v. The contribution of v to the square scatter of the data, in this case, equals:
Npv(1 − pv)/(pv(#k − 1)) = N(1 − pv)/(#k − 1). The total contribution of the
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variable k is thus equal to N(#k−1)/(#k−1) = N which is exactly the contribution
of the other standardized variables.

In Chapter 6, it will be shown that both of the normalizing coefficients bv

suggested for the nominal categories are meaningful in terms of evaluation of as-
sociation between the clusters sought and the original variables.

Square-scatter standardization for mixed data:
(a) the shift parameter av is taken as the mean if v is a quantitative
variable or as the frequency pv of v when v is a category or a binary
variable;
(b) the factor scale parameter bv is taken as the standard deviation σ(xv)
if v is a quantitative or binary variable (in the latter case, σ(xv) =√

pv(1 − pv)); and there are two options when v is a category: (1)
bv = δ(k) =

√
1 −∑v p2

v, the error of proportional prediction, or (2)
bv =

√
(#k − 1)pv.

If the categories of a nominal variable are considered as having an inde-
pendent meaning, they should each be considered as Boolean variables.

-0.775 -0.816 -0.444 -1.291 0.722 -0.354 -0.433
-1.247 -0.898 -1.154 -1.291 -0.433 1.061 -0.433
-1.404 -0.891 -1.154 -1.291 -0.433 1.061 -0.433
0.041 1.428 -0.444 0.775 -0.433 -0.354 0.722
0.151 1.732 0.976 0.775 -0.433 -0.354 0.722
1.470 0.413 -0.444 0.775 -0.433 -0.354 0.722
0.622 -0.652 0.976 0.775 0.722 -0.354 -0.433
1.141 -0.317 1.686 0.775 0.722 -0.354 -0.433

Table 1.27: Square-scatter standardized 8 by 7 data matrix for Masterpieces mixed
data set; the second normalizing option has been applied to the categories of the
nominal variable Presentat (the last three columns).

Considering module-scatter standardization for a category v, it can be seen
that the median equals 1, 1/2, or 0 when pv is greater, equal or less than 1/2,
respectively. The absolute deviation of the values of Boolean column from this
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value, bv, is equal to pv or 1−pv depending on whether pv is less than 1/2 or not. To
make the nominal variable k have its contribution to the scatter L1 equal to N , this
value of bv must be multiplied by #k. This actually allows us to say, that, for the
mixed data case, module-scatter standardization does not differ too much from the
quantitative case requiring taking av and bv as, respectively, medians and absolute
deviations of columns v corresponding to either quantitative/Boolean variables or
categories (based upon what is written above on the category transformation).

The data-scatter based standardizing rules may be extended to the case
when both quantitative and nominal kinds of the variables are presented,
just keeping the contributions equal to each other.

Sometimes the data require only a partial standardization (centering or nor-
malizing of some of the variables) or even do not require it at all, which should be
considered pragmatically.

1.1.4 Discussion

The problem of preliminary data standardization is a most vague issue in all the
disciplines concerned with handling data: data analysis, pattern recognition, im-
age processing, data and knowledge bases, etc. The only relevant discipline where
this problem is simple, at least in principle, is mathematical statistics: In a com-
mon case, the data are supposed to be a random sample from a theoretical dis-
tribution/density function f(x1, ..., xn, θ1, ..., θp) where x1, ...xn are variables while
θ1, ..., θp are parameters defining the function entirely and estimated from the data.
After the parameters are determined, the data can be transformed to have the
parameter values standardized (usually, to the most simple format, such as the
mean and variance of the normal distribution standardized to be equal to 0 and
1, respectively). Such standardizing helps in comparing different functions and
testing statistical hypotheses. However, the assumption underlying this line, that
the distribution function exists and is known up to the parameter values, may be
inapplicable in many clustering and classification problems.

We suggest using the data scatter concept as the main notion in theoretical
thinking on the subject when data are collected/generated based on a vague and
imprecise substantive idea rather than on a reproducible rigid mechanism. The
data scatter concept is employed here for the following:

1. There are three different approaches to data clustering underscored as related,
primarily, to the row-entities, column-variables, and to the matrix-data table
itself. Although the approaches feature quite different cluster-analysis mod-
eling concepts, the third one related to the matrix space and matrix norm
(data scatter) seems more general since it usually allows reformulating the
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models in terms of either of the other two approaches.

2. Two data standardization principles are suggested explicitly in terms of the
data scatter: (P1) equal contribution of the variables to the data scatter, and
(P2) minimum data scatter. The principles lead to reasonable standardiza-
tion rules, depending on degree of the scatter.

3. Principle (P1) of equal contribution of the variables may be extended to the
case of nominal variables represented by associated sets of binary variables.
Standardizing the mixed data is suggested upon the extension, thus providing
equal contributions of the quantitatively coded variables to the scatter, with-
out any regard what kind of variable it is originally: quantitative, nominal,
or binary.

1.2 Transformation of Comparable Data

1.2.1 Preliminary Transformation of the Similarity Data

It is supposed that a similarity measure between the entities, aij , i ∈ I, j ∈ J ,
monotonically reflects the extent of similarity: the larger the aij , the more similar
i and j. A similarity measure can be obtained as primary data (like Functions in
Table 13) or as secondary data, usually based on an entity-to-variable data set.

We have not much to say about similarities as the primary data, except for the
following three points.

First, the matrix A = (aij) is considered, primarily, as an N × N–dimensional
vector if it is asymmetric. When it is symmetric, that is, aij = aji for any i, j ∈ I, it
should be considered N×(N +1)/2–dimensional, thus involving only the necessary
upper (or lower) half-matrix, principal diagonal included. Still, in many occasions,
the principal diagonal entries, aii (similarities of the entities to themselves), are
not given or just do not fit (like in data Confusion, Table 16, where they are just
outliers in comparison to the non-diagonal data entries). Without the principal
diagonal, the data table is an N × (N − 1)–dimensional vector, if asymmetric, or
on N × (N − 1)/2–dimensional one, if symmetric.

Second, the user might want to have the matrix symmetrized somehow. There
are two options which could be recommended. The first of the options suggests
direct symmetrization with the formula a′

ij = (aij + aji)/2 (where a′
ij is the sym-

metrized similarity) which can be substantiated in the approximation clustering
context considered (see Section 3.5.1). The other option suggests considering the
columns of the matrix A as the variables and calculating a secondary similarity
index from them as a column-conditional data table.
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Figure 1.20: Threshold change depending clusters.

Third, since all the entries are comparable across the table, there is no need to
change the scale factor. On the other hand, shifting the origin by subtracting a
threshold value a, bij = aij − a where bij is the index shifted, may allow a better
manifestation of the structure of the data. Fig. 1.20 illustrates the nature of the
effect of shifting on the shape of a positive similarity index, aij , presented along
the ordinate while ijs are ordered somehow in the abscissa: shifting by a4 does not
make too much difference since all the similarities remain positive, while shifting
by a2, a3, or a1 makes many similarities bij negative leaving just a couple of the
higher similarity “islands” positive. We can see that a better result can be achieved
with an intermediate a = a2 manifesting all the three islands on the picture, while
increasing it to a1 or higher values loses some (or all) of the islands in the negative
depth.

In the framework discussed, the shift can be determined with the principle of
minimizing the scatter of the data, Lp(A − a) =

∑
i,j∈I(aij − a)p. The principle

leads to a equal to mean or median of the similarities when p = 2 or p = 1,
respectively.

Let us discuss now the similarity indices derived from the other data formats.
There exist many various suggestions (see a review in Gower 1985 or Baulieu 1989
where 42 indices have been indicated for the binary data only!). The only similarity
index derived from the entity-to-variable format data which will be recommended
here is the scalar product of the row-vectors, defined as

aij =
∑
v∈V

yivyjv (1.3)
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where Y = (yiv) is the quantitative (perhaps standardized) data matrix.

There are two reasons for the recommendation made. First, the measure is
compatible with the (multi) linear data analysis and clustering models (that also
involve the square scatter of the data) considered in the framework of approx-
imation clustering (see Chapters 4 to 7). Second, the measure is quite general
and allows presentation of some popular measures as special cases. For instance,
a popular measure, the number of the Boolean attributes (categories) which are
common to both of the entities, i and j, can be presented in form (1.3) with the
binary 1/0-columns non-standardized.

Obviously, the scalar product similarity coefficient matrix A = (aij) can be
expressed algebraically through the entity-to-variable/category matrix Y = (yiv):
A = Y Y T .

Let us note that the measure aij in (1.3) is actually the sum of the column-
driven similarity indices av

ij = yivyjv, v ∈ V , and let us get an intuition on the
meaning of the measure with a couple of examples. Let y be a quantitative variable,
preliminarily square-scatter standardized. Then aij = yiyj will be positive if both
of the values yi, yj are larger or lower than the average ȳ = 0, and it will be negative
if one of yi, yj is larger and the other is smaller than the average. This makes the
average a kind of border between the positivity and negativity areas. Moreover,
the value aij = yiyj is not indifferent to the location of the y-values: the closer they
to the average, the lesser aij is. This seems quite compatible with the variables
y having a unimodal symmetrical distribution around the mean: the closer to the
mean, the more probable, thus having a lesser information content.

Another example concerns a category v (with its frequency pv), square-scatter
standardized due to the second option. This means that, in column v, C(1 −
pv)/

√
pv and −Cpv/

√
pv are present, corresponding to Yes or No, respectively (C

here is a constant, C = 1/
√

#k − 1). Thus, the category-driven similarity av
ij will

be negative, C2(pv − 1), when either of i, j has the category v while the other
does not. The similarity will be positive if the entities are compatible with regard
to the category; it equals C2pv when none of the entities is in the category, or,
C2(1 − pv)2/pv when the category contains both of the entities. We can see also,
that the latter value is larger than the former one when pv < 1/2, which is usually
the case with multi-categorical variables.

A shift of the origin, or subtracting a threshold, is the only prelimi-
nary transformation admitted here for the quantitative similarity en-
tries. Such a transformation may provide a better picture of the data
cluster structure as shown in Fig.1.20. For a secondary similarity data
table, the origin is determined by the way the original entity-to-variable
data have been standardized.

However universal and linearly-compatible the formula (1.3) looks, there is no
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doubt that it may be quite inapplicable in some situations; moreover, there can be
occasions when a particular other similarity measure may be implied by the nature
of the data.

1.2.2 Dissimilarity and Distance Data

Dissimilarity matrix D = (dij) reflects dissimilarities between the entities i, j ∈ I:
the larger dij , the less similar i and j are. In contrast to the similarity data
which may be both non-positive and asymmetrical, the dissimilarities are supposed
to be both non-negative, dij ≥ 0, and symmetrical, dij = dji, for all i, j ∈ I.
Moreover, the diagonal dissimilarities, dii, are zeros, though dij = 0 does not
necessarily means that i = j. If it does, the dissimilarity D is referred to as
definite. A dissimilarity is called even if it satisfies the following, weaker, condition:
dij = 0 → dik = djk, for all k ∈ I. A dissimilarity is called a semi-metric if
it satisfies the so-called triangle inequality, dij ≤ dik + djk, for any i, j, k ∈ I.
Obviously, any semi-metric is even. If a semi-metric is definite, it is called a
metric or distance (see more detail in Van Cutsem 1994). Some particular kinds of
dissimilarities associated with classification structures will be discussed in Chapter
7 (ultrametrics, pyramidal indices, etc.).

Dissimilarities can be observed empirically (especially in psychological exper-
iments). A dissimilarity D = (dij) can be obtained by a transformation of a
similarity A = (aij), with a formula such as dij = C − aij or dij = 1/(C + aij) or
dij = exp(−aij).

The entity-to-entity distances are calculated from entity-to-variable tables; the
most popular distances in the variable space are lp metrics, of which the most
popular is Euclidean distance, dij =

√∑
k∈K(yik − yjk)2.

There exists an evident connection between the Euclidean distance and the
scalar product similarity measure derived from the same entity-to-variable table:

d2
ij = (yi, yi) + (yj , yj) − 2(yi, yj) (1.4)

which allows converting the scalar product similarity matrix A = Y Y T into the
distance matrix D = (dij) rather easily: d2

ij = aii + ajj − 2aij . The reverse
transformation, converting the distance matrix into the scalar product matrix, can
be defined when the data matrix Y is arranged in such a way that all its columns
are centered, which means that the sum of all the row-vectors is equal to the zero
vector,

∑
i∈I yi = 0. In this case, the following equality holds:

(yi, yj) = −1
2
(d2

ij − d2
i· − d2

·j + d2
··) (1.5)
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where d2
i·, d2

·j , and d2·· denote the row-mean, column-mean, and the grand mean,
respectively, in array (d2

ij).

Based on these equations, the Euclidean distance and scalar product data could
be converted into each other, allowing for the user the most preferable format.

A formula resembling (1.4) can be suggested for l1-metric, d1(x, y) =
∑

i∈I |xi−
yi|, based on the equality

|a − b| = |a| + |b| − |sgn a + sgn b|min(|a|, |b|),
which holds for any real a, b.(Function sgn a equals 1 or -1 depending on the sign
of a, positive or negative, respectively; sgn 0 = 0.)

Let us define l1-scalar product as

[x, y] =
∑
i∈I

|sgn xi + sgn yi|min(|xi|, |yi|)/2.

Let us point out that the corresponding components, xi and yi, having their signs
different, xiyi < 0, give no contribution to the l1-scalar product at all; only the
minimums of same-sign components matter in [x, y]. The definition leads to the
equality

d1(x, y) = [x, x] + [y, y] − 2[x, y]

which is a complete analogue of (1.4) implying that the concept of l1-scalar product
defined should be put under a thorough theoretical and experimental analysis.
Obviously, it does not satisfy the basic linear space axiom of additivity since, in
general, [x, y + z] �= [x, y] + [x, z]; however, ||x||1 = [x, x] =

∑
i |xi| still is a norm

(see any textbook on linear algebra; K. Janich 1994 is a most recent reference).

Secondary scalar product similarity and Euclidean distance data are
mutually convertible, which can be employed when the data are raw
data, also.

1.2.3 Geometry of Aggregable Data

Although all the content of this section applies to any aggregable data, we consider
here a contingency table, like the Worries data set, Table 6, for convenience (since
most of the terms have been introduced so far for the contingency data specifically).

Let us consider a contingency data table P = (pij) (i ∈ I, j ∈ J) where∑
i∈I

∑
j∈J pij = 1, which means that all the entries have been divided by the

total p++ =
∑

pij which is permissible by the meaning of aggregability. Since
the matrix is non-negative, this allows us to treat the shares pij as frequencies or
probabilities of simultaneously occurring row i ∈ I and column j ∈ J (though, no
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probabilistic estimation problems are considered here). Please note that although
the same capital letters, I and J , are involved here to denote sets of the rows
and columns as were used for preceding kinds of data sets, their meaning might
be completely different: the rows and columns of such a table are usually some
categories while the entities observed have been counted in the entries (like the
respondents in Worries or the families in Mobility data sets).

The only transformation we suggest for the aggregable data is

qij =
pij − pi+p+j

pi+p+j
(1.6)

where pi+ =
∑

j∈J pij and p+j =
∑

i∈I pij are so-called marginal probabilities
(frequencies) expressing the total weights of the corresponding rows and columns.

As we have seen in Section 0.3.4, qij means the relative change of probability of
i when column j becomes known (due to the probabilities in P ), RCP(i/j)=(p(i/j)-
p(i))/p(j). Symmetrically, it can be interpreted also as RCP(j/i).

In the general setting, when matrix P = (pij) has nothing to do with the
frequencies or probabilities, pij may be interpreted as amount of flow, or transaction
from i ∈ I to j ∈ J . In this case, p++ =

∑
i,j pij is the total flow, p(j/i) is

defined as p(j/i) = pij/pi+, the share of j in the total transactions of i, and
p(j) = p+j/p++ is the share of j in the overall transactions. This means that the
ratio p(j/i)/p(j) = pijp++/(pi+p+j) compares the share of j in i’s transactions
with the share of j in the overall transactions. Then,

qij = p(j/i)/p(j)− 1

shows the difference of transaction pij with regard to “general” behavior: qij = 0
means that there is no difference in p(j/i) and p(j); qij > 0 means that i favors j
in its transactions while qij < 0 shows that the level of transactions from i to j is
less than it is “in general”; value qij expresses the extent of the difference and can
be called flow index. The same flow index value can be interpreted in the backward
direction, as the difference between the share of i in j’s inflow and its “general”
share, p(i) = pi+/p++, as a flow issuer.

The table Q = (qij) for the Worries set is in Table 1.28.

The minimum value of qij is -1 corresponding to pij = 0. Equation qij = 0 is
equivalent to pij = pi+p+j which means that row i and column j are statistically
independent. In classical statistics, statistical independence is the basic notion;
much of the theoretical development in contingency data analysis has been made
around the concept. In the context presented, the information content is important:
qij = 0 means that knowledge of j adds nothing to our ability in predicting i, or,
in the flow terms, that there is no difference between the pattern of transactions
of i to j and the general pattern of transactions to j. Such a negligible, at the first



236 GEOMETRY OF DATA

EUAM IFEA ASAF IFAA IFI
POL 222 280 -445 -260 36
MIL 168 -338 -129 -234 72
ECO 145 -81 -302 239 487
ENR 28 -40 11 -58 -294
SAB 19 -77 22 -66 -129
MTO 186 -252 -53 -327 -1000
PER -503 -269 804 726 331
OTH -118 582 -65 149 181

Table 1.28: Values of the relative changes of probability (RCP), multiplied by 1000,
for the Worries data.

glance, reinterpretation leads to many important advances in understanding the
nature of the subsequent models.

The maximum value of qij goes to infinity. We can see from (1.6) that the
smaller pi+ and/or p+j , the larger qij grows. For instance, when pi+ and p+j are
some 10−6, qij may jump to million while the other entries will be just around unity.
This shows that the transformation, along with the analyses based on that, should
not be applied when the marginal probabilities are too different. To cope with such
a nonuniform situation is not difficult: we can aggregate the rare rows/columns or
exclude them from the data.

Aggregability of the data matrix P manifests in that an aggregate value may be
calculated for any pair of subsets, A ⊂ I and B ⊂ J , to show the relative change
of probability of B, pB =

∑
j∈B p+j, when A becomes known, qAB = (pAB −

pApB)/(pApB), where pA =
∑

i∈A pi+ and pAB =
∑

i∈A

∑
j∈B pij . For example,

taking A = {POL, ECO} and B = {ASAF, IFAA} for the data set Worries, we
have pAB = 0.029, pA = 0.137, and pB = 0.345 which gives qAB = −0.405, 40.5%
less than the average behavior.

Taking into account aggregability of the data (to unity), the distance between
the row (or column) entities should be defined by weighting the columns (or rows)
with their “masses” p+j (or, respectively, pi+), as follows,

χ2(i, i′) =
∑
j∈J

p+j(qij − qi′j)2. (1.7)

The name of this distance, the chi-squared distance, is due to the fact that
it is equal to the distance considered in the correspondence analysis theory (see,
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for example, Benzécri 1973, Greenacre 1993, and Section 5.4), and is defined,
in that theory, with the so-called profiles of the conditional probability vectors
yi = (pij/pi+) and yi′ = (pi′j/pi′+):

χ2(i, i′) =
∑
j∈J

(pij/pi − pi′j/pi′)2/p+j.

The proof of equivalence of these two distance formulas is quite straightforward
and thus omitted.

The concept of the data scatter for the aggregable data is introduced also as a
weighted one (for p = 2 only):

X2(Q) =
∑
i∈I

∑
j∈J

pi+p+jq
2
ij (1.8)

The notation reflects the fact that this value is closely connected with the so-
called Pearson chi-squared index, which is defined as a measure of deviation of the
data in matrix P from the statistical independence:

X2 =
∑
i∈I

∑
j∈J

(pij − pi+p+j)2

pi+p+j
(1.9)

Elementary arithmetic shows that X2(Q) = X2.

Under the statistical hypothesis that the data pij are based on a random inde-
pendent sampling of the observations from a bivariate statistically independent dis-
tribution (with the marginal probabilities fixed), distribution of the value NX2 has
been proven asymptotically convergent to the distribution χ2 with (|I|−1)(|J |−1)
degrees of freedom. Although this fact is tremendously important in statistical
hypotheses testing, in this book, we maintain only the geometrical data scatter
meaning of X2 as based on (1.8).

It can be easily proven that a decomposition, analogous to (1.1), holds:

X2(qij) =
∑
i∈I

pi+χ2(i, 0) =
∑
j∈J

p+jχ
2(j, 0).

Aggregable data is a newly emerging concept; its important notions
(developed in the contingency data context) such as “statistical inde-
pendence” or “contingency coefficient” become “zero flow index” and
“square data scatter”, in the general framework. Flow index transfor-
mation of the data, (1.6), will be heavily employed in the consequent
aggregable data analysis models.
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1.2.4 Boolean Data and Graphs

Boolean data, as in Tables Digits 9 and Tasks 8, are supposed to give, basically, set-
theoretic information. Due to such a table X = (xik), any row i ∈ I is associated
with the set Wi of columns j for which xij = 1 while any column j ∈ J is associated
with the row set Vj consisting of those i for which xij = 1. There is no other
information in the table beyond that.

However, consideration of the Boolean 1/0 data as quantitative has its advan-
tages, allowing linear algebraic computations instead of comparisons or counts. Let
us denote the 10 by 7 matrix in Table 9 as X = (xik), i = 1, ..., 10; k = 1, ..., 7.
Then, the (k, l)-th entry

∑
i xikxil of XT X is equal to the number of entities

(digits) having both of the attributes k, l = 1, ..., 7. For instance, entry (2,3) in
XT X is 4 since the attributes 2 and 3 are present simultaneously in four of the
numerals (4, 8, 9, and 0), and entry (3,3) is equal to 8 which is the number of the
digits which have attribute 3 presented. Analogously, XXT has its (i,j)-th entry,∑

k xikxjk, equal to the number of the attributes which are present in both of the
digits, i, j = 1, ..., 9, 0. In particular, if an entry of XXT or XT X is zero, that
means that the corresponding rows (or columns) are mutually orthogonal, that is,
the corresponding numerals have no common attributes present, or, respectively,
the attributes are present on the non-overlapping subsets of the numerals. This
shows that the quantitative operations, applied to the set-theoretic meaning of the
data, can catch (and count) the overlapping/non-overlapping properties of subsets.

Still there are other set-theoretic relations and operations, such as union and
intersection, which must be reflected in algebraic transformations. This can be
done through introducing Boolean operations between the vectors and matrices.
For instance, conjunction x ∧ y = (min(xi, yi)) corresponds to intersection of the
subsets corresponding to Boolean x and y. Boolean product X ◦ XT , with its
(i, j)-th element defined as maxk min(aik, bkj), shows whether a pair of rows in X
is orthogonal (non-overlapping) or not.

Boolean square matrices s = (sij) can be represented in graph theory terms: a
graph corresponding to s has I as its vertex set while its edges correspond to pairs
ij such that sij = 1 (when s is a symmetrical matrix; the pairs ij are considered
ordered and represented by arcs if s is asymmetric). Let us introduce some useful
concepts of graph theory.

Let G = (V (G), E(G)) be a directed graph. A sequence v1, ..., vk of its distinct
vertices is called a path connecting vertices v1 and v2 if every two neighbor vertices
vl, vl+1 are joined in G. In an undirected graph, the analogous notion is referred
to as a chain. Two vertices, v and u, are connected if there is a chain connecting
them in G. In a directed G, vertices u and v are called biconnected if there are
paths both from u to v and from v to u. These two paths form what is called cycle
through u and v. Obviously, every two vertices in a cycle are biconnected. Both of
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the defined relations, connectedness and biconnectedness, are equivalence relations
on the set of the vertices, thus, defining partitions of V (G) into nonempty classes
called components and bicomponents, respectively. No connection exists between
components, and there can be only one-way connection between bicomponents
(see Fig. 1.21). A graph is called connected (biconnected) if it consists of only one
component (bicomponent).

1 - 7

3-4-5-6-8-9-0

2

Figure 1.21: Graph of bicomponents of the threshold Confusion data graph in
Fig.13.

There are two extreme kinds of connected graphs: complete graphs and trees.
G is called a complete graph if every pair of distinct vertices is joined by an edge
in G. G is called a tree if it is connected and has no cycles (see Fig. 6.48).
The graph of bicomponents of a directed graph G is a graph whose vertices are the
bicomponents of G, and an arc joins two of the bicomponents if there is at least one
arc in G joining some vertices in these bicomponents. The graph of bicomponents
of a connected graph is a tree. A graph H is a subgraph of G if V (H) ⊆ V (G) and
E(H) ⊆ E(G). A spanning subgraph of G is a subgraph H with V (H) = V (G).
Spanning tree is a spanning subgraph of G, being a tree; spanning trees exist if and
only if G is connected.

The concept of spanning tree is especially interesting when G is a weighted
graph, that is, a weight function w : E(G) → R1 is defined for its edges (arcs).
The weights, actually, correspond to similarities/dissimilarities between the ver-
tices. The length of a spanning tree H is defined as the sum of the weights of its
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edges: l(H) =
∑

uv∈E(H) w(uv). A spanning tree is called minimum (maximum)
spanning tree (MST) if its length is the minimum (maximum) over the set of all
spanning trees in G. The MST concept was originally invented, in the beginning
of this century (Wrozlaw, Poland, see K. Florek et al. 1951), as a tool in biological
taxonomy and it has become an important concept in combinatorial optimization.
It turns out rather simple; finding a MST (either minimum or maximum) requires
rather simple, so-called “greedy” calculations. Any greedy algorithm, in this con-
text, starting from a vertex, consists of sequential steps; at each step, a best (at the
given step) vertex is picked from those who have been unselected so far, which ex-
plains the term “greedy” applied to this kind of computation. A particular greedy
algorithm for the minimum spanning tree problem starts from arbitrary vertex to
be included in the tree constructed. At each other step, there are three disjoint
categories of the vertices:

(a) Tree vertices (in the tree constructed so far);

(b) Fringe vertices (not in the tree, but adjacent to a tree vertex);

(c) Other vertices.

Building Minimum Spanning Tree
Every step consists of selecting an edge of minimal weight between a tree
vertex and a fringe vertex and adding the edge and the fringe vertex to
the tree, repeating the step until no fringe vertices remain (see, for
example, Baase 1991).

The same greedy construction can be applied to the problems of finding the
components or bicomponents of a graph.

There are some other important concepts in graph theory involved in mathe-
matical classification; two of them will be considered here.

A subset H ⊂ V (G) is called a clique if the corresponding subgraph is complete,
that is, every two vertices from H are joined in G. A subset H ⊂ V (G) is called
independent if no two vertices from H are joined in G. This means, that the cliques
are independent subsets (and vice versa) in the complementary graph obtained
from G by changing zeros to ones and ones to zeros in the adjacency matrix. A
partition of V (G) is called a coloring if its classes are independent subsets. In
a coloring, no vertices of the same color (belonging to the same class) can be
joined, which formalizes a known problem of coloring countries in a map in such
a way that all adjacent countries are distinguishable (getting different colors). In
the complementary graph, coloring becomes a partition with all its classes being
cliques.

The maximum clique is that one having maximum number of vertices; the
minimum coloring is that one having minimum number of classes (colors). Neither
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of the problems finding a maximum clique or minimum coloring has any simple
solution.
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Figure 1.22: A graph with a four-element clique and a vertex joined with 19 neigh-
bors.

The 20-vertex graph shown in Fig.1.22 has an obvious maximum clique com-
prising vertices 1 through 4. However, it is not clear how to find it algorithmically.
A reasonable idea that the vertices having maximum neighbors are most probable
to belong to a maximum clique proves false since the vertex 5 in the picture has
obviously maximum number of the adjacent vertices but does not belong to the
maximum clique. Some most recent developments in the problem can be found
in McGuinness 1994, Xue 1994. There is a strong belief that this is a “Non-
Polynomial”, or “NP-complete” problem, which, basically, means that resolving
the problem requires a more or less complete enumeration of all the subsets of the
set of vertices V (G); that is, the number of operations (each involving a considera-
tion of a subset) required is of the order of the number of subsets, 2|V (G)|, which is
greater than any polynomial function of |V (G)| (see, for instance, Papadimitriou
and Steiglitz 1982). The minimum coloring problem also belongs to the set of
NP-complete problems.

1.2.5 Discussion

1. There are two kinds of similarity data: primary and secondary; the latter
form is calculated from the data in entity-to-variable format. The only form
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of similarity data considered here is a quantitative entity-to-entity coefficient
format.

2. The secondary similarity data are suggested to be compatible with the data-
scatter framework developed in the previous Section. This leads to the row-
to-row scalar product as the only similarity measure (compatible with the
square scatter). When applied to the data previously standardized, the scalar
product measure gives a larger weight to rarer values; for quantitative vari-
ables, this usually corresponds to the extremes.

3. The sum-of-the-absolute-values scatter L1 implies an entity-to-entity simi-
larity measure having the feature that the opposite-sign coordinates do not
contribute to it at all! There is nothing known about the similarity measures
corresponding to other forms of the data scatter.

4. The Euclidean distance and scalar product matrices are convertible into each
other.

5. The only standardizing option to be applied to the similarity data under
consideration is shift of the origin, that is, subtracting of a threshold from all
the similarity entries. Depending on the threshold value, it allows for more
or less revealing the similarity structure assumed (on the level of positive or
negative similarities), as shown in Fig. 1.20. Such a revealing effect, known
to the author for more than twenty years, still remains almost missed in
cluster analysis considerations.

6. The aggregable data have been successfully treated for quite a long time in
the framework of so-called Correspondence Analysis based on weighting the
columns and rows by their totals (marginals) (see Section 1.3.3). The basic
features of the techniques, RCP transformation and chi-squared data scatter,
are extracted and extended to the other data analysis strategies based on
contingency data as well as on any other aggregable data tables. The feature
of the RCP transformation, an overestimation of the rare events, may be
overcome with aggregating/excluding the rare items.

7. In mathematical analysis of Boolean data, there are two lines: (1) set- or
graph-theoretic approach based on meticulous analysis of connections be-
tween the entities, and (2) quantitative approach based on algebraic opera-
tions. These approaches have an overlap, which allows us to use algebraic
operations for counting or just observing set-theoretic overlaps.
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1.3 Low-Rank Approximation of Data

1.3.1 SVD and Principal Component Analysis

In quantitative data analysis, a quite elegant and powerful tool, low-rank approxi-
mation of the data, has been developed. In this section, a review of the techniques
will be done and an extension will be developed for employment in clustering and
related applications.

The primary techniques is called principal component analysis, which was in-
vented by K. Pearson (1902) and put in a modern matrix format by G. Hotelling
(1937). Amazingly, the method is usually introduced as a heuristic technique to
construct the linear combinations of the variables which contribute the most (see,
for example, Everitt and Dunn 1992 and Krzanowski and Marriott 1994 as most
recent references). Here, a more model-based approach is described, emphasizing,
in particular, that the fact that the principal components are linear combinations
of the variables follows from the model, instead of presupposing it.

Let us consider a N × n matrix X = (xik) having a very peculiar format:
there exist two vectors, c = (c1, ...cn) ∈ Rn and z = (z1, ..., zN ) ∈ RN , such that
xik = ckzi, for every i ∈ I and k ∈ K (this can be written also as X = zcT since
every Euclidean space element is considered as a column-vector). As an operator
applied to the other vectors, this matrix acts quite uniformly: for any a ∈ Rn,
Xa = µz where µ is a constant defined as µ = (c, a); for any y ∈ RN , yT X = νc
where ν = (z, y). Matrix X , as an operator, maps all the n or N dimension vectors
into the unidimensional space defined by z or c, respectively; this is why it is
assigned with rank 1.

The problem is this: for an arbitrary X = (xik), find its best one-rank least-
squares approximation matrix zcT , that is, find z ∈ RN and c ∈ Rn minimizing
L2 =

∑
i∈I

∑
k∈K(xik − zick)2. Amazingly, the solution to the problem is a linear

transformation of the variables. However, there is an ambiguity in the problem
since the entries are approximated by the products ckzi that do not vary when
c and z are substituted by αc and z/α, respectively, for any real α, and, thus,
the norm(s) of c or/and z must be previously specified somehow. Usually, the
vectors sought, c and z, are required to be normed (that is, ||z|| = ||c|| = 1) while
the optimal norm scale factor (for both of them) is put in the problem explicitly.
Another option which can be applied: require ||z|| = 1 while no conditions on c
are imposed.

Let us set a more general low-rank approximation problem: for a given number
m, find unknown normed vectors z1, ..., zm ∈ RN and c1, ..., cm ∈ Rn, and reals
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µ1, ..., µm satisfying equations

xik =
m∑

t=1

µtctkzit + eik (1.10)

and minimizing the Euclidean norm of the residual matrix E = (eik), L2(E) =∑
i∈I,k∈K e2

ik.

The equations connecting the data xik with the sought vectors ct, zt sometimes
are referred to as a bilinear model, since there are products, ctkzit, of two sought
values involved, within otherwise quite a linear setting.

The problem can be resolved in the framework of the so-called singular-value
decomposition (SVD) theory in linear algebra (see, for example, Golub and Van
Loan 1989). Given an N × n real-valued matrix X = (xik) of the rank p ≤
min(N, n), its singular triple (µ, z, c) is defined as a positive µ > 0, called the
singular value, an N -dimensional normed vector z = (zi), and an n-dimensional
normed vector c = (ck) (vector x is called normed if ||x|| = 1) satisfying the
following equations:

Xc = µz, XT z = µc.

It is well known that number of singular values is equal to the rank p. In data anal-
ysis, all the singular values are traditionally considered different since an observed
data matrix X can hardly have a specific structure. Then, there exist exactly p
singular triples (µt, zt, ct); the vectors zt are mutually orthogonal, in RN , as well
as the vectors ct, in Rn (t = 1, ..., p). Moreover, the singular value decomposition
(SVD)

X = ZMCT (1.11)

holds, where Z is N ×p matrix having zt as its columns, CT is p×n matrix having
ct as its rows, and M is p × p diagonal matrix having µt as its diagonal entries
(t = 1, ..., p) while the other entries are zeros. In terms of the matrix entries,
equation (1.11) can be written as follows:

xik =
p∑

t=1

µtzitctk.

Let the singular values be indexed so that µ1 > µ2 > ... > µp. Then, as it
is well known, a solution to the low-rank approximation problem is provided with
the first m singular triples; the one-rank approximation problem is resolved with
just the first singular triple, corresponding to the maximum singular value.

By definition, each of the vectors zt is a linear combination of the columns of
matrix X while the other singular vector, ct, is employed in a dual capacity of col-
lection of the linear combination coefficients. Denoting by Zm, Cm and Mm parts
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of the matrices Z, C, and M , respectively corresponding to the first m triples, we
have Zm = XM−1

m CT
m, by the definition of the singular triples. The property that

vectors c1, ..., cm are mutually orthogonal means that vectors zt can be obtained
by rotating and distorting the original base of the variable space (see Fig. 1.23
where the axes corresponding to zt are shown by dotted lines; the picture presents
a typical ellipsoid-shaped cloud of the entity points).

x 1

x 2

x 3

z 1

z 2

z3

Figure 1.23: A typical pattern of the principal components.

In data analysis, vectors zt = (1/µt)Xct are referred to as the principal com-
ponents having coordinates zit as their (normalized) “factor scores” for the en-
tities i = 1, ..., N while the coordinates ctk are called (standardized) “factor
loads” as coefficients of the linear representation of the components zt through
the variables k = 1, ..., n (Jolliffe 1986). The singular value squared µ2

t repre-
sents contribution of the t-th principal axis (component) to the total data scatter
L2(X) = Tr(XT X) =

∑
i,k x2

ik (t = 1, ..., p). Here, Tr(A) =
∑

i∈I aii is the
so-called trace of a square matrix A.

Traditionally, the principal component analysis is associated with sequentially
finding the elements of the spectral decomposition of the (covariance/correlation)
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matrix Y T Y , Y T Y = AT M2A, since vectors at are its eigenvectors corresponding
to the eigenvalues µ2

t , t = 1, ..., p.

However, a similar step-by-step sequential fitting procedure based on the matrix
Y itself can be employed for finding the singular-value decomposition (1.11). At
each step, the procedure finds one singular triple (µt, ft, at) (in the decreasing
order of µt), processing a residual form of the data matrix X . At the first step,
t = 1, matrix X itself is processed to find the largest singular value µ1. Any step
t consists of the following computations.

Find any pair of vectors c = (ck) and z = (zi) minimizing criterion

D2(c, z) =
N∑

i=1

n∑
k=1

(xik − zick)2 (1.12)

Compute norms ‖z‖ and ‖c‖ and let µt = ‖z‖‖c‖, zt = z/‖z‖, and ct = c/‖c‖.
Calculate the residual entries x′

ik = xik −µtctkzit and put them as xik for the next
step which is performed with t increased by 1 unless t becomes larger than m.

To find a pair of vectors minimizing (1.12), the following iterative algorithm
can be applied starting with an arbitrary vector c = (ck) (which is supposed to be
linearly independent of the previously found vectors cu, u = 1, ..., t − 1). Vector
z = XT c/‖XT c‖ is used for iteratively recalculating c as c ← XT z/‖XTz‖ until
the vectors c and z coincide (up to a small threshold specified) with those vectors
at the previous iteration. The process converges to the triple corresponding to
maximum (at the given step) singular value µt (note that it is supposed to be
strictly greater than the subsequent singular values). Thus, the vectors c and z
found can be taken as ct and zt, respectively, while ‖XT z‖ approximates µt.

Applied to the Masterpieces standardized 8 × 7 data matrix, the method has
produced four singular triples, each contributing more than 1 per cent to the scatter
of the data. The normed vectors zt are columns in the following matrix:

Z4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.30 0.24 −0.15 0.82
0.51 −0.08 0.05 −0.32
0.52 −0.09 −0.02 −0.32

−0.20 −0.50 −0.05 0.21
−0.35 −0.35 −0.59 −0.12
−0.26 −0.22 0.78 0.07
−0.19 0.47 0.05 −0.09
−0.33 0.54 −0.08 −0.25

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

while vectors µtct (ct are normed, too) are the columns in
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C4M4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2.54 0.55 1.08 −0.03
−1.95 −1.92 −0.69 0.15
−2.20 1.44 −0.96 −0.37
−2.75 −0.13 0.24 −0.37
−0.25 1.44 −0.20 0.56

1.46 −0.25 0.04 −0.90
−0.94 −1.23 0.17 0.18

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The values µt squared give their relative contributions to the data scatter:
64.37, 24.34, 6.71, and 3.63 per cent, respectively (thus covering 99.05 percent
of the data scatter altogether). To approximately reconstruct an entry xik in
the original matrix, matrix Y4 = Z4M4C

T
4 is calculated along with subsequent

transformation of its every entry into bkyik +ak where ak, bk are the parameters of
the origin shifting and scale factoring employed for standardization of the data. We
don’t supply the reconstructed matrix since it is almost coincides with the original
one.

The standardized components of ct (factor loads) are employed for interpret-
ing purposes. For instance, the first principal component distinguishes Pushkin’s
novels since the only variable/category which got a positive factor load (see 1.46
in the first column of M4C4), is Behav (6-th column in the data table) featuring
this writer.

Let us point out some features of the principal component analysis method:

1. Although the method finds the principal components sequentially, the vectors
found give a solution to the original “parallel” low-rank approximation problem.

2. The sequential extraction strategy decomposes computations into two levels:
the first level deals with organization of the whole process as the sequence of
optimizing (1.12) steps while the second level resolves the one-rank approximation
problem.

3. Each principal component zt is accompanied by the corresponding value
µ2

t (1.12) of its contribution to the square data scatter, which can be employed
for sequential decision making on the number m of the principal components to
be found. Such a decision rule may be based on either or all of the following
conditions:

a) t becomes higher than a prefixed value m̃;

b) the relative contribution, µ2
t /T r(XT X), of the component t to the data

scatter becomes equal to or less than a prefixed small e1 > 0;

c) contribution of the “unexplained” part, L2(E), to L2(X) becomes equal to
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or less than a prefixed value e2.

4. Principal components heavily depend on the preliminary data transforma-
tion. With the standard z-scoring (square-scatter standardization), minimizing the
scatter L2(X), the ellipsoid-shape of the entity point cloud will not be as elongated
as it may be under a different standardization (obviously, the more “elongated” is
the cloud, the greater is the contribution of the first component).

5. Actually, the solution to the low-rank approximation problem is the space
generated by the singular vectors z1, ..., zm as its base, thus any other base of the
space, ZmA where A is an m × m nonsingular matrix, provides the same values
for the residuals eij with the vectors ct changed as CmA−1. This property allows
for developing specific strategies of “rotation” (or even distortion) of the base Zm

to find the corresponding loading matrix CmA−1 of a “simple” structure. In this
book, the original structure of the singular vector matrix Cm is considered only.

6. Though the bilinear approximation model involves no requirement that the
approximating components are connected with the data matrix analytically, it
turns out that the optimal components are linear combinations of the data matrix
columns, with the coefficients being the components of the dual vector.

1.3.2 Ordination of the Similarity Data

The problem of embedding similarity/dissimilarity data into a variable space is
known as the problem of multidimensional scaling (see, for example, Kruskal and
Wish 1978, and Arabie, Carroll, and De Sarbo 1987). There exists a technique,
called ordination (Gower 1966, Krzanowski and Marriott 1994), which does such a
job in the manner of principal component analysis. The underlying bilinear model
is this.

Let A = (aij), i, j ∈ I, be symmetric similarity data. A one-rank similarity
data matrix has its entries equal to aij = xixj for some x = (xi) ∈ RN ; multiplying
such a matrix by any y ∈ RN gives Ay = λx where λ = (y, x). This means that
such a one-rank matrix maps all the N -dimensional vectors into the unidimensional
space of vectors λx (λ ∈ R), which is its only “principal” axis.

The problem of low-rank approximation for an arbitrary A can be formulated as
follows: for an m pre-specified, find normed vectors z1, z2, ..., zm ∈ RN and corre-
sponding real λ1, λ2, ..., λm minimizing the residuals squared, L2(E) =

∑
i,j∈I e2

ij ,
in the following equations:

aij =
m∑

t=1

λtzitzjt + eij (1.13)

Solution to this problem is based on the theory of eigenvalues and eigenvectors
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for symmetrical square matrices (Golub and Van Loan 1989, Janich 1994, Jolliffe
1986). A normed vector z is referred to as an eigenvector of A if it satisfies equation
Az = λz, for some λ, real or complex, which is called the eigenvalue corresponding
to z. It is well-known that any symmetric A has p (p is rank of A) non-zero eigen-
values, λt, t = 1, ..., p, all of which are real. Provided that all the eigenvalues are
different, the corresponding eigenvectors, zt, are pair-wise orthogonal and satisfy
the following equality: aij =

∑p
t=1 λtzitzjt (for any i, j ∈ I) or, in matrix form,

A = ZΛZT where Z is the N × p matrix of the eigenvectors and Λ is the p × p
diagonal matrix containing λt in its principal diagonal. The square-scatter L2(A)
can be decomposed by the eigenvalues as follows: L2(A) =

∑p
t=1 λ2

t .

When A is A = XXT for a matrix X , that is, A is a matrix whose entries
are scalar products, all the non-zero eigenvalues are positive (moreover, λt = µ2

t

(t = 1, ..., p) where µt is a singular value of matrix X and p is its rank); actually,
in this case, the eigenvectors are just the principal components of X . However,
it is not a big deal to get all the eigenvalues positive, for any symmetric A, since
adding a large constant a > 0 to its diagonal entries shifts all the eigenvalues from
λt to λt + a without changing the corresponding eigenvectors.

The theory outlined leads to the following solution to the low-rank approxima-
tion problem.

Order eigenvalues λ2
1 > λ2

2 > ... > λ2
p > 0. Pick up the first m eigenvalues and

corresponding eigenvectors (provided that m < p); they give the solution along with
the minimum value of the least squares criterion equal to L2(E) =

∑p
t=m+1 λ2.

Finding the first (maximum) eigenvalue and corresponding eigenvector may be
done by sequentially multiplying any vector z by A since matrix Aq has λq

t as its
eigenvalues corresponding to the same eigenvectors zt: when q is large enough, λq

1

dominates all the other eigenvalues λq
t . An iteration of the sequential process can

be formulated as follows: with a normed z given, find z′ = Az/||Az|| and check
whether the difference ||z′ − z|| is small enough. If not, take z′ as z and reiterate.
If yes, either of z, z′ is the eigenvector while ||Az|| is the corresponding maximum
eigenvalue.

To find the next eigenvalue and eigenvector, calculate the residual matrix A′ =
A−λzzT (with its entries a′

ij = aij −λzizj) and apply the procedure above to this
residual matrix as A. Continuing residuation of the data, we can find as many of
the eigenvalues as would be sufficient (either to cover a desired part of the data
scatter, which is estimated by the cumulate sum of λ2

t , or to reach a prior value of
m, or to get the latest λ2

t as small as a pre-fixed “noise” level).

Letting the entities i ∈ I be the points yi = (
√

λ1zi1, ...,
√

λmzim) of the space
generated by the first m eigenvectors (usually, m=2 for visualization purposes) is
referred to as ordination of the similarity data. Due to the model (1.13), aij is
approximately (yi, yj), for any i, j ∈ I.
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Although the ordination model works for any symmetric matrix, it works
even better when the similarities are scalar products of the columns of a
data table: the solution found is equally good for both of the matrices,
due to the models in (1.10) and (1.13).

1.3.3 Correspondence Analysis Factors

Correspondence Analysis (CA) is a method for presenting an integral picture of
interactions between I and J (basing on contingency table P = (pij), i ∈ I and
j ∈ J) in a geometric factor space (see, for example, Benzécri 1973, Greenacre 1993,
Lebart, Morineau and Warwick 1984, Nishisato 1994). Two sets of “underlying”
factors, {Ft} and {Gt}, t = 1, ..., p, with I and J as their respective domains, are
calculated in such a way that the following two conditions hold:

A. Reconstruction formula:

pij = pipj(1 +
p∑

t=1

µtFt(i)Gt(j)) (1.14)

where µ1 > µ2 > ... > µp > 0, and p is the rank of matrix F = (fij) with
fij = (pij − pipj)/(pipj)

1
2 as its entries;

B. Weighted orthonormality:∑
i∈I

piFs(i)Ft(i) =
∑
j∈J

pjGs(j)Gt(j) = δst (1.15)

where δst = 1 if s = t, otherwise = 0.

The factors, in fact, are determined by the singular-value decomposition of
the matrix F = (fij) defined above. More explicitly, the values µt in (1.14) and

vectors ft = {Ft(i)p
1
2
i } and gt = {Gt(j)p

1
2
j } are the corresponding singular values

and vectors defined by the equations: Fgt = µtft, ftF = µtgt. (It is assumed that
all the values µt are different, which is almost always satisfied when the contingency
data are of empirical nature.)

In the p-dimensional Euclidean CA factor space each item i ∈ I (or j ∈ J)
is represented by its vector F (i) = {Ft(i)} (or, respectively, by G(j) = {Gt(j)}).
Frequently, the factor axes t are scaled by the factors µt; then the vectors are F (i) =
{µtFt(i)} and G(j) = {µtGt(j)}. Within the sets I and J these representations
reflect the similarities between corresponding conditional probability profiles: it has
been proven that the squared Euclidean distance between CA scaled factor space
points F (i) and F (i′) equals the chi-squared distance χ2 between corresponding
rows, and that the symmetric equality holds for the distances between arbitrary
column items j, j′ ∈ J .
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Use of the distances between different sorts of the items, is and js, in the CA
factor space is considered as justified with the so-called transition formulas:

Ft(i) =
1
µt

∑
j∈J

p(j/i)Gt(j), Gt(j) =
1
µt

∑
i∈I

p(i/j)Ft(i) (1.16)

showing that, up to a scaling factor of 1/µt, any i-point could be considered as the
weighted average of the j-points and vice versa.

The formula in (1.14) can be rewritten in the following equivalent form:

qij =
p∑

t=1

µtFt(i)Gt(j)

which shows that CA can be thought of as a bilinear model of the RCP (flow index)
values qij rather than of the primary contingency data.

This allows us to bring to light a data approximation model which can be
thought of as underlying the CA method.

Let us minimize the following weighted least-squares criterion

L2 =
∑
i,j

pipje
2
ij (1.17)

with regard to the following constraints expressing given qij through the sought
µt, Ft(i), Gt(j), and eij (based on the reformulated form of the equality in (1.14)):

qij =
m∑

t=1

µtFt(i)Gt(j) + eij (1.18)

using the same sequential fitting procedure as in the preceding two sections, though
with modifications due to differences in the criteria. A convenient way is just
finding the singular triples of matrix F step-by-step consequently transforming
them in vectors Ft, Gt sought, as explained above.

The visualization strategy of CA is based on the following considerations. Ob-
viously,

Tr(FT F ) =
∑
i,j

(pij − pipj)2/(pipj) =
∑
i,j

q2
ijpipj (1.19)

which is the Pearson chi-squared contingency coefficient Φ2. Thus, the eigenvalues
µ2

t of FT F show which part of the contingency coefficient value can be considered
as “explained” by the factors t (t = 1, ..., m). In a common situation, the first two
eigenvalues account for a major part of Φ2; this is considered to justify use of the
plane of the first two factors to display the interrelations between I and J , with the
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Figure 1.24: Visual display of the correspondence analysis for the Worries data.

items i and j presented by two-dimensional points (F1(i), F2(i)) and (G1(j), G2(j))
of the plane. Such a joint display for the Worries data of Tables 6 and 19 is shown
on Fig. 1.24.

Based on equivalence between the chi-squared distances in the contingency table and

the physical distances in the CA factor space, one can see, in Fig.1.24, that the conditional

probability profiles of MTO and MIL are close to each other, as are the profiles of IFAA

and IFI, or one can see that IFEA and EUAM profiles are very distant, and so on. From

the same picture, one can also conclude that the living place EUAM relates to the MTO,

MIL, ENR and ECO worries located around it, and ASAF is close to the PER and SAB

worries.

But such an interpretation needs to be examined because it is based on tran-
sition formulas in (1.16), where the column points are expressed through the row
points (and vice versa) up to the scaling factors 1/µt which are different from 1 in
a typical situation.

The following advantages of the CA method should be pointed out. The
method:

1. shows the structure of interrelations between row and column items based on
well interpreted RCP values;

2. is based on the double normalization of the contingency data by both row
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and column totals;

3. decomposes the chi-squared contingency coefficient value by the factors ob-
tained;

4. visualizes the data with a joint display based on chi-squared distances be-
tween the conditional probability profiles.

Correspondence factor analysis provides a joint display for the rows and
columns, which is a most helpful feature of the method, as well as a most
controversial one: in spite of the fact that the row-to-row and column-
to-column distances in the plot are well defined within the model, the
“mixed” row-to-column distances cannot be defined this way.

1.3.4 Greedy Approximation of the Data: SEFIT

The sequential approximation approach described in the three sections above can
be extended to any additive model in a Euclidean space. A general formulation is
this (Mirkin 1990). Let x ∈ Rl be a given vector (l = N ×n with x = X in Section
1.3.1, l = N × N with x = A in Section 1.3.2, and l = |I| × |J | with x = Q, in
Section 1.3.3).

The problem is to represent x as

x =
m∑

t=1

µtzt + e (1.20)

where zt are chosen from given subsets Dt of Rl, µt are chosen from the set of all
reals R, and residual e is “small”. In the examples above, Dt was a set of one-rank
matrices of a corresponding format.

The sequential fitting strategy (referred to as SEFIT) extended to this general
setting consists of the iterations (t=1, 2,...) involving two major steps:

(1) for given xt, minimize the least-squares criterion ||xt − µz||2 with regard
to arbitrary µ ∈ R and z ∈ Dt and let µt = µ∗ and zt = z∗ where µ∗, z∗ are
minimizers found;

(2) calculate the residual vector xt+1 = xt − µtzt.

In the beginning, t = 1, we set x1 = x. After an iteration is completed, we
check whether the process has to be stopped or not. The stop condition involves
the following three parts:

(i) the number of members, z1, ..., zt, found, t, exceeds a number pre-set, m;
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(ii) the relative contribution of the t-th solution, µ2
t (zt, zt), to the data scatter,

(x, x), becomes too small;

(iii) the relative contribution accumulated,
∑t

s=1 µ2
s(zs, zs) to (x, x) becomes

large enough.

When any of them is satisfied, the process ends, and equation (1.20) holds with
e = xt+1.

As it was described in the preceding three sections, such a greedy process works
well due to the particular nature of the singular- and eigen-vectors. However, even
when applied with Dt being not as regular (when the minimization problem at step
(1) cannot be resolved globally), the procedure still bears some good properties.

First, for every z in the minimization problem, the optimal µ can be determined
easily as µ(z) = (xt, z)/(z, z). Then the following statement holds:

Statement 1.1. If µt = µ(zt) (which is the optimal solution for zt fixed), then
independently of the selection of the set z1, ..., zm, the standard decomposition of
the data scatter holds:

(x, x) =
m∑

t=1

µ2
t (zt, zt) + (e, e) (1.21)

Proof: Indeed, vector xt+1 = xt − µtzt is orthogonal to zt, and, by Pythagoras’
theorem, (xt, xt) = (µtzt, µtzt) + (xt+1, xt+1). Summing over t = 1, ..., m and
noting that x1 = x and xm+1 = e, we obtain (1.21). �

The equality (1.21) decomposes scatter ||x||2 into an “explained” part,∑m
t=1 µ2

t (zt, zt), and an “unexplained” part ||e||2. It allows calculation of contribu-
tions of the elements of solution to the data scatter and justifies the stop-condition
above. Since µt = (xt, zt)/(zt, zt), the contribution of t-th element of the model
(1.20) is equal to gt = (xt, zt)2/(zt, zt) which is, actually, the function of zt maxi-
mized in step (1) of t-th iteration.

A question arises about the correctness of the algorithm SEFIT described. Does
the residual become or tend to zero sometime, or might it grow in the process?
The answer depends on the sets Dt and the quality of the minimizing algorithm
(at step 1) involved. The following condition assumes a kind of extensiveness of
Dt and, simultaneously, a quality of the algorithm.

Condition E. Every l-dimensional base vector uk = (0, 0, ..., 0, 1, 0, ..., 0), hav-
ing the only 1 in the k-th position, belongs to Dt, and the vector zt chosen in
step (1) of SEFIT procedure is no worse than uk, for any k = 1, ..., l; that is,
gt ≥ (xt, uk)/(uk, uk) = x2

tk where xtk is k-th entry in the vector xt.
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Statement 1.2. If Condition E holds, then xt converges to 0 as t increases.

Proof: Let |xkt| = maxk′=1,...,l |xk′t|. Then, (xt, xt)/l ≤ x2
kt. Thus, by Condition

E, gt ≥ (xt, xt)/l, which implies:

(xt+1, xt+1) = (xt, xt) − gt ≤ (xt, xt)d,

where d = 1−1/l < 1. Thus, (xt, xt) ≤ (x, x)dt−1, where dt−1 converges to 0 when
t increases, and, therefore, (xt, xt) → 0. �

The procedure described, SEFIT, will be a basis of many other approximation
algorithms in the remainder of this book (for more detail on SEFIT see in Mirkin
1990).

In general, SEFIT leads to a nonoptimal solution in the “parallel” ap-
proximation problem. However, it exhausts the data and additively
decomposes the data scatter with the solutions found. To expect the
algorithm recover the real structure underlying the data y, the contri-
butions of its constituents must be quite different.

1.3.5 Filling in Missing Data

Sometimes, and in some application areas quite frequently, the data table comes
with some entries missing: in medicine, a patient is gone although all his symptoms
are known except for two of them added quite recently; in geology, a datum was
not collected because of impossibility of reaching a site; in a survey, a respondent
filled in a questionnaire leaving some questions unresponded, etc.

There are three major options for dealing with the tables containing missing
data: 1) excluding corresponding entities/variables, 2) dealing with the data as
they are, adopting a particular strategy for handling the missing values within
each particular algorithm involved in the data processing, 3) filling in the missing
data before the data processing. The first option has nothing to do with any
special considerations; it is just quite a generous cleaning of the data set. The
second option relies heavily on the nature of the data processing problem and the
procedure involved; we will not consider that in this book. The third option has
received an attention in the data analysis literature along with suggestions on filling
in the missing data in a regression-wise or principal-component-wise style.

The following is a universal method extending the Principal component analysis
strategy to the case when some data entries are missing, due to SEFIT strategy
above. For convenience, let us restrict ourselves to data in the entity-to-variable
format.
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Let X = (xik), i ∈ I, k ∈ K, be a data matrix with some of its entries missing.
Let matrix M = (mik) indicate the missing data so that mik = 0 if xik is missing,
and mik = 1 if xik is present.

Let us consider the bilinear model equations

xik =
m∑

t=1

ctkzit + eik (1.22)

only for those of the entries (i, k) ∈ I × K where mik = 1, thus minimizing the
least-squares criterion defined only for them, which can be written as L2(E, M) =∑

i∈I,k∈K e2
ikmik to show that the items for the missing entries are zeros without

any regard to what kind of values can be put there.

The problem is to find approximating values ctk, zit in the restricted model
formulated. After the model values are fit, we can “extrapolate” the missing values
xik (for those (i, k) where mik = 0) with the bilinear model equations, this time
without any residuals since they are unknown for the missing entries:

xik =
m∑

t=1

ctkzit.

Let us apply the SEFIT strategy to the problem. That means that, initially,
we find only one axis, t = 1, values zi1 and c1k, minimizing the following criterion
(of the step (1) in SEFIT procedure):

L2(c, z, M) =
∑

i∈I,k∈K

(xik − ckzi)2mik (1.23)

with regard to arbitrary ck and zi satisfying a supplementary norming requirement
||z||2 =

∑
i∈I z2

i = 1 (to have a unique solution as discussed in Section 1.3.1).

The first-order optimality condition (applied to Lagrange function L =
L2(c, z, M)− λ(1 − ||z||2) ) leads us to the following equations:∑

k∈K

xikmikck = zi[
∑
k∈K

c2
kmik + λ],

∑
i∈I

xikmikzi = ck

∑
i∈I

z2
i mik.

λ =
∑
i∈I

∑
k∈K

[xikmikzick − z2
i c2

kmik]

These lead to the rules for iterative recalculation of the values ck and zi:

zi ←
∑
k∈K

xikmikck/(||c||2i + λ),
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ck ←
∑
i∈I

xikmikzi/||z||2k],

where ||c||2i =
∑

k∈K c2
kmik and ||z||2k =

∑
i∈I z2

i mik are varying analogues of the
norm squared. Supplemented with norming z after each iteration, this gives us an
iterative method for resolving the problem.

Although the present author has no proof that this method converges to a
minimizer of L2(c, z, M) or, equivalently, to a maximizer of

∑
i∈I,k∈K

ckzimikxik + λ,

which is the solution’s contribution to the data scatter, the procedure converges
quite fast, in experimental computations (with a relatively small number of zeroes
in M).

After the first factor is estimated, we proceed to the residual data xik ← xik −
ckz1 for mik = 1, to reiterate the process. Correctness of the SEFIT method
follows from the fact that condition E in Statement 1.2. applies here. The method
was suggested by the author in 1989 for the program he managed (see Mirkin
and Yeremin 1991); recently, the author learned that its step (1) (finding a pair
(c, z)) is known, in data analysis, as the Ruhe-Wiburg method, suggested back in
mid-seventies (see Shum, Ikeuchi, and Reddy 1995).

Let us remove the following four of the entries from Masterpieces data: LenSent
and Presentat for Crime&Punishment, LenDial for Captain’s Daughter and NChar for
Eug.Onegin, which leads to six missing entries, in the quantitative version of the data,
since none of the three Presentat categories is known for Crime&Punishment (there are
four, not two, missing entries in row 4 of Table 1.29).

After square-scatter standardization of the data (the means and scale factors are
calculated within the columns by the entries available), the procedure above leads to
the solution which seems quite similar to that found in Section 1.3.1 in the framework
of principal component analysis (which is, basically, the same method applied when no
mik = 0). The four vector pairs found account for 63.98, 24.16, 7.44, and 3.17 per cent
of the data scatter each (totaling to 98.75% of the data scatter).

The matrix reconstructed (see Table 1.30 ) shows that the missing values have been
estimated rather satisfactorily, except for the entry x32 = 10.2 estimated as 19.00. One
should remember that there is a requirement in reconstructing the nominal categories:
only one of them must have unity in the corresponding row while the others have zeroes.
In the case considered, this is easy to do since the entries (4,5) and (4,6) reconstructed
are quite close to zero while the entry (4,7) is correctly 1.
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Num LenSent LenD NumCh InMon Direct Behav Thought

1 15.0 16.6 - 0 1 0 0
2 12.0 9.8 1 0 0 1 0
3 11.0 - 1 0 0 1 0
4 - 202.8 2 1 - - -
5 20.9 228.0 4 1 0 0 1
6 29.3 118.6 2 1 0 0 1
7 23.9 30.2 4 1 1 0 0
8 27.2 58.0 5 1 1 0 0

Table 1.29: Quantitative presentation of the Masterpieces data as having six entries
missed.

Num LenSent LenD NumCh InMon Direct Behav Thought

1 14.76 19.67 2.14/2 -0.01 1.04 0.00 -0.04
2 11.51 11.36 0.93 0.02 0.05 0.99 -0.04
3 10.39 18.99/10.4 0.92 -0.03 0.02 1.01 -0.04
4 23.23/20.2 201.02 2.03 0.99 -0.32/0 0.32/0 1.00/1
5 21.12 241.30 3.77 1.02 0.15 0.03 0.82
6 29.15 124.77 1.74 1.04 0.09 0.02 0.89
7 25.18 42.01 4.06 0.90 1.00 0.08 -0.08
8 26.52 63.86 4.84 1.08 1.12 -0.03 -0.09

Table 1.30: Reconstructed Masterpieces data: in the missing entries, the estimate
is accompanied with the original datum.

1.3.6 Discussion

1. The low-rank approximation methods considered in Sections 1.3.1 through
1.3.2 are an important part of the data analysis techniques presented here in
a unified way. The basic kinds of problems treated with these techniques can
be listed as follows:

(a) Compression of the data. Applied to an N × n rectangular table, SVD
decomposition allows substituting it with m(N + n) numbers where m
is the number of components (singular triples) extracted. The com-
pression index, nN/[m(n + N)], may be quite large depending on the
sizes involved. If, for instance, N = 100000, n = 100, and m = 10,
the ratio is about 10, which indicates the coefficient of decreasing the
storage space. Decompression is made based on the bilinear model for
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the original data.

(b) Transformation of the data. There are two features of the principal
component (or ordination, or correspondence analysis) factors, that are
important for the subsequent analysis: (a) a smaller number of the
components (m rather than n); (b) mutual orthogonality of the compo-
nents, to be employed further, in the regression analysis especially, for
obtaining non-biased estimates.

(c) Visualization. When presented as points on the screen where the space
of the most salient two or three components is depicted, the entities
may show a particular kind of structure in the data cloud, and/or a
pattern of spatial location of a particular subset of the entities, etc.
Joint row/column display is quite helpful, especially in Correspondence
analysis (though, there is still a controversy about the extent of theo-
retical support for such a representation).

(d) Factor analysis. The principal component, ordination, and correspon-
dence analysis factors are frequently used as “latent” variables (such
as talent or agressivity of individuals), which are computed from the
manifested “indirect” data matrix.

2. Mathematical theories of the singular- and eigen-vectors, underlying the
methods, belong to the most profound and beautiful part of mathematics.
The factor variables can be found quite efficiently, while the data scatter can
be decomposed into the sum of their contributions plus the unexplained part
which can be decreased as much as necessary. On the other hand, the solu-
tions heavily depend on the preliminary data transformation, both the origin
shifting and scale factoring, which makes it an issue to develop an under-
standing of what kind of data standardization should be employed. Luckily,
the aggregable (contingency) data low-rank approximation may be consid-
ered as that one where standardizing is completely determined by the choice
of the data scatter measure (Pearson’s chi-squared contingency coefficient).

3. Mathematical structure of the low-rank approximation problems allows for
sequential solution of them (though they are “parallel” optimization prob-
lems). Sequential strategy of the singular-value and eigen-value decompo-
sition methods is picked out as a particular SEFIT procedure which is po-
tentially applicable to many other approximation problems. The procedure
is applied to an important problem in data analysis: filling in the missing
entries, as an extension of the principal component analysis.
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Clustering Algorithms: a
Review

FEATURES

• A review of clustering concepts and algorithms is provided
emphasizing: (a) output cluster structure, (b) input data
kind, and (c) criterion.

• A dozen cluster structures is considered including those
used in either supervised or unsupervised learning or both.

• The techniques discussed cover such algorithms as nearest
neighbor, K-Means (moving centers), agglomerative cluster-
ing, conceptual clustering, EM-algorithm, high-density clus-
tering, and back-propagation.

• Interpretation is considered as achieving clustering goals
(partly, via presentation of the same data with both exten-
sional and intensional forms of cluster structures).
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2.1 A Typology of Clustering Algorithms

2.1.1 Basic Characteristics

To discuss the variety of clustering concepts and algorithms, a classification of them
is necessary. Typically, such a classification involves the following three binary
oppositions presented by Sneath and Sokal 1973, among others, which turned out
not to be important in the subsequent development of the discipline.

1. Hierarchic versus Nonhierarchic Methods. This is a major distinction involv-
ing both the methods and the classification structures designed with them.
The hierarchic methods generate clusters as nested structures, in a hierar-
chical fashion; the clusters of higher levels are aggregations of the clusters
of lower levels. Nonhierarchic methods result in a set of unnested clusters.
Sometimes, the user, even when he utilizes a hierarchical clustering algorithm,
is interested rather in partitioning the set of the entities considered.

2. Agglomerative versus Divisive Methods. This refers to the methods of hier-
archical clustering according to direction of generating the hierarchy, merg-
ing smaller clusters into the larger ones bottom-up (agglomerative) or split-
ting the larger ones into smaller clusters top-down (divisive). Agglomerative
methods have been developed for processing mostly similarity/dissimilarity
data while the divisive methods mostly work with attribute-based informa-
tion, producing attribute-driven subdivisions (conceptual clustering).

3. Nonoverlapping versus Overlapping Methods. This item divides the set of
nonhierarchic clustering methods into two parts according to the resulting
cluster structure: one, partitioning, is well defined while the other, overlap-
ping clusters, still has been not systematized.

These three characteristics usually are presented as the nested classification in
Fig.2.25.

To present an updated classification of the methods, we accept the following
three general bases:

1. Kind of Input Data. This subject has been discussed in Chapters 1 and 2
where we limited ourselves to two-way table data divided into three major
categories:

(a) Column-conditional data;

(b) Comparable data;

(c) Aggregable (mostly Contingency) data.
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        Hierarchic Nonhierarchic

  Clustering

Agglomerative Divisive Overlap Nonoverlapping

Figure 2.25: Classical taxonomy of clustering methods.

2. Kind of Output Cluster Structure. The following major categories of cluster
structures employed can be outlined:

(a) Subset.

(b) Partition.

(c) Hierarchy.

(d) Association Structure.

(e) Biclustering Structure.

(f) Nonstandard Clusters.

(g) Concept.

(h) Separating Surface.

(i) Neural Network.

(j) Probabilistic Distribution.

3. Kind of Criterion. There can be external or internal criteria; the internal
criteria are of the four kinds:

(a) Within-Algorithm Criteria (Direct Clustering).

(b) Optimization.

(c) Definition.

(d) Consensus.

In the following two subsections, two latter base sets will be discussed in more
detail.
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2.1.2 Output Cluster Structure

There is an important distinction between the cluster structures. Some of them
[(a) to (f)] are of mostly empirical nature since the lists of the constituent entities
of the clusters present the most important information on those structures (ex-
tensional approach). The others [(f) to (i)] are represented intensionally by some
formulas in mathematical language. There is no crisp border between them: the
empirical structures can be supplemented with some substructures (such as the
cluster centroid) having a theoretical meaning, and, on the other hand, the “theo-
retical formulas” may heavily depend on the data set from which they have been
derived.

1. Subset.

A subset S ⊆ I is a simple classification structure which can be presented in
any of three major forms:

a) Enumeration, when the subset is given by the list of its elements, S =
{i1, i2, ..., im}, or, as we usually shall put it, S = i1 − i2 − ... − im;

b) Boolean vector form: s = (si), i ∈ I, where si = 1 if i ∈ I and si = 0
otherwise; it is usually referred to as the indicator of S;

c) Intensional predicate P (i) defined for i ∈ I, which is true if and only if
i ∈ S.

As it was seen in Chapter 1, subsets are a significant part of the classification
universe, though, in cluster analysis, this hardly was explicitly acknowledged.

2. Partition.

A set of nonempty subsets S={S1, ..., Sm} is called a partition if and only
if every element i ∈ I belongs to one and only one of these subsets called
classes; that is, S is a partition when ∪m

t=1St = I, and St ∩ Su = ∅ for
t �= u. The partition concept is a basic model for classifications in the sciences
and logic related, mainly, to typology, taxonomy and stratification. Also, a
partition can be considered as another form of representation of the nominal
scale. Every nominal scale variable is defined up to any possible one-to-one
recoding of its values, which means that the variable, really, is defined only
up to the classes corresponding to its different values.

3. Hierarchy.

A hierarchy is a set SH = {Sh : h ∈ H} of subsets Sh ⊆ I, h ∈ H , called
clusters and satisfying the following conditions: 1) I ∈ SH ; 2) for any S1, S2 ∈
SH , either they are nonoverlapping (S1 ∩ S2 = ∅) or one of them includes
the other (S1 ⊆ S2 or S2 ⊆ S1), all of which can be expressed as S1 ∩ S2 ∈
{∅, S1, S2}. Throughout this book, yet one more condition will be assumed:
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(3) for each i ∈ I, the corresponding singleton is a cluster, {i} ∈ SH . This
latter condition guarantees that any non-terminal cluster is the union of
the clusters it contains. Such a hierarchy can be represented graphically by
a rooted tree: its nodes correspond to the clusters (the root, to I itself),
and its leaves (terminal or pendant nodes), to the minimal clusters of the
hierarchy, which is reflected in the corresponding labeling of the leaves. Since
this picture very much resembles that of a genealogy tree, the immediate
subordinates of a cluster are called frequently its children while the cluster
itself is referred to as their parent.

This concept corresponds to the genuine Aristotelean notion of classification.
Moreover, the hierarchy corresponds to the basic way in which the human
mind handles all kinds of complex natural or societal or technical phenomena.

4. Association Structure.

Association is a generic name which is suggested to refer to all kinds of sets
of subsets S = {St}, t ∈ T, for which a supplementary relation (graph)
κ ⊂ T × T is given to represent “close” association between corresponding
subsets St, Su when (t, u) ∈ κ. The following particular associations are
considered in this book:

1) threshold graph Γπ defined as a structure on the set of all singleton clusters
{i}, i ∈ I, based on a similarity matrix A = (aij) and a threshold value π,
Γπ = {({i}, {j}) : aij > π}; this can represent a rude picture of interrelation
among the entities;

2) structured partition (block model) (S, κ) where S is a partition of the set
of the entities and κ is a structure of associations between its classes. There
are two major interpretations of such a structure: (a) a set of qualitative
categories with a complicated structure of association among them (for in-
stance, there is a partial, not linear, order between possible answers to a
preference question: “like”, “indifferent”, “do not like”, “difficult to say”);
(b) a picture of interrelation between subsystems of an industrial or biological
or social system such as interaction between small groups of humans/animals
or between subunits of an enterprise.

3) ordered partition which is a particular kind of a structured partition having
an order structure. The concept relates to ordered or stratified classifications.
It is associated also with the so-called order (or rank) variables, like “degree
of preference”, whose values are considered as defined up to any monotone
transformation.

5. Biclustering Structure.

This concept is defined for two-mode data only, meaning that there are in-
terconnected cluster structures on both rows and columns as represented by
their index sets I and J , respectively. The following biclustering structures
involve single subsets, partitions, and hierarchies:
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1) box (V, W ) is a pair of associated subsets V ⊆ I and W ⊆ J whose
elements are “highly connected”;

2) bipartition is a pair of partitions having the same number of classes, (S, T ),
with S being defined on the row set I while T on the column set J , along
with a one-to-one correspondence κ between the highly connected classes
(t, u(t)) ∈ κ;

3) bihierarchy is a pair of hierarchies, (SF , TH), SF being defined on the row
set I while TH on the column set J , along with a one-to-one correspondence
κ between some of their classes (Sf , Th(f)) ∈ κ.

6. Nonstandard Structures.

There have been some empirical structures considered in the literature, that
will be touched, though not covered extensively, in this monograph. Let us
mention some of them.

1) Fuzzy clusters and partitions.

Any fuzzy cluster is represented by its membership function z = (zi), i ∈ I,
where zi (0 ≤ zi ≤ 1) is the degree of membership of the entity i in the
cluster. In contrast to the usual, hard (crisp) clusters, where membership
degree zi may be only 1 or 0, fuzzy membership can be any quantity between
0 and 1.

Fuzzy partition is represented by a matrix Z = (zit) having the membership
functions of clusters t as its columns. The total degree of membership for
any entity is 1,

∑
t zit = 1, to allow transferability of membership among the

clusters.

This concept, especially when supplemented with the standard points (cen-
troids), seems close to the concept of typology where it is not uncommon
to have the entities fitting into different clusters with various membership
degrees.

2) Extended hierarchies.

There are few examples.

An additive tree is a hierarchy along with a set of weights assigned to its edges
(joining parents with children) which is employed in molecular evolutionary
trees to reflect the differences in the number of inconsistencies between the
parents and their different “children”.

A pyramid is a hierarchy where the clusters are permitted to be overlapping,
although in a restricted manner, along an order of the entities, being thus
intervals of the ordered entity sequence. Such an ordering may reflect vari-
ous additional parameters as, for instance, chronology of the burial sites in
archaeology.
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A stratified clustering is a nested set of threshold graphs, with the actual
clusters represented as cliques of these graphs; such a structure is based on
the concept of an equivalence relation in the hierarchy being substituted by
the more general concept of the threshold graph.

A weak hierarchy is a set of overlapping clusters SH in which the nested-
ness condition is substituted by the following more general condition: for
every three distinct clusters, S1, S2, S3 ∈ SH , their intersection, if not empty,
coincides with intersection of some two of them.

3) Standard point typology.

Such a typology is represented just with a set of standard points in the
variable space; the points are to be used as the patterns to compare with.
Given such a set, any other vector can be compared with some (or all) of them
to be related to that one which represents the region containing the vector.
Probably, Kohonen 1989 was the first to consider such a form of classification
as a classification structure (calling the points reference or codebook vectors
to be learned).

4) Overlapping clusters.

In many applications, especially in those connected with semantic relations,
the structure of overlapping seems completely unpredictable, which makes
considering arbitrarily overlapping cluster sets meaningful.

On the other hand, the concept of faceted classification (as well as some of the
typology structures discussed) requires getting such a set of clusters, which
contains all the intersections occurring as proper clusters.

7. Concept.

LenSent

LenDial

Pushkin Tolstoy Dostoevski

>16<16

>60<60

Figure 2.26: A concept tree for Masterpieces.



268 CLUSTERING ALGORITHMS: A REVIEW

The concept (or conceptual cluster, or classification tree, or decision tree),
as a notion in clustering, is a hierarchical tree as above, with the particular
feature that any of its clusters is presented as described intensionally. Since
the children of a cluster form its partition, such an intensional description is
usually made with some nominal or categorized variables; for any cluster, its
children correspond to the categories of such a variable as shown in Fig.2.26
for the Masterpiece data. We can see, with this example, that any concep-
tual cluster relates to an aspect of the world as intensionally structured (in
a hierarchical fashion). In contrast to the extensional set hierarchy, the con-
ceptual tree gives a directly interpretable pattern and may not depend too
much on empirical data. On the other hand, the extensional hierarchy can be
associated with a wider set of data; it can be designed based on a similarity
matrix which may involve too many variables to be reflected in a conceptual
cluster, or not involve these variables at all, being primary data (as mobility
or industrial flows).

It is convenient to supplement the notion of hierarchical concept with the
other kinds of cluster structures considered above — first of all, the subsets
and partitions.

An intensionally described subset, in the simplest case, corresponds to an
interval of a quantitative variable such as the “senior citizen” category, com-
prising all the people older than 60 years. More complex kinds of conceptual
subsets correspond to logical operations over unidimensional intervals. For
instance, a conjunctive concept (such as “young female college graduate”)
relates to the conjunction of several unidimensional ones (“young” [age], “fe-
male” [sex] and “college graduate”[education]); the other logical operations
(such as disjunction or implication) could be involved also. The conjunctive
concepts are most popular; they have a simple geometrical interpretation as
the Cartesian product of corresponding unidimensional intervals represented
by a (hyper)rectangle in the variable space.

As to the intensional partition, it still has not received any special attention,
perhaps, because it can be represented with a conceptual cluster hierarchy
in an adequate manner.

8. Discriminant Function (Separating Surface).

This is an intensional construction in the variable space Rn: a function
G(x), x ∈ Rn, is referred to as a discriminant function (separating sur-
face) for a subset S ⊂ I if G(yi) ≥ π > 0 for all i ∈ S while G(yi) ≤ π for all
i ∈ I −S. Sometimes the surface is considered “thick” in the following sense:
function G(x) gives a threefold decision rule assigning i to S or to I−S when
G(yi) ≥ π or G(yi) ≤ −ρ, respectively, while refusing to make any decision
when −ρ ≤ G(yi) ≤ π (for some positive ρ and π).

Usually, the discriminant function is a hyperplane G(x) =
∑

k ckxk. Linear
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functions can separate only convex sets, which relates the theory of discrim-
inant hyperplanes to the theory of convex sets and functions. On the other
hand, it is connected with some important clustering methods such as K-
Means.

The theory of discriminant functions, developed by R. Fisher, is part of the
mathematical multivariate statistics. The theory of use of the discriminant
surfaces in clustering was initially developed, mainly, in the framework of
pattern recognition; currently, it is being shifted smoothly into the area of
neural networks.

9. Neural Network. A formal neuron is a model for the neuron, a nerve cell
working like an information-transforming unit. The neuron provides a trans-
formation of an input vector x into the output signal y = θ(

∑
k ckxk − π)

where θ(v) = 1 if v > 0 and θ(v) = 0 if v ≤ 0. Actually, the neuron discrim-
inates between two half-spaces separated by the hyperplane

∑
k ckxk = 0.

Frequently, the threshold output function θ is substituted by the so-called
sigmoid function θ(v) = 1/(1 + e−v) which is analogous to the threshold
function but is smooth and more suitable for mathematical derivations. The
interpretation of the formal neuron is straightforward: the components k
represent synapses excited on the level xk; the weight ck shows relative im-
portance of the synapse to the neuron; the neuron fires output if the total
charge

∑
k ckxk is higher than the neuron threshold π.

Sometimes the neuron is considered to have the identity output function
θ(v) = v thus performing just linear transformation

∑
k ckxk; this is called

linear neuron.
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Figure 2.27: A neural network with a hidden layer.
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A single hidden layer neural net (see Fig.2.27) defines a transformation
θ1[
∑T

t=1 wtθ(
∑

k ct
kxt

k−πt)] of the input vectors xt, t = 1, ...T , into an output
through T “hidden” neurons. Such a net has two important properties: 1)
it can be used to approximate any continuous function (having θ1(v) = v)
(Cybenko 1989); 2) it can be used to separate any subset S of a given set of
normed vectors yi, i ∈ I. To resolve the latter problem, let us take T = |I|
to consider any t = 1, ..., T as a corresponding element of I; then, for any
neuron t ∈ I, let its weight vector ct = yt. Obviously, the maximum of the
scalar products (ct, yi) with regard to i ∈ I, in this case, is reached for the
only i = t. Thus, fixing πt between this maximum value and the second max-
imum, we have φ(t, yi) = θ(

∑
k ct

kyi
k −πt) = 1 if and only if i = t; φ(t, yi) = 0

when i �= t. Then, taking wt = 1 for t ∈ S and wt = −1 for t ∈ I − S, we get
the desired output.

A similar construction can be made to learn an arbitrary partition; this time,
a third layer is necessary to distinguish among the different classes.

10. Probabilistic Distribution.

In the probabilistic paradigm, we can distinguish between two approaches to
clustering which could be referred to as: 1) Probabilistic environment and 2)
Probabilistic clusters. Let us consider them in turn.

1. Probabilistic environment is a term to be used when a reformulation of a
data analysis technique in terms of a probabilistic space has been done for
investigating the properties of the technique as based on a random sample,
in its relation to the “theoretic” solution. For example, the minimum square-
error clustering problem was considered by Shlezinger 1965 in the following
setting. The entities are a random sample from an unknown distribution
p(x) in the Euclidean space. The problem is to find a hyperplane G(x) = 0
minimizing the weighted variance of p(x) with regard to the two subspaces
separated by the hyperplane. The clustering structure here is a partition of
the space (not just of a sample). The problem is to suggest such a clustering
method for the samples, which is consistent with the space partition, in a
strictly defined sense.

This kind of modeling can be accomplished for any data analysis technique.
Recently, it received an appealing impetus based on a universal criterion for
deriving summaries of data, the so-called principle of Minimum Description
Complexity (Rissanen 1989, see also Briant 1994).

2. Probabilistic Clusters are a set of probability based models of cluster
structures. Two major models developed so far are mixture of distributions
and high density clusters. Both of them rely on assumption that the cluster
structure can be represented in terms of a density function p(x).

The mixture of distributions model assumes that the density function has
the form p(x) =

∑m
t=1 πtf(x, at) where f(x, a) is a cluster model, a family of
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density functions over x defined up to the parameter vector a. Usually, the
density f(x, a) is considered unimodal (the mode corresponding to a cluster
standard point), such as the normal density function defined by its mean
vector µ and covariance matrix Σ; shape of the clusters depends upon the
properties of Σ (see Section 2.2.7). Acceptance of such a theoretical model
must be based on preliminary knowledge about the universe classified. The
mixture of distributions concept can be considered for qualitative variables
as well (Celeux and Govaert 1991).

The other model, high density clusters, requires not so much prior knowledge.
Let us consider a level set Pc = {x : p(x) ≥ c}, for some c > 0. Any maximal
connected subset Sc ⊆ Pc is called high density cluster (c-cluster). Obviously,
high density clusters form a hierarchy, being nested for different c.

To define a partition-wise concept, let us consider the following notion: a
high-density cluster Sc is referred to as a unimodal cluster if, for every c′ > c,
there exists no more than one c′-cluster included in Sc (Kovalenko 1993).
For sufficiently large c1, .., cm, let Sc1 , ..., Scm are mutually nonoverlapping
high density clusters such that p(x) ≤ mint ct for all x outside these clusters.
Then, along with the rest of the space, they form a partition consisting of m
high density clusters and a “swamp”, or “ground” cluster.

Various constraints on the final result (such as the site-to-site adjacency structure
on a geographic map) should supplement the list of admitted cluster structures.
However, this topic will not be discussed in this work.

2.1.3 Criteria

Clustering criteria can be 1) internal, based only on the data involved in clustering,
or 2) external, defined in terms of the variables which are not involved in clustering
directly. If a set of respondents is classified by the demographic variables (sex,
marital status, etc.) to have the clusters homogeneous with regard to, for instance,
the respondents’ traveling habits, this would be clustering with the external goal
of traveling-habits homogeneity. Yet, such a homogeneity could be observed in the
clusters created internally, based upon the demography only. In this latter case,
the homogeneity (obtained as a by-product, not as a goal to achieve) will be a
regularity revealed via clustering. Although the external-goal-based classification
methods seem a subject of a great interest, there is little to say on that, currently.
Weighting of the variables involved in clustering with regard to the external goal
seems to be the only idea elaborated in literature (something on this is presented
in Chapter 6).

Internal clustering criteria could be put in the following four major categories:
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1. Within-Algorithm Criterion (Direct Clustering).

2. Optimization.

3. Definition.

4. Consensus Approach.

Let us discuss them in turn.

Within-Algorithm Criterion (Direct Clustering)

Clustering usually involves iterative recalculations of the clusters to have them
rearranged in more-and-more “cluster-like” fashion. The recalculations can be
based upon a set of natural optimality criteria applied to between-entity distances,
such as the rule “put the entity in the nearest class”. The ad hoc structure of such
an algorithm reflects the clustering goal without any explicit criterion, while the
formal criteria are used within its particular iterative steps.

Although, in a theoretical discipline, no direct heuristics would be appropriate,
still so many structures to be revealed are uncovered by the clustering theories
available (as, for instance, geometrical bodies of an elongated shape) that the
availability of the direct clustering algorithms provides a possibility to reveal and
deal with strange structures in exploratory data analysis.

Optimization

There are several sources for emerging optimization criteria in clustering:

1) heuristics:

The most explicit clustering criteria involve some or all of the following re-
quirements: 1) cohesion (“the entity-to-entity distances within clusters shall be
small”), 2) isolation (“the clusters shall be spaced apart”), 3) uniformity (“other
things being equal, the cardinalities of the clusters must not differ from each other
significantly”). Each of these requirements can be formalized in many ways. For
instance, to obtain a cohesive cluster, we can minimize: the sum, the maximum, the
average, the median of the within-cluster distances. Then, combining the heuristic
criteria defined for the particular goals, an heuristic clustering criterion can be
produced.

2) probabilistic modeling:

Having assumed a particular probabilistic model for clustering, the maximum
likelihood approach may lead to a set of working criteria emerging under different
hypotheses about the parameters of the model. If, for example, the population
of interest consists of m different subpopulations represented by their multivari-
ate normal density functions f(x, µw, Σw) (µw and Σw are the mean vector and
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covariance matrix, respectively) and x1, ..., xN is a random sample with unknown
assignment of the observations xi to the clusters (subpopulations) S = {Sw}, then
the likelihood function has the form

L(µ, Σ, S) = C
∏m

w=1

∏
i∈Sw

|Σw|−1/2exp{−(xi − µw)T Σ−1
w (xi − µw)/2}

which becomes

l(µ, Σ, S) = D − 1
2

∑m
w=1{tr(RwΣ−1

w ) + nwlog|Σw|}
after the maximum likelihood estimator x̄w =

∑
i∈Sw

xi/nw of µw is put in the
formula. Rw here is the cross-product matrix defined as Rw =

∑
i∈Sw

(xi−x̄w)(xi−
x̄w)T .

Let us consider different hypotheses on cluster shapes reflected in the proper-
ties of Σw: (1) clusters are spheres of the same sizes, Σw = σ2I (w = 1, ..., m);
(2) clusters are ellipsoids of the same size and of the same orientation, Σw = Σ
(w = 1, ..., m); (3) clusters are spheres of different sizes, Σw = σ2

wI; (4) clusters
are ellipsoids of possibly different sizes and orientations, no constraints on Σw

(w = 1, ..., m). Respective criteria that are equivalent to the maximum likelihood
function are these:

1.
∑m

w=1 Tr(Rw);

2.
∑m

w=1 |Rw|;
3.
∑m

w=1 nw log Tr(Rw/nw);

4.
∑m

w=1 nw log |Rw/nw|,

to be minimized by the sought partition S (see Aivazian et al. 1989, Banfield and
Raftery 1993 for these and other criteria and for references).

Let us discuss the first of the criteria in more detail. Obviously, Tr(Rw) =∑
i∈Sw

∑n
k=1(xik − x̄wk)2. This is why the criterion is usually referred to as the

within group sum of squared errors (WGSS) or simply the square-error clustering
criterion. On the other hand, it is equal to nws2

w where s2
w =

∑n
k=1

∑
i∈Sw

(xik −
x̄wk)2/nw is the total variance of the variables k (k = 1, ..., n) in cluster Sw. Thus,
the WGSS criterion can be expressed either as the sum of the errors squared or as
the sum of the within cluster variances weighted,

D(S) =
m∑

w=1

∑
i∈Sw

n∑
k=1

(xik − x̄wk)2 =
m∑

w=1

nws2
w (2.24)

The criterion has been used in many important developments in clustering (see
Sections 3.4, 5.1, 5.2 and 5.3). It much resembles the variance criterion employed in
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statistical discipline of analysis of the variance (ANOVA) (see Ward 1963, Edwards
and Cavalli-Sforza 1965, Shlesinger 1965, McQueen 1967). However, in cluster
analysis, the classes are to be found, while they are pre-given in ANOVA. Criterion
(3.) (Banfield and Raftery 1993) is much like WGSS (though logarithms of the
variances are taken in (3.) rather than the variances themselves), but, to the
author’s knowledge, it has been never tried in real-world clustering problems.

3) data approximation:

This is also a statistical approach, related to representation of the data in the
matrix space. The sought cluster structure is presented in the format of a data
matrix. The clustering criterion is to minimize the difference between these two
data tables, measured, usually, by the sum of the entry-to-entry differences squared
(least-squares approach). This is the approach which will be discussed in all the
subsequent Chapters.

We will not consider a more general approximation approach also based on
presenting both the data and the cluster structure in the same format, which may
be different from the original data format (Gifi 1990, Aven, Muchnik and Oslon
1988).

4) substantive classification problems:

Every particular engineering problem involving classification leads to a par-
ticular criterion for classification, which can be utilized also in general clustering
context.

Let us consider the problem of stratified sample design as an example of such an
engineering problem. As it is well known, measuring any parameter of a population
such as the “average income” or “public opinion on an issue”, can be made using a
relatively small, the so-called stratified, sample based on a preliminary partitioning
of the population. A known Dalenius’ model for stratified sampling design can be
presented as the following equation: x = af + e where x is a variable, the mean
of which is to be estimated (a usual goal of sampling), f is a variable (factor)
with known distribution to be used for stratifying, and e is a random error with
mean zero; the conditional variance of e with respect to f is assumed constant. In
practice, factor f is presented empirically with a set of the variables; stratifying
such a factor is equivalent to partitioning the population to minimize the variance
of the estimate. Varying the sampling assumptions, different clustering criteria are
obtained as being equivalent to the engineering criterion of minimizing the variance.
For instance, when the sample is of a fixed size and sampling is proportional, the
criterion is exactly minimization of WGSS, (2.24), which emerged in the context
of probabilistic modeling. If, in contrast, the sampling scheme takes only one
respondent from every strata designed, then the clustering criterion is minimizing∑

t(p
2
t (s

2
t + 1)) (for a = 1) (Braverman et al. 1975).
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Definition

In contrast to the approaches above based on the assumption that the sought
classification structure cannot exactly fit into the “imperfect” original data, this
approach involves concepts defined to fit perfectly into any feasible data. For
instance, for a given dissimilarity matrix d = (dij), i, j ∈ I, a subset S ⊂ I is
called strong cluster if dij < dik for every i, j ∈ S and k �∈ S (Apresian 1966,
Diatta and Fichet 1994). Having such a definition, traditional problems arise:
characterizing the strong clusters and finding them. Fortunately, this case is rather
simple. The set of all strong clusters is a hierarchy since if strong clusters S and T
are overlapping, one of them includes the other. Indeed, if S ∩ T �= ∅ and S �⊂ T
and T �⊂ S, then there exist i ∈ S ∩ T and j ∈ S − T and k ∈ T − S such that
dij < dik (since i, j ∈ S and k �∈ S) and dik < dij (since i, k ∈ T and j �∈ T ),
which is impossible. Finding strong clusters is also simple. The problem with this
definition is that, typically, every strong cluster is rather small comprising very few
entities and, thus, provides no aggregation to the data.

In the sequel, some more cluster definitions will be considered, leading to more
intriguing cluster structures.

Consensus

In this approach, a classification method is considered as a mapping F : D → C
where D is set of all feasible data and C set of all classification structures of a given
kind. For instance, in the problem of partitioning of set I based on information
provided by a set of nominal variables on I, C can be considered as set of all
partitions on I, and D as the set of all n-tuples {R1, R2, ..., Rn} (n may be unfixed)
of the partitions Rl on I. Or, D may be a set of square entity-to-entity dissimilarity
matrices while C is the set of all set-hierarchies on the set of the entities. Mapping
F transforms the initial data into a final classification structure. Mapping F is
referred to as a “consensus” function if it satisfies some natural properties (usually
called “axioms”). For instance, such a method should map any n-tuple having
all its partitions coinciding into this coinciding partition. Thus, in the consensus
approach, one considers a set of some “natural” requirements to F and tries to
find out an explicit form of the corresponding consensus function(s).

Such an approach takes its origin in the theory of social choice initiated by work
of K. Arrow 1951 and continued, in the clustering framework, by Jardine, Jardine
and Sibson 1971 (see also Mirkin 1975, Margush and McMorris 1981, Barthélemy,
Leclerc, and Monjardet 1986, and Section 6.2).

There is also a particular approach, index-driven consensus, which should be
shared with the optimization approach. Let, for example, µ(S, R) be an index
of similarity between partitions of I. Then, S will be an index-driven consensus
partition if it maximizes

∑n
l=1 µ(S, Rl) (see Section 4.3.4).
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2.1.4 Algorithmic Aspects of Optimization

Let us discuss the algorithmic aspect of optimization approach for its importance
in mathematical clustering. The optimization problems arising may have a quite
general character involving either continuous or discrete or even mixed variables.
Although some criteria may lead to quite nice and simple solutions, the mainstream
problems are related to the least-squares criteria and their extensions that lead, in
general, to quite difficult problems. Combinatorial clustering problems belong to
the core problems of combinatorial optimization (see, for instance, Section 3.2) and
thus can be treated with all the tools of combinatorial optimization available. Some
general working optimization techniques such as genetic algorithms and simulated
annealing (Laarhoven and Aarts 1987; see also a somewhat simpler approach by
Charon and Hudry 1993), are quite applicable to the clustering problems and
are used quite extensively. We do not discuss general global or approximation
algorithms, but refer mostly to algorithms based on local iterative optimizing steps
(see a review in de Leeuw 1994). In particular, two major optimization techniques
will be employed through:

(1) local search algorithms, and

(2) alternating optimization.

To discuss these techniques, let the problem be to maximize f(x) over x ∈ D
where D is a set of admissible solutions. To define a local search algorithm, a
neighborhood system in D must be supposed. The neighborhood system is a
mapping N(x) assigning a subset N(x) ⊂ D to any x ∈ D, such that x ∈ N(x).
The subset N(x) consists of the “neighbors” of x, and f(x) is supposed to be easily
maximized in every N(x).

Local search algorithm
It starts from an x0 ∈ D referred to, usually, as the initial setting (it
can be, for example, an initial partition of the entity set). Then, let
x1 be a maximizer of f(x) in N(x0). If x1 �= x0, find x2 which is a
maximizer of f(x) in N(x1). Carrying on the computation, a sequence
x0, x1, ..., xt, ... is obtained where xt is a maximizer of f(x) in N(xt−1).
The process stops when xt is equal or close enough to xt−1.

Obviously, f(x0) ≤ f(x1) ≤ ... ≤ f(xt).... When the algorithm of maximizing
f(x) in N(x) is arranged in such a way that it takes x as a maximizer in N(x) if
f(x) ≥ f(y) for all y ∈ N(x), then, obviously, the algorithm satisfies the stopping
condition, xt = xt−1, in that point xt where f(xt) = f(xt−1). This implies that in
the inequalities above only strict “less” < holds, which proves that the algorithm
converges (to a local extremum).

As an important example of a local search algorithm, let us consider the ag-
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glomerative optimization technique suggested by Ward 1963. Set D of admissible
solutions here is the set of all partitions on I. For every partition, S = {S1, ..., Sm},
its neighborhood, N(S), consists of partitions S(t, u) obtained from S by merging
clusters St and Su into Stu = St ∪ Su, t, u = 1, ...m.

Agglomerative optimization
The computation starts with an N -class partition consisting of single-
tons. At each local search step, merging is made to optimize the increase
of the clustering criterion, δ(u, t) = f(S(u, t)) − f(S). The computa-
tion ends when the number of clusters becomes equal to a prior fixed
number, m0 (usually, m0 = 1).

In the case when square-error criterion (2.24) is minimized, it is quite easy to
prove that every merging can only increase its value. Thus, the problem, at every
agglomeration step, is to minimize increase δ(u, t) = D(S(u, t)) − D(S). Let us
denote ct the center of gravity of cluster St, ct =

∑
i∈St

yi/|St|. It appears,

δ(u, t) = D(S(u, t)) − D(S) =
|St||Su|

|St| + |Su|d
2(ct, cu) (2.25)

where d2 is Euclidean distance squared, which is proved with elementary arithmetic
just from the definition of criterion D (2.24).

With this formula, computations become quite fast; the procedure is known
as Ward’s method. Gower 1967 provided an example demonstrating a peculiarity
of the criterion reflecting the fact that factor |St||Su|/(|St| + |Su|) in (2.25) favors
equal distribution of the entities among the clusters and, thus, the criterion may
fail to separate immediately some outliers. Though for a long time treated as
a shortcoming (see, for instance, Sokal and Sneath 1973), the peculiarity does
not appear to actually be so: in many clustering studies, tendency of the cluster
cardinalities to the same number has been claimed a criterion of clustering (see,
for example, Braverman and Muchnik 1983, Mirkin 1985).

An alternating optimization algorithm can be considered as a specific case of
the local search techniques developed for the case when there are two (or more)
groups of the variables, that is, x = (y, z), and f(y, z) is easy to minimize by any
of y or z when the other part of x is fixed.

Alternating minimization
Computations at iteration t: for every zt fixed, yt+1 is found as a mini-
mizer of f(y, zt). Then zt+1 is determined as a minimizer of f(yt+1, z),
after which new iteration, t + 1, is carried out.

At each iteration, the value of f(x) may decrease only, which guarantees that
the algorithm converges when f is curved enough (as the least-squares criteria are).

Let us consider the partitioning problem with the square-error clustering crite-
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rion, (2.24), taken in the form

D(c, S) =
n∑

t=1

∑
i∈St

n∑
k=1

(xik − ctk)2 (2.26)

so that there are two groups of variables: standard points, ct, and cluster member-
ship lists, St. In this case, the alternating minimization algorithm can be reformu-
lated as a clustering method, as follows.

Alternating Square-Error Clustering
Starting with a list of tentative centers ct, the following two steps are
iterated until the partition is stabilized:
Step 1. Cluster membership. Having ct fixed, find clusters St minimizing∑n

t=1

∑
i∈St

d2(xi, ct) where d2(xi, ct) is Euclidean distance squared, as
in (2.26). To do this St must consist of all those entities i that are closer
to ct than to any other cu, u �= t.
Step 2. Standard points. Having clusters St fixed, find standard points ct

minimizing (2.26), that is, equal to the gravity centers of St, t = 1, ..., m.

These kinds of algorithms are quite reasonable in clustering because:

(1) typically, the local algorithm may be considered as a model of the construc-
tion of a classification by a human (for instance, agglomerative optimization may
be thought of as a formalization of a systematization process, while alternating
square-error clustering could be a model for typology making);

(2) in some cases, it can be proved that the local solution found still satisfies
some requirements for “cohesive” clustering;

(3) the computations are easy, fast and memory-efficient.

There is another local optimization technique, employed quite frequently,
though not in this monograph: hill-climbing. The hill-climbing algorithm is defined
with a so-called gradient g(x) of f(x). The gradient shows the direction where f(x)
grows maximally, which allows us to define the following procedure.

Hill-climbing
It starts from an arbitrary x0 ∈ D. Then, the following recurrent equa-
tion, xt+1 = αg(xt) + (1 − α)xt, is employed for computing a sequence
of solutions approaching a maximizer of f(x).

A small positive value α > 0 is proportional to the length of a step from the
previous location, xt, in the gradient direction, to get a new position, xt+1. This
is why the procedure is called hill-climbing. When f(x) is curved enough (as,
say, the least squares criterion), value α may be invariant along all the procedure;
in the other cases, it is required to be decreasing, though slowly, as 1/t (see, for
example, Polak 1983). The hill-climbing technique is quite important in many
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subdisciplines dealing with continuous optimization, such as neural networks and
discriminant analysis.

2.1.5 Input/Output Classes

The variety of clustering methods developed, with regard to the data and cluster
structure types, is presented in Table 2.31.

Cluster Kind of Table
Structure

Col.-Cond. Comparable Aggregable
Subset + + +
Partition ++ ++ +
Hierarchy + ++ +
Bicluster + + +
Association + +
Concept + na
Discriminant + na
Neural Net + na
Distribution ++

Table 2.31: Basic output/input table for clustering algorithms; the symbols mean:
there are some algorithms (+) or many of them (++), the author does not know
about anything (empty place) or doubts that the algorithms are ever possible (na).

The follow-up review is based on this Table.

2.1.6 Discussion

1. It should be underscored quite clearly that clustering does not exhaust the
entire subject of mathematical classification. Clustering is devoted to reveal-
ing classification structures in the data. Still there are some other problems
concerning classifications. How does a classification structure emerge and
evolve in a real-world situation? What are the classification functions and
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how they work? These kind of questions seem quite important, though they
are never asked in such a general setting; they are left untouched here, too.

2. Our classification of clustering approaches involves most general attributes
related, actually, to any algorithmical development: (1) the input data, 2)
output data, and (3) the criteria for data processing.

3. Among the wealth of data that can be acquired somehow – pictures, texts,
sounds, etc. – we restrict ourselves to the table data only, thus excluding
all the interesting but more specific subjects concerning image processing,
medicine diagnostics, chemical analyzing, biomolecular evolution, etc. More-
over, among tables, we consider mainly two-way (matrix) tables putting them
in the three major categories: column-conditional, comparable and aggre-
gable data. Entity-to-variable, distance and contingency data are the respec-
tive prototypical examples of these three categories.

4. Usually, just a few kinds of classification structures are included in clus-
tering: partitions, hierarchies, individual clusters and the like, but neural
networks and potential functions have been considered so far much beyond
the subject. A dozen classification structures enlisted is far from being ex-
haustive, though. It seems quite evident that the list will be extended with
more detailed structures as well as with mixed ones; completely new kinds of
classification structures must come eventually, too.

5. Mathematical thinking in clustering must provide a set of theoretical connec-
tions between the four kinds of criteria indicated.

2.2 A Survey of Clustering Techniques

The survey will closely follow the clustering structures enlisted (output) while
loosening its relation to the input data format and criteria involved.

2.2.1 Single Cluster Separation

To discuss some of the existing concepts and methods in greater detail, let us take
data sets Primates and Mobility (Tables 5 and 7 in Chapter 1) as presented with
the following matrices, D and P , respectively:

D =

⎛
⎜⎜⎜⎜⎝

2 1.45
3 1.51 1.57
4 2.98 2.94 3.04
5 7.51 7.55 7.39 7.10

1 2 3 4

⎞
⎟⎟⎟⎟⎠
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P =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1, 414 521 302 643 40
2 724 524 254 703 48
3 798 648 856 1, 676 108
4 756 914 771 3, 325 237
5 409 357 441 1, 611 1, 832

1 2 3 4 5

⎞
⎟⎟⎟⎟⎟⎟⎠

The simplest single cluster concepts have been formulated in terms of the
threshold graph Gπ = {(i, j) : dij ≤ π}, the vertices of which correspond to
the entities, and edges to those of the distances that are smaller than the threshold
π chosen somehow.

1

2
3

4

5

1 2

3 4 5

1 2

3 4 5

(a) (b)

(c)

Figure 2.28: Primates and Mobility threshold graphs

Such a graph Gπ for D with π = 2.0 is presented in Fig.2.28 (a). It can be seen that
it consists of three connected components; and the non-singleton one is more than just
a component: it is a clique, all its vertices are mutually connected, supporting, on the
molecular level, Darwin’s hypothesis that Humans originated in Africa.

To analyze the contingency data P , let us standardize it with the formula recom-
mended, qij = nijn/ni+n+j − 1, where nij are the entries in P , along with the row and
column totals ni+, n+j and the grand total n = 19, 912. The matrix Q = (qij) is as
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follows:

Q =

⎛
⎜⎜⎜⎝

1.35 0.20 −0.22 −0.45 −0.88
0.56 0.56 −0.14 −0.22 −0.81

−0.05 0.07 0.59 0.03 −0.77
−0.39 0.02 −0.03 0.39 −0.65
−0.57 −0.48 −0.28 −0.13 2.46

⎞
⎟⎟⎟⎠

For the threshold level π = 0, the threshold graph (Fig.2.28 (b)) looks rather com-
plicated (each vertex having a loop), although for π = 0.1 (Fig.2.28 (c)) it is simple,
with the only non-singleton cluster 1 − 2 to support the hypothesis that the nonmanual
professions relate to the same class while the other three occupation classes are isolated.

To discuss a couple of other single cluster concepts, let us make yet another trans-
formation of the mobility data P to present it as a similarity matrix: for this purpose,
let us eliminate the diagonal values while taking half-sums aij = (nij + nji)/2 as (i, j)-th
entries:

A =

2 3 4 5
1 − 618 550 700 225
2 − 451 809 202
3 − 1224 275
4 − 924

Some of the simplest concepts of clusters, although formulated in terms of
distance/similarity, still can be reformulated in terms of threshold graphs. A ball
of radius r with center i ∈ I is the subset B(i, r) consisting of all the entities (i
included) whose distance from (similarity to) i is not greater (respectively, smaller)
than r. For matrix A, B(i, r) = {j : aij ≥ r} ∪ {i}. For example, the set of
occupations {1, 2, 4} is the ball B(1, 600) since both a12 and a14 are larger than
600 while each of the other two, a13 and a15, are smaller than 600. Obviously, the
ball B(i, r) coincides with the set of the vertices which are incident to i (including
i itself) in the threshold graph with π = r.

In distance terms, a clump cluster is such a subset S that, for every i, j ∈ S
and k, l ∈ I − S, dij < dkl. Obviously, any clump is a clique which is simultane-
ously a connected component in a threshold graph Gπ where π is taken between
maxi,j∈S dij and minl,k �∈S dlk, as it is in Fig.2.28 (a) for S = 1 − 2 − 3.

There are some more elaborate concepts. Subset S ⊂ I is a strong cluster if
for any i, j ∈ S and k �∈ S, dij < min(dik, djk). This condition involves local
interrelations between the entities and cannot be reformulated in terms of the
threshold graph. As noted in Diatta and Fichet 1994, S is a strong cluster if and
only if, for every i, j ∈ S, B(i, dij) ⊆ S. For the similarity matrix A, there are
three non-trivial strong clusters: 3−4, 1−2−3−4 and 5−6; they form a hierarchy,
which is a characteristic feature of the strong clusters, as was shown in p. 275.

A more general concept of a weak cluster S ⊂ I is defined by the inequality
dij < max(dik, djk) for all i, j ∈ S and k �∈ S (Bandelt and Dress 1989). It appears,
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S is a weak cluster if and only if, for every i, j ∈ S, S includes intersection of
the balls B(i, dij) and B(j, dij) (Diatta and Fichet 1994). This concept will be
considered also in Section 6.4.

Subset 3−4−5 is a weak cluster (by the similarity table A) since a35 = 275 is greater

than a51 = 225 and a52 = 202, in spite of the fact that a35 is less than each of a31 and

a32. Analogously, subsets 2 − 4 and 1 − 2 − 4 are also weak clusters to be added to the

former list of the strong clusters which are, obviously, weak clusters also.

Somewhat more practical concepts of clusters appeared in analysis of the vari-
ables as, for instance, the concept of B-cluster (Holzinger and Harman 1941),
defined in terms of a similarity (actually, correlation) matrix A = (aij). To specify
the concept, let a(S) =

∑
i,j∈S aij/|S|(|S| − 1) and a(k, S) =

∑
j∈S akj/|S| be

the average similarity within S and between k �∈ S and S, respectively; the ratio
B(S) = maxk �∈S a(k, S)/a(S) is referred to as B-coefficient to decide whether any
new entity, k, is to be added to S or not, depending on how large B(S) is.

To show how this concept works, let us try it with matrix A above. We start with

S = {3, 4} since a34 = 1224 is the maximum similarity. Then we compare a(1, S) = 625,

a(2, S) = 630, and a(5, S) = 600, which leads to B(S) = a(2, S)/a(S) = 630/1224 =

0.501. Let us check what happens if we add 2 to S. Now, S = {2, 3, 4} and a(S) = 828;

a(1, S) = 623 and a(5, S) = 467. This leads to B(S) = 623/828 = 0.75 and adding 1

to S. With S = {1, 2, 3, 4} and a(S) = 725, a(5, S) = 406 and B(S) = 0.56. Thus, the

universal cluster consisting of all the entities is a B-cluster when the threshold equals 0.5.

When the threshold is fixed at a higher level, 0.6, the process stops in the very beginning:

S = {3, 4}.
With the mean, a = 598, subtracted, matrix A has the following form:

A =

2 3 4 5
1 − 20 −48 102 −373
2 − −147 211 396
3 − 626 −323
4 − 326

With threshold 1/2, the process stops immediately at S = {3, 4} since B(S) = 0.051,

in this case.

The latter method, actually, belongs to the set of methods based on entity-to-set
linkage functions discussed in more detail in Chapter 4.

We can see that there are many possible definitions of the cluster concept, each
yielding to a particular method. One should wish to have such a set of cluster
concepts which is ordered somehow in itself and, as well, is compatible with other
clustering approaches.
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2.2.2 Partitioning

It is claimed that there are several dozen distinguishable algorithms for partitioning
(Mandel 1988). We’ll take into account the following four methods that seem rather
distinct while covering a significant number of more specific algorithms:

1. Moving Centers (K-Means).

2. Exchange.

3. Seriation.

4. Graph Partitioning.

Let us consider them in turn.

Moving centers (K-Means) This is a major clustering technique developed
in different countries in many particular versions and programs. Its history can
be traced back into the 60’s when different versions of the method were developed
and partly published as (sequential) K-Means by MacQueen 1967 and ISODATA
by Ball and Hall 1967. The principal parameters of the moving-centers method
are: (1) a method for computing a centroid point c(S) for every particular subset
of the entities S ⊆ I, and (2) a metric d(i, c) between entities i ∈ I and centroid
points c. In general, the centroid and entity points might belong to different spaces
(Diday et al. 1979, Aivazian et al. 1989). Here are some choices for centroids from
the literature:

1. When the entities i ∈ I are presented as the rows yi ∈ Rn of a quantitative
entity-to-variable matrix:

a. the gravity center y(S) =
∑

i∈S yi/|S|,
b. the coefficients of the first principal component of the n variables in S;

c. the coefficients of the linear regression equation of one of the variables
with respect to the others (within S);

2. When the entities i ∈ I are presented as the rows yi of a nominal entity-to-
variable matrix:

d. the vector of the modal (most frequent) categories of the variables in S;

e. the vector of the (relative) frequencies of all the categories;

3. When the data are represented by a dissimilarity matrix:

f. an entity i ∈ I minimizing the total dissimilarity d(i, S) =
∑

j∈S dij/|S|
or d(i, S) = maxj∈S dij or d(i, S) = minj∈S dij (the average or farthest
or nearest neighbor, respectively);
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g. an entity i ∈ S maximizing the total dissimilarity d(i, I − S) with the
complement of S, among all the entities from S.

Some of the centroid definitions require that a particular distance d(i, c) be
defined as in the items (b) and (c) where the centroid actually represents a hyper-
plane: the distance of a row-vector from that hyperplane is taken as d(i, c); the
other definitions may be employed with the ordinary distances/dissimilarities.

The algorithm starts with choosing a set of m (in many publications, k, which
explains the method’s title) tentative centroids c1, ..., cm. Usually, these are taken
randomly, though a set of suggestions for more reasonable choice can be made as
follows:

(a)Threshold: Starting from a (most distant from the others) entity-point as
c1, the entities are observed one-by-one unless a yi occurs having its distance
d(yi, c1) > Rb where Rb is a pre-fixed threshold; this yi is taken as c2. The
observation process then continues, adding a new center each time an entity occurs
having its distance from each of the centers already chosen larger than Rb.

(b) Bi-Threshold with Smoothing: There are two thresholds pre-fixed: Rb, the
least admissible distance between cluster centers, and Rw, the maximum admissible
radius of a cluster. Then, the entities are observed sequentially. The first is taken
as c1 with its weight 1. The general step: there are some centers c1, ..., cl found
along with their weights w1, ..., wl. Then, for any next entity, yi, the following
options are applied depending on the distance d(yi, c(i)) where c(i) is the closest
to yi among the centers c1, ..., cl. If d(yi, c(i)) < Rw then c(i) is recalculated as the
center of gravity of c(i) with its weight w(i) and yi with its weight 1 (smoothing).
If d(yi, c(i)) > Rb, a new center is defined cl+1 = yi as having weight wl+1 = 1.
Else, a next entity is considered. This process gets a somewhat more meaningful
set of centers than the previous one.

(c) Anti-Cluster Seriation: Using a linkage function f(i, S) (S ⊂ I, i ∈ I − S)
(see Section 3.2) where S denotes a set of the tentative centers selected at a general
step, and starting with two entities farthest from each other as centers, apply the
seriation procedure to obtain a pre-fixed number m of centers.

(d) Expert: Based on prior knowledge of the problem, take some variable space
points expressing the expert opinion on the typical combinations of the variable
values as the tentative centers. Since the expert-given centers might have no ob-
served entity-points around, this option can lead to a nice combination of the theory
with reality, suggesting possible correction of the data set and/or the theoretical
understanding.

Then, in both of the major options used, parallel and sequential, two updating
steps are reiterated until a stopping condition is satisfied. The steps are: (1)
updating of the clusters, (2) updating of the centers (centroids).
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K-Means: An Iteration
(1) Updating of the clusters
Parallel K-Means: All the entities are considered available on any step;
updating of the clusters is made based on the so-called minimal distance
rule, which, for any t = 1, ..., m, collects in St all the entities which
are the nearest to ct (if an entity is at the same distance from several
centers, an arbitrary decision is made, say, putting it in the cluster with
the minimal index t among the competitors).
Sequential K-Means: Only one entity is available each time to be as-
signed to the nearest center’s cluster.
(2) Updating of the centroids
In both of the options, this is done by taking the centroids of the clusters
St found. In the sequential option, only two clusters are changed: the
one the entity was added to, and the one the entity was taken from; only
those clusters’ centers are changed which can be done incrementally,
without total recomputation.

The process stops, usually, when updating step does not change the clusters
found at the previous iteration. When the sequential option is employed, the
entities are observed in a pre-fixed order; the total number of repeated runs overall
through set I may be used for stopping the process.

It is quite obvious that the alternating square-error minimization procedure
is equivalent to the K-Means algorithm when it involves Euclidean distance and
centers of gravity of the clusters as standard points.

A somewhat heuristically enriched method is suggested by the name of ISO-
DATA (Iterative Self-Organizing Data Analysis Techniques) (Ball and Hall 1967):
after the moving centers are stabilized, either of two options is performed: the
splitting of too large clusters or the merging of too close clusters. The method,
currently, is not in great use since it involves too many heuristic parameters.

Bezdec 1974 suggested a fuzzy version of K-Means. It involves a fuzzy m-
class partition which is represented with an N × m membership matrix (zit) (i ∈
I, t = 1, ...m) where zit is degree of membership of entity i in cluster t satisfying
conditions: 0 ≤ zit ≤ 1 and

∑m
t=1 zit = 1 for every i ∈ I. The calculations are

based on an analogue of the square-error criterion (2.26),

B(z, c) =
m∑

t=1

∑
i∈I

zα
itd

2(yi, ct) (2.27)

where α ≥ 1 is a parameter and d is Euclidean distance.

By analogy with the parallel K-means method, which is an alternating optimiza-
tion technique, a fuzzy K-Means can be defined as the alternating minimization
technique for function (2.27). The centroids, actually, are weighted averages of
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the entity points, while the memberships are related to the distances between the
entities and the centroids.

Jawahar, Biswas and Ray 1995 extended criterion (2.27) to the case when every
cluster may be represented with several kinds of centroids simultaneously (the grav-
ity center as the zero-degree centroid, the normal vector to a central hyperplane,
as the first-degree centroid, etc.) along with particular weights assigned to the
centroid of each kind in each of the clusters. Minimizing the criterion with regard
to the three groups of the variables (membership functions, centroid characteris-
tics, centroid weights) has been demonstrated to work well for revealing clusters
of distinct geometry.

Let us analyze matrix A (based on the similarities rather than on dissimilarities) with
the parallel K-Means method, using the centroid definition (g) from the list above (the
average neighbor), and taking 1 and 3 as the tentative centroids of the two clusters to
obtain.

To assign the other entities to the centroids, we can see that 2 goes to 1 while 4 and
5 to 3: for example, a53 = 275 > a51 = 225 implies that 5 is assigned to centroid 3, not
1. To update the centers, we see that, in cluster 1 − 2, the average similarity of 2 with
the others (the entities 3, 4, 5) is a bit less than that of 1, which makes 2 the centroid.
Analogously, 5 becomes the unanimous centroid being much less similar to 1 and 2, than
the other elements of the second cluster.

Next updating iteration: 1 and 3 go to 2 while 4 is more close to 5; 1 becomes the

centroid since its similarity to 4 and 5 is less than that of 2 and 3; in cluster 4 − 5, 5

remains the centroid. Next updating iteration: 2 and 3 go to 1 while 4 remains in the

second cluster; the clusters coincide with those found at the previous iteration. This stops

the process: the clusters found are S1 = 1 − 2 − 3 and S2 = 4 − 5.

The sequential and parallel options of the moving centers method may lead
to different results, since the centers are changing permanently depending on the
ordering of the entities observed, in the sequential version. Also, the sequential
version appears to have a somewhat larger set of solutions estimated since it checks
the situation after every particular entity observed, which is supported with some
experimental evidence (see, for example, Zhang and Boyle 1991). On the other
hand, the parallel version works faster.

An important feature of the moving centers method is that some of its versions
can be interpreted as local search methods for optimizing some clustering criteria.
The most popular is the version employing the gravity center (a) concept as the
centroid and Euclidean (squared) distance d(yi, y(S)) as d(i, c(S)). As was noted
above, the moving centers method so specified is nothing but an alternating mini-
mization technique applied to the square-error (WGSS) criterion (this subject will
be further elaborated in Section 5.2).
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Exchange Algorithm.

Let f(S) be a criterion defined for partitions S = {S1, ..., Sm} of I; a maximizer
of f(S) is the clustering sought. The family of exchange algorithms can be defined
as local search algorithms based on the neighborhoods generated by moves of one or
two entities. More explicitly, let S(i, t) be a partition obtained from S after entity i
has been moved into class St; the criterion change equals ∆(i, t) = f(S(i, t))−f(S):
the larger the ∆(i, t), the better the move. The local search algorithm based on the
neighborhood N(s) = {S(i, t) : i ∈ S, t = 1, .., m} is called the exchange method.

Let us consider, in the example of similarity matrix A, criterion g(S) =
∑

t
A(St)/nt

where A(St) is the sum of all the similarities within St and nt = |St|. When entity i is
moved from S1 into S2, the criterion change is equal to

∆i = 2(a(i, S2) − a(i, S1 − i)) + bi

where a(i, S) is the average similarity between i and the elements of S, and bi = a(S1)−
a(S2) + (2/(n2 + 1)(a(S2) − a(i, S2)) where a(S) is the average similarity within S. Let

the initial partition be taken from the preceding computation, S = {1 − 2 − 3, 4 − 5}.
The averages are: a(S1) = 540, a(S2) = 924, a(4, S1) = 911, a(5, S) = 234, a(1, S2) =

463, a(2, S2) = 506, a(3, S2) = 750. Obviously, to check the partition S, we must consider

the largest similarity a34 = 1224 to be put within a cluster by either moving 3 into S2 or

4 into S1. For the first move, ∆i = 2(750 − 500) + 540 − 924 + (2/3)(924 − 750) = 232,

and ∆i = 2(911 − 924) + 924 − 540 + (2/4)(540 − 911) = 173, for the second move.

Although both of the moves make the criterion value increasing, the first increase is larger.

Partition S = {1 − 2, 3 − 4 − 5} is the result of the first iteration of the local search. All

the averages recalculated (the general formulas can be easily derived for the criterion

presented) are: a(S1) = 618, a(S2) = 808, a(1, S2) = 492, a(2, S2) = 487, a(3, S1) =

500, a(4, S1) = 755, a(5, S1) = 213. Let us consider the criterion change when 4 is moved

in S1: ∆4 = 2(755 − 1074) + 808 − 618 + (2/3)(618 − 755) = −539; the other moves also

lead to negative changes, which makes the computation stop.

When applied to the square-error criterion, the exchange method becomes al-
most equivalent to the sequential K-Means method (with gravity center as the
centroid and Euclidean distance as the distance) since the latter, in fact, also in-
volves move of i to a closest cluster. The difference is that, in K-Means method,
the “cost of a move” is evaluated with the centers unchanged; they are updated
after the move has been completed while in the exchange method the centers are
considered as corresponding to the clusters updated. Actually, the criterion g(S)
considered in the example above, is equivalent to the square-error clustering crite-
rion when Euclidean distance squared is taken as the dissimilarity measure (see p.
445); the criterion, in this case, is minimized, but the increment formulas remain
true. The change of the K-Means WGSS criterion when i is moved from St into
Su is expressed with a much simpler formula:

∆(i, t, u) = nu/(nu + 1)d2(yi, cu) − nt/(nt − 1)d2(yi, ct)
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since the centers cu, ct are updated at the next step, not simultaneously with the
move.

The exchange method is especially suitable when the cardinalities of the clusters
are fixed and may not be changed in the classification process (which is the case in
some engineering problems related to module structuring). In this case, switching
pairs of entities is the elementary move in the exchange algorithm. The local search
method with the neighborhood defined accordingly is known as the Kernighan-Lin
1972 heuristic, though, in clustering, the exchange method (including the latter
version) had been known a couple of years before (see, for example, review by
Dorofeyuk 1971).

Seriation

This group of methods is based on a preliminary ordering of the entities with
subsequent cutting of the ordering to produce the clusters.

Seriation
The procedure employs a linkage function l(i, S) expressing degree of
similarity between subset S ⊆ I and the elements i ∈ I − S. This
function determines the ordering as obtained by adding entities one-
by-one: that i is added to the initial piece S of the ordering, which
maximizes the linkage l(i, S), i �∈ S.

The most natural linkage functions are the nearest, furthest and the average
neighbor as being the maximum, minimum, or the average similarity between i and
S, respectively. The last neighbor linkage takes into account only the last element
in the ordering of S. The bond energy algorithm employs the similarities with two
last elements of the order (Arabie, Hubert, Schleutermann 1990).

Let us find such an order by matrix A starting with 1 and using the average linkage
function: the subsequent pieces of the order designed are: 14 (since 4 is the nearest
neighbor to 1 with the similarity 700), 143 (since 3 has the maximum average similarity
(887) to 1 and 4), 1432 (average similarity 626), and 14325 (average similarity 406). The
ordering does not look natural since there is an increase in the average similarity (when
3 was added to 1 and 4) indicating that the initial piece should be changed. Let us
start with 3 and 4 having the maximum similarity; any order of them can be considered.
One-by-one addition of the entities leads to: 342 (average similarity 630), 3421 (average
similarity 623) and 34215 (average similarity 406). This time, the average similarities
have been decreasing, although not always smoothly. The sharp drops (when 2 and 5
were added) indicate the points to cut, which leads to the following three-cluster solution:
S = {3 − 4, 2 − 1, 5}.

Obviously, another starting point may give a different result. For example, starting

with 5, we obtain the following sequence of the intervals: 54 (924), 543 (808), 5431 (492),

54312 (520) (the average similarities are in parentheses). This leads to only the sharp

drop when 1 is added to produce the two-cluster partition S = {3−4−5, 1−2}, although
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someone may consider this sequence unnatural too since the last addition caused an

increase the average similarity. Others may consider the increase unimportant since it is

not high. This is the problem with heuristic algorithms: the heuristics can be expanded

very easily.

Yet another, not as local approach to ordering is based on the so-called Robinson
form of the similarity matrix (see Section 6.5).

In general, the seriation approach seems better fitting in the single cluster
clustering framework than in partitioning since it allows cutting a cluster out im-
mediately after a corresponding interval has been found.

Graph Partitioning.

Graph theory suggests several natural partitions of the set of vertices of a graph
with their classes being connected components (maximal subsets of chain-connected
vertices), bicomponents (maximal subsets of mutually attainable vertices), cliques
(maximal subsets of mutually adjacent vertices), and coloring classes (maximal
subsets of mutually nonadjacent vertices). This allows use of these concepts for pro-
ducing partitions by the threshold graphs associated with similarity/dissimilarity
matrices.

The concept of threshold graph can be extended to permit having different
thresholds πi for each entity i ∈ I, which allows to widen the set of graphs associ-
ated with a given similarity matrix.

1

2

4

5

3

Figure 2.29: A non-standard threshold graph.

For example, let us take into account two maximal similarities in each row i of matrix

A, which produces the graph presented in Fig.2.29. This graph contains three three-vertex

cliques (subsets 1−2−4, 1−3−4, and 3−4−5) of which two are overlapping in one point

only (1−2−4 and 3−4−5) representing 1-clusters by Jardine and Sibson 1968. If we want
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to have a partition, either of the possibilities, S = {1−2−4, 3−5} or S = {1−2, 3−4−5},
can be taken as the solution (though, from the previous computations, we know that the

latter partition is somewhat better at reflecting the similarities).

We can see why using “hard” thresholds to cut out every “small” similar-
ity makes too rough impact to the data, leading, in many cases, to quite non-
interesting solutions. It would be nice to have a “soft” threshold concept to allow
sometimes even a small individual similarity to be included within a cluster if it is
“surrounded” by the larger similarities. Such a “soft threshold” concept appears
in the approximation model context considered in Chapters 4 and 5.

Each of the methods considered can be utilized differently by being embedded
in a more general strategy; we can distinguish four such general strategies: parallel,
divisive, separative, and replicative, as follows.

1. A parallel clustering strategy is, basically, one which has been presented so
far in this section: all the clusters are constructed simultaneously.

2. A divisive clustering strategy works step by step, each step (except for the
first one) processing a cluster, not all the entity set: the cluster is partitioned
by a selected method into smaller sub-clusters, until the final partition is
obtained. This can be done by sequential partitioning of the clusters found
on preceding steps using either similarity/dissimilarity data or just dividing
them by the categories of “essential” variables (conceptual clustering).

3. A separative clustering consists of separating clusters one-by-one from the
main body of the data. In contrast to divisive clustering, the parts split here
are not symmetrical: one of them is a cluster in its final form while the other
represents the “main body” to be “cut from” again and again. This strategy
somehow still remains almost missed by the researchers, although it may be
considered a model for a typology making process. In Sections 3.3.2, 3.4 and
3.6 a few methods in the main line of the theories developed in this volume
will be presented as belonging to this paradigm, the principal cluster analysis
method among them.

4. Replicative clustering is a data analysis strategy involving independent clus-
tering of two arbitrarily selected data parts along with subsequent compari-
son of the results; this is an important but understudied area of research (see
Breckenridge 1989, Ivakhnenko et al. 1985).

2.2.3 Hierarchical Clustering

Logically, several approaches are possible to find a hierarchy associated with the
data. Surprisingly, the only methods widely utilized belong to the family of se-
quential fission (agglomeration) or fusion (division) methods that construct the
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hierarchy level-by-level, from bottom to top (agglomerative clustering) or from top
to bottom (divisive clustering).

Agglomerative clustering can be presented in the following unified way (Lance
and Williams 1967, Jambu 1978). Let (dij) be a dissimilarity entity-to-entity
matrix. Initially, each of the cases is considered as a single cluster (singleton). The
main steps of the algorithm are as follows.

Agglomerative Clustering
Step 1. Find the minimal value di∗j∗ in the dissimilarity matrix, and
merge clusters i∗ and j∗ .
Step 2. Transform the distance matrix, substituting one new row (and
column) i∗ ∪ j∗ instead of the rows and columns i∗, j∗, with its dissimi-
larities defined as

di,i∗∪j∗ = F (dii∗ , dij∗ , di∗j∗ , h(i), h(i∗), h(j∗)) (2.28)

where F is a fixed (usually linear) function and h(i) is an index function
defined for every cluster recursively: h(i∗ ∪ j∗) = d(i∗, j∗), h({i}) = 0
for all i ∈ I. If the number of clusters obtained is larger than 2, go to
Step 1, else End.

The result of the agglomerative procedure can be represented as a tree
(Fig.2.30): the singletons are in the lowest level, and every merging is shown by a
node of a higher level connected with the two cluster nodes merged. Height of the
merged cluster i∗ ∪ j∗ node is proportional to the index function h(i∗ ∪ j∗).

There are several popular specifications of the method:

1. Nearest Neighbor (Single Link): the between-cluster distance di∗j∗ is de-
fined as the minimum of the distances dij by all i ∈ i∗, j ∈ j∗; di,i∗∪j∗ =
min(dii∗ , dij∗ ), in formula (2.28).

2. Farthest Neighbor (Complete Link): the between-cluster distance di∗j∗ is
defined as the maximum of the distances dij by all i ∈ i∗, j ∈ j∗; di,i∗∪j∗ =
max(dii∗ , dij∗ ), in formula (2.28).

3. Average Neighbor (Average Link, UPGMA): the between-cluster distance
di∗j∗ is defined as the average of the distances dij by all i ∈ i∗, j ∈ j∗;
di,i∗∪j∗ = (ni∗dii∗/(ni∗ + ni) + nj∗dij∗/(nj∗ + ni)), in formula (2.28).

4. Centroid Method: the between-cluster distance di∗j∗ is defined as the distance
between centroids of the clusters i∗ and j∗, centers of gravity, usually; in this,
latter case, di,i∗∪j∗ can be expressed with the linear form of function F in
formula (2.28) when the distance used is Euclidean.
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Figure 2.30: Various link clustering results for Primates (well structured data).

5. Ward’s (Incremental Sum of Squares) Method: the between-cluster dis-
tance di∗j∗ is defined as the increment of the within cluster square-error
criterion ∆(i∗, j∗) = Ei∗∪j∗ − Ei∗ − Ej∗ where ES =

∑
i∈S d2(yi, c(S))

is the sum of the squared Euclidean distances between all the entities
i ∈ S and the cluster center of gravity c(S) =

∑
i∈S yi/|S|; it appears,

∆(i∗, j∗) = ni∗nj∗d2(c(i∗), c(j∗))/(ni∗ + nj∗), weighted distance squared be-
tween the gravity centers.

The first three of the methods can be applied to any dissimilarity/similarity
data while the centroid and Ward’s methods are developed for the entity-to-variable
data (using between-centroid distances). When applied to well-structured data, all
the methods give the same or almost the same result as presented in Fig.2.30 for
matrix D. When the structure is somewhat hidden or complicated, the methods
may give quite different results. In Fig.2.31, the hierarchies found for matrix A
with complete link (a), single link (b), and average link (c) methods are presented
along with corresponding similarity matrices obtained after first merging the closest
entities, 3 and 4 (note that the data is a similarity, not dissimilarity, matrix, which
makes corresponding changes in the nearest and farthest neighbor algorithms).
Each of the methods leads to a quite different structure, which makes the user
quite unconfident in what he can get with them.
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Figure 2.31: Agglomerative clustering for controversial data: complete (a), single
(b) and average (c) link trees.

Lance and Williams (1967) suggested an almost linear form for function F in
(2.28) to include the main agglomerative clustering methods:

di,i∗∪j∗ = αi∗dii∗ + αj∗dij∗ + βdi∗j∗ + γ|dii∗ − dij∗ | (2.29)

The coefficients for the methods listed above are presented in Table 2.32. For more,
see Jambu 1978, Gordon 1996.

Among these methods, single and complete linkage methods are especially sim-
ple; in terms of the threshold graph, the former finds connected components while
the latter, some cliques. This is why these two methods may be considered to
represent two extremes of the generally accepted requirement that the “natural”
clusters must be internally cohesive and, simultaneously, isolated from the other
clusters: single linkage clusters are isolated but can have very complex chained
and noncohesive shape; in contrast, complete linkage clusters are very cohesive,
but may be not isolated at all. The other three methods represent a “middle way”
and are rather close to each other: it is obvious for Ward’s and centroid methods
since Ward’s criterion is just a weighted version of the latter one; the average link
method, actually, can be considered a version of the centroid method when the
distances, as it frequently happens, are just linear functions of the scalar products
between the entity-vectors (the average between-cluster scalar product equals the
scalar product of the cluster gravity centers).

To overcome the disadvantages of single and complete linkage methods, Lance
and Williams 1967 suggested the so-called β-flexible clustering strategy which re-
quires β be between -1 and 1 while αi∗ = αj∗ = (1 − β)/2 and γ = 0, in their
recurrence formula (2.29). However, value of β can be adjusted in such a way that
the flexible strategy can model both single and complete linkage methods, though
with a non-linear form of the function F in (2.29), that is, it requires changing β at
each amalgamation step. Let the following inequalities hold: di∗j∗ < dii∗ < dij∗ .
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Method αi∗ αj∗ β γ

Single linkage 1/2 1/2 0 -1/2

Complete linkage 1/2 1/2 0 1/2

Average linkage ni∗
ni∗+nj∗

nj∗
ni∗+nj∗

0 0

Centroid ni∗
ni∗+nj∗

nj∗
ni∗+nj∗

−ni∗nj∗
(ni∗+nj∗ )2 0

Ward method ni∗+ni

ni∗+nj∗+ni

nj∗+ni

ni∗+nj∗+ni

−ni

ni∗+nj∗+ni
0

Table 2.32: Lance-Williams coefficients for most known agglomerative clustering
methods.

Denoting δ = dij∗ − dii∗ and ε = dii∗ − di∗j∗ and taking β = ±δ/(δ + 2ε), one
obtains single linkage or complete linkage depending on whether + or − is taken,
respectively (Oshumi and Nakamura 1989). Different values β may lead to some
intermediate clustering strategies.

Yet another parametrization of the problem is considered in (Aivazian et al.,
1989) as based on the so-called (Kolmogoroff) K-distance between clusters, which is
actually the average between-cluster link defined, using the p-power of the between-
entity distances:

dp(i∗, j∗) =
∑
i∈i∗

∑
j∈j∗

dp
ij/ni∗nj∗ .

Although the formula seemingly involves the average linkage only, it behaves
differently for different p: it follows the maximum between-cluster distance when
p is large positive, the minimum between-cluster distance when p is large negative,
and it gives the average link distance when p = 1. These three cases correspond,
respectively, to the single, complete and average linkage methods. In the author’s
experiments with low-dimensional geometric point data using Euclidean distance,
the single and complete linkage solutions were found with p equal to −10 or +10,
respectively.

With regard to these possibilities, we cannot help but agreeing with the fol-
lowing remark: “There is, however, some danger in adjusting the parameters until
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one obtains what one likes, rather than choosing some prior criterion and stick-
ing to the results.” (Sneath and Sokal 1973, p. 227-228). Diday and Moreaux
1984 suggest an interesting application of the flexibility of the family of Lance-
Williams-Jambu agglomerative algorithms (2.28), (2.29): learning the parameters’
values from a model-based hierarchy presented along with all its between-cluster
distances. Having such a data set, the parameters’ values are adjusted with or-
dinary linear regression analysis technique; the examples reported by Diday and
Moreaux involve successful learning of quite complicated cluster shapes.

2.2.4 Biclustering

The term biclustering refers to simultaneous clustering of both row and column sets
in a data matrix. Biclustering addresses the problems of aggregate representation
of the basic features of interrelation between rows and columns as expressed in the
data. We distinguish between the following bicluster counterparts to the methods
discussed above: single cluster biclustering, partition biclustering, and hierarchical
biclustering, which will be considered in turn.

Single Cluster Biclustering

It seems, Hartigan 1972, 1975, 1976 was the first who considered the problem
explicitly. Given an entity-to-variable matrix with its row set I and column set J ,
a block is defined as a submatrix with the row set V ⊆ I and column set W ⊆ J
having a standard vector cV = (cv), v ∈ V, of the column values within the
block (“block code”). The standard vector may consist of the means (when the
variables are quantitative) or the modal values (when the variables are qualitative).
Hartigan’s block clustering algorithms involve: 1) “elimination” of the grand means
or modes, initially; 2) adding/excluding the rows and columns one by one for better
adjusting the block and its block code.

Similar concept of box as a submatrix characterized by a typical similarity
value λV W (not vector) applied to similarity data was considered by Rostovt-
sev and Mirkin 1978, Eckes and Orlik 1993, and Mirkin, Arabie and Hubert
1995. They considered square-error-like criteria and applied similar one-by-one
adding/excluding algorithms.

A typical result was reported in Mirkin 1985 based on analysis of the variable-to-

variable correlation Activities data in Table 17, p. 199. It appeared that three small boxes

(A: Sex and Job (rows) to the time spent for Eating, Cooking and Cleaning (columns);

B: Age and Children to the time spent for Nursing children; C: Number of working days

a week, Farmyard, Sex and College education level to the time spent working at Work or

Farmyard) accounted for 64% of the variance of the data. This was used in the subsequent

analysis of the activities as restricted to the within-box associations (Mirkin 1985).
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In Boolean data analysis, a bicluster notion, Galois connections or (box) con-
cepts, have attracted considerable effort. Given a Boolean matrix, r = (rij), i ∈
I, j ∈ J, a submatrix rV W = (rij), i ∈ V, j ∈ W , is referred to as a con-
cept (Wille 1989) or Galois connection (Flament 1976) if it is a maximal (by set-
theoretic inclusion) submatrix having all its entries equal to unity. A polynomial
time graph-matching algorithm for finding the box concepts (introduced under a
different name) having maximal perimeter (the total number of rows and columns)
is described in Levit 1988.

Partition Biclustering

Partition biclustering, when considered for similarity data, usually is regarded
as a tool for rearranging the data matrix by its row-column permutation in such a
way that the larger similarities in the matrix are concentrated among the nearest
neighbors in the sequences, an idea proposed by Robinson 1951 in a particular
problem and then extended to more general framework (see Hubert and Arabie
1994 and the references therein, and also Section 6.5).

For example, the bipartitioning algorithm proposed in Arabie, Schleutermann,
Daws, and Hubert 1988 as an extension of the so-called “bond energy” algorithm,
primarily finds row and column seriations to maximize the function∑

i∈I

∑
j∈J

aij [ai,j−1 + ai,j+1 + ai−1,j + ai+1,j ] (2.30)

which heavily depends on the concentration of larger similarity values among neigh-
bors in sought sequences of the elements of I and J .

Marcotorchino 1987 is motivated by the same idea, though he considers a
genuine bipartitioning problem of simultaneously finding ordered partitions S =
{S1, ..., ST } of I and R = {R1, ..., RT } of J having the same number of clusters to
contain the largest similarities within the corresponding clusters St × Rt connec-
tions as expressed with criterion∑

t

∑
i∈St

∑
j∈Rt

(aij − 1/2)

to be maximized. His algorithm closely follows the K-Means partitioning pro-
cedure: starting with a partition R, every cluster St is collected to contain the
entities i ∈ I maximally contributing to Rt (t = 1, ..., T ). Then, the procedure is
repeated, this time starting from St. These iterations are performed repeatedly
until no change is observed in S or R.

A similar algorithm was developed by Govaert 1980 for contingency data (see
more details in Section 5.4).

A particular approach to entity-to-variable data bipartitioning was suggested
by E. Braverman et al. 1974 based on the so-called method of extremal grouping
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of the variables (Braverman 1970, Braverman and Muchnik 1983). The method
seeks a partition of the set of the variables (data table columns) maximizing the
average contribution of the first principal component of each cluster of the variables
to the total variance of the cluster. Then (or, in later versions, simultaneously) a
partition of the entities by every variable cluster is found which gives an aggregate
representation of the data: every row of the data matrix is represented as a sequence
of the entity clusters (made by different variable clusters) it belongs to.

Hierarchical Biclustering

In analysis of species-to-site contingency data in ecology, an efficient hierarchi-
cal biclustering method (Hill 1979, ter Braak 1986) is employed probably based
on the particular feature of the data that, usually, each species tends to inhabit
geographically close areas. The method has been implemented in a program in-
volving: (1) step-by-step splitting of the site clusters via ordination of the sites
along the first correspondence analysis factor; (2) at each division step, finding the
so-called differential species who inhabit, mostly, only one of the splits; (3) recod-
ing the original abundance of the species into the so-called pseudo-species which
are nothing but some Boolean categories defined by thresholds. In the original
program, the bihierarchy was represented by corresponding rearrangement of both
the rows and columns (Hill 1979). Then, ter Braak (1986) suggested representing
the results with only one hierarchy, of the sites, supplemented with two kinds of
discriminating conceptual descriptions for each cluster: in terms of the differential
species and the environmental variables.

A distinctive hierarchical biclustering method is developed in De Boeck and
Rosenberg 1988, Rosenberg, Van Mechelen and De Boeck 1996 for Boolean data
tables. The method involves arbitrary subsets of the rows or columns ordered by
set-theoretic inclusion; the subsets may arbitrarily overlap each other, which gener-
ates a most general kind of hierarchy, maybe not as good for representing scientific
theories but well adapted to representing real-world knowledge and structures.

Let us consider the method in more detail using data set Tasks (Table 8, p. 186) where
seven persons are described in terms of their success/failure patterns, which provides us
with the following 7 × 6 Boolean matrix:

r =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 1 0 0 0
1 1 0 1 0 0
1 1 1 0 1 1
1 1 1 0 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

In the matrix r = (rij), every row i ∈ I defines a corresponding column subset
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Wi = {j : rij = 1} and every column j ∈ J defines a row subset Vj = {i : rij = 1};
the subsets are partially ordered by set-theoretic inclusion, which is extended into
corresponding row and column partial preorders. That means that j1 � j2 when
Vj1 ⊆ Vj2 ; and similar � relation is defined for the rows (with sets Wi).

Peter

Dave     Andrew

Mark     John

Mathematics

Vocabulary
Synonims

Jigsaw
puzzles

Planning  routes

Geography  problems

Olivia    Ann2

2

3
1

1
3

Figure 2.32: Tasks data biclustering: Row cluster hierarchy goes up above zigzags
while column cluster hierarchy goes down; the numbers denote the latent variables.

For instance, row set 3-4-5-6-7 corresponding to column 1, obviously, contains over-
lapping row sets, 3-6-7 and 4-5-6-7, corresponding to columns 4, 5 and 6.

The graphical representation of the partial preorders in Fig.2.32 shows: (a) the hier-
archy of the rows (by inclusion among column subsets) corresponding to persons (from
top to the middle), (b) the hierarchy of the columns (by inclusion among row subsets)
corresponding to tasks (from bottom to the middle), (c) correspondence between classes
of the lowest levels in the hierarchies (empty boxes are needed to have only the boxes of
the lowest levels connected). The correspondence relation in (c), in fact, states an asso-
ciation between the row and column classes of the equivalence relations corresponding to
relation �: a given column class is associated with all the classes of the rows which have
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some of their attributes belonging to that column class, and vice versa, a given row class
is associated with all the column classes that are the attributes of that row class.

This association is easily seen in Fig.2.32 by transitivity. For instance, correspondence

between row 3 (Peter) and column 4 (Mathematics) makes also association between rows

6/7 (Dave/Andrew) and columns 1/2 (Vocabulary/Synonyms).

Actually, the picture in Fig.2.32 is a graphical representation of the Boolean
matrix equation r = v � w where v = (vik) and w = (wkj) and (i, j)-th entry in
v � w is equal to maxk min(vik, wkj); k can be interpreted as a “latent” Boolean
attribute which is meaningful for both the rows and columns. Every latent variable
corresponds to a join in Fig.2.32 (which is shown by corresponding numbers in the
boxes). The equation means that every observed row- or column-class, actually,
is equal to the union of corresponding “latent” classes; this is called “disjunctive
model” in Rosenberg, Van Mechelen and De Boeck 1996. The “conjunctive model”
of these authors refers to a similar matrix equation, rij = mink max(vik, wkj). Note
that the models are Boolean analogues to the bilinear model in Sections 1.3.1 and
5.1.

In the example considered, the latent variable matrices associated with the picture in
Fig.2.32 are as follows:

v =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 0 0
0 1 0
1 0 1
1 0 1
1 1 1
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

and

w =

(
0 0 1 0 0 0
1 1 0 1 0 0
1 1 1 0 1 1

)

Although in Rosenberg, Van Mechelen and De Boeck 1996 this example was employed

for the conjunctive model decomposition only, the factors found with the disjunctive

model also can be interpreted in terms of some basic strategies employed by the persons

for resolving the tasks: nonverbal (1), nonspatial (2), and nonquantitative (3).

An alternating optimization approach to fit the Boolean matrix equation when
some of the entries can be erroneous is mentioned in De Boeck and Rosenberg
1988. The method leads to an original and impressive output and deserves to be
further elaborated.
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2.2.5 Conceptual Clustering

The roots of conceptual clustering can be traced back to work done in the late fifties
- early sixties by Williams and Lambert 1959 and Sonquist et al. 1973. A new
impetus was done in the eighties by Breiman et al. 1984 who developed a technique
along with a bunch of theoretical results on the consistency of classification trees
obtained for a random sample with the population structure, and by Michalski
and Stepp 1983 who put the concept in the perspective of artificial intelligence as
a basic notion in machine learning.

To present the variety of most common conceptual clustering techniques devel-
oped, let us use the following notions:

1. Learning Task. There have been four classification learning tasks considered:

(a) Learning a class (a class S ⊂ I is given, the classification tree must give
a decision rule for distinguishing between S and non-S (Quinlan 1986).

(b) Learning a partition (a partition of the set I is given; the classifica-
tion tree must give a decision rule for distinguishing between its classes
Breiman et al. 1984, Fisher 1987).

(c) Self-learning (the classification tree must represent a conceptual struc-
ture of the given set of the variables, qualitative or quantitative
(Williams and Lambert 1959, Sonquist, Baker, and Morgan 1973, Lbov
1981, Rostovtsev and Mirkin 1985).

(d) Learning association between two sets of the variables (there are two
groups of the variables considered, X and Y ; the classification tree is
designed with X-variables to produce clusters that are meaningful with
regard to Y -variables (Rostovtsev and Mirkin 1985).

Obviously, the last item, (d), can be considered as a generalization of the
items (b) (Y consists of a unique categorical variable representing the parti-
tion given) and (c) (Y = X).

2. Data Availability.

The data for learning a tree can be available: (1) all immediately, or (2) in-
crementally, entity by entity, which is considered better corresponding to real
world learning problems (especially when no reprocessing of the previously
incorporated observations is permitted).

3. Method for Tree Construction.

The major conceptual clustering algorithms construct decision trees from
top to bottom (the root representing the universe considered) in a divisive
manner, each time deciding the following problems:
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1. Which class (node of the tree) and by which variable to split?

2. When to stop splitting?

3. How to prune/aggregate the tree if it becomes too large?

4. Which class to assign to a terminal node?

Item 4 concerns the first two learning tasks: class or partition learning. The
aggregating classes in item 3 is the only way, in this framework, to get more
than just conjunctive concepts formed by sequential addition of the splitting
characters.

In the case of the incremental clustering, pruning/aggregation decisions can
be made while producing the tree; this requires the items 2 and 3 to be
substituted by the operation of choosing the best action with regard to an
entity x being incorporated in a class. The actions to choose from are as
follows: (a) put x into an existing child class; (b) create a new child class
containing x; (c) merge two child classes into a new class containing x; (d)
split the class into its children, adding x to the best of them (Fisher 1987,
Gennari 1989).

To decide which class S to split and by which variable it is to be split,
a goodness-of-split criterion must be defined. There is a general way for
defining such a criterion based on a measure of dispersion (called impurity
in Breiman et al. 1984)) of the variable y in subset S, δ(y, S). When S is
divided in subclasses {St}, the change of the measure, ∆(y, {St}) = δ(y, S)−∑

t ptδ(y, St), where pt is the proportion of the entities of S sent to St under
the split, can be used as the criterion of goodness-of-split with regard to the
variable y. The larger ∆(y, {St}), the better the split. In Breiman et al.
(1984), such a measure is employed in the situation when y is just a pre-
given partition of the entities, and δ(y, S) is the Gini index or qualitative
variance of the corresponding partition, equal to δ(y, S) = 1 − ∑u p2(u)
where p(u) is the proportion of the entities in S belonging to category u of y,
and summation is made by all the categories of y. When y is a quantitative
variable, the measure δ(y, S) can be its variance in S. In this case, the ratio
∆(y, {St})/δ(y, S) has a particular meaning in statistics, being the so-called
correlation ratio (squared) of the variable y with regard to the split (see
Section 5.1.2).

When learning task (c) or (d) is considered, the changes ∆(y, {St}) are
summed up over all the target variables y ∈ Y (Y = X , in task (c)). In
this case, a normalization of change ∆(y, {St}) for each y is needed to keep
the variables equivalent. In Rostovtsev and Mirkin 1985 two normalization
methods are considered: by value, as it is done to get the correlation ratio
above, and by distribution: in standard statistical assumptions, the change
|St|∆(y, {St}) converges (by distribution) to distribution χ2

p with a num-
ber p of degrees of freedom, which makes meaningful Fisher’s approximation
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φ =
√

2χ2
p −

√
2p − 1 of the normal distribution standardized to serve as the

standardization formula. When the assumptions are fair, this normalization
admits a direct interpretation: 1 − φ is the probability of getting a better
split by splitting randomly.

Among the other goodness-of-split criteria considered for categorical vari-
ables, the following two should be mentioned:

(a) Twoing Rule (Breiman et al. 1984) applied when split of S is made into
two subclasses, S1 and S2, only:

tw(y, S1, S2) =
p1p2

4
[
∑

u

|p(u/S1) − p(u/S2)|]2

where u are the categories of y.
(b) Category Utility Function (Fisher 1987, referring to Gluck and Corter

1985) applied when there is a set of categorical variables Y and the
split is made into any number T of subclasses St, t = 1, ..., T . In our
denotations, the criterion is

CU(Y, {St}) =
∑
y∈Y

[
∑
uy

∑
t

p2
uyt

pt
−
∑
uy

p2
uy

]/T

which is proportional to the so-called reduction of the error of propor-
tional prediction (see p. 4.1.4).

Tolstoy

Presentat

InMon

DirectThought

Behav

NoYes

Figure 2.33: A concept tree for L. Tolstoy novel class.

Let us consider the learning task of separating the Leo Tolstoy masterpieces using the
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two qualitative variables from the Masterpiece data in Table 12, p. 192. The goodness-
of-split criterion should address the problem as it is, thus relating only to the separated
class s, without involving the non-Tolstoy class.

Since no criterion for that has been suggested in the literature, let us consider a
criterion averaging the squared differences between the general probability ps of the class
and its probabilities p(s/t) in the decision classes t created: the larger the absolute value
of the difference, the clearer presence or absence of s in t:

W ({St}) =
∑

t

(p(s/t) − p(s))2p(t)/(T − 1)

where p(s), p(t), and p(s/t) are (empirical) probabilities of the corresponding events. This
measure is consistent with the following assignment rule: a terminal node, t, is labeled
by the Tolstoy class mark s if the difference p(s/t)− p(s) is considerably high; otherwise,
t is assigned with a no-s label.

In the literature, usually, the value p(s/t) itself is considered a good assignment index
(see, for example, Breiman et al 1984) which is fair when p(s) is relatively small. When
p(s) is relatively large, values p(s/t) tend to be also large for each t. The absolute
probability change p(s/t) − p(s) seems a more flexible measure, in this case (Mirkin
1985).

To decide which of the two variables, InMon or Presentat, has to be used for splitting

of the entire set of the masterpieces by its categories, let us calculate the criterion value

for each of them:

W (InMon) = [(2/5 − 1/4)25/8 + (0 − 1/4)23/8]/1 = 0.0375, and

W (Presentat) = [(2/3 − 1/4)2 + (0 − 1/4)21/4 + (0 − 1/4)23/8]/2 = 0.0521, which

implies that splitting by the latter variable is somewhat better. Having now three subsets

corresponding to the categories Direct, Behav, and Thought, we can see that only the first

of them is of interest for sequential splitting; the other two just contain no Tolstoy novels.

Then, we have only the possibility of splitting class Direct by categories of InMon, which

produces decision tree presented in Fig.2.33 along with the only conjunctive conceptual

cluster “Presentat=‘Direct’ & InMon=‘Yes’ ” corresponding to the Tolstoy novel class.

2.2.6 Separating Surface and Neural Network Clustering

To discuss the problem of finding a separating surface G(x) for a subset S of n-
dimensional points, one needs a definition of the source class of the discriminant
functions G. A quite general formulation based on so-called VC-complexity classes
was given by V. Vapnik and A. Chervonenkis in the late sixties (see Vapnik 1982).
A simple formulation defines that as the class of linear functions G(x) = (c, x)
where c is normal vector to the hyperplane G.

There exists an approach, called the potential function method, which is quite
general and, at the same time, reducible to linearity. The potential function ψ(x, y)
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reflects a kind of “influence” of a “prototype point” y upon the variable space point
x and, usually, is considered a function of the squared Euclidean distance between
x and y such as ψ(x, y) = 1/(1 + ad2(x, y)) or ψ(x, y) = exp(−ad2(x, y)) where a
is a positive constant.

The potential discriminant function for a class S ⊆ I is defined then as the
average potential with respect to the points of S as the prototype points: GS(x) =∑

i∈S ψ(x, yi)/|S|. It appears that using in the GS(x) potential function ψ(x, y) =
exp(−ad2(x, y)) with sufficiently large a, the function GS(x) separates any S from
I − S (Andrews 1972).

On the other hand, potential functions depending on x and y through Euclidean
distance between them, can be represented as ψ(x, y) =

∑
p λ2

pgp(x)gp(y) where
{gp(x)} is a set of the so-called eigen-functions. This allows transforming the clas-
sification problem into a so-called “straightening space” based on the transformed
variables zp = λpgp(x). In this straightening space, the potential function becomes
the scalar product, ψ(x, y) = (z(x), z(y)), which makes all the constructions linear.

Obviously, a separating hyperplane exists only for those subsets S whose convex
hull is separated from the convex hull of the rest. The first neuron-like learning
algorithm, the perceptron, was proposed by F. Rosenblatt (see Nilsson 1965) to
learn a linear separating surface when S can be linearly separated. The percep-
tron perceives the entity points coming in sequence, starting from arbitrary c and
changing it after every try with the following rule: c′ = c + θ(c,−y)y if y ∈ S and
c′ = c− θ((c, y))y if y �∈ S where y is the point perceived and θ(x) is the threshold
neuron output equal to 1 or 0 depending on whether its argument is positive or
not. This means that we add to c (respectively, subtract from c) all erroneously
classified points from S (respectively, from I−S), thus turning c toward a direction
between the summary points of S and I −S (the latter point is taken with minus).
This guarantees that the method converges.

In a multilayer perceptron, a similar learning idea requires sequential weight
changes layer-by-layer starting from the output layer (back-propagating). The
back-propagation learning process proposed by Rumelhart, Hilton and Wilson 1986
is, actually, a version of the method of steepest descent (a.k.a. hill-climbing) as
applied to the square-error criterion E(c) =

∑
i(xi−di)2 where xi and di are actual

and ideal (shown by the “teacher”) outputs of the neuron network, respectively.
Let the output of the p-th neuron in a layer equal xpi(c) = θp((cp, yi)), where yi is
the input to the neuron from the preceding layer when the input to the network is
i-th given point.
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Back-propagation
Updating step: change of the weight vector cp in the neuron is controlled
by the equation ∆icp = αδpiyi where α is the step size factor (usually,
constant) and δpi = −θ′p((cp, yi))(xi − di) if this is the output layer, or
δpi = −θ′p((cp, yi))

∑
q δqicqi for a hidden layer where q represents the

next (more close to the output) layer’s suffix.

As any local optimization method, in a particular computational environment,
the back-propagation method can converge to any local optimum or even not con-
verge at all, which does not hamper its great popularity.

The unsupervised clustering problem cannot be put so naturally in the context
of separating surfaces since it requires some ad hoc criterion for clustering. In
this aspect, the only advantage of this approach over the other optimal clustering
techniques is that the theoretical nature of the discriminant functions makes it
easy to put in a probabilistic environment (Braverman and Muchnik 1983, Briant
1991).

As to the neural-network unsupervised clustering, it seems currently in quite a
beginning phase involving rather arbitrary approaches (see Carpenter and Gross-
berg 1992, Kamgar-Parsi et al. 1990, Kohonen 1989, 1995, Murtagh 1996, Pham
and Bayro-Corrochano 1994).

2.2.7 Probabilistic Clustering

Let us consider the mixture-of-distributions and high-density clustering approaches
mentioned above.

Let y1, ..., yN be a random sample of N n-dimensional observations from a
mixture of densities f(x) =

∑T
t=1 ptf(x, at) where the unknown parameters are:

the mixing weights pt and parameters ak defining within-class densities (a = (µ, Σ)
when f(x, a) is the normal density function with mean µ and covariance matrix Σ
unknown). To estimate the parameters, the maximum likelihood method is applied
in each of the following two versions: (1) in the mixture likelihood approach (MA),
the problem is to find the parameters pt, at, t = 1, ..., T , maximizing

L = log{
N∏

i=1

T∑
t=1

ptf(yi, at)};

no partitioning of the sample is assumed, formally, which is not the case in the other
approach, (2) classification likelihood (CA), where supplementarily the sample must
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be partitioned in T classes maximizing the log-likelihood expressed as

LC =
N∑

i=1

T∑
t=1

zit log(ptf(yi, at))

where zit are the membership values, zit = 1 if yi is assigned to class t, and zit = 0
otherwise.

To deal with the maximization problems, the MA criterion is reformulated as

L =
N∑

i=1

T∑
t=1

git log pt +
N∑

i=1

T∑
t=1

git log f(yi, at) −
N∑

i=1

T∑
t=1

git log git (2.31)

where git is the posterior probability that yi came from the density of class t,
defined as

git =
ptf(yi, at)∑
t ptf(yi, at)

.

The alternating optimization algorithm for these criteria is called EM-
algorithm.

EM-algorithm
Starting with any initial values of the parameters, alternating optimiza-
tion is performed as a sequence of the so-called estimation (E) and
maximization (M) steps.
E-step: estimation of the current values git by the pt, at given.
M-step: git given, the parameters are found maximizing the log-
likelihood function (2.31), which is not difficult for most common density
functions.

If, for example, f is the normal density function, then the optimal values of
parameters can be found with the following formulas:

µt =
N∑

i=1

gityi/gt, Σt =
N∑

i=1

git(yi − µt)(yi − µt)T /gt

where gt =
∑N

i=1 git.

The EM iterations stop when the parameter estimates found do not differ too
much from those found at the preceding iteration. If the user needs an assignment
of the observations to the classes, the posterior probabilities git are utilized: i is
assigned to that t for which git is the maximum. Also, the values git/gt can be
considered as fuzzy membership values.

The problem of estimating the number of clusters, T , still has not found any
reasonable solution; a practical approach requires estimating the model for several
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different T -values to select the one which leads to a larger value of the log-likelihood
function.

In the CA approach, some estimates of the crisp membership zit must be put
within the computation process since the posterior estimates become biased here:
the number of estimated values zit grows when number of the observations in-
creases. An extension of the EM algorithm to this situation was suggested by
Celeux and Diebolt (see Celeux and Govaert 1992, Aivazian et al. 1989), adding
yet another step dealing with stochastic partitioning of the sample (S-step) between
E- and M-steps. This S-step produces a random partitioning of the sample accord-
ing to the posterior probabilities git; subsequently, the density parameters could
be estimated directly by the sampling classes (pt is estimated as the proportion of
the entities in class t, etc.)

Let us consider now high density clustering and present an algorithm for ob-
taining unimodal clusters St (t = 1, ..., m) along with a “ground” cluster S0 (Ko-
valenko 1993), which can be considered a theoretically-substantiated version of a
well known mode-search clustering algorithm by Wishart 1969. The algorithm in-
volves approximation of the general density function via the k-nearest neighbors
method (Devroye and Wagner 1977) applied to the sample. Let Vk(y) be volume
of the minimal ball with its center at y containing k sample nearest neighbors of y,
and dk(y) be its radius, that is, the distance d(y, yi) where yi is k-th nearest neigh-
bor of y. Then, pN (y) = Vk(y)(k/N) is the estimate of the density. A subsample
S is called a h-level cluster if the maximum of the differences pN(yi) − pN (yj)
(i, j ∈ S) is larger than h > 0. The algorithm designs all the h-level unimodal clus-
ters leaving the other entities in the ground cluster S0 (k is considered fixed; each
of the k nearest neighbors of a point will be referred to as its nearest neighbor).

The algorithm starts with renumbering sample entities yi with regard to dk(yi)
increase.

Unimodal high-density clustering
An iteration: For every entity i, its nearest neighbors among the pre-
ceding i − 1 entities are considered. If there are none, yi starts a new
cluster. If the neighbors are in clusters St1 , ..., Stl

( t1 < t2 < ...tl) and
all of the clusters are labeled as finished, put entity i in the ground
cluster S0. If some of the clusters are not finished, check which of them
are h-level clusters. If none or only one, then merge all the clusters
St1 , ..., Stl

into cluster S1 and put i into S1. Otherwise, label the h-level
clusters as finished, putting the others (entity i included) in the ground
class.

The labeling and checking of h-level clusterness are the model-driven options
added to Wishart 1969 algorithm; based on them, consistency of the algorithm can
be proved.
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2.2.8 Discussion

1. In the survey presented, we focus on two major problems: (1) finding a clus-
ter structure in the data and (2) finding a “theoretical”, intensional cluster
structure to describe an “empirical”, extensional one which is pregiven. The
latter subject can be described as also interpreting the extensional cluster
structure in terms of the intensional structure.

2. This latter subject usually is not considered to belong in clustering; it is la-
beled as “supervised learning”, or “pattern recognition”, in contrast to “un-
supervised learning”, or “proper clustering”. We do not see any contradiction
in that. This is the matter of a different perspective we focus on: in pattern
recognition, a decision rule must be designed to deal with potential infinity of
the set of the instances; in clustering, this is the question of finding an inten-
sional structure which would be a best-fit for a pregiven extensional structure.
It should be pointed out, that the clustering perspective as it is stated here,
actually, has never been pursued; in particular, no measure of discrepancy
between the extensional sets and discriminant functions has been suggested
so far (neither in this volume). However, it is only now when the discriminant
function is identified as a classification structure, such a perspective can be
suggested. Actually, this comment is in line with current data analysis devel-
opments. Some authors prefer to apply several known clustering techniques
to the same data thus finding both extensional and intensional descriptions
of the same structure, which gives a better understanding of what has been
really found.

3. The clustering discipline seems yet to have not reached “maturity”. Clus-
tering is considered helpful to generate questions and hypotheses when our
knowledge of the phenomenon in question is poor, but it is still primarily
an art rather than science (Jain and Dubes 1988). “Do so-and-so” recepies
prevail without any clear explanation why. For instance, in agglomerative
clustering, we calculate a similarity measure between clusters, merge the
most similar clusters, update the similarities. This is a rule as simple as it is
puzzling. Which similarity measure should be taken for the original entities
and for updating? A list of the problems facing a clustering algorithm user
includes the following:

(a) Choice of the parameters in a particular clustering algorithm (between-
entity distance measure, between-cluster distance measure, number of
clusters, threshold of significance, etc.);

(b) Evaluation of the extent of correspondence between the clusters and the
data;

(c) Interpretation of the clusters found;

(d) Choice of a clustering algorithm?
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(e) Distinguishing between the results based upon the data and those upon
the algorithm;

(f) Comparison of the results obtained with different algorithms;

(g) Processing mixed data; etc.

Mathematical modeling in clustering should address at least some of the
issues. A unified framework based on extensions of the bilinear low-rank
approximation models to cluster analysis problems, provided in Chapters 4
to 6 and Section 6.6, gives answers to some of the problems listed.

2.3 Interpretation Aids

2.3.1 Visual Display

In distance/similarity based cluster analysis, visual representation of the geom-
etry of the variable space along with the entities represented as space points is
considered a major interpretation tool.

Updated reviews of the graphical techniques employed can be found in Young,
Faldowski and McFarlane 1993 and Dawkins 1995. In clustering, we can indicate
two major graphic designs: box-plot and scatter-plot.

4

5

6

7

8

Setosa Versicolor Virginica species

SepalLen

Quantiles 20% through 80% Mean Range

Figure 2.34: Box-plot of three classes of Iris specimens from Table 10 by the variable
v1 (sepal length); the cluster bodies are presented by quantile boxes; the quantile
value can be adjusted by the user.
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A box-plot is an all-clusters-to-one-variable picture; it shows the distribution of
the within cluster ranges of a variable in the entire domain of the variable; the
averages and medians can be shown as in Fig. 2.34. A scatter-plot is a screen
display representation of all the entity points in a plane generated by two variables
or by two linear combinations of the variables (currently, many programs include
some facilities for 3-dimensional representation).
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Figure 2.35: Scatter-plot of the Iris specimens in the plane of the first two principal

components; the class centroids are presented by grey circles; the most deviant entities

(30 in class 1, 32 in class 2, and 39 in class 3) are in the boxes.

Among the linear combinations, the following three kinds are mostly used: (a)
principal components for entity-to-variable or entity-to-entity data, (b) correspon-
dence analysis factors for contingency data, (c) canonical correlation components
between the data and cluster partition indicator matrices.

These kinds of pictures seem to have little relation to the interpretation prob-
lems beyond the situations when the spatial arrangement is employed as a tool for
testing clustering algorithms or has another substantive meaning.
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2.3.2 Validation

Validation is an activity referring to testing the results of clustering. Examples of
the problems under attack: to which extent the clusters found are cohesive and/or
isolated, is the number of the clusters determined correctly or not, etc. Although
validation and interpretation are not coincident, there are many common features
to allow thinking of them as of quite intermixed: for instance, finding a good
interpretation is a part of validation; conversely, if the clusters are invalid, the
interpretation appears unnecessary. For a theoretical cluster structure, its validity
depends on the validity of the corresponding model, which can be addressed, at
least theoretically, in the framework of the model, which is the case of probabilistic
clustering.

The following concerns only empirical cluster structures, mostly subsets, par-
titions, and hierarchies. Usually, two different bases for validation are considered:
internal and external. Internal validity testing is claimed to be oriented toward
comparing the cluster structure and the data the clusters derived from, while the
external validation is to be based upon information which was not utilized for pro-
ducing the clusters (see Jain and Dubes 1988, Chapter 4 and references within).
However, in common practice, the “internal” validation is devoted to comparing
the cluster structure with any data, internal or external (formation of clusters is
just omitted), while the “external” validation refers to relating a cluster structure
to another one, given previously. This is why we prefer referring to data-based
validation, in the former case, and to cluster-based validation, in the latter case.
Let us discuss these two kinds of validation for each of the three kinds of empirical
cluster structures (subsets, partitions and hierarchies) in turn.

Validity of Single Clusters

Cluster-Based Validity

Correspondence between a cluster S and a pre-fixed subset T can be analyzed
by comparing these two subsets: the cluster is perfectly valid if S = T ; the larger
the difference between the subsets, the less the cluster validity. There are two
kinds of error to be taken in account somehow: the number of elements of S
which are out of T (corresponding to error of the first kind in statistics), and the
number of elements of T which are out of S (error of the second kind). There exist
many indices suggested to measure the degree of correspondence (see Chinchor,
Hirshman, and Lewis 1993, Gebhardt 1994 and Section 3.1.2).

Data-Based Validity

The general premise for this kind of validation is that the more cluster structure
is unusual, the more it is valid (Jain and Dubes 1988).

When the cluster is found from entity-to-variable data, its validity can be tested
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by comparing the within-cluster means of the variables with their grand means in
all the sample. The larger the differences, at least by some of the variables, the
better the cluster. This kind of comparison could be made in the analysis-of-
variance style, although the latter is applied usually only for studying a partition,
not just a single cluster.

Another reasonable kind of parameter to look at is correlations between the
variables. A great difference between the within-cluster correlation pattern and
the pattern in the whole entity set can be utilized for both validity testing and
producing a meaningful interpretation.

When a cluster is compared with a dissimilarity matrix, its validity is analyzed
based on a concept of cluster. For example, when the user considers a subset S
being a clump cluster if its internal dissimilarities are smaller than those oriented
outward, dij < dik for any i, j ∈ S and k ∈ I − S, the cluster validity is evaluated
based on comparison of the set of the triples (i, j, k) ∈ S × S × (I − S) for which
the inequality above holds with all the set S ×S × (I −S). The closer the subsets,
the better validity. Or, when a cluster is defined as a clique component in a
threshold graph, two quantities can be used: number of the actual within-cluster
edges compared with |S|(|S| − 1), number of the edges when S is a clique, and
number of the actual outward edges compared with zero (Jain and Dubes 1988).

Validation of a Partition

Partition-Based Validation

This is frequently used for evaluating performance of a clustering algorithm:
the data are generated according to a prior “noisy” partition; the more resulting
partition resembles the prior one, the better performance. A contingency table
having its rows corresponding to clusters found, and its columns, to classes pre-
given (frequently called a confusion table) seems a best means for checking the
resemblance as it is. There have been many indices of similarity/dissimilarity be-
tween partitions suggested in the literature based on the contingency table (see, for
example, Goodman and Kruskal 1979, Hubert and Arabie 1985, Jain and Dubes
1988, Agresti 1984); some of them are considered in Section 4.1.4.

Data-Based Validation

The primary problem of estimating the number of clusters has found no satis-
factory general solution yet since there is no satisfactory theory of what the clusters
are. In our opinion, no general concept of cluster can be suggested; clusters are
different depending on the problem, the data measurement, the variables involved,
etc., which makes the question irrelevant except for the cases when the data are
just another form of a partition. However, there can be some heuristic simplic-
ity/stability considerations employed. For example, sometimes, in indexed trees
produced with agglomerative algorithms, the larger classes are much higher than
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their constituents (see Fig. 2.30); this indicates a distance zone which can be cut to
produce more-or-less stable clusters. In another example, when there are several
related sets of variables (chemical tests, radiology-based tests, and physiological
tests, in medicine), that number of clusters can be considered relevant when the
partitions made by the different bases are most similar.

In the context of entity-to-variable data, many general suggestions have been
made on testing the hypothesis that two clusters have been generated from the
same multidimensional distribution; if the hypothesis is confirmed, the clusters are
recommended to merge.

A convenient way to deal with the problem is by defining an index of similarity
between the cluster structure and the data table. The earlier developments have
been based on the so-called point serial correlation coefficient between the original
entity-to-entity distance matrix and the matrix of partition-based distances defined
as 0 when the entities belong to the same cluster or 1, otherwise. Although there is
no good probabilistic theory for that coefficient, its relative values allow evaluating
and comparing cluster structures by their fit into data. In Monte-Carlo study by
Milligan 1981 this index (along with that of rank correlation between the same
matrices) outperformed many others. More on this index and its relevance to the
problem see in Section 4.3.

Validation of a Hierarchy

Hierarchy-Based Validation

The number of between-tree similarity indices suggested in the literature is not
as large as the numbers of those for partitions or subsets, just half a dozen. The
most respected of them is the so-called cophenetic correlation coefficient which
is just the product-moment Pearson correlation coefficient between corresponding
ultrametrics (see Sokal and Rohlf 1962, and Section 6.1.9). For this and some other
indices, some probabilistic considerations are provided to estimate their statistical
significance (see Lapointe and Legendre 1992, Steel and Penny 1993).

Data-Based Validation

Here also, matrix correlation coefficients are employed: correlation between the
hierarchy ultrametric and the entity-to-entity distance matrix, as well as its rank
correlation twin (see Jain and Dubes, pp.166-168). No sound experience has been
accumulated yet: it seems that the theory of hierarchic clustering structures is
taking its very first steps.

Let us make several concluding remarks:

First, in spite of some theoretical developments made on validation as described
above, the most convincing validation technique is a kind of experimental testing
which is called cross-validation. Cross-validation consists of systematic replicated
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clustering for various subsamples of the data and comparing the results. For ex-
ample, you may be quite confident in your results if you get the same number of
clusters along with almost the same centroids, having received similar results for
many randomly chosen subsamples.

Second, so far, the only statistical hypothesis tested against the cluster struc-
ture found is that of completely random sources of data. Since every reasonable
algorithm finds a “nonrandom” substructure in the data set, the hypothesis usually
fails; moreover, such testing should be considered a testing of randomness of the
data rather than of the clustering results. It would be fair to expect some more
restrictive hypotheses suggested for testing against the cluster structure found.

Third, the matrix correlation concept (considered by Daniels 1944, Sokal and
Rohlf 1962, Mantel 1967, etc.) seems to be a universal tool for measuring resem-
blance between different kinds of cluster structures and data sets. In the sequel,
this opinion will be supported with some more examples of the indices that can be
considered as the matrix correlation coefficients (including most known statistical
coefficients such as chi-square contingency coefficient or correlation ratio). In the
present author’s opinion, the coefficient can be adjusted for all possible validation
problems (for two-way data), which should be considered a direction for future
developments.

2.3.3 Interpretation as Achieving the Clustering Goals

Current clustering literature provides no general analysis of the interpretation prob-
lem except perhaps the monograph by Romesburg 1984 where many interesting
interpretation issues are raised. For example, in his elegant account of using clus-
tering for scientific discovery (slightly modified here), Romesburg suggests that
any discovery involves the following three sequential steps: (1) Asking a question
on a phenomenon observed; (2) Creating a hypothesis answering the question; (3)
Testing the hypothesis. If the hypothesis fails, another one (or more) is formulated
based on the knowledge acquired in testing. The cluster analysis can be considered
a framework to put the steps in a restricted setting. The question (1) here has the
following form: why are the clusters such? Or, just why did these two entities occur
in the same cluster? Or, in different clusters? For example, Romesburg 1984, p.
41-52, considers a set of mammals characterized by their dental formulas involving
the number of teeth of each kind (incisor, canine, premolar, molar) in each of the
jaws. It turns out, the mole and the pig have identical dental formulas while the
walrus’ formula is very different from the other carnivores. A hypothesis arises:
the dental formula is related to the animal’s diet. To test, we need a clustering
of the set by diet; it appears, it is very different from the former one, which leads
to rejecting the hypothesis. A new hypothesis says that the animal diet is related
to their tooth morphology (shapes, not kinds, of the teeth) which requires a new
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data set, etc. This shows how clustering can help in pursuing a purpose.

To return to clustering as an activity on its own, let us consider interpretation
problems in the framework of the main goals of clustering as a classification activ-
ity. In Section 0.2.4, the goals have been identified as analyzing the structure of
phenomena and relating different aspects of those to each other.

The structure of a phenomenon is represented, first of all, by its essential parts
and their relationship, and this is, basically, what clusters are about. Of course,
the “essence” of the parts represented by the clusters is predetermined by selection
of the variables and entities in the data; their relationship is reflected in the cluster
structure to that extent which can be caught with a particular clustering structure
involved. It should be pointed out that methods involved in finding a cluster
structure have nothing to do with its interpretation. It is quite appropriate that
the structure can be generated by the user just by a guess — still a data set must be
involved in the process to guarantee that the user may not be completely arbitrary
in his efforts; it is only the real contents of the data which provide its intensional
description(s) and, thus, interpretation.

Basically, each of the three levels, (1) classification structure itself, (2) a single
class, and (3) an entity, may lead to an interpretation breakthrough. Just a few
examples for each of the levels:

(1) Woese 1981 cluster-analyzed a dissimilarity matrix between nucleotide se-
quences for 16 species of bacteria. He found out that, in addition to two well
established classes of bacteria, prokaryotes and eukaryotes, a third cluster emerged
which has been recognized, afterwards, as another bacteria class, archaebacteria.

The manual worker class, presented with seven occupations in Table 22, usually
is divided into two quality subclasses (upper and lower); however, clustering the
mobility table suggests a different structure (manufacturing/other), see Breiger
1981 and p. 433.

(2) Since the mid-sixties, a high stroke mortality rate has been documented
in an ill-defined geographical region in the southeastern United States (a Stroke
Belt), though the cause(s) of that, in spite of intense research, is still unknown
(Howard et al. 1995). An even more important issue, in medicine, is defining a
“regular” cluster consisting of those individuals who have not suffered, in a given
time period, any illness.

(3) The Darwinian issue about the origin of humankind can be well advanced
if we know which cluster of primates the homo sapiens species belongs to (Li and
Graur 1991; see also Table 5, p. 182, and corresponding discussion).

Actually, every reliable fact on a cluster structure yields a series of questions
about explaining and employing it.
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Let us now discuss, in brief, the possibilities of relating different aspects of
phenomena to each other via clustering. An intensional description of a classi-
fication structure in terms of a variable space can be considered an elementary
interpretation unit. Combining them may produce a great deal of advancement in
understanding phenomenon. Let us consider a couple of examples.

(A) One classification, two or more variable spaces. This is the most
frequent case.

In the Planets data set (Table 3, p. 179), we have two planet clusters defined in
terms of the distance to the sun. Amazingly, there are a bunch of variables having
no logical connection to the distance, but still following the partition very closely:
the matter is solid in one cluster and liquid (or mixed) in the other; the number of
moons with a planet is not higher than 2 in the first cluster while it is larger than
7 in the second; etc. There is a strong relationship between the distance to Sun
and the 5 variables in the data set, though there is no answer yet why it is so. The
ninth planet, Pluto, discovered just in this century, does not fit into this regularity:
all the five parameters fall in the first cluster, which makes some believe that this
is not a genuine planet.

In the Digits data set (Table 9, p. 188), there is a Confusion cluster, 1-4-7 (see
Table 4.49, p. 412), which is distinguished by the fact that its numerals have no
lower segment (e7) in their styled representation (Fig 11). This, along with the
features of the other Confusion clusters, makes a hypothesis on the plausible psy-
chological mechanism related to digit perception as based on the absence/presence
of just a few particular segments in the pictures.

In a social psychology research, three predefined groups of respondents gave
quite different frequency profiles in their answers to the question concerning most
special things at home. It is sufficient to say that the most special (on average),
for children, was Stereo set; for parents, Furniture; and, for grandparents, Photos.
However, with the respondents’ comments about their choices analyzed, it was
found that the real meanings of the things were not so different: they related to the
respondents’ feelings about important memories and relationship (Csikszentmihalyi
and Rochberg-Halton 1981).

In a most profound problem of the history of humankind, where there is no
consensus of scientists yet reached, bringing together three different aspects (ar-
chaeological, genetic, and linguistical) has served well to establish a plausible clas-
sification of the nations (Cavalli-Sforza et al. 1988).

(B) Two classifications, different variable spaces.

In Braverman et al. 1974, a data table (thirty statistical indicators for some
sixty developing nations) was partitioned in two variable groups interpreted as (1)
level of economic development (national income per capita was the most loading
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Figure 2.36: Two-factor classification of the developing countries; the darker cell,
the larger the number of countries within.

variable), (2) level of market relations in the economy (employee proportion was
the closest variable). Then, the set of the countries was clusterized by each of the
“factors” found (see qualitative picture of the cross-classification in Fig.2.36). It
can be seen that there is no simultaneous change of the factors as it would seem
natural to expect. In contrast, the level of market relations increases when the
level of economic development is small; the latter increases only after the former
becomes high. Such a structural picture much resembles a shift in the optimal
trajectory of economic development proven for a linear economy model; this could
be considered empirical evidence supporting the model (claimed by many to have
no empirical meaning).

(C) Many classifications, different variable spaces.

In the end of the Soviet era, a data set was collected about 47 statistical indi-
cators concerning the following nine aspects of the socio-economic status of each
of 57 regional units in Moscow region: (1) Natural reproduction of population
(NRP), (2) Migration (M), (3) Demography (D), (4) Labor and work (LW), (5)
Industrial and agricultural production (IAP), (6) Economics of services (ES), (7)
Social infrastructure (SI), (8) Housing (H), and (9) Environment (E). The data re-
lated to 1979 and 1988. The goal was to reveal associations between the variables
for using them in controlling the demographic processes in the region. Unfortu-
nately, no quantitative relations among the variables were found (with dozens of
tries involving various regression and factor analyses computations). Then, yet
another attempt was made employing a structural approach: clustering of the set
of units was made by each of the aspects above, along with subsequent analysis
of their cross-classifications (Mirkin and Panfilova 1991). It turned out that the
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Figure 2.37: Structures of association between nine aspects of socio-economic status
in Moscow region, 1979 and 1988.

variables measured, however good as statistical descriptors, were of little help in
demography policy making. In the current context, the graph representation of
the largest correlations between the vertices representing the aspects in Fig.2.37
is of interest as a “second-layer” structure derived from comparing the clustering
results (“first-layer” structures). The graph for 1988 appears to be a part of 1979
graph; dashed edges present those valid for 1979 only. It shows that, in 1979, it
was a natural structure of interrelation between industrial, economical and social
subsystems; for example, the birth/death process directly correlated with demog-
raphy, social infrastructure, the service economy, which was lost in 1988, leaving
only physiological correlations with work and housing. The natural structure was
almost destroyed by 1988, reflecting a devastated society and economy and a great
necessity for change (in the near future, beginning 1990, the birth/death balance
became negative in the region).

These examples present some different layers of structural relations from a huge
variety of possible schemes. Much research in classification analysis is currently
in simultaneously finding “empirical” and “theoretical” structures by different as-
pects adjusted with each other through conceptual clustering techniques (see, for
example, Kubat, Pfurtscheller and Flotzinger 1994 or Fisher et al. 1993).

2.3.4 Discussion

Unlike the validation topic, the interpretation subject still has not received too
much attention from a theoretical side. However, the validation techniques devel-
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oped also seem kind of a preliminary study rather than a matured discipline.

However, the definition of clustering given here suggests a framework for theo-
retical thinking on interpretation. An extensional cluster structure supplemented
with an intensional one is suggested as the “elementary unit” of interpretation.
Practical advancement in interpretation should be expected in developing meth-
ods for finding such elementary units: simultaneous revealing of extensional and
intensional cluster structures for the same data set.



Single Cluster Clustering

FEATURES

• Various approaches to comparing subsets are discussed.

• Two approaches to direct single cluster clustering are de-
scribed: seriation and moving center separation, which are
reinterpreted as locally optimal algorithms for particular
(mainly approximational) criteria.

• A moving center algorithm is based on a novel concept of
reference point: the cluster size depends on its distance from
the reference point.

• Five single cluster structures are considered in detail:

� Principal cluster as related to both seriation and moving center;

� Ideal fuzzy type cluster as modeling “ideal type” concept;

� Additive cluster as related to the average link seriation;

� Star cluster as a kind of cluster in a “non-geometrical” environment;

� Box cluster as a pair of interconnected subsets.

• Approximation framework is shown quite convenient in
both extending the algorithms to multi cluster clustering
(overlapping permitted) and interpreting.

321
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3.1 Subset as a Cluster Structure

3.1.1 Presentation of Subsets

Let us recall that the base entity set is denoted as I and its cardinality, N = |I|. A
subset S ⊆ I is a group picked out of the “universe” I, for instance, a committee
or just the set of all individuals of a given age. As is well known, there are three
major forms for presenting subsets: a) Enumeration, when the subset is given by
the list of its elements, S = {i1, ..., im}; b) Indicator: a Boolean vector, s = (si),
i ∈ I, where si = 1 if i ∈ I and si = 0 otherwise; c) Intensional predicate P (i)
defined for i ∈ I, which is true if and only if i ∈ S. The indicator function can be
considered a binary variable assigned to S questioning “Whether an i ∈ I belongs
to S” and assigning 1 if Yes, and 0 if No.

For example, a subset of the entities in the Masterpiece data in Table 12, (given by

their numbers) can be presented as: a) S = {1, 2, 3} or, in a more convenient notation,

S = 1 − 2 − 3; b) s = (1, 1, 1, 0, 0, 0, 0, 0); c) “Works by A. Pushkin” or “Works with

LenSent < 16”.

Another useful form for presenting subsets: via binary relation σ = S×S which
is the Cartesian square of S, that is, the set of all ordered pairs (i, j) with both
i, j ∈ S. The relation σ can be presented by Boolean matrix, s=ssT , having sisj

as its (i, j)-th element (s is the indicator of S). Obviously, matrix s has a specific
structure of ones filling in a “square” corresponding to S. This matrix will be
referred to as the set indicator matrix.

The indicator matrix presentation of S is, actually, a similarity matrix with all
the within similarities equal 1 and all the outer ones, 0. Yet, in some situations, the
intensity of the mutual within similarities in the indicator matrix can be different
from 1. Matrix λs has its elements 0 and λ; it can be interpreted as an S-cluster
with weight intensity λ. This weighting can be extended to the outer similarities
shift from zero to another value (Mirkin 1987b).

Representing subsets S along with their standard (centroid) points c =
(c1, ...cn) will be done through the matrix format, scT , whose elements are sick,
i ∈ I, k = 1, ..., n, which can be referred to as a type-cluster structure; the rows
of such a matrix are equal to c or zero depending on whether corresponding i’s
belonging to S.

A set of weighted clusters, SW ={Sw, λw}, w ∈ W , can be presented
as an additive structure, that is, a matrix

∑
w∈W λwswsT

w with its entries,∑
w∈W λwsiwsjw, i, j ∈ I. However, this requires recovering the original clus-

ters from the additive structure, which has been proven possible for some kinds of
sets of clusters, like (weak) hierarchy. Analogously, type-clusters Sw, cw, w ∈ W
can be presented by a summary matrix

∑
w∈W swcT

w with its entries equal to
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∑
w∈W siwcwk, i ∈ I, k = 1, ..., n.

3.1.2 Comparison of the Subsets

For any two subsets, S, T ⊆ I, their comparison can be made with a so-called four-
fold table (see Table 3.33) containing the numbers of elements in corresponding
subset intersections (see Fig. 3.38).

Set T T̄ Total
S a b a+b
S̄ c d c+d

Total a+c b+d a + b + c + d = N

Table 3.33: Four-fold table.

This is a statistical representation of the information on interrelation between
S and T as subsets of I: a refers to the common elements while b and c to the
elements presented in only one of the sets; d is the number of “outer” elements in
I with regard to S and T .

When weight coefficients are assigned to the entities, the total weights are
counted as the entries of the four-fold table. Actually, the four-fold table is nothing
but a 2× 2 contingency table for the binary variables associated with the subsets.

The contents of the table can be presented in a vector form as [S, T ](I) =
(a, b, c, d).

We can distinguish between (a) structural and (b) relational approaches in
comparing subsets, which can be introduced with the following example.

In a survey of 7000 jury trials, the judges were asked about the decisions they would
have made if they had been on the jurors’ bench. From their responses, it was found that
they chose the same verdict as jurors in 78% of the cases. The remaining 22% (about
1540) of the judges had a different opinion: they would have freed 210 defendants who
were convicted by the juries, and convicted 1330 defendants who were acquitted by the
juries. This was claimed to be a serious discrepancy.
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Figure 3.38: General pattern of overlapping sets S and T as parts of I.

Let us analyze the story in terms of the four-fold table. The information can be put

in Table 3.34.

Jury Freed Convicted Total
Judge
Freed a b=210 a+b

Convicted c=1330 d c+d
Total a+c b+d 7000

Table 3.34: The data on the judges’ opinions on the jury’s verdicts reached (Parade
Magazine, New York, July 30, 1995, p.12).

In her presentation (Parade Magazine, New York, July 30, 1995, p.12), the author
does not bother herself to supply yet another figure needed to fill in all the table since it is
not necessary for the final conclusion that there are b + c = 1540 = 22% of contradicting
opinions, and c supplies the major part of it. It is only the extent of coincidence between
the judge’s and jury’s Freed verdict, which matters. Based on this data, we can conclude
that the juries are more likely to make acquittals than the judges since a + c = a + 1330
(juries’ acquittals) is larger than a+b = a+210 (judges’ acquittals). However, this leaves
another question unanswered. Does the juries’ verdict affects the judges’ opinion (in the
poll) or not? To address the issue, we need to compare some proportions, not just the
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subsets themselves. For example, if the proportion, a/(a + c), of the defendants to be
freed by the judges’ opinion among those acquitted by the juries is larger than that of
the defendants freed by the judges among the all defendants, (a+ b)/N , that would mean
that a positive influence does exist. If the proportions coincide, there is no bias in the
judges’ opinions related to the jury’s verdict.

However, having no information about the key value a in the example, we cannot

derive anything about the bias. If, for instance, a = 3000, the quotient of proportion,

aN/(a + b)(a + c), is larger than 1, and if a=30, it is less than 1; in the former case, the

judges are more likely to free the defendants freed by juries, while it is opposite, in the

latter case.

The structural approach involves comparison of the subsets as they are while
the relational approach concerns their interdependence as measured by comparing
proportions. This is why, usually, the structural measures are employed for com-
paring entities (characterized by some binary variables) while (binary) variables
are compared with the relational approach. In the former case, S and T are sets
of the attributes that are present at the entities compared. In the latter case, S
and T relate to the entity sets attributed by the binary variables compared.

Structural Approach

The most important structural indices are:

1. Match coefficient

s(S, T ) =
a + d

a + b + c + d
,

2. Mismatch coefficient

δ(S, T ) =
b + c

a + b + c + d
,

3. Jaccard mismatch coefficient

e(S, T ) =
b + c

a + b + c
,

4. Jaccard match coefficient

r(S, T ) =
a

a + b + c
,

Obviously, the coefficients s, δ and e, r complement each other to unity. The
Jaccard coefficient does not involve the d observations included neither in S nor in
T , thus referring only to those showing up in the sets.

The following properties of the four-fold table are relevant to the structural
approach.
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Statement 3.1. Equality b = 0 holds if and only if S ⊆ T , and c = 0 if and only
if T ⊆ S; b = c = 0 means S = T ; a = 0 means S ∩ T = ∅.

Proof: Obvious. �

Thus, presence of a zero in the table witnesses a set-theoretic inclusion, which
might be useful in deriving implication rules about variables.

Statement 3.2. The numerator of the coefficient above, d(S, T ) = b + c, is equal
to the city-block distance between corresponding indicator vectors s, t and to the
squared Euclidean distance between them.

Proof: The statement follows from the equality |si − ti| = (si − ti)2 which holds
for every i ∈ I since values si, ti can be 0 or 1 only. �

In other words, d(S, T ) is the cardinality of the symmetric difference S � T =
(S − T ) ∪ (T − S), which means that

d(S, T ) = |S � T | = |S| + |T | − 2|S ∩ T |. (3.32)

It should be noted that the city-block distance between Boolean vectors is
frequently referred to as Hamming distance. Yet another interpretation of the
distance: it is the minimum number of elementary changes (1 to 0 or 0 to 1, which
means adding or excluding an element) necessary to transform s into t.

To realize how different the symmetric-difference metric space is from our ha-
bitual Euclidean geometry, let us consider a concept of betweenness. Set R will
be referred to as being between sets S and T if it makes equality in the triangle
inequality: d(S, T ) = d(S, R) + d(R, T ), R, S, T ⊆ I.

Statement 3.3. Set R is between S and T if and only if S ∩ T ⊆ R ⊆ S ∪ T , or,
equivalently, siti ≤ ri ≤ si + ti.

Proof: Let d(S, T ) = d(S, R)+d(R, T ); that is,
∑

i∈I(|si−ri|+|ri−ti|−|si−ti|) =
0, which can hold only if |si − ri| + |ri − ti| − |si − ti| = 0 for every i ∈ I, since
|si − ri|+ |ri − ti| ≥ |si − ti| by the properties of the absolute value. Thus, si = ti
implies ri = si = ti. �

In terms of the indicator vectors, s and t, considered as vertices of the N -
dimensional Boolean cube, all the vectors of the interval between s ∧ t and s ∨ t
(where si ∧ ti = min(si, ti) and si ∨ ti = max(si, ti)) are between s and t (and
nothing else).

Thus, the mismatch coefficient is a metric since its denominator, N , is just a
constant. Amazingly, the Jaccard mismatch coefficient also is a distance.
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Statement 3.4. The quantity

e(S, T ) =
b + c

a + b + c
= 1 − |S ∩ T |

|S ∪ T |
is a distance satisfying all metric axioms.

Proof: To prove the triangle inequality: e(S, T ) ≤ e(S, R) + e(R, T ) for any
S, T, R ⊆ I, let us introduce corresponding notation, as follows: [S, T ](R) =
(a1, b1, c1, d1) and [S, T ](R̄) = (a2, b2, c2, d2). In these symbols, e(S, T ) = 1− (a1 +
a2)/(a1 +a2 + b1 + b2 + c1 + c2), e(S, R) = 1− (a1 + b1)/(a1 + b1 +a2 + b2 + c1 +d1),
and e(T, R) = 1− (a1 + c1)/(a1 + c1 + a2 + c2 + b1 + d1). Evidently, for 0 < α ≤ β
and γ ≥ 0,

α

β
≤ α + γ

β + γ
,

which can be verified directly. Let us add c2 as γ to the fraction parts in e(S, R)
while b2 is added to e(T, R). This makes both of the denominators equal to each
other, which leads to the following:

e(S, R) + e(R, T ) ≥ 2− (2a1 + b1 + b2 + c1 + c2)/(a1 + a2 + b1 + b2 + c1 + c2 + d1).

The right part of the inequality, obviously, is equal to (2a2 + b1 + b2 + c1 + c2 +
2d1)/(a1 + a2 + b1 + b2 + c1 + c2 + d1). Subtracting d1 from both numerator and
denominator in the last expression, we have

e(S, R) + e(R, T ) ≥ (2a2 + b1 + b2 + c1 + c2 + d1)/(a1 + a2 + b1 + b2 + c1 + c2)

≥ (b1 + b2 + c1 + c2)/(a1 + a2 + b1 + b2 + c1 + c2) = e(S, T ),

which proves the statement. �

It is not difficult to show that R = S ∪ T satisfies equality e(S, T ) = e(S, R) +
e(R, T ); all the other R, in general, do not fit into that.

Relational Approach

Conditional probability p(T/S) = a/(a + b) is a key concept in the relational
approach as a measure of the predictive capability of S with regard to T : it shows
the rate of correct predictions of T when a randomly selected entity is observed to
belong to S (prediction rule: S → T ). Respectively, b/(a+b) shows the proportion
of errors occurring when this prediction rule is used.

However, as it was shown in Section 0.6.1, the conditional probability alone is
not sufficient for comparison. “Eating cucumbers is the major cause of death: 100%
of the dead ate cucumbers”. This somewhat somber joke pinpoints the necessity to
consider what occurs in another part of I (which is S̄) to make a proper conclusion.
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In statistics, two approaches have been developed for taking into account both,
S and S̄.

The first relates to testing a statistical hypothesis. In this context, S presents
a hypothesis on T , which involves two of the prediction rules: S → T and S̄ → T̄ .
Respectively, two kinds of error can occur: the first related to errors when T is
predicted (based on an observation from S), the second when errors occur when T̄ is
predicted (based on an observation from S̄). The first is E1 = p(T̄ /S) = b/(a+ b),
called an error of the first kind while the second, E2 = p(T/S̄) = c/(c+d), is called
an error of the second kind. Note, the two errors are based on different parts of
the four-fold table, which implies they may be quite different.

An ideal situation occurs when both of the errors are zero: this is the case when
S = T . A situation is not bad when one of the errors is zero, while the other is
small. That means that one of the two prediction rules works correctly; S → T ,
if E1=0, or S̄ → T̄ , if E2=0; and still the other rule allows for correct negation
in most cases, in contrast to the example of cucumber-eating above, where E1=0
while E2=1.

The other approach, which we just discussed in the trial example, is to relate
both S and S̄ to T only (without involving T̄ ) based on comparison of the con-
ditional probability, P (T/S) = a/(a + b), and the unconditional probability of T ,
p(T ) = (a + c)/N . When these two probabilities coincide, the subsets S and T
are referred to as statistically independent. In statistics, the difference between the
probabilities is expressed, traditionally, using highly symmetrical expressions such
as difference, aN − (a + b)(a + c), or quotient, Q = aN/[(a + b)(a + c)].

The quotient, Q = P (T/S)/P (T ) = P (S∩T )/[P (S)P (T )], has also a predictive
meaning: it shows the change of probability of T when S is taken into account. It
is called odds ratio (see p. 206) and widely used as a measure of interdependence
of S and T ; its inverse logarithm, I(S, T ) = − logQ is called mutual information.

There can be two other prediction-based measures indicated: the absolute prob-
ability change (APC), ∆(T/S) = P (T/S) − P (T ), and relative probability change
(RPC), Φ(T/S) = (P (T/S) − P (T ))/P (T ) = Q − 1 (considered in Chapter 1 in
the framework of aggregable data analysis, see Section 0.6). Each of these indices
can be interpreted as an estimate of improvement in predicting, for a randomly
selected entity, whether it belongs to T , when it becomes known that the entity is
from S, not just from all I.

Obviously,

∆(T/S) =
ad − bc

(a + b)N
, Φ(T/S) =

ad − bc

(a + b)(a + c)
(3.33)

A remark: ∆ seems more relevant when P (T ) is large as in the example con-
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sidered; Φ seems better fitting in the situations when P (T ) is small. For example,
in a district nearby the Chernobyl nuclear reactor in Belarus, the rate of thyroid
cancer (T event) has reached some 101 cases per million children after the accident
at 1986 (S event); before, it was one case per million children. The difference is
0.0001 but the ratio is 100 to show that the risk of getting thyroid cancer has
increased 10,000%!

Yet a different approach should be presented, which can be referred to as a
geometrical approach.

Geometrical approach

This approach is based on the binary indicator presentation of the subsets; the
indicators considered as the variables lead to measures of covariance or correlation
between them. For instance, the noncentral product-moment correlation coefficient
between vectors s = (si), t = (ti), i ∈ I, equals (by definition)

r0 =
∑

i siti/(
∑

i si

∑
i ti)1/2 = a√

(a+b)(a+c)

while the Pearson’s product-moment correlation coefficient is

r = ad−bc√
(a+b)(a+c)(b+d)(c+d)

.

The latter coefficient is quite popular; it can be interpreted operationally
through differences between the conditional probabilities: a1 = P (S/T )− P (S/T̄ )
and a2 = P (T/S) − P (T/S̄) which are, also, the regression coefficients of the in-
dicator vectors, s by t and t by s, respectively. It turns out, the absolute value of
the Pearson product-moment correlation coefficient is the geometric mean of these
values, |r| =

√
a1a2. Similar interpretation can be provided in terms of the relative

change of probability coefficients, Φ(T/S) and Φ(T̄ /S̄), since r2 = Φ(T/S)Φ(T̄ /S̄).

3.1.3 Discussion

1. The subset is an important classification structure pertaining to an “elemen-
tary” classification unit, a class.

2. Mathematical models of subsets involve both extensional and intensional
meanings (the enumerated subset and logical predicate); moreover, the indi-
cator concept as a vector space element will be employed in the approximation
clustering models in Chapters 4 to 6.

3. Correspondence between subsets can be evaluated in different frameworks;
among them, the structural, relational and geometrical approaches are dis-
tinguished.
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3.2 Seriation: Heuristics and Criteria

3.2.1 One-by-One Seriation

Let, for every subset S ⊂ I and every i ∈ S̄ = I−S, a similarity measure a(i, S) (or,
a dissimilarity measure, d(i, S)), between i and S, be known. Such a measure could
be called a similarity (or dissimilarity) linkage between i and S. A set of linkages
can be defined based on an entity-to-entity similarity matrix given, A = (aij),
i, j ∈ I, as follows.

1. Single linkage or Nearest neighbor

sl(i, S) = max
j∈S

aij ;

2. Summary linkage
sul(i, S) =

∑
j∈S

aij ;

3. Average linkage or Average neighbor

al(i, S) =
∑
j∈S

aij/|S|;

4. Threshold linkage

lπ(i, S) =
∑
j∈S

(aij − π) =
∑
j∈S

aij − π|S|;

where π is a fixed threshold value.

In the situation when the elements of S are ordered in a series, S = {i1, ..., i|S|},
yet another measure might be useful,

5. Chain linkage or Last neighbor:

ll(i, S) = aii|S| .

Similar linkage functions can be defined in terms of dissimilarities; in this latter
case, the minimum must be taken in the single linkage. Linkage measures can be
defined also for different kinds of data. For example, for an entity-to-variable
matrix, Y = (yik), i ∈ I, k ∈ K, a similarity linkage measure a(i, S) can be defined
as the scalar product of the row yi = (yik), k ∈ K, and the center of gravity
c = (ck) of S-rows yj, j ∈ S. Yet this particular measure can be reformulated
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as the average linkage above. Indeed, since c =
∑

j∈S yj/|S|, the scalar product
equals

a(i, S) = (yi, c) =
∑
j∈S

(yi, yj)/|S| = al(i, S) (3.34)

for aij = (yi, yj), i, j ∈ I.

Yet another, dissimilarity, linkage function defined in terms of the entity-to-
variable data:

ml(i, S) =
∑
k∈K

min
j∈S

|yik − yjk| (3.35)

which is an example of “holistic” linkage which is not reducible to pair-wise dis-
similarities between entities.

One might think also of a situation when such a linkage measure arises just as
a kind of primary data, which seems possible in technical applications connected
to VLSI or image processing.

For any linkage measure, a one-by-one adding procedure for seriation of the
entities in I can be defined as follows.

One-by-One Seriation
The procedure starts with S = {i0} where i0 ∈ I is an arbitrary entity.
General step: given S, find i∗ ∈ I−S maximizing similarity (minimizing
dissimilarity) linkage measure s(i, S) with regard to all i ∈ I − S and
join i∗ as the last element in S seriated. Unless S = I, the general step
is repeated.

The output of the process is I seriated along with the sequence of linkage
measure values between every entity and set of the preceding elements in the series.
Obviously, number of basic comparison operations here is O(N2) since, at every
step, S is compared with all the remaining elements (average number of them is
N/2), and the number of steps is O(N). Obviously, the result may depend on the
starting point i0. Comparing single linkage seriation with the algorithm for finding
a minimum (maximum) spanning tree (MST) (see p. 240), we can see no essential
differences between them: just single linkage seriates the entities without drawing
the MST tree itself, though the minimal distance values kept are exactly the MST
distances.

To simplify the computations, it would be nice to have the linkages d(i, S)
or a(i, S) calculated at every step not just from scratch but updating the linkage
values of the previous step. That means that we should be able to calculate linkages
between i and S + j (where j is the entity added to S at the step considered) for
i �∈ S + j using linkages between i and S and the pair-wise linkage between i and
j in a Lance-Williams formula fashion (see Section 2.2.3):

a(i, S + j) = αSa(i, S) + αja(i, j) + βa(j, S) + γ|a(i, S)− a(i, j)| + const (3.36)
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where αS , αj , β, γ, const are coefficients to be specified according to the par-
ticular linkage method used. Although when S is fixed the const does not change
the order of the values and, thus, does not affect the seriation process, it does
change the values of the linkage measure (across different Ss) and is included to
take into account the threshold linkage formula. Table 3.35 contains the coefficients
corresponding to the five formulas above.

Linkage Method αS αj β γ const
Single 1/2 1/2 0 -1/2 0
Summary 1 1 0 0 0
Average |S|/(|S| + 1) 1/(|S|+ 1) 0 0 0
Threshold 1 1 0 0 −π
Chain 0 1 0 0 0

Table 3.35: Coefficients of the modified Lance-Williams formula corresponding to
the similarity linkage measures considered; when dissimilarity linkage is assumed,
the sign of γ in the first row must be reverted.

Although β is zero in the table, we prefer keeping it since it is not so in some
other methods.

In clustering, seriation has no independent meaning: this is just a means to
find a “suitable” cluster with a “suitable” cut of the series found; after a cut has
been done, the initial fragment of the series forms the resulting cluster.

3.2.2 Seriation as Local Search

The seriation strategy can be put in a theoretical framework in the following way.
Let f(S) (S ⊂ I) be a numerical function (on the set of subsets of I) to be
maximized (or minimized).

A local search algorithm for maximizing f(S) is defined by a neighborhood,
N(S), which must be assigned to any feasible solution S. Then the local search
algorithm starts from an initial S and repeatedly performs finding a best solution
in N(S) along with subsequent substitution of the initial subset S by the new-
found S. The search ends when the new-found solution is not better than S found
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at the previous iteration.

A particular neighborhood associated with seriation is defined as this: N(S)
consists of the subsets S + i for all i ∈ I − S. With this neighborhood, the local
search iteration consists of adding to S that element i ∈ I − S which maximizes
the increment δ(i, S) = f(S + i) − f(S), which is, basically, an iteration of the
seriation procedure with δ(i, S) utilized as a similarity linkage measure. To make
the resemblance tight, let us start the computation from a singleton S = {i0}.

However, there is an important difference between the local search and
seriation procedures: the local search algorithm may seriate not all the
entities; it must stop when the increment δ(i, S) becomes negative.

Is it possible to find set functions behind the linkage methods considered? Can
a set function be specified for a given linkage in such a way that the linkage formula
coincides with δ(i, S) for the set function? In general, the answer is no. However,
for the collection of particular linkages above, the following set functions (defined
in terms of a similarity matrix A = (aij)) can be considered, to some extent, as
the optimized criteria:

1. SL(S) = maxi∈I−S maxj∈S aij ;

2. SUL(S)=
∑

i∈S

∑
j∈S aij ;

3. AL(S) =
∑

i∈S

∑
j∈S aij/ν(S)

4. L(π, S) =
∑

i∈S

∑
j∈S(aij − π) =

∑
i∈S

∑
j∈S aij − π|S|ν(S)

where π is a fixed threshold value;

5. LL(S) =
∑

k aikik+1

where S is considered seriated: S = {i1, i2, ..., i|S|}.

In these formulas, ν(S) equals |S| if the diagonal entries aii, i ∈ I, are present
and ν(S) = |S| − 1 if not.

Three of the functions, SUL(S), L(π, S), and LL(S), match the problem above
perfectly: the increment δ(i, S) for each of them equals sul(i, S), lπ(i, S), and
ll(i, S), respectively. This implies that when A = (aij) is nonnegative, functions
SUL(S) and LL(S) suggest, actually, no stopping rule, collecting all the entities in
the “universal” optimal cluster. In contrast, L(π, S) does suggest a stopping rule:
the seriation must stop when lπ(i, S) becomes negative, which highly depends on
the threshold value π.

Also, it can be easily seen that, due to the symmetric form of criteria SUL(S),
L(π, S) and AL(S), the matrix A = (aij) can be considered symmetric for each
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of them; otherwise, its entries must be changed to (aij + aji)/2, which does not
change the optimal solution.

Although the single linkage function, sl(i, S), cannot be presented as an incre-
ment of SL, still sl-based seriation steps are equivalent to local search iterations for
minimizing SL(S). The local search stopping rule requires ending the process when
the respective value of SL goes down (for dissimilarities) or up (for similarities).

Let us consider AL criterion in more detail since it is related with some further
analysis. The average neighbor seriation is connected with optimizing criterion
AL(S) in the following sense. The increment of AL(S) equals:

δAL(i, S) =
νaii + 2|S|al(i, S)− AL(S)

ν(S) + 1
(3.37)

where ν equals 1 or 0 depending, respectively, on presence or absence of the diagonal
entries in A = (aij); the same condition defines ν(S) as |S| or |S| − 1, respectively.

Thus, the seriation process due to the local search algorithm applied to AL(S)
is controlled by yet another linkage function Al(i, S) = νaii + 2|S|al(i, S). There-
fore, AL-based local search seriation coincides with that produced by the average
linkage if the diagonal similarities are constant or absent. The stopping rule, turn-
ing δAL(i, S) negative, basically, depends on comparison between 2|S|al(i, S) and
AL(S) (in (3.37)).

Increment δAL(i, S) itself can be considered a linkage. Recalculation of this in
the seriation procedure (when S becomes S + j) can be made in terms of a Lance-
Williams formula (3.36) where all the coefficients (except γ) are nonzero. We leave
the task of identifying the coefficients to the reader, while suggesting another way
of using recalculated values, as follows.

Local Search for AL(S)
At every iteration, the values Al(i, S) = νaii+2|S|al(i, S) (i ∈ I−S) are
calculated and their maximum Al(i∗, S) is found. If Al(i∗, S) > AL(S)
then i∗ is added to S; if not, the process stops, S is the resulting cluster.
To start a new iteration, all the values are recalculated:
al(i, S) ⇐ (|S|al(i, S) + aii∗)/(ν(S) + 1)
AL(S) ⇐ (|S|AL(S) + Al(i∗, S))/(ν(S) + 1)
ν(S) ⇐ ν(S) + 1.

3.2.3 Clusterness of the Optimal Clusters

Description of the linkage-based clustering in terms of the corresponding optimiza-
tion criteria may be considered useful for better understanding of what kind of
clusters should be expected with each of the criteria. Such an understanding could
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be reached with a thorough consideration of specially crafted examples, as it is
done by Sneath and Sokal 1973, Spaeth 1985, but the general analysis may pro-
vide somewhat more general disclosure. Moreover, having a criterion may provide
a better computational outfit than just one-by-one seriation procedure. Let us
review the criteria in sequence.

Single Linkage Criterion

Criterion SL has been considered both for clustering and nonclustering pur-
poses. Nonclustering applications are connected with operations research “bottle-
neck” problems as, for instance, the problem of location of |S| noxious industrial
facilities and N − |S| residential facilities in the given sites i ∈ I in order to maxi-
mize the minimum distance between a noxious and a residential facility (Hsu and
Nemhauser 1979). Analysis of the problem in the clustering framework can be
found in Delattre and Hansen 1980, Muchnik and Zaks 1989, Hansen and Jaumard
1993. The basic observation made by Delattre and Hansen 1980 is that, for ev-
ery nonempty S ⊂ I, SL(S) is equal to the weight of an edge in every minimum
spanning tree (MST) (the dissimilarity setting of the data and criterion is assumed
here). This means, that an optimal cluster is found by cutting an MST by an edge
of the maximum weight. This provides us with a simple algorithm for optimizing
SL(S) and allows describing an optimal cluster as follows.

Let π be the weight of the MST edge cut, then set S is disconnected with its
complement, I − S, in the π-threshold graph defined by the dissimilarity matrix
analyzed since all the other edges between S and I−S have greater weights (by the
definition of MST). On the other hand, S is a component in the threshold graph
since all its vertices are connected by the MST edges, at least. Thus, the single
linkage optimal clusters are just components of a threshold graph, which shows
that they may have a complicated spatial shape (see comment on p. 294).

Summary Linkage Criterion

Criterion SUL(S), when the data entries are nonnegative, gives a trivial solution
in both cases: all set I if maximized (when similarities are considered) or any
singleton {i} if minimized (when dissimilarities are treated). Fixing the number
of the entities in S, seemingly inappropriate in the cluster analysis framework, is
considered convenient in operations research. Maximizing SUL(S) with |S| fixed
is an NP-complete problem since if an algorithm for the problem is developed, it
can be used for answering the question whether a clique of a fixed size in a graph
exists (which is NP-complete). Indeed, let us consider the adjacency matrix of the
graph as a similarity matrix, maximize SUL(S) for this graph and see the value of
SUL(S): since it is equal to the number of the edges in the subgraph on the vertex
set S, it shows whether S is a clique or not. If not, there is no clique of the fixed
size in the graph. Minimizing SUL(S) with |S| fixed is an NP-complete problem,
also.
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Min Cut Criterion

It is convenient to discuss here a criterion which can be minimized in polynomial
time (its maximization is a hard problem), though it relates, actually, to splitting I
into two parts S and I−S and, in this case, is equivalent to a “uniform partitioning”
criterion SU(0, S) (4.96), p. 408. It is the so-called min cut criterion, a most
popular concept in combinatorial optimization. Let

CUT (S) =
∑
i∈S

∑
j∈I−S

aij ,

the overall similarity between the cluster S and its surrounding S̄ = I − S.

The problem of finding a minimum of CUT(S) can be put in the context of the
so-called network flow theory developed by Ford and Fulkerson 1962 which is de-
scribed in every textbook on graph theory or combinatorial optimization (see, for
example, Papadimitriou and Steiglitz 1982 or Bondy and Murty 1976). This prob-
lem involves a nonnegative similarity (called capacity) matrix A = (aij) considered
as a graph along with the edge capacities aij . Two entities (vertices) are fixed and
called poles; one is considered the source of a flow restricted by the edge capacities
into the other, called the sink. The problem of finding a maximum flow between the
source i1 and sink i2 is well studied and has a relatively simple solution leading to
a subset S minimizing CUT(S) with regard to all subsets S ⊂ I containing i1 and
not containing i2. This itself can be utilized for clustering with criterion CUT(S)
since, frequently, the user has prior knowledge of a most appropriate entity (i1)
and a most inappropriate one (i2).

However, this can be employed also for minimizing CUT(S) without any con-
straints. As it can be easily shown, the values cut(i1, i2) of the minimum cut
CUT(S) in the restricted problem, satisfy the ultrametric inequality (see (6.136)
in Section 6.3) and, thus, have not more than N − 1 different values, which can be
found effectively (Ford and Fulkerson 1962) to resolve the min cut problem.

Summary Threshold Linkage

When aij may fall on either side of zero, the problem of maximizing SUL(S)
can be considered as the problem of maximizing L(S, π) for nonnegative a′

ij since,
obviously, the original entries aij can be considered as a′

ij−π with π ≥ |mini,j∈Iaij |
and, thus, all a′

ij = aij + π nonnegative.

The problem of maximizing L(π, S) is NP-complete for some π. To prove that,
let us consider A = (aij) to be the adjacency matrix of a graph (with no loops,
thus, with no aii given). Let π = (N − 1)/N . Evidently, for any S ⊂ I, the
value L(π, S) is positive if and only if S is a clique. Then, the value is maximum
when the clique contains the maximum number of vertices, which implies that the
problem of maximizing L(π, S) is NP-complete, in this case.
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Yet a necessary optimality condition gives a cluster meaning to the optimal
subset. Subset S ⊂ I will be referred to as a π-cluster if, for every i′ ∈ S and
i′′ �∈ S, al(i′′, S) ≤ π ≤ al(i′, S). In this definition, al(i, S) is defined, in the
standard way, for all i ∈ I.

Statement 3.5. A subset S maximizing L(π, S) is a π-cluster.

Proof: If S is optimal, then lπ(i, S) is nonnegative for every i ∈ S and nonpositive
for every i �∈ S. The proof follows from the fact that lπ(i, S) = |S|(al(i, S)− π).�

Since the threshold linkage seriation algorithm involves only this kind of ma-
nipulation with lπ(i, S), the proof can be applied to the cluster found with this
algorithm (do not forget, it stops when lπ(i, S) becomes negative!), which implies
that the clusters found with the threshold linkage algorithm satisfy a part of the
defining inequality: for every i′′ �∈ S, al(i′′, S) ≤ π. As to the elements i′ within
the cluster S, some of them may also have low linkages al(i′, S) ≤ π because all
the later added elements may have their individual similarities to i′ less than π.
To get a π-cluster, excluding the entities from S must be permitted, which will be
done in the next section.

Statement 3.5. suggests an interpretation of the threshold linkage clusters in
terms of the average similarities within and out of them with regard to the threshold
π. An explicit meaning of threshold π also becomes clear: in contrast to the “hard”
threshold utilized in threshold graphs, this threshold is “soft”; it is applied to the
average, not individual, similarities.

When the threshold increases, the number of the entities in an optimal cluster
may only decrease.

Statement 3.6. Let π1 > π2, and St be a solution to L(πt, S) optimization prob-
lem (t = 1, 2). Then |S1| ≤ |S2|.

Proof: By definition, L(π, S) = L(0, S) − π|S|ν(S). The fact that S1 is optimal
for π1 and S2 for π2 implies:

L(0, S1) − L(0, S2) ≥ π1(|S1|ν(S1) − |S2|ν(S2)),

L(0, S1) − L(0, S2) ≤ π2(|S1|ν(S1) − |S2|ν(S2)).

These inequalities combined lead to (π2 −π1)(|S1|ν(S1)− |S2|ν(S2)) ≥ 0 which
implies that |S1|ν(S1) ≤ |S2|ν(S2). Inequality |S1| ≤ |S2| holds since either of the
functions f(x) = x2 or f(x) = x(x − 1) is strictly monotone for x ≥ 1. �

Average Linkage Criterion

This criterion emerges in the approximation framework, Sections 3.4 and 5.1.
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The intuitive meaning of the criterion can be highlighted when it is rewrit-
ten as this: AL(S) = a(S)|S| where a(S) is the average similarity, a(S) =∑

i,j∈S aij/|S|ν(S). The criterion is the product of the average similarity aij within
S and the number of entities in S, which provides a compromise between these two
mutually contradicting criteria: the smaller the |S|, the greater the a(S). If, for
example, S is supposed to have only two elements, the criterion will be maximized
by the maximum of aij ’s. With the number of elements increased, one can only
decrease the average a(S).

When similarities are nonnegative, the problem of maximizing criterion AL(S)
is complicated, yet can be resolved with a polynomial-time algorithm. In graph
theory, set-function AL(S) is known as the density function; in a graph G = (V, E)
having vertex set V = I and weights on the edges ij equal to aij , AL(S) is equal
to the total summed edge weight within S divided by the number of vertices in
S. The problem of maximizing AL(S), in this context, is known as the maximum
density subgraph problem. It turns out, the problem can be resolved as a sequence
of max-flow-min-cut problems for a network associated with the problem. Let us
describe a method from Gallo, Grigoriadis, and Tarjan 1989 involving a four-layer
network, the layers being consecutively: a source so, set E, set I, and a sink si. The
source is connected with every edge ij by an arc (so, ij) of capacity aij ; every edge
ij is connected with its ends, i, j ∈ I, by arcs of “infinite” (as great as necessary)
capacity; and every entity i ∈ I is connected with the sink by an arc (i, si) of a
capacity λ > 0. The vertices i ∈ I belonging to the subset cut which contains sink
si, form a subset S maximizing the criterion SUL(S) − λ|S| and, thus, satisfying
the inequality AL(S) ≥ λ when the criterion value is not negative. Indeed, the min
cut value in the network equals λ|S|+∑ij �∈S×S aij =

∑
i,j∈I aij−(SUL(S)−λ|S|).

The crucial fact is that the optimal cut set S can only lose some of its vertices when
λ is increased, thus providing us with a simple method for finding the AL-optimal S
which is the last nonempty cut set found while λ is increasing. Fig. 3.39 illustrates
this: (b) represents the network corresponding to graph (a); with λ = 2, cut set
S = 2− 3− 4 is the maximum density subgraph corresponding to λ = AL(S) = 3.

Unfortunately, this method cannot be extended to the case of arbitrary aij .
Moreover, the problem becomes hard in the general case.

The criterion can be interpreted also in terms of the Boolean indicator func-
tion s = (si) where si = 1 if i ∈ S and si = 0 when i �∈ S. Obviously,
AL(S) = sT As/sT s where A = (aij). This is the so-called Raleigh quotient,
having the maximum eigenvalue of A as its maximum with regard to arbitrary s in
the case when no Boolean restriction on s is imposed. As it is well known, if A is
nonnegative, its eigenvector corresponding to the maximum eigenvalue has all its
coordinates nonnegative. This makes one suggest that there must be a correspon-
dence between the components of the globally optimal solution (the eigen-vector)
and the solution in the restricted problem with Boolean s. However, even if such a
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Figure 3.39: The four-layer network (b) for finding a maximum density subgraph
in graph (a); for λ = 2, the maximal flow saturates edges joining si with 2, 3, and
4, and so with 1, which defines min cut shown by the bold line.

correspondence exists, it is far from straightforward. For example, there is no cor-
respondence between the largest components of the eigen-vector and the non-zero
components in the optimal Boolean s: the first eigen-vector for the 20-vertex graph
in Fig. 1.22 has its maximum value corresponding to vertex 5 which, obviously,
does not belong to the maximum density subgraph, the clique 1 − 2 − 3 − 4.

Still the optimal clusters satisfy a clusterness condition. Let us refer to a
subset S ⊂ I as a strict cluster if it is an a(S)/2-cluster where a(S) is the average
similarity, defined as a(S) =

∑
i∈S

∑
j∈S aij/ν(S)|S|. This means that, for every

i′ ∈ S and i′′ ∈ I − S,

al(i′, S) ≥ a(S)
2

≥ al(i′′, S).

The threshold value π = a(S)/2 here is not constant: it is high for a “dense”
cluster and small for a “sparse” one. What seems important is that the cluster is
separated from the outsiders with a barrier: each of them has its average linkage
(similarity) to the cluster not larger than half of the average similarity within. The
proof will follow from Statement 3.7. characterizing AL-optimal clusters.

For an S ⊆ I, let us set zi = 1 for i ∈ S and zi = −1 for i ∈ I − S. Obviously,
vector z = (zi) can be expressed with S’s indicator s as z = 2s− 1. For any other
T ⊂ I, let zT be the vector obtained from z by making all the components zi, for
i �∈ T , zero. Let dal denote the vector consisting of deviations al(i, S)− a(S)/2 as
its components.

Statement 3.7. Subset S is a global maximizer of AL(S) if and only if, for any
T ⊂ I,

(zT , dal) ≥ zT
T AT /2ν(S) (3.38)
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Proof: Obviously, S is optimal if, for any T , AL(S∆T ) − AL(S) ≤ 0. On the
other hand,

AL(S∆T ) − AL(S) = (zT
T AzT − 2ν(S)(zT , dal))/(ν(S) − (zT , u))

where u is the vector having all its components equal to 1, which proves the state-
ment. �

This statement shows that the differences dali = al(i, S) − a(S)/2 play a key
role in the problem of optimizing AL(S). When similarity matrix A is positively
definite, the right part of inequality (3.38) can be used to set bounds in a version
of the branch-and-bound method for optimizing AL(S) (Mirkin 1987a). The strict
clusterness of the optimal clusters follows from (3.38) when T consists of a single
entity.

3.2.4 Seriation with Returns

Considered as a clustering algorithm, the seriation procedure has a drawback: every
particular entity, once being caught in the sequence, can never be relocated, even
when it has low similarities to the later added elements.

After the optimization criteria have been introduced, such a drawback can be
easily overcome. To allow exclusion of the elements in any step of the seriation
process, the algorithm is modified by extending the neighborhood system.

Let, for any S ⊂ I, its neighborhood N(S) consist of all the subsets differing
from S by an entity i ∈ I being added to or removed from S. The local search
techniques can be formulated for all criteria above based on this modification.

For the sake of the brevity, we consider here the modified algorithm only for
criterion AL(S). Its increment equals

δAL(i, S) =
νsii + 2zi|S|al(i, S)− ziAL(S)

ν(S) + zi
(3.39)

where zi = 1 if i has been added to S or zi = −1 if i has been removed from
S. Thus, the only difference between this formula and that in (3.37) is change
of the sign in some terms. This allows the modified algorithm being formulated
analogously.
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Local Search with Return for AL(S)
Every iteration, values Al(i, S) = νsii + 2zi|S|al(i, S) (i ∈ I) are cal-
culated and their maximum Al(i∗, S) is found. If Al(i∗, S) > zi∗AL(S)
then i∗ is added to or removed from S by changing the sign of zi∗ ; if not,
the process stops, S is the resulting cluster. To start the next iteration,
all the values participating in the formulas are recalculated:
al(i, S) ⇐ (ν(S)al(i, S) + zi∗sii∗)/(ν(S) + zi∗)
AL(S) ⇐ (|S|AL(S) + zi∗Al(i∗, S))/(ν(S) + zi∗)
ν(S) ⇐ ν(S) + zi∗ .

Statement 3.8. The cluster found with the modified local search algorithm is a
strict cluster.

Proof: The stopping criterion involves the numerator of (3.39): νsii +
2zi|S|al(i, S) − ziAL(S) ≤ 0, for any i ∈ I. Thus, the cluster found satisfies
the inequality: zi(al(i, S) − AL(S)/2|S|) ≤ 0 for any i ∈ I. This completes the
proof since AL(S)/2|S| = a(S)/2. �

Analogously, it can be proven that the cluster optimizing L(π, S) with the
modified local search method admitting returns is a π-cluster.

3.2.5 A Class of Globally Optimized Criteria

The seriation techniques may be considered as another formulation for the so-called
greedy algorithms (Papadimitriou and Steiglitz 1982, Helman, Moret, Shapiro
1993). These kinds of algorithm have been studied from the following point of
view: given a class of set functions (usually, linear set functions that can be rep-
resented as linear combinations of the function values at the individual entities),
characterize the class of feasible subsets to guarantee optimality of the seriation
technique results. In cluster analysis, the structure of the set of all feasible subsets,
usually, is simple; just the set of all subsets (perhaps containing a pre-fixed bunch
of the entities, which, basically, does not change anything since the fixed elements
do not vary). However, set functions here, usually, are not linear. Nevertheless,
the single linkage function has a nice property of monotonicity which can be ex-
tended to a class of dissimilarity linkage measures; the related class of nonlinear
set functions can be globally optimized with a version of the seriation algorithm.

Let us refer to a dissimilarity linkage function d(i, S), S ⊂ I, i ∈ I − S, as a
monotone linkage if d(i, S) ≥ d(i, T ) whenever S ⊂ T (for all i ∈ I − T ). Two of
the linkage functions considered, sl(i, S) and ml(i, S), are monotone.
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A set function Md(S) can be defined based on a linkage function d(i, S):

Md(S) = min
i∈I−S

d(i, S). (3.40)

Following terminology of Delattre and Hansen 1980, Md(S) can be referred
to as the minimum split function for linkage d(i, S). The function measures the
minimum linkage between S, as a whole, and I − S as set of the “individual”
entities.

A set function F (S) (∅ ⊂ S ⊂ I) is referred to as quasi-convex if it satisfies the
following condition: For any overlapping S1 and S2 (S1 ∩ S2 �= ∅),

F (S1 ∩ S2) ≥ min(F (S1), F (S2)) (3.41)

Statement 3.9. The minimum split function for a monotone linkage is quasi-
convex.

Proof: Let F (S) = mini∈I−S d(i, S) for some monotone linkage d(i, S) and S1, S2

be overlapping subsets of I. Let F (S1 ∩ S2) = d(i, S1 ∩ S2) while F (S1) = d(j, S1)
and F (S2) = d(k, S2). By definition of F , i does not belong to S1 or S2, say, i �∈ S1.
Then, d(i, S1) ≥ F (S1) = d(j, S1) and F (S1 ∩ S2) = d(i, S1 ∩ S2) ≥ d(i, S1) since
d(i, S) is a monotone linkage, which proves that F is quasi-convex. �

Let us define now the maximum join linkage function dF for any set function
F (S):

dF (i, S) = max
S⊆T⊆I−i

F (T ) (3.42)

Statement 3.10. The maximum join linkage function dF (i, S) is monotone if F
is quasi-convex.

Proof: Obvious, since any increase of S makes the set of maximized values in the
definition of dF smaller. �

It appears that in the setting defined by conditions of quasi-convexity and
monotonicity, the functions dF and Md are dual, that is, for any quasi-convex set
function F : P(I) → R, the minimum split function of its maximum join linkage
coincides with F . Vice versa, for any monotone linkage d : I × P(I) → R, the
maximum join linkage of its minimum split function coincides with d.

Statement 3.11. For any quasi-convex set function F : P(I) → R, the minimum
split function of its maximum join linkage coincides with F .
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Proof: Let Si be a maximizer of F (T ) with regard to all T , satisfying the condition
S ⊆ T ⊆ I − i for i �∈ S so that dF (i, S) = F (Si). The minimum split function for
dF , by definition, is equal to M(S) = mini�∈S F (Si). Thus, M(S) ≤ F (∩i�∈SSi),
due to quasi-convexity of F (S). But ∩i�∈SSi = S since S ⊆ Si and i �∈ Si, for every
i �∈ S, which implies M(S) ≤ F (S). On the other hand, F (Si) ≥ F (S), i �∈ S,
since S belongs to the set of feasible subsets in the definition of Si as a maximizer
of F ; this implies that M(S) ≥ F (S), which proves the statement. �

The duality proven is asymmetric from the algorithmic point of view: it is quite
easy to construct a minimum split function Md based on a linkage d(i, S) while
determining the maximum join linkage dF by F : P(I) → R may be an NP-hard
problem: the former task involves enumerating the elements i ∈ I − S while the
latter task requires maximizing a set function F (T ). This implies that it would
be more appropriate to consider monotone linkage as a tool for defining a quasi-
convex set function rather than, conversely, quasi-convex set function as a tool for
representing the monotone linkage.

Let us consider a quasi-convex set function F represented through a monotone
linkage function d(i, S) by equation (3.40), F = Md. Let us refer to a series,
(i1, ..., iN ), as a d-series if it is obtained with the algorithm of one-by-one seriation
applied to d(i, S); that is, d(sk+1, Sk) = maxi∈I−Sk

d(i, Sk) where Sk = {i1, ..., ik}
is a starting subset of the series and k = 1, 2, ...N − 1. A subset S will be referred
to as a d-cluster if S is a maximizer of F (S) with regard to all starting sets,
Sk = {i1, ..., ik}, in a d-series, (i1, ..., iN ). Obviously, finding a d-cluster can be
done simultaneously with designing a d-series: this is just any initial fragment
whose linkage with the subsequent element of the d-series is maximum.

Statement 3.12. Any maximizer of F includes a d-cluster which is a maximizer
of F , also.

Proof: Let S∗ be a maximizer of F and pi be a d-series starting from an i ∈ S∗.
Then, let S∗ not be a starting set, which means that there are some elements
between i and the last element of S∗ in pi, that do not belong to S∗; let i∗ be
the first of them. Let us prove that set Ti of the elements preceding i∗ in pi is
a maximizer of F . Indeed, d(i∗, S∗) ≥ F (S∗) due to equality (3.40) applied to
S = S∗. On the other hand, d(i∗, Ti) ≥ d(i∗, S∗) since d is a monotone linkage.
Thus, Ti is a maximizer of F . Since Ti is a starting set of pi, it is a d-cluster, which
proves the statement. �

Statement 3.13. If S1, S2 ⊂ I are overlapping maximizers of a quasi-convex set
function F (S), then S1 ∩ S2 is also a maximizer of F (S).

Proof: Obvious from definition. �
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Figure 3.40: A minimum spanning tree for matrix D.

These two statements imply that the minimal (by inclusion) maximizers of a
quasi-convex function F (S) defined by a monotone linkage d are not overlapping
and they can be found as initial fragments (d-clusters) of some d-series. To do
that, a d-series pi must be determined starting from each i ∈ I. Then, in each of
the d-series pi (i ∈ I), the minimal d-cluster is found as the first starting fragment
Sk having maximum F (Sk) = d(ik+1, Sk) over k = 1, ..., N − 1. Among the d-
clusters, only those maximizing F are left. The structure of the maximizers of a
quasi-convex set function is described as follows.

Statement 3.14. Each maximizer of a quasi-convex set function Md is union of
its minimal maximizers that are d-clusters.

Proof: Indeed, if S∗ is a maximizer of Md(S), than, for each i ∈ S∗, there is a
minimal d-cluster containing i, as it follows from the proof of Statement 3.12.. �

The (minimal) maximizers may not cover all the entities, thus leaving some of
them unclustered (ground cluster).

Let us consider set I = {1, 2, 3, 4, 5, 6} of the rows of a 6 × 7 Boolean matrix X:

X =

1 0 1 1 0 0 1 1
2 1 0 1 0 1 1 0
3 0 1 1 1 1 0 1
4 1 0 0 1 1 0 0
5 1 0 1 1 0 1 0
6 0 1 0 1 0 1 0

The matrix of row-to-row Hamming distances (numbers of noncoinciding components)
is this:

D =

⎛
⎜⎜⎜⎜⎜⎝

0 4 3 7 4 3
4 0 5 3 2 5
3 5 0 4 5 4
7 3 4 0 3 4
4 2 5 3 0 3
3 5 4 4 3 0

⎞
⎟⎟⎟⎟⎟⎠
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A D-based MST is presented in Fig. 3.40. It can be seen from it that the following
five subsets are minimal maximizers of the minimum split single linkage function SL(S):
{1}, {2, 5}, {3}, {4}, {6}, all corresponding to maximum value SL(S) = 3. They form a
partition of I , which always holds for SL since SL(S) = SL(I −S), implying that all the
entities must be covered by SL maximizers.

The situation is slightly different for the minimum split of ml; its minimal maximizers

are {1}, {3}, {4}, and {6} while none of the elements 2 or 5 belongs to a maximizer of

Mml(S). Indeed, let us take a look at six ml-series starting from each of the entities:

1(3)3(3)2(0)5(1)4(0)6, 2(2)5(2)4(2)6(1)1(0)3, 3(3)1(3)2(0)5(1)4(0)6,

4(3)2(1)5(2)6(1)1(0)3, 5(2)2(2)(2)6(1)1(0)3, 6(3)1(2)3(2)2(0)4(0)5.

The value ml(ik+1, Sk) is put in parentheses between every starting interval Sk seriated

and ik+1 (k = 1, ..., 6). It can be seen that the maximum value 3 separates each of the

four singletons indicated while it never occurs in the series starting with 2 or 5.

The contents of this section is based on a paper by Kempner, Mirkin, and
Muchnik 1995, preceded by Mullat 1976 and Zaks and Muchnik 1989.

3.2.6 Discussion

1. Seriation, as a process of iterative ordering a finite set of objects with one-
by-one addition of the objects to the order, is an important mental and
mathematical operation. Its relation to single cluster clustering can be easily
seen with a particular concept of linkage introduced as an entity-to-subset
similarity measure.

2. An attempt is made to explicitly describe well-known concepts of single,
average, etc. linkages as applied to single cluster clustering rather than to
traditional hierarchical clustering.

3. For some linkage functions, set functions being optimized by the seriation
procedure (as a local search algorithm) have been indicated. These criteria
may be employed for at least two purposes: (a) developing more efficient
algorithms, (b) theoretical study of properties of the clusters found with the
criteria, both of which are outlined here.

4. The linkage function as a mathematical object has been studied in Russia
for almost two decades; some results of the study have been adapted here to
allow a complete description of quasi-convex set functions as represented with
monotone linkage functions and globally optimized by a simple seriation-like
algorithm. No polynomial algorithm is possible for maximizing quasi-convex
functions in the oracle-defined form.
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3.3 Moving Center

3.3.1 Constant Radius Method

Methods related to the method of moving centers (K-Means) for partitioning
present another class of the single cluster clustering methods. They are based
on two concepts: (1) a c(S), centroid or standard point or prototype defined for
any subset S ⊆ I and (2) d(i, c(S)), the distance between entities i ∈ I and the
centroids. These concepts can be defined in various ways (see Section 2.2.2).

To accomplish single cluster clustering, the separative strategy framework is
employed in such a way that the cluster sought is just dropped out of the entity set
using a pre-defined cluster-size parameter. When the cluster-size parameter is a
fixed radius (threshold) R > 0 value, here is a separative moving center algorithm:

Constant Radius Moving Center
Starting with arbitrary c, the procedure iterates the following two steps:
1) (Updating the cluster) define the cluster as the ball of radius R around
c: S = {i : d(i, c) ≤ R};
2) (Updating the center) define c = c(S).
Stopping rule: compare the newly found cluster S with that found at
the previous iteration; stop if the clusters coincide, else go to 1).

It is not obvious that the algorithm converges, that is, that the stopping rule is
satisfied once; and, really, non-convergence may occur when the concept of centroid
has no relation to that of the distance d(i, c). Let us say that a centroid concept,
c(S), corresponds to a dissimilarity measure, d, if c(S) minimizes

∑
i∈S d(i, c).

For example, the gravity center (average point) corresponds to the squared Eu-
clidean distance d2(yi, c) since the minimum of

∑
i∈S d2(yi, c) is reached when

c =
∑

i∈S yik/|S|. Analogously, the median vector corresponds to the city-block
distance.

It turns out, that when a centroid concept corresponds to a distance measure,
the algorithm above can be described as the alternating minimization algorithm for
a clustering criterion. To introduce a convenient criterion, let us add a particular
distinct point ∞ to I, with all the distances d(i,∞) equal to the radius R. Let us
define:

D(c, S) =
∑
i∈S

d(i, c) +
∑

i∈I−S

d(i,∞) (3.43)

to be minimized by both kinds of the variables (one related to c, the other to S).
As it has been described already, p. 277, the alternating minimization technique
iteratively minimizes the criterion over one group of the variables with the other
fixed, using the newly found values for the next iteration.
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When c is fixed, minimizing D(c, S) with regard to S is easily achieved: all
the is with d(i, c) < R must be put in S, and all the is with d(i, c) > R must
be kept out of S while assigning of those i having d(i, c) = R to S or not does
not matter. When S is fixed, c is taken to minimize D(c, S), or, equivalently,∑

i∈S d(i, c), since the second term in (3.43) does not depend on c. Obviously, the
optimal c = c(S) when the centroid concept corresponds to the distance. We have
proven the following statement.

Statement 3.15. The moving center method (with the radius fixed) is equivalent
to the method of alternating minimization applied to criterion D(c, S) in (3.43)
when the centroid concept corresponds to the distance measure.

Corollary 3.1. The moving center method (with the radius fixed) converges if the
center element concept corresponds to the distance measure.

Proof: Indeed, the alternating minimization decreases the criterion value at each
iteration, and the number of the feasible clusters S is finite. �

In Russia, the constant-radius moving center method was suggested by Elk-
ina and Zagoruiko 1966 as the basic part in their separative clustering procedure
FOREL (from FORmal ELement, also “trout”, in Russian). The original method
employs the gravity center and Euclidean distance concepts; and it starts from the
center of gravity of the entire entity set. After a cluster is found, the procedure is
applied repeatedly to the rest of the entity set. Usually, the algorithm finds a few
large clusters; the rest yields to very small clusters that are considered a “swamp”
to be excluded from the substantive analysis. Several computations are usually
made, with different values of R: the greater R, the smaller the number of “signif-
icant” clusters. Convergence of the original algorithm was proved by Blekher and
Kelbert 1978 using a form of function (3.43).

3.3.2 Reference Point Method

Yet another moving center method for the entity-to-variable data was developed
by the author (Mirkin 1987a, Mirkin and Yeremin 1991), in the approximation
clustering context, with a different kind of cluster-size parameter to be specified
by the user. This parameter, referred to as the reference point a = (ak), is a
particular point in the variable space, which is considered a “center” to look from
it at the other entity points. For the sake of simplicity, the origin of the space, 0,
will be shifted into the reference point, which is achieved by subtracting a from
all the row-points yi. To make the method more flexible, let us define yet another
parameter, a comparison scale factor, α > 0, to control the cluster size in a “soft”
manner. Usually α = 1.
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Reference-Point-Based Moving Center
Start with an initial standard point c.
1. Updating of the cluster: Define cluster S of points yi around the
center c as S = {i : d(yi, c) ≤ αd(yi, 0)}.
2. Updating of the standard point: Compute c = c(S).
3. Stop condition: Compare S with that at the previous iteration. If
there is no difference, the process ends: S and c(S) are the result. Else
go to Step 1.

This algorithm follows the scheme of the constant radius moving center method,
although there are some differences: the size of the cluster, in this method, depends
not on the scale factor only, but, mainly, on the reference point location! Indeed,
the cluster size is proportional to the distance between c and 0; the less the distance,
the less the cluster radius.

This is a violation of the longstanding tradition in clustering, which pertains
to homogeneity of the variable space and requires the size of the clusters to de-
pend only on the inter-entity distances, not on their centroid’s location. However,
the reference point is a meaningful parameter. For example, a moving robotic
device should classify the elements of the environment according to its location:
the greater the distance, the greater the clusters, since differentiation among the
nearest matters more for the robot’s moving and acting. Moreover, the homogene-
ity tradition, actually, does not hold in traditional clustering algorithms also, for
example, when they involve scalar-product based similarity measures. The row-
to-row scalar product, (yi, yj) =

∑
k yikyjk, refers to the angle between the lines

joining 0 and each of yi, yj, which depends much on location of 0. The connection
with the scalar product can be seen quite unequivocally:

Statement 3.16. In the Euclidean space, updating of the cluster with α = 1 in
Step 1 of the reference-point-based moving center method is equivalent to the deci-
sion rule based on the following discriminant function f(x) (x belongs to S if and
only if f(x) > 0):

f(x) = (c, x) − (c, c)/2 > 0 (3.44)

Proof: The generic inequality in Step 1 does not change if the Euclidean distances
are squared:

(yi, yi) − 2(yi, c) + (c, c) ≤ (yi, yi) − 2(yi, 0) + (0, 0),

After obvious reductions, we get (3.44) proven. �

The reference point, 0, is involved in (3.44) implicitly, through definition of the
scalar product.

As can be expected, the reference-point-based method also turns out an alter-
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nating optimization algorithm for a particular criterion:

D(c, S) =
∑
i∈S

d(i, c) + α
∑

i∈I−S

d(i, 0) (3.45)

Statement 3.17. The reference-point-based moving center method is equivalent to
the method of alternating minimization applied to criterion D(c, S) in (3.45) when
the standard point concept corresponds to the distance measure.

Proof: The proof is completely analogous to that in the Statement 3.15.. �

In practical computations, the reference-point-based algorithm shows good re-
sults when it starts from the entity-point which is farthest from the reference point.
This seems to correspond to the process of typology starting from the most devi-
ate types. A mathematical substantiation of this rule will be presented in Section
3.4.1.

3.3.3 Discussion

1. The moving center method (K-Means) is a clustering method used widely
for partitioning. However, there are some versions of the method utilized
for finding clusters in the separative strategy framework. At any step, only
one cluster is found, which allows us to consider this kind of algorithm as,
primarily, single cluster clustering. Separation of a cluster involves a cluster-
size parameter as the radius or reference point.

2. The underlying idea is that the clusters are extracted one by one from the
“main body” of the entities, which is especially easy to see in the second of
the algorithms presented. In this algorithm, the “main body” is considered
as resting around a “reference point” while the cluster extracted must have
its standard point as far from that as possible, which may be considered a
model of typology making based on extracting the “extreme” types. This
method has a distinctive feature that the size of the cluster found explicitly
depends on its distance from the reference point, which may allow the user
to use the “reference point” as an interpretable parameter of the algorithm.

3. Both of the methods presented can be explained in terms of the square-error
criterion, which allows proof of their convergence. Moreover, the reference-
point-based algorithm, actually, pertains to the principal cluster analysis
emerging in the context of approximation clustering (as described in the
next section).
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3.4 Approximation: Column-Conditional Data

3.4.1 Principal Cluster

Let Y = (yik), i ∈ I, k ∈ K, be an entity-to-variable data matrix. A type-cluster
can be represented with its standard point c = (ck), k ∈ K, and indicator function
s = (si), i ∈ I (both of them may be unknown). Let us define a bilinear model
connecting the data and cluster with each other:

yik = cksi + eik, i ∈ I, k ∈ K, (3.46)

where eik are some residuals whose values show how the cluster structure fits into
the data. The equations (3.46), basically, mean that the rows of Y are of two
different types: a row i resembles c when si = 1, and it has all its entries small
when si = 0.

To get the model fitted, let us minimize the residuals by ck or/and si with the
least-squares criterion:

L2(c, s) =
∑
i∈I

∑
k∈K

(yik − cksi)2 (3.47)

A minimizing type-cluster structure is referred to as a principal cluster be-
cause of the analogy between this type cluster and principal component analysis: a
solution to the problem (3.47) with no Boolean restriction gives the principal com-
ponent score vector s and factor loads c corresponding to the maximum singular
value of matrix Y (see Section 1.3.1).

The criterion can be rewritten in terms of the subset S = {i : si = 1} corre-
sponding to s:

L2(c, S) =
∑
i∈S

∑
k∈K

(yik−ck)2+
∑

i∈I−S

∑
k∈K

y2
ik =

∑
i∈S

d2(yi, c)+
∑

i∈I−S

d2(yi, 0) (3.48)

where d2 is the Euclidean distance squared.

Criterion (3.48), obviously, is a particular instance of the criterion (3.45) above.
This implies the following statement.

Statement 3.18. Alternating minimization of the least-squares principal cluster
criterion (3.47) is equivalent to the reference-point-based moving center method
when its parameters are specified as follows: 1) the standard point is the grav-
ity center, c(S) =

∑
i∈S yik/|S|; 2) dissimilarity d(i, c) is the Euclidean distance

squared; 3) the reference point is in the origin, 4) comparison scale factor α = 1.



3.4. APPROXIMATION: COLUMN-CONDITIONAL DATA 351

The proof follows from the fact that the gravity center, as a standard point
concept, corresponds to the Euclidean distance squared (see p. 346).

Another form of the criterion (3.47) allows finding a match to it among the
seriation criteria. Let us represent the criterion in matrix form: L2 = Tr[(Y −
scT )T (Y − scT )]. Putting there the optimal c = Y T s/sT s (for s fixed), we have

L2 = Tr(Y T Y ) − sY Y T s/sT s

leading to decomposition of the square scatter of the data Tr(Y T Y ) =
∑

i,k y2
ik in

the “explained” term, sY Y T s/sT s, and the “unexplained” one, L2 = Tr(ET E),
where E = (eik):

Tr(Y T Y ) = sY Y T s/sT s + Tr(ET E) (3.49)

Matrix B = Y Y T is a N×N entity-to-entity similarity matrix having its entries
equal to the row-to-row scalar products bij = (yi, yj). Let us denote the average
similarity within a subset S ⊆ I as b(S) =

∑
i,j∈S bij/|S||S|. Then (3.49) implies

that the principal cluster is a Boolean maximizer of the set function

g(S) = sY Y T s/sT s =
1
|S|

∑
i,j∈S

bij = |S|b(S) (3.50)

which is, actually, the Average linkage criterion AL(S) (applied to the similarity
matrix B). Two one-by-one local search algorithms for this criterion have been
presented p. 334 and 341, as well as the property that the output is a strict
cluster. The local search seriation starts with S = ∅; and the first i to be added
is a maximizer of g({i}) = bii = (yi, yi) = d2(yi, 0). This means that the starting
point of the seriation process here must be among those which are the most distant
from 0. Let us put it in a formal way.

Statement 3.19. The principal cluster is a maximizer of the average linkage cri-
terion, AL(S), applied to matrix B = Y Y T ; AL(S) is the cluster contribution to
the square data scatter. The local search algorithm for principal clustering starts
in a row-point which is farthest from the origin.

This shows how close to each other, actually, the two single clustering algo-
rithms are, the reference-point-based moving center algorithm and the local search
(seriation) algorithm for the average linkage, with the setting described in the
statements above.

Yet another point should be underscored concerning the interpretation aids
yielded by the principal cluster criterion. The standard point c = c(S) is a tradi-
tional aid which can be supplemented by the relative importance weights of various
elements of the cluster structure as measured by their contributions:
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Corollary 3.2. Contribution g(S) (3.50) of the principal cluster (S, c) to the data
scatter equals |S|(c, c) while the variable k and the entity i contributions to that are
c2
k|S| and (yi, c), respectively.

Proof: The proof follows from (3.49), (3.50), and the fact that g(S) = |S|(c, c) =∑
i∈S(yi, c). �

Amazingly, contributions of the entities, (yi, c), can be negative since they are
related to the cosine of the angle between yi and c (at the origin): when the angle
is obtuse!

Let us consider some examples. Applied to the Iris data set (square-scatter standard-
ized), the algorithm above found a principal cluster containing 26 specimens, all from
class 3, with its relative contribution to the data scatter equal to 22.4%. Applied repeat-
edly to the rest (124 entities), a 49-element cluster was found (all from class 1, except
for specimen number 30 which is somewhat apart from the main body (see the plot in
Figure 2.35), its relative contribution to the data scatter, 41.6%. Though the method is
first supposed to find the maximally contributing cluster, it is not the case here, due to
its local nature.

Table 3.36 presents the cluster centroids along with the relative contributions of the

variables (which are proportional to the standardized centroid coordinates squared)

Cluster Variable v1 v2 v3 v4
Original scale 7.00 3.16 5.87 2.17

1 Standardized scale 1.40 0.23 1.20 1.28
Contribution, % 38.42 1.08 28.30 32.20
Original scale 5.02 3.45 1.47 0.24

2 Standardized scale -1.00 0.90 -1.30 -1.25
Contribution, % 19.68 16.10 33.28 30.94

Table 3.36: Two principal clusters found for Iris data set, represented by their
centroid values and variable contributions.

It can be seen, from the table, that v1 and v4 are the most contributing variables for

cluster 1, while v3 and v4 are those, for cluster 2.



3.4. APPROXIMATION: COLUMN-CONDITIONAL DATA 353

Applied to the Disorders data, Table 11, p. 191 (centered but not normed since all
the variables are measured in the same 7-rank scale), the algorithm produces class 1, as
it is, as the principal cluster accounting for 22.3% of the square data scatter (which is
the maximum contribution, in this case). Among 17 variables, four account for 66.5%
of the total contribution: w13 (19.8), w9 (18.3), w5 (16.7), and w8 (11.7) (the figures in
parentheses are the relative contributions of the variables).

Let us look at the values of the most contributing variables in the cluster: w13 is 6 for
seven and 5 for four of the patients while w9 is 6 for all eleven of them. Can we employ
the observation for intensional description of the cluster, say, as the subset where w13 is
5 or 6? Yes, we can, though it will not be completely satisfactory since there is a patient,
number 32, who does not belong in the cluster, though he satisfies the description. In this
aspect, variable w9 provides a better intensional description: w9=6 for all the patients
from the cluster and only for them.

How did it occur that a better variable had a lesser contribution? Because the con-

tribution is based on the statistical average concept which may not follow the intensional

aspect as closely as necessary. The contribution is proportional to the difference (squared)

between the within-cluster and the grand means of the variable; the difference for w9,

3.39, is smaller than that for w13, 3.53, though w13 is more confusing, in terms of the

intensional description. However, “in average”, the difference between the means reflects

the intensional difference.

There can be other criteria employed to fit the model (3.46). Among them,
least moduli, L1 =

∑
i,k |eik|, and least maximum (Chebyshev), L∞ = maxi,k |eik|,

are. Let us consider them in sequence.

Least Moduli Fitting

L1 =
∑
i∈I

∑
k∈K

|yik − cksi| =
∑
i∈S

dcb(yi, c) +
∑

i∈I−S

dcb(yi, 0) (3.51)

where dcb is the city-block metric. This formulation suggests use of the Reference-
point-based moving center method with 0 as the reference point, the median as the
standard point concept, and α = 1, and the alternating minimization technique
can be applied for minimizing the criterion.

Yet another formulation of the criterion:

L1 =
∑
i,k

|yik| − 2
∑
i∈S

([yi, c] − [c, c]/2) (3.52)

where c is the median vector of the variables in S; and [, ] is the l1-scalar product
defined on p. 234. Obviously, [c, c] =

∑
k |ck|. Again, we have here another form

of the criterion, g1(S) = 2
∑

i∈S([yi, c] − [c, c]/2), the cluster contribution to the
L1-scatter of the data to be maximized. The local search algorithm (seriation[with
returns]) can be easily adjusted to this particular criterion, which is left to the
reader (see Mirkin 1990).
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Due to the additive form of g1(S), contributions of the single variables and/or
entities to the total data 1-scatter can be easily extracted, to be used as the inter-
pretation aids.

Applied to the Iris data set, the least-moduli principal cluster algorithm produced a

25-element cluster, being a subset of the principal cluster found with the least-squares

criterion (within class 3). The second cluster found coincides with class 1. The first

cluster contributes 13.2% to the least-moduli scatter while the second, 39.0% (which,

again, illustrates the local nature of the algorithm).

Least Maximum Fitting

This criterion,

L∞(c, S) = maxi,k |yik − cksi| = max{maxi∈S d∞(yi, c), maxi∈I−S d∞(yi, 0)},
where d∞ is Chebyshev distance, cannot be presented as the difference between
the data scatter and its explained part. The alternating minimization technique,
however, can be applied.

Least Maximum Principal Clustering
An iteration: S given, the optimal c can be taken as the midrange point
of the variables (within S only). When c is given, S and I − S are
defined as the point subsets belonging in two equal-size n-dimensional
cubes having c and 0 as their centers.

The original, still uninvestigated, combinatorial problem here is to find two
nonoverlapping cubes of the same minimum size (one with a mandatory center in
0) to contain all the entities.

Applied to the Iris data set (infinity-scatter standardized), the least-maximum based

algorithm produced a 19-element “principal” cluster within class 1 while the second cluster

(applied to the remaining 131 specimens) gave a 31-element cluster containing the rest of

class 1.

3.4.2 Ideal Type Fuzzy Clustering

The concept of fuzzy set has been introduced (by L. Zadeh 1965) to describe an
indefiniteness in assigning entities to a subset (see, for example, Zimmerman 1991,
Diamond and Kloeden 1994). A vector f = (fi), i ∈ I, is referred to as a fuzzy set
or membership function if 0 ≤ fi ≤ 1, for every i ∈ I. Value fi is interpreted as
the degree of membership of i in f . A fuzzy set becomes a traditional “hard” set
when all the membership degrees equal 1 (belongs) or 0 (does not). A pair (c, f)
is called a fuzzy cluster if f is an N -dimensional membership function and c is a
standard point in the variable space.
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The approximation framework (developed by Mirkin and Satarov 1990) suggests
a bilinear model for revealing an underlying fuzzy cluster structure, which is much
like that of the principal cluster (3.46):

yik = ckfi + eik, i ∈ I, k ∈ K, (3.53)

Fitting the model with the least-squares criterion

L(c, f)2 =
∑
i∈I

∑
k∈K

(yik − ckfi)2 (3.54)

with regard to arbitrary ck and nonnegative fi ≤ 1 is a non-convex mathematical
programming problem (belonging to the so-called semidefinite programming).

If no constraints are placed on fi, the problem is just the problem of finding
the singular vectors c∗, f∗ corresponding to the maximum singular value of matrix
Y and satisfying the equations:

c∗k = (yk, f∗)/(f∗, f∗), f∗
i = (yi, c

∗)/(c∗, c∗)

where yk is k-th column of Y , k ∈ K. The constraints yield a modified locally-
optimal solution:

c∗k = (yk, f∗)/(f∗, f∗), f∗
i =

⎧⎨
⎩

0 for gi ≤ 0
gi for 0 < gi ≤ 1
1 for gi > 1

(3.55)

where gi = (yi, c
∗)/(c∗, c∗).

It turns out, gi never exceeds 1 in locally optimal solutions, and, moreover, any
pair (c∗, f∗) satisfying the equalities above with gi ≤ 1 for all i ∈ I is a locally
optimal solution (Mirkin and Satarov 1990). This can be put in geometrical terms.
Let H(c) = {x ∈ Rn : (x, c) = 0} be the hyperplane passing through the origin
0 with normal vector c. Then, f∗

i equals the relative length of the projection of
yi on c∗ for all yi located at the same side of H(c∗) as c∗, and f∗

i = 0 for all the
yis at the other side. No point yi exceeds point c∗ in the aspect that all of them
are located on the same side of the hyperplane H(c∗) − (c∗, c∗) which is parallel
to H(c∗) and passes through c∗. This latter statement means that, in contrast to
the hard cluster case, the standard point here is by no means an “average” of the
given entities; on the contrary, the “bilinear” standard point is an extreme of Y ’s
row points, modeling therefore the “ideal type” concept. The extreme, actually,
can be as distant from the origin as possible. More accurately, if (c∗, f∗) is a
locally optimal minimizer of (3.54) then (γc∗, f∗/γ) also will be a minimizer, for
any γ > 1. This is an obvious implication from the bilinearity of criterion (3.54)
along with the fact that the criterion equals the same value for this new pair.
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This shows the extent of similarity between the problem considered and that
of finding the singular vectors. Singular vector is defined up to a direction only; it
may take any move both ways in the axis while the ideal standard point may have
only one-way moves.

To find a locally optimal point in an appropriate location, the alternating min-
imization algorithm based on iterative application of equations (3.55) should be
employed.

Alternating Minimization for Ideal Type
Start with c = yi where yi is the farthest row-point from the space origin.
Then, the corresponding f is computed with the second equation in
(3.55) and, using this f , a new c is computed by the first equation. The
iterations are repeated until the newly found vectors f and c coincide
(up to a pre-fixed error) with those found on the previous iteration.

The algorithm converges to a locally optimal solution. Indeed, at each step the
criterion decreases, which guarantees a limit point since the values of (3.54) are
bounded from below by 0. The limit point satisfies all the conditions and, thus, is
a locally optimal solution.

For the Iris data set, the ideal type fuzzy cluster found with the algorithm above is
presented in Table 3.37.

Variable v1 v2 v3 v4

Original scale 7.83 2.96 7.67 2.88
Standardized scale 2.40 -0.22 2.22 2.21
Contribution, % 36.88 0.31 31.55 31.26

Table 3.37: Characteristics of the ideal fuzzy cluster found for the Iris data set.

The ideal values for three of the variables are exaggerated; they are higher than the

averages by 2.2-2.4 standard deviations. Moreover, they are higher than any real values

of the variables: just compare 7.83 (ideal) with 7.7 (maximum real), 7.67 (ideal) with 6.9

(maximum real), and 2.88 (ideal) with 2.5 (maximum real). The membership function is

zero for all the entities in class 1 and it is rather high for the entities in class 2. Table

3.38 presents all the entities (enumerated in the order of Table 23 in p. 209) with the
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membership value larger than 0.2.

Entity Membership Entity Membership Entity Membership
51 0.215 108 0.740 129 0.332
56 0.324 109 0.393 130 0.553
57 0.307 110 0.741 131 0.482
63 0.354 111 0.488 132 0.818
65 0.247 112 0.369 133 0.257
68 0.232 113 0.240 134 0.389
70 0.343 114 0.508 135 0.721
78 0.223 115 0.232 136 0.248
80 0.290 116 0.446 137 0.428
81 0.209 117 0.242 138 0.333
82 0.202 118 0.300 140 0.551
83 0.250 119 0.227 141 0.576
88 0.254 120 0.540 142 0.550
94 0.228 121 0.270 143 0.350
97 0.232 122 0.495 144 0.376

101 0.500 123 0.530 145 0.475
102 0.476 124 0.354 146 0.593
103 0.666 125 0.242 147 0.453
104 0.745 126 0.253 148 0.204
105 0.493 127 0.212 149 0.446
106 0.617 128 0.428 150 0.375
107 0.725

Table 3.38: Membership function’s values exceeding 0.2 for the ideal fuzzy cluster
found for the Iris data set.

3.4.3 Discussion

1. Approximation clustering is based on considering the data table as a point
in a multidimensional space, which is approximated in a subset of the space
related to cluster structure of a specific kind. This approach is substantiated
here by indicating the cluster structure criteria and properties that lead to
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interpreting the approximate clusters in terms of the standard variable space.

2. In the approximation framework, some particular indices arise, as the contri-
bution weight of the cluster to the data scatter, of the variable to the cluster,
or of the entity to the cluster, and these indices can be employed as the
interpretation aids.

3. Principal cluster clustering is a method closely following the principal compo-
nent analysis methodology except for the factor here required to be Boolean.
With the least-squares criterion, it underlies two of the single cluster clus-
tering methods: the reference-point-based moving center and AL-seriation
clustering, which was not obvious at all.

4. Ideal type fuzzy clustering is another cluster-wise derivative of the principal
component analysis. In contrast to principal clustering which is in line with
traditional clustering, the ideal type method differs from the traditional fuzzy
clustering algorithms, especially in the aspect that the standard points here
tend to be extremes, not the centers of the clusters, thus modeling the ideal
type logical concept.

3.5 Approximation:
Comparable/Aggregable Data

3.5.1 Additive Clusters

Let A = (aij), i, j ∈ I, be a given similarity or association matrix and λs=(λsisj)
be a weighted set indicator matrix which means that s = (si) is the indicator of
a S ⊆ I along with its intensity weight λ. When A can be considered as a noisy
information on λs, the following model seems appropriate:

aij = λsisj + eij (3.56)

where eij are the residuals to be minimized. Usually, matrix A must be centered
(thus having zero as its grand mean) to make the model look fair.

The least-squares criterion for fitting the model:

L2(λ, s) =
∑
i,j∈I

(aij − λsisj)2 (3.57)

is to be minimized with regard to unknown Boolean s = (si) and, perhaps, real
λ (in some problems, λ may be predefined). When no diagonal similarities aii

are specified, i �= j in all the summations by pairs i, j. When λ is not subject to
change, the criterion can be presented as
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L2(λ, s) =
∑
i,j∈I

a2
ij − 2λ

∑
i,j∈I

(aij − λ/2)sisj

which implies that, for λ > 0 (which is assumed for the sake of simplicity), the
problem in (3.57) is equivalent to the following:

maxL(λ/2, s) =
∑
i,j∈I

(aij − λ/2)sisj =
∑
i,j

aijsisj − λ/2
∑
i,j

sisj (3.58)

which is just the Summary threshold linkage criterion (see p. 336). The criterion
in (3.58) shows that the intensity weight λ is just the similarity-threshold value
doubled.

Let us now turn to the case when λ is not pre-fixed and may be adjusted based
on the least-squares criterion. There are two optimizing options available here.

The first option is based on the representation of the criterion as a function
of two variables, S and λ, made above to allow using the alternating optimization
technique.

Alternating Optimization for Additive Cluster
Each iteration includes: first, finding a (locally) optimal S for L(π, S)
with π = λ/2; second, determining the optimal λ = λ(S), for fixed S,
by the formula below. The process ends when no change of the cluster
occurs.

The other option is based on another form of the criterion, as follows.

For any fixed S, optimal λ can be determined (by making derivative of L2(λ, s)
by λ equal to zero) as the average of the similarities within S:

λ(S) = a(S) =
∑
i,j∈I

aijsisj/
∑
i,j∈I

sisj

The value of L2 in (3.57) with the λ = λ(S) substituted becomes:

L2(λ, s) =
∑
i,j

a2
ij − (

∑
i,j

aijsisj)2/
∑
i,j

sisj (3.59)

Since the first item in the right part is constant (just the square scatter of the
similarity coefficients), minimizing L2 is equivalent to maximizing the second item
which is the Average linkage criterion squared, AL2(S). Thus, the other option
is just maximizing this criterion with local search techniques described in Section
3.2.2.
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Obviously, the problem in (3.59) is equivalent to the problem in (3.58) when λ
in (3.58) equals λ(S) = a(S).

Both of the criteria found already have been considered in Section 3.2.2 as the
Summary threshold linkage (with a particular threshold, π = λ/2) and Average
linkage. All the material about them, thus, remains valid: the seriation (local
search) algorithms and clusterness properties. Some things left untouched are:

(1) both of the criteria present a contribution of the cluster to the square scatter
of the similarity data, which can be employed to judge how important the cluster
is (in its relation to the data, not just in a personal opinion);

(2) since the function AL(S) here is squared, the optimal solution may corre-
spond to the situation when AL(S) itself is negative as well as L(π, S) and a(S).
Since the similarity matrix A normally is centered, that means that such a subset
consists of the most disassociated entities and should be called anti-cluster. How-
ever, using local search algorithms allows us have the sign of a(S) we wish, either
positive or negative: just the initial extremal similarity has to be selected from
only positive or only negative values;

(3) in the local search procedure, change of the squared criterion when an entity
is added/removed may behave slightly differently than that of the original AL(S)
(a complete account of this is done in Mirkin 1990);

(4) when A = Y Y T where Y is an entity-to-variable matrix, the additive clus-
ter criterion is just the principal cluster criterion squared, which implies that the
optimizing clusters must be the same, in this case. Yet there is a primary inter-
pretation of the cluster contribution which relates to the relevance of the cluster
to the model (3.56).

Let us consider the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 32.5
3 2.5 2.0
4 7.0 9.0 6.5
5 44.0 29.5 2.0 9.5
6 12.5 15.0 1.5 3.5 15.5
7 4.0 2.0 5.0 5.0 6.0 3.0
8 14.0 7.5 3.0 6.5 10.5 7.0 5.0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

which is a symmetrized version of the Switching data table 23, p. 209 (the diagonal

removed). The local search algorithm starts with the maximum similarity a51 = 44 thus

defining initial S = {1, 5}. Obviously, it is entity 2 which has the maximum of the mean

similarity with S, a(2, S) = (32.5 + 29.5)/2 = 31, which is larger than half of λ(S) = 44.

This implies that 2 must be put within S leading to S = {1, 2, 5}. Now entity 6 has

maximum mean similarity with S, a(6, S) = (12.5 + 15.0 + 15.5)/3 = 14.33 which is

smaller than half the average within similarity λ(S) = (44 + 29.5 + 32.5)/3 = 35.33. This
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finishes the process with S = {1, 2, 5}. The same result can be obtained by preliminarily

subtracting the mean similarity a = 9.67 from all the entries. In this latter case, the

average within similarity also will be less, λ(S) = 25.66. The contribution of the cluster

to the variance is 71.67%, which is quite a high value. The cluster S = {1, 2, 5} has been

revealed in many other studies; it comprises Coke and the other cola drinks (Pepsi and

7-Up) (see, for instance, Arabie et al. 1988, De Sarbo 1982).

Additive Cluster with Constant Noise

The simplest modification of the model (3.56) to allow shifting the threshold level
of the entire similarity data within the model is as follows:

aij = λsisj + µ + eij (3.60)

where both λ and µ may be found by minimizing the residuals or fixed preliminarily
or anything else.

When both λ and µ are fixed (and λ > 0), the least-squares fitting problem is
equivalent to the problem of maximization of Summary threshold criterion L(π, S)
with π = λ/2 + µ.

When both λ and µ are adjusted due to the least squares fitting criterion, the
following equality can be easily proved as an analogue to that in the theory of
linear regression, p. 217:

L2(S) =
∑
i,k

e2
ik = Nν(N){σ2(A) − λ2σ2(ssT )} (3.61)

This shows that the last item (in the curled bracket), to be maximized, repre-
sents the cluster’s contribution to the data variance scatter.

The variance of the matrix indicator function ssT equals σ2(ssT ) =
|S|ν(S)[Nν(N) − |S|ν(S)]/N2ν(N)2 which is maximum when |S| = N/2.

The optimal µ is the average association “out” of S (with regard to all (i, j) �∈
S × S) while optimal λ + µ is the average similarity a(S) within; the optimal λ is
an index of “contrast” between the averages within and out of S.

The local search seriation (with returns) strategy is applicable to produce a
cluster which is a π-cluster. However, the threshold π = λ/2 + µ here is half the
sum of the average similarities within and out of S. The condition that al(i, S) is
greater/lesser than this threshold has nothing to do with cohesion of the cluster,
in contrast to the model with no noise, which undermines potential use of the
“enriched” model with noise. The empirical results obtained with this criterion
support this conclusion (see Mirkin 1987b).
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However, in the particular problem of clustering by the matrix A above, the modified

algorithm leads to the same cluster S = {1, 2, 5}. Indeed, the average out-similarity

is equal to 6.6, for this S; added to the within similarity, 35.33, this gives threshold

π = (6.6 + 35.33)/2 = 20.96 which is larger than any outer similarity while lesser than

any similarity within, which guarantees that this S is the optimum.

Multi-way Similarity Data Clustering

Let us consider a 3-way 2-mode similarity data set, which is the case when
several similarity matrices Ak = (aij,k), k ∈ K, are available where k ∈ K may
be related to different groups (in psychology or sociology) or time periods (in
marketing or international comparisons). Following to Carroll and Arabie 1983
who developed their model for the case when there are many clusters to find, the
single cluster model can be presented as this:

aij,k = λksisj + eij,k (3.62)

assuming, thus, that there is the same cluster set S for all k ∈ K while all the
differences among Ak, k ∈ K, may be explained by the differences among the
intensity weights λk.

It is not difficult to show that the least-squares fitting criterion is equivalent to
the criterion of maximizing the contribution of the cluster to the square scatter of
the data (which is the case with 2-way data, also). The contribution is equal to∑

k∈K

ALk(S)2

where ALk(S)2 = (
∑

i,j∈I aij,k)2/|S|ν(S). This shows that, actually, the criterion
may be maximized by a local search algorithm based on the sum of linkage functions
Alk(i, S) defined for each of the matrices Ak.

The alternating optimization technique here involves recalculation of λk =
ak(S) for every S, and, then, analysis of matrix A =

∑
k∈K λk(Ak − λk/2) since

the least-squares fitting of the model (3.62) with λk fixed is nothing but optimizing
SUM(S) by matrix A (Mirkin 1990). This operation is repeated iteratively until
the cluster does not change anymore. Convergence obviously follows from the fact
that the criterion decreases at each iteration while there is only a finite number of
the clusters feasible.

3.5.2 Star Clustering

Sometimes the association data are “non-geometrical”, that is, the fact that each
of two entities is close to a third one does not imply that those two elements are
similar to each other. It can happen, for example, in protein sequence fragments
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comparisons. The traditional concept of a cluster as a subset of mutually similar
objects does not meet this peculiarity. In such a situation another concept of
cluster could be used considering cluster as a subset of a “star” structure: each
of the cluster elements must be close to the single “standard” element which is
considered the center of the star cluster, while mutual similarities between some or
all of the “ray” elements could be small. The center of the star can be considered
its representative.

Let us refer to a Boolean matrix r = (rij), i, j ∈ F , as an i-star or star with
center i if all the elements of r are equal to zero except for some elements rij in its
i-th row. Topologically, an i-star corresponds to a star graph with arcs connecting
center i to the set S(i) of the elements j with rij = 1. Subset S = {i} ∪ S(i) of
the star vertices will be considered as the corresponding cluster. A set of stars
r1, ..., rm (their centers may be different) along with a set of positive intensity
weights λ1, ..., λm will be referred to as a star structure. A star structure will be
considered as a model of the similarity matrix if it minimizes the value

∑
i,j∈I e2

ij

of the squares of the residuals in the following equations:

aij =
m∑

t=1

λtr
t
ij + eij

where aij are given and λt, r
t
ij are sought.

Let us restrict ourselves to the case when only one star is sought (m = 1).
Obviously, in this case, the problem is to minimize criterion

∑
i,j∈I(aij − λrij)2

with regard to arbitrary λ and r.

The problem can be expressed with one of the following two criteria to maxi-
mize:

lλ/2(i, S(i)) =
∑

j∈S(i)

(aij − λ/2) =
∑

i,j∈S(i)

aij − λ/2|S(i)|, (3.63)

when λ is fixed, or

g(i, S(i)) = (
∑

j∈S(i)

aij)2/|S(i)| = λ2(r)|S(i)| (3.64)

when λ is optimal, thus defined as the average similarity in the star {i, S(i)}
presented by Boolean matrix r:

λ(r) =
∑
i,j

aijrij/(|r| − 1),

|r| = |S(i)| + 1 is the number of elements (vertices) in the star.

When the cardinality of the star is pre-fixed, both of the criteria are equivalent
to:
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f(i, S(i)) =
∑

j∈S(i)

aij (3.65)

All the three criteria satisfy the following property.

Statement 3.20. If j′ belongs to an optimal i-star, and aij′ < aij′′ , then j′′ also
belongs to the optimal star.

Proof. Let {i, S(i)} be an optimal i-star, and, on the contrary, j′′ �∈ S(i). In such
a case, let us substitute j′ by j′′ in S(i). Obviously, each of the criteria (3.63)-(3.65)
will be increased, which contradicts to the optimality of the star. �

This property yields a set of simple algorithms to find an optimal i-star for any
i ∈ I by one of the criteria considered.

Star-clustering for (3.65)
When the number m of elements in star is pre-fixed, it is necessary to
sum up, for any i ∈ I, the m − 1 greatest similarities in i-th row of A.
The maximum of the totals determines solution: the corresponding i
and m − 1 indices of the greatest elements in i-th row.

The algorithm for criterion (3.63) is almost as simple: for any i ∈ I, the sum of
positive aij − λ/2 is considered only (with corresponding j forming optimal S(i)),
and then again the maximum of the sums defines the optimal star.

The most difficult of these problems (still quite simple) is to maximize criterion
(3.64). This problem is resolved with multiple seriation techniques as follows.

Maximizing (3.64)
For any i ∈ I, sort I by decreasing aij , and then, for any initial segment
of the series, calculate (3.64): the maximum of these values gives the
optimal i-stars when it occurs. Then, a best of these i-stars is taken as
the solution.

3.5.3 Box Clustering

Two-mode clustering is applied when association between the rows and columns
in a comparable data matrix B = (bij), i ∈ I, j ∈ J, is analyzed. A box cluster is
represented by two Boolean vectors, v = (vi), i ∈ I and w = (wj), j ∈ J , and an
intensity weight λ to generate the box cluster matrix λvwT of dimension |I| × |J |.
This matrix corresponds to the Cartesian product V × W where V, W are subsets
for which v, w are respective indicator vectors.
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The least-squares approximation criterion for box clustering is as follows:

L2 =
∑

i∈I,j∈J

(bij − λviwj)2. (3.66)

This criterion is very similar to that in (3.56) of additive clustering; the difference is
that products viwj here involve components of different vectors while the additive
clustering employs the same vector. Thus, a great part of the properties of the
box- and additive cluster models will be alike.

For any λ, criterion (3.66) clearly can be rewritten as follows:

AB(V, W ) =
∑
i∈V

∑
j∈W

(bij − λ)2 +
∑

(i,j) �∈V ×W

b2
ij . (3.67)

Consider its increment when a row k �∈ V is added to V :

∆ = AB(V ∪ {k}, W )− AB(V, W ) =
∑
j∈W

(bkj − λ)2 −
∑
j∈W

b2
kj . (3.68)

This value can be either negative or positive depending on the closeness to λ or 0
of the subset of row k corresponding to W , which necessitates respective inclusion
or rejection of k with regard to V .

Another form of the criterion,

AB(V, W ) =
∑

i∈I,j∈J

b2
ij +

∑
i∈V

∑
j∈W

[(bij − λ)2 − b2
ij ]

(with the contents of the brackets in the last term transformed using the elementary
formula a2 − b2 = (a− b)(a+ b)), presents the criterion as the square scatter of the
data minus

g(V, W, λ) =
∑
i∈V

∑
j∈W

λ(2bij − λ). (3.69)

Thus, to minimize (3.67), criterion (3.69) must be maximized. Based on the latter
criterion, let us offer another interpretation of the optimality condition based on
the change of sign of (3.68) from negative to positive when V × W is optimal.
Indeed, the change in (3.69) when k ∈ I is added to V (leaving W invariant)
equals:

∆g(V, W, k) =
∑
j∈W

λ(2bkj − λ) = 2λlλ/2(k, W ) (3.70)

where lλ/2 is the threshold linkage function.

Thus, for positive λ, criterion (3.69) is actually decreased when the average
linkage al(k, W ) value is less than π = λ/2.
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When the optimal value of λ is used, for a given box cluster V × W , it equals
the average internal proximity

λ = b(V, W ) =
∑
i∈V

∑
j∈W

bij/|V ||W |. (3.71)

With the optimal λ substituted into g(V, W, λ) (3.69), the criterion become
equal to

g(V, W ) = (
∑
i∈V

∑
j∈W

bij)2/|V ||W | = b2(V, W )|V ||W |. (3.72)

where b(V, W ) is the average value of bij , i ∈ V, j ∈ W . This form of criterion (3.69)
does not involve λ (which can be determined afterward from formula (3.71)) and
can be easily adjusted to the case when the optimal λ is negative (corresponding
to the most disassociated elements as in the anti-cluster concept).

The local search algorithm (with returns) based on the neighborhood defined
by adding/removing an arbitrary row/column, actually, copies the local search
algorithm for criterion AL(S):

Local Search Box Clustering
1. (Start) Find a pair (i, j) ∈ I × J maximizing bij (when only positive
values of λ are sought) or criterion (3.72) which equals b2

ij for singleton
boxes {i} × {j} (when λ is permitted to be negative) and set V =
{i}, W = {j}, and λ = bij for the corresponding i, j.
2. (Iterative Step) For any row k ∈ I and for any column l ∈ J , calculate
the change in the criterion (3.69) (having λ equal to b(V, W ) given in
(3.71)) or constant) caused by adding k to V if k �∈ V , or removing
k from V if k ∈ V , and similarly acting for l and W , and find the
maximum of those changes. If the change is positive, add/remove the
row or column to/from the box cluster, and repeat Step 2 from the
beginning. If not, end.

Applied to the Disorders data set, the algorithm found a box comprising rows 1 to

11 (class 1 pre-given) and columns 1,2,3,5,9,13 corresponding to the variables which are

rated highly at class 1. Three of the columns (variables), 5, 9, and 13, have been found

important in the preceding analysis of the data with principal clustering; yet the other

“important” variable, in that analysis, column 8, does not belong to the box because

its values are quite low at class 1: note, all the entries are considered comparable here,

in contrast to the case of principal clustering. The contribution of the box to the data

scatter is 10.8% while its intensity is 2.33 (after the grand mean has been subtracted).
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3.5.4 Approximation Clustering for the Aggregable Data

A specific approximation clustering strategy emerges for the aggregable data based
on the two features considered in Section 1.3.3: (1) it is transformed RCP data
qij = pij/pi+p+j −1 to be approximated rather than the original data; (2) it is the
weighted least-squares criterion employed rather than the common unweighted one.
To be more definite, let us consider approximation Box clustering for two-mode
contingency data. First, take the box cluster model

qij = viwj + eij

applied to the RCP matrix Q = (qij) defined by contingency table P . Second,
consider the following weighted least-squares criterion instead of (3.66):

Φ2(λ, V, W ) =
∑

i∈I,j∈J

pi+p+j(qij − λviwj)2, (3.73)

For the sake of simplicity, consider only the case when λ minimizes (3.73) for any
fixed V and W . It is not difficult to derive (by setting the derivative of Φ2(λ, V, W )
with respect to λ equal to zero) that the optimal λ has the same RCP meaning,
this time for V and W . That is, the optimal λ equals:

λ(V, W ) = qV W =
pV W − pV pW

pV pW
, (3.74)

where the aggregate frequencies are defined as usual:

pV W =
∑

i∈V

∑
j∈W pij , pV =

∑
i∈V pi+, pW =

∑
j∈J p+j .

This observation can be considered as a legitimization of using the weighted
least-squares criterion in any kind of analyses of the aggregable data (correspon-
dence analysis included), though it has arisen somewhat unexpectedly in the con-
text of clustering.

Substituting this value of λ into (3.73), the criterion could be expressed as
follows:

Φ2(V, W ) =
∑

i∈I,j∈J

pi+p+jq
2
ij − λ2(V, W )pV pW . (3.75)

The latter form of the criterion shows that its final term must be maximized to
find an optimal box. By substituting expression (3.74) for the optimal λ into that
term, the criterion can be written:

f(V, W ) = (
∑
i∈V

∑
j∈W

pi+p+jqij)2/(pV pW ). (3.76)
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Now a local search algorithm (with returns) can be formulated analogously to
the local search Box clustering algorithm described above.

Aggregable Box Clustering
Start with V = {i} and W = {j} corresponding to maximum
f({i}, {j}) = pi+p+jq

2
ij by i ∈ I, j ∈ J . Then, at any step, that one row

i or column j is added to/removed from V or W , respectively, which
maximizes the increment of f(V, W ) with respect to all i ∈ I and j ∈ J .
The process is finished when the maximum increment is not positive.

Although the neighborhood and the algorithm above are rather simple, the
RCP values within (V, W ) found deviate highly from the others.

Statement 3.21. For any row i or column j outside the found cluster box
V × W , the absolute values of relative changes RCP(V/j)=RCP(j/V ) and
RCP(W/i)=RCP(i/W ) are not larger than half the absolute value of the relative
”internal” change RCP(V/W )=RCP(W/V ).

Proof: Let us consider the increment value, Di = f(V + i, W )− f(V, W ), for any
box V × W and row i �∈ V . After simple transformations, we have

Di = [pV F 2(V + i, W ) − (pV + pi+)F 2(V, W )]/[pV (pV + pi+)pW ].

Then,

Di = (1/(pW (pV + pi+)))[2F (V, W )F (i, W ) + F 2(i, W ) − (pi+/pV )F 2(V, W )].

since
F 2(V + i, W ) = F 2(V, W ) + F (V, W )F (i, W ) + F 2(i, W )

For a box (V, W ) found by the algorithm, Di ≤ 0 for any i �∈ V . Thus,

2F (V, W )F (i, W ) + F 2(i, W ) ≤ (pi+/pV )F 2(V, W )

If F (V, W ) is positive, dividing the inequality by F (V, W ) leads to:

2F (i, W ) + F 2(i, W )/F (V, W ) ≤ (pi+/pV )F (V, W ),

which implies
2F (i, W ) ≤ (pi+/pV )F (V, W ),

since the second term above is positive. Dividing the last inequality by pW , the
required inequality, 2qiW ≤ qV W , is obtained. The other cases (negative F (V, W )
and/or j �∈ W ) are considered analogously, which ends the proof. �

The statement proven ensures that the data fragment corresponding to the box
found reflects a pattern which is quite deviant from the average RCP.
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3.5.5 Discussion

1. An additive cluster is a concept related to “classical” clusters. The other
two structures considered relate to more distinctive cluster concepts: (a) the
star is a subset of the entities which are connected to a “central” entity while
they may be mutually disconnected from each other; (b) the box is a pair
of mutually related subsets. The concept of star seems to have been never
considered before explicitly.

2. The concept of the anti-cluster emerges naturally in the approximation frame-
work as a subset, the entities in which are mutually related with a negative
intensity. The concept fits especially smoothly into the aggregable data clus-
tering framework where the negativity means just a decrease of the observa-
tion flow in the cluster in comparison with the average behavior.

3. The approximation criteria relate to interesting combinatorial optimization
problems: the principal and additive clustering, to the so-called maximum
density subgraph problem (which is polynomial when the similarities are pos-
itive), the star cluster criterion seems a new easy-to-optimize combinatorial
criterion, and many approximation criteria such as those for box or least-
maximum principal cluster seem to have been never considered before.

4. The local search (with returns) approximation algorithms employed are in-
terpreted in terms of direct clustering. The approximation framework allows
for automatic (not expert-driven) specification of some of the parameters
of the algorithms, though a significant freedom in choice of some of them
still remains (as in centering and standardizing the data). In this aspect,
approximation algorithms for the aggregable data, where all the algorithm
parameters are specified according to the model-driven considerations, look
quite impressive.

3.6 Multi Cluster Approximation

3.6.1 Specifying SEFIT Procedure

All the single cluster approximation clustering methods discussed (principal, ideal
type, additive, star, and box clustering) can be extended to the situation with a
multitude of clusters assumed.

To unify the discussion, let us consider the data table as a vector y ∈ Rl where
y = (yu), u ∈ U , and l = |U |. Obviously, the cluster models listed can be embedded
in that framework when U = I × K and u = (i, k), for principal and ideal type
clustering; U = I × I and u = (i, j) ∈ I × I, for additive and star clustering;
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and U = I × J and u = (i, j) ∈ I × J , for box clustering. Analogously, let us
consider that the clusters underlying the data can be represented by the vectors
z ∈ Rl belonging to a particular subset D ⊂ Rl of admissible vectors. The subset
D consists of the matrix-format N × n “vectors” scT = (sick) where c ∈ Rn and s
is a Boolean or probabilistic N -dimensional vector in principal or fuzzy ideal type
clustering, respectively; matrix-format N × N “vectors” ssT = (sisj) where s is
an arbitrary N -dimensional Boolean vector, in additive clustering; Boolean N ×N
matrices r = (rij) having non-zero elements in one row only, in star clustering; and
Boolean matrices vw = (viwj) where v ∈ R|I| and w ∈ R|J| are Boolean vectors,
in box-clustering. Thus, the m clusters of a given type can be presented as vectors
z1, ..., zm in the set D ⊂ Rl comprising the cluster type under consideration.

An additive multi-clustering model, in this general setting, can be formulated
as

y =
m∑

t=1

µtzt + e (3.77)

where e is the residual vector which should be minimized according to a criterion
of form Lp(e) =

∑
u |eu|p, p > 0 (remember that p = 2, 1, and ∞ correspond to

the least-squares, least-moduli, and least-maximum criterion, respectively). The
weighted least-squares criterion for the aggregable data also fits into this formula-
tion since the weights, actually, can be put within the criterion.

The problem of fitting the model (minimizing the criterion with regard to zt, µt

sought) much depends on what kind of information on the solution to be found is
known a priori.

Let us consider that nothing is known, except for the set D. In this situation,
we suggest using the greedy approximation procedure SEFIT from Section 1.3.4 to
fit the model.

The procedure consists of the iterations involving two major steps: (1) single
cluster clustering, (2) subtracting the solution found from the data. Only the
least-squares criterion will be discussed here.

SEFIT for Additive Multi Clustering
Iteration: (1) For given yt, minimize the least-squares criterion ||yt −
µz||2 with regard to arbitrary µ ∈ R and z ∈ D and set µt = µ∗ and
zt = z∗ where µ∗, z∗ are the minimizers found.
(2) Calculate the residual vector yt+1 = yt − µtzt.
Initial setting: t = 1, y1 = y. After an iteration is completed, a stop-
condition is checked; if it does not hold, t is increased by unity and the
next iteration begins.

Performing the procedure does not require anything new: the optimizing step
(1) is nothing but single (principal, ideal type, additive, star, or box) cluster clus-
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tering as discussed in the preceding sections of this chapter.

However, there are two points to be made on the results of SEFIT:

1. The square scatter of the data is additively decomposed with the solutions
found:

(y, y) =
m∑

t=1

µ2
t (zt, zt) + (e, e) (3.78)

Let us point out that the decomposition holds for any set of clusters zt, provided
that mut are optimal; it is based on the consecutive character of SEFIT rather
than on correlations among z1, ..., zm (see Statement 1.1. on p. 254).

The decomposition allows for accounting for the contribution of every single
cluster (along with a consequent more detailed decomposition of the contribution
possible) which can be employed in the stopping condition as based on the contri-
bution accumulated or just on a single contribution declined too much (see Section
1.3.4 for detail). On the other hand, the contributions are a major interpreting aid,
which will be seen with the examples below, Section 3.6.2, and in Section 5.3. Yet
another feature of the contributions µ2

t (zt, zt) is that each of them is the criterion
maximized at step (1) of SEFIT.

2. The SEFIT procedure cannot guarantee, in general, that the solutions found
minimize (e, e) globally; moreover, in clustering, it almost never is an optimal
solution. This generates two kinds of questions: (1) Does SEFIT really lead to
extracting all the important clusters, in a general situation? (2) What kind of a
cluster structure is optimally fit with SEFIT?

The answer to the first question, in the present context, is provided by State-
ment 1.2. in Section 1.3.4: it is yes, since all the sets D and the local search
algorithms presented satisfy Condition E, which guarantees that (e, e) → 0 when
m → ∞.

As to the second question, there is no answer to that yet. However, since the
contributions, µ2

t (zt, zt), in fact, are the single cluster clustering criteria, the SEFIT
procedure should be used only in the situations when the cluster contributions are
very different; if the contributions of some of the clusters are equal to each other
in the “underlying” cluster structure, the SEFIT procedure could mix the clusters
and reveal the picture in a wrong way!

The procedure SEFIT can be modified for better adjusting the cluster structure
found to the data. Here are three versions involving modifications of step (2),
residuation of the data, in SEFIT:

(1) Recalculating the intensity weights µt.

At every iteration t, after step (1), vector y is linearly decomposed due to
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equation y = a1z1 + ... + atzt + e minimizing (e, e) (least-squares-based linear
regression problem), which is known as the orthogonal projection operation, a =
(ZT

t Zt)−1ZT
t y, where Zt is l × t matrix with z1, ..., zt being its columns. Then, at

step (2), the residual vector yt+1 is defined as yt+1 = y − Zta.

(2) Reiterating.

This procedure is applied when all m cluster vectors z1, ..., zm are found already
(or given somehow). For every t = 1, ..., m, yt is defined as yt = y −∑s�=t µszs

to search for a better vector µtzt at step (1). This reiteration is repeated until it
stabilizes.

(3) Reiterating on “cleaned” data.

After m cluster vectors z1, ..., zm are found, the data vector y is “cleaned” with∑
t µtzt substituted instead (that is, y − e is considered as y for the next stage).

Then, the reiterating procedure is applied (the cleaning can be conducted after
every major reiterating step).

It can be proved that the result found at any step in version (1) is linearly inde-
pendent from the preceding cluster vectors zt, which leads to a finite decomposition
of y (Mirkin 1990).

In the author’s several experiments with real-world comparable data, the orig-
inal SEFIT outperformed the modified versions.

The approximation clustering methods discussed, along with SEFIT-based clus-
tering algorithms, were introduced by the author starting in the mid-seventies (see
his reviews in Mirkin 1987b, 1990 and 1994). The additive cluster clustering model
have been developed in Shepard and Arabie 1979, Arabie and Carroll 1980, and
Carroll and Arabie 1983, however, the algorithms presented in these papers seem
somewhat more heuristic; in particular, the two concepts, cluster intensity λ and
its contribution weight, λ2|S|, could not be distinguished within the approaches
developed in those papers. Box clustering methods are developed in Mirkin, Ara-
bie, and Hubert 1995 (see also Mirkin 1995b); the model itself appeared in some
earlier publications (Mirkin and Rostovtsev 1978, DeSarbo 1982).

3.6.2 Examples

Points

The principal clustering algorithm SEFIT-extended to cover 99% of the data variance
and applied to the Points data set, standardized (Table 1.24, p. 214), produced 6 clusters
as presented in Table 3.39.

The original data table is still not exhausted. This is why the additive representation
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No Cluster y1 y2 Contribution, %

1 5, 6 1.34 0.97 45.4
2 1,3,5 -0.45 -1.05 32.6
3 1,2 -0.85 0.04 12.0
4 5,6 0.22 0.53 5.4
5 2,4,6 -0.24 0.21 2.6
6 1,3,5 0.21 -0.19 2.0

Table 3.39: Principal clusters found with the sequential fitting method for the
square-scatter standardized Points data set.

of the data entries by the clusters holds up to minor errors such as, for example, that

for the row 1, (-1.07, -1.21): (-0.45, -1.05)+(-0.85, 0.04)+(0.21, -0.19)=(-1.09, -1.20) as

supplied by clusters 2, 3 and 6 containing entity 1.

Functions

The SEFIT-wise additive single clustering algorithm has been applied to the data

set Functions, Table 13 in p. 194, which presents pair-wise similarity rates between nine

elementary functions (the average similarity, 2.69, has been subtracted from all the entries

preliminarily; the diagonal is not considered). The results are shown in Table 3.40.

Cluster Intensity Contribution, %
ex, lnx 4.31 16.6

1/x, 1/x2 4.31 16.6
x2, x3,

√
x, 3

√
x 1.97 20.9

x2, |x| 2.31 4.8
x2, x3 1.33 1.6

lnx,
√

x, 3
√

x 0.98 2.6

Table 3.40: Additive clusters found with sequential fitting method for data set
Functions.
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The six clusters presented count for 63.1% of the similarity data variance. The process

of clustering has been stopped because these take into account all the positive similarities

(after the mean was subtracted); the seventh cluster had negative intensity weight and

included all but two functions, which is not compatible with the substantive problem. On

the other hand, individual contributions became quite small, thus implying that the new

clusters found might reflect just data noise.

Kinship

This example involves a three-way two-mode sorting 15 kinship terms data (made by

six groups of respondents), Tables 14 and 15, pp. 196, 197. The semantically related

groups of the terms may be investigated with the additive clustering method based on

equation (3.62). The results (compared to those published in Arabie, Carroll, and De

Sarbo 1987 as found with INDCLUS algorithm described in Carroll and Arabie 1983) are

put in Table 3.41.

The author did the computation in 1992 with a group of students in École Nationale
Supérieure des Télécommunications, Paris, and we were certain that the data table was
a similarity index. The dissimilarity nature of the data was recognized only because the
program found the clusters with all the negative intensity weights (which demonstrates
that the least-squares approximation method, basically, is invariant in its relation to the
orientation in measuring proximities).

The results found with the sequential fitting strategy are quite similar to those re-

ported in Arabie, Carroll, and De Sarbo 1987, though some findings, as the nuclear family

cluster or the contributions found, seem better fit into the interpretation.

Behavior

The sequential fitting strategy involving the box algorithm, applied to the Behavior
data set in Table 18, p. 201, produced the following results (see Table 3.42).

The results shown in Table 3.42 demonstrate again that the greedy local search pro-
cedure generally does not lead to the global maximum of the cluster contribution (just
compare contribution of box 3, 2.8%, with that of box 4, 5.1%, which would have been
reversed if the method gave the optimal solution).

In general, the boxes in Table 3.42 seem to be reasonable both according to their

content and the coverage of the raw proximities. For example, in the first of the boxes,

the proximities in submatrix X (V1, W1) are much higher than the other values of the

corresponding columns, Kiss, Eat, Laugh, with the only two exceptions occurring in the

column Talk: the proximity 3.95 to Job Interview (see Table 4) is taken into account

in another box (the third), and the low proximity 0.47 to Movies, which is still positive

and much greater than all the other proximities in the row Movies (excluding the column

Cry, taken into account in Box 6). There is one entry in the first box cluster, Bus/Kiss,

which has a rather small proximity value, -0.24 (similarly, the proximity for the entry

Class/Sleep in the third cluster equals -0.91). Although it may seem unnatural to have

that entry in the first cluster, the presence of Bus/Kiss can be explained by the column
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Clusters Interpretation Clusters Contrib.
by INDCLUS by SEFIT %
brother, father, Male relatives, brother, father,
grandfather, excluding cousin grandfather, 8.01
grandson, nephew, grandson, nephew,
son, uncle son, uncle
aunt, daughter, Female relatives, aunt, daughter
granddaughter, excluding cousin granddaughter,
grandmother, grandmother 8.25
mother, niece, mother, niece,
sister sister
aunt, cousin, Collateral relatives aunt, cousin
nephew, niece, nephew, niece, 9.01
uncle uncle
brother, daughter, Nuclear family daughter,
father, mother, father, mother, 9.11
sister, son son

brother, sister 3.94
granddaughter, Direct ancestors granddaughter,
grandfather, and descendants grandfather, 8.81
grandmother, 2 generations grandmother,
grandson removed grandson

aunt, uncle 2.02
nephew, niece 1.89

Table 3.41: The results of two different approaches to three-way additive clustering
of the Kinship data (the left column and interpretation are from Arabie, Carroll,
and De Sarbo 1987, while the other two columns on the right are found with the
algorithm above).

Kiss being connected to the other rows of the cluster more tightly than it is disconnected

from Bus, so the exclusion of either Bus or Kiss from Cluster 1 will decrease the value of

the criterion maximized in (3.72). It appears that our least-squares estimation strategy is

heavily dependent on the value of the threshold (λ(V, W )/2, in this case) and sometimes

allows the inclusion of marginal proximity values in the best-fitting solution. In support

of this explanation, we note that for the data in Table 3.42, the inclusion of Kiss in Box

1 gives a better fit compared to its exclusion. Also the Bus/Kiss proximity value of -0.24

in Table 4 is still considerably greater than any of the proximities between Kiss and the

row-items not included in the first box. Similar explanations could be offered for other
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Box Rows Columns λ Contr.
%

1 Date, Bus, Park, Sidewalk, Talk, Kiss, 2.68 26.5
Family dinner, Elevator, Eat, Laugh
Own room, Dorm lounge,
Bar, Movie, Football game

2 Class, Bus, Park, Write, Sleep, Read 2.60 8.5
Own room, Dorm lounge

3 Class, Date, Job interview, Talk, Laugh 1.46 2.8
Bar, Park, Restroom,

Own room, Football game

4 Park, Own room Run, Mumble, Read, 1.96 5.1
Belch, Argue,

Jump, Cry, Shout

5 Football game Jump, Shout 3.02 1.5

6 Movie, Own room Cry 2.09 0.7

Table 3.42: Additive boxes found with the sequential fitting strategy for the Be-
havior data set.

Box Columns Rows RCP, % Contrib., %
1 ASAF, IFAA PER 79.5 34.5
2 EUAM, IFEA PER -46.0 20.8
3 ASAF, IFAA POL, ECO -40.5 9.9
4 IFEA OTH, POL 46.1 9.7
5 EUAM POL, MIL, ECO, MTO 18.5 9.3
6 IFEA, ASAF, MIL, MTO -17.5 5.5

IFAA, IFI

Table 3.43: Box cluster structure of the Worries data set.

possible anomalies in the obtained solution (e.g., the Class/Sleep entry in Box 3 of Table

3.42). More on the example can be found in Mirkin, Arabie, and Hubert 1995.

Worries Applied to the contingency data in Table 6, p. 183, the aggregable box

clustering algorithm produces 6 clusters; the total contribution of the clusters in the

initial value Φ2 equals some 90 % (see Table 3.43).

The next clusters are not shown in Table 3.43 because their contributions are too
small. The content of Table 3.43 corresponds to the usual joint display given by the first
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MTO

MIL

EUAM

ECO

POL

IFEA

OTH

SAB

ASAF

PER

IFAA IFI

BOX 1
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Figure 3.41: Positive RCP boxes in the correspondence analysis factors plane.

two correspondence analysis factors (see Fig.3.41 where the columns and the rows are
presented by the circles and the squares, respectively).

All the boxes with positive aggregate RCP values (clusters 1, 4, and 5) correspond

to the continuous fragments of the display (shown on Fig.3.41); boxes with the negative

RCP values are associated with distant parts of the picture. Recalling the meaning of the

values as the relative probability changes, the interpretation of this phenomenon becomes

obvious. The box clusters reflect either positive or negative correlations between columns

and rows: for example, row PER correlates positively with columns ASAF and IFAA, but

row PER negatively relates to columns EUAM and IFEA: the individuals coming from

Asia and Africa have much higher worries about their personal economic status than

those from Europe or America.

Data analysts are used to interpreting the results of correspondence analysis by
presenting the rows and columns as points on the joint display with this kind of
connected fragments distinguished intuitively. Here, the fragments are revealed by
a formal procedure based on RCP values that have a clear interpretation. State-
ment 3.21. ensures that the fragments reflect those parts of the data table where
RCP values are most deviant from the average pattern. Thus, the box cluster-
ing method could be used as an aid to interpret the display obtained with the
traditional correspondence analysis, as well as a complementary instrument to it.
Interestingly, the anti-clusters (clusters having the negative intensity weight) here
have quite ordinary interpretation: they just show a pattern of behavior which
occurs rarer than in average. Thus, it can be claimed that the fragments obtained
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No Cluster Intensity Contrib., %

1 Coke, 7-Up, Pepsi 25.65 71.7
2 Coke, Pepsi, Sprite 5.77 3.6
3 All eight -3.37 11.5
4 7-Up, Sprite 8.69 2.7
5 Coke, Pepsi, Fresca 6.05 4.0

Table 3.44: Additive cluster structure of the Switching data set.

with aggregable box clustering present either “compact” or “marginal” parts of
the visual correspondence analysis plot, depending on the sign of the aggregate
RCP value. Plus corresponds to the common way for interpreting the display via
the visually distinct “clusters” of the row and column points. Minus, to fragments
that relate to the margins of the plot and are hardly visible in the display; still
interpretation of those fragments seems rather clear since they correspond to rel-
atively unconnected events. As a complementary tool, box clustering avoids the
controversial issue of simultaneously presenting both the rows and columns in the
same display (discussed in Section 1.3.3), since box clustering is based on all the
original data, not on a few factors.

Switching

Continuing to extract the clusters from symmetrized and centered matrix A for the
Switching data begun in Section 3.5.1 (see p. 209), we obtain a few clusters having
contributions greater than 1% as shown in Table 3.44. Basically, all the clusters overlap
the first one (note, cluster 3 appeared just because all the “significant” positive entries
were subtracted so that the algorithm “decided” to add 3.37 to all the entries), thus,
relating to the opposition diet — non-diet (there have been other normalizations utilized
with similar results found, see, for example, Arabie et al. 1988, Eckes and Orlik 1993).

Let us try now the aggregable box clustering approach adapted to the data aggrega-

bility. The result is not too promising: the box clustering applied ad hoc to the matrix

produced only one non-trivial box (that is, a box that was not a dyad of the same brand

with itself) consisting of three diet cola drinks: Tab, Like, and Diet Pepsi, both as the

row and the column clusters. Although this cluster was repeatedly found in the other

author’s analyses, too, the main principle of organization among the drinks was gener-

ated by the contrasts of cola versus non-cola and diet versus non-diet. The use of box

clustering techniques allows us to display yet another aspect of the data.

Brand switching data typically have large values for the elements in the prin-
cipal diagonal, corresponding to brand-loyal consumers. Colombo and Morrison
1989 have argued that the influence of the diagonal entries should be mitigated
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when emphasizing the information in the off-diagonal entries. Let us consider a
type of statistical independence hypothesis (as in Colombo and Morrison 1989)
that replaces the observed diagonal values with those of the so-called potential
switchers (with the hard-core loyals removed as a kind of different people). The
hypothesis suggests that any nondiagonal entry pij (i �= j) can be expressed as
pij = αfigj where fi is the probability of switching from brand i, gj is the prob-
ability of switching to brand j, and α is the probability of potential switching
behavior (applied to both loyal and nonloyal purchasers). After the unknown val-
ues of fi, gj, and α are obtained (with least-squares techniques, for example), the
proportion of the potential switchers for any given principal diagonal entry pii is
estimated as β = (α −∑i�=j pij)/

∑
pii.

In the example, these proportions βpii are as follows: 35, 14, 1, 1, 25, 4,2, and 3. When

these values substitute for the original diagonal entries in Table 23, p. 209, the algorithm

works a little bit differently: it recognizes that there are three important boxes, accounting

for 52.7% of the total sum of weighted squares of the data. These boxes are: Diet Pepsi x

Tab (RCP=490%, contribution 24.6%), Tab x Like (RCP=358%, contribution= 19.05%),

and Like x Tab, Diet Pepsi (RCP=185%, contribution=9.05%). The same three drinks

found here are contained in the non-trivial box obtained using the original data, but the

boxes now give more interpretable information: obviously, the consumers do not like any

of these drinks, and keep changing the selection as if ever hoping for an acceptable diet

entry to appear.

3.6.3 Discussion

1. In the multi-clustering problems, the approximation single cluster clustering
can be utilized along the line of the sequential fitting SEFIT strategy. This
strategy involves single cluster clustering reiterated with the residual data
defined, at any step, just by subtracting the cluster structure found from the
data table.

2. The data scatter can be decomposed into the sum of contributions corre-
sponding to the clusters found (even when no condition of mutual orthogo-
nality holds), which may be utilized in interpreting the clusters. However,
such a strategy may be employed only in the case when the contributions
carried by the different clusters are quite different, so that the first cluster’s
contribution to the data scatter is larger than that of the second cluster, etc.

3. Still no general theory has been developed on particular additive structures
to be recovered, nor on the structures that can be entirely decomposed with
SEFIT clustering. However, a theory of additive decomposition of dissimilar-
ities by two-cluster partitions (splits) will be presented in Section 6.4 (which
is related also to decomposition of the similarities by weak hierarchies).
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FEATURES

• Forms of representing and comparing partitions are re-
viewed.

• Mathematical analysis of some of the agglomerative clus-
tering axioms is presented.

• Approximation clustering methods for aggregating square
data tables are suggested along with associated mathematical
theories:

� Uniform partitioning as based on a “soft” similarity threshold;

� Structured partitioning (along with the structure of between-class
associations);

� Aggregation of mobility and other aggregable interaction data as
based on chi-squared criterion and underlying substantive modeling.
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4.1 Partition Structures

4.1.1 Representation

Set Terms

A set of subsets S={S1, ..., Sm} is called a partition if and only if every element
i ∈ I belongs to one and only one of the subsets, S1, ..., Sm, called classes; that
is, S is a partition if I = ∪m

t=1St, and Sl ∩ St = ∅ for l �= t. Let us denote the
cardinality of St by Nt = |St|; the set (S)=(N1, ..., Nm) of the class cardinalities is
referred to as the (cardinality) distribution of S. Sometimes, the proportions (called
also frequencies) pt = Nt/N of the classes will be considered as the distribution
elements rather than the cardinalities themselves.

The partition is a basic model for classifications in the sciences and logics.

In the data Masterpieces, we have two partitions of the eight novels considered: one,

by the writers, S = {1 − 2 − 3, 4 − 5 − 6, 7 − 8}, attributing the classes to A. Pushkin,

T. Dostoevsky, and L. Tolstoy, respectively, and the second, by the variable Presentat,

R = {1 − 7 − 8, 2 − 3, 4 − 5 − 6}, attributing the classes to its categories, Direct, Behav,

and Thought, respectively. Their distributions are (S) = (3, 3, 2) and (R) = (3, 2, 3).

Nominal Scale

A partition can be considered as another representation of the nominal scale.
Each nominal scale variable is defined up to any possible one-to-one recoding of
its values, which means that the variable, really, is defined only up to the classes
corresponding to its different values.

However, the nominal scale variables are not confined to the partitions only,
they relate to substantive theory of the phenomenon in question; yet this aspect
of the nominal variable concept has never been formalized so far.

Indicator Matrix and Equivalence Relation

A Boolean matrix s for a partition S is the N ×m matrix having the indicator
vector st of St as its t-th column (t = 1, ..., m). The equivalence relation σ for
partition S is defined by the condition that (i, j) ∈ I × I belongs to σ if and only if
both i and j belong to the same class of S. The indicator matrix of the equivalence
relation is defined as S = (sij) of size N ×N where sij = 1 if (i, j) ∈ σ, and sij = 0,
otherwise. The matrix can be considered as an entity-to-entity similarity matrix
assigning similarity 1 to the entities belonging in the same class, and similarity 0
to the entities from different classes.

Linear Subspace and Orthogonal Projector

Yet another simple similarity matrix is suitable to represent partitions: Ps =
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(pij) where pij = 1/Nt if both i, j ∈ St and pij = 0 if i and j belong to different
classes of S.

The following statement shows interrelations among the concepts defined.

Statement 4.1. For a partition S, its distribution, Boolean matrix s, equivalence
relation σ, equivalence indicator matrix S, and for similarity matrix Ps, the fol-
lowing relations hold:

σ =
m⋃

t=1

St × St,

S =
m∑

t=1

sts
T
t = ssT,

Ps = s(sTs)−1sT,

and matrix sT s is diagonal, with its diagonal entries equal to Nt, t = 1, ...., m,
while |σ| =

∑m
t=1 N2

t .

Proof: Obvious. �

To give an example, let us consider partition S = {1 − 2 − 3, 4 − 5 − 6, 7 − 8} on the
set of eight masterpieces. Then,

s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

sTs =

(
3 0 0
0 3 0
0 0 2

)

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and

Ps =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/3 1/3 1/3 0 0 0 0 0
1/3 1/3 1/3 0 0 0 0 0
1/3 1/3 1/3 0 0 0 0 0
0 0 0 1/3 1/3 1/3 0 0
0 0 0 1/3 1/3 1/3 0 0
0 0 0 1/3 1/3 1/3 0 0
0 0 0 0 0 0 1/2 1/2
0 0 0 0 0 0 1/2 1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The equation Ps = s(sTs)−1sT shows that the similarity matrix Ps, actually, is
the orthogonal projection operator onto linear subspace L(S) = {x ∈ RN : x =
sa for some a ∈ Rm} generated by the columns of matrix s. This means that, for
any N -dimensional vector f ∈ RN , the matrix product Psf is the only minimizer
of the L2-norm difference ‖f − x‖2 = (f − x, f − x) with regard to all x ∈ L(S).
The linear subspace L(S) itself can be considered as yet another representation of
S. Indeed, every vector x ∈ L(S) has its component xi equal to at when i ∈ St,
thus, it is a recoding of the categories due to the map t → at. Therefore, L(S)
contains all the transformations of the category codes admissible in the nominal
scale. Moreover, the components of a are not required to be mutually different; so,
L(S) contains also all many-to-one recodings of the variable, thus allowing merging
of some of the categories (classes). Matrix Ps can be considered as a “compact”
representation of the infinite space L(S), like the normal vector, c, of a hyperplane
H = {x : (c, x) = 0}.

However, the linear subspace representation has a shortcoming: for any parti-
tion S, subspace L(S) contains the vector

∑m
t=1 st = u having all its components

equal to 1; the other vectors with all the components being equal to each other
belong to L(S), as well. Thus, all the partition subspaces contain the same uni-
dimensional subspace, the “line” of vectors αu (α is any real), as a common part,
which makes a resemblance among them, generated only by the form of representa-
tion (via the property that the sum of columns st is equal to u, for every partition
S). To exclude the irrelevant resemblance, let us consider subspace Lu(S) of L(S),
which is orthogonal to the line {αu}, thus consisting of only vectors x = sa that
have the averages equal to zero. Then, a slightly different similarity matrix will
substitute for the matrix Ps as the orthogonal projection matrix.

Statement 4.2. The orthogonal projector on subspace Lu(S) is Pus = Ps − Pu

where Pu has all its entries equal to 1/N .

This means that the similarity matrix Pus has its elements pij equal to 1/Nt−1/N
when both i, j ∈ St for some t = 1, ..., m, and to −1/N when i and j belong to
different classes.

Proof: Indeed, for any x ∈ RN , Pux = x̄u where x̄ is the average of the
components of x, thus providing that x′ = (Ps − Pu)x ∈ Lu(S). The fact that
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x′ approximates x in Lu(S) follows from the following two properties: (1) Psx
approximates x in L(S), and (2) the line αu is orthogonal to Lu(S). �

The following statement gives characterizations of some of the objects associ-
ated with a partition.

Statement 4.3. (A). A set of integers {Nt}, t = 1, ..., m, for some m, is a par-
tition distribution if and only if

∑m
t=1 Nt = N .

(B). An N × m Boolean matrix s is a partition’s Boolean matrix if and only
if its column-vectors are mutually orthogonal and their sum is equal to the N -
dimensional vector u having all its components equal to 1.

(C). A binary relation σ is a partition’s equivalence relation if and only if it
is reflexive ((i, i) ∈ σ for any i ∈ I), symmetric ( (i, j) ∈ σ implies (j, i) ∈ σ for
any i, j ∈ I), and transitive ( (i, j) ∈ σ and (j, k) ∈ σ implies (i, k) ∈ σ for any
i, j, k ∈ I).

(D). A Boolean m×m matrix S = (sij) is an equivalence indicator matrix if and
only if the following conditions hold: (a) sii = 1, (b) sij = sji, (c) sij+sjk ≤ 1+sik.

Proof: (A) and (B) are obvious. For (C), let us consider an only one-way
implication: if a binary relation σ ⊆ I × I is reflexive, symmetric and transitive,
than it is a partition’s equivalence relation. Let us define subsets Si = {j : (i, j) ∈
σ} and prove that they form a partition of I. Obviously, any i ∈ I belongs to Si.
To prove that any i ∈ I can belong to only one of these subsets, let us assume that
Si ∩ Sk �= ∅ for i �= k and prove that, in this case, Si = Sk. Indeed, in this case,
(i, k) ∈ σ since (i, j) ∈ σ and (j, k) ∈ σ for any j ∈ Si ∩ Sk. Thus, any j belonging
to Si must belong to Sk (and vice versa), by transitivity and symmetry properties,
which proves the statement. (D) is (C) expressed in matrix terms. �

4.1.2 Loaded Partitions

A weighted partition is a partition S considered along with real intensity weight
coefficients λt assigned to each of its classes St (t = 1, ..., m). Additive represen-
tation of a weighted partition is the matrix Sλ =

∑
t λtsitsjt = (sij(λ)) where

sij(λ) = λt if both i, j ∈ St for some t and sij(λ) = 0 otherwise. When all the
intensity weights are equal to the same value λ, the partition will be referred to as
a uniform one; such a partition has its additive representation equal to λS.

Analogously, a type-cluster partition is defined as a set of partition classes St

along with corresponding type-vectors ct of a dimensionality n (t = 1, ..., m). Its
additive representation is matrix

∑m
t=1 stc

T
t having every row i equal to corre-

sponding class type-vector ct (when sit = 1) (Mirkin 1987, Van Buuren and Heiser
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1989).

A pair (S, ω) will be referred to as a structured partition if S = {S1, ..., Sm} is
a partition on I and ω is a directed graph (binary relation) on the set {1, 2, ..., m}
of the class indices as the vertex set. The arc (t, u) ∈ ω is interpreted as an
essential relation from class St to class Su. Structured partitions are called block
models in social psychology where, usually, a group partition S is associated with
several interrelation structures, ω1, ..., ωl, simultaneously (see Arabie, Boorman,
and Levitt 1978, Wasserman and Faust 1992).

The structured partition concept can be considered in two ways: 1) as a most
general model for the concept of qualitative variable; 2) as a model of interactive
parts of a complex system (see p. 265).

A structured partition (S, ω) can be represented by a N ×N Boolean indicator
matrix Sω = (sij) where sij = 1 for all the pairs (i, j) within the structure and
sij = 0 for outer pairs (i, j). More formally, sij = 1 if and only if their respective
classes, St � i and Su � j, are in the structure, (t, u) ∈ ω; otherwise, when
(t, u) �∈ ω, sij = 0. The corresponding binary relation is defined as σω = {(i, j) :
i ∈ St & j ∈ Su & (t, u) ∈ ω}.

Two questions arise. Does a structured partition correspond to any given
Boolean matrix (sij)? If yes, how can such a structured partition be determined?

The answers are easy to get based on the concept of structural equivalence.
Given an N × N Boolean matrix (sij), the entities i and j are said to be struc-
turally equivalent if rows i and j coincide, as well as columns i and j. Obviously,
the relation of structural equivalence is an equivalence relation, thus defining a
partition on I consisting of the classes of structurally equivalent entities. The
structure ω on this partition is defined in a natural way: (t, u) ∈ ω if and only if
there are some i ∈ St and j ∈ Su such that sij = 1. This definition is correct since,
in this case, si′j′ = 1 for all other i′ ∈ St and j′ ∈ Su. Indeed, sij′ = 1 because the
columns j, j′ coincide, and then, si′j′ = sij′ = 1 because rows i, i′ coincide. Thus,
every Boolean matrix is the indicator matrix of a structured partition defined by
the structural equivalence relation. Actually, the structural equivalence defines
the maximum structured partition corresponding to a given Boolean matrix (sij),
which is usually referred to as the homomorphous image of the binary relation
corresponding to the Boolean matrix.

4.1.3 Diversity

Diversity is an important characteristic of partition distributions. Diversity is
minimum when all the N entities belong to the same class, and it is maximum when
each of the entities makes a class on its own. To measure the degree of diversity
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in the intermediate cases, there are, basically, two measures used: entropy,

H(S) = −
m∑

t=1

pt log pt (4.79)

and qualitative variance or Gini coefficient

V (S) = 1 −
m∑

t=1

p2
t (4.80)

where S = {S1, ..., Sm}, pt = Nt/N , and the logarithm base is usually 2.

x

- log x

1-x

1

1

Figure 4.42: Comparing logarithm and linear function: − logx and 1 − x.

Obviously, both of these indices have their minimum, 0, when pt = 1 for some t
while the other pu, u �= t, are zeros; both of them have their maximum when all pt

are equal to each other (the so-called uniform distribution). It can be noted, also,
that V (S) can be considered a “rough” version of H(S) since 1 − x is the linear
part of Taylor series decomposition of the function − log x at x0 = 1 (0 < x ≤ 1);
H(S) is the average value of − log pt and V (S) is the average value of 1 − pt, due
to distribution (S) (the graphs of these two functions are presented in Fig.4.42).

Each of the measures above has some model interpretations that will be pre-
sented below.
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Models for Entropy

Model 1: Information. In information theory (Brillouin 1962), each class t is
considered a code in the data flow transmitted, with its occurrence probability,
pt (t = 1, ..., m). The quantity of information in the code is considered equal to
− log pt. This gives H(S) as the average information in the flow.

Model 2: Sample (Clifford and Stephenson 1975). Let S be a pre-fixed partition
of I and try to reconstruct it by randomly picking its elements. There are two kinds
of sampling considered usually: with return, when the entity picked is put back in
I, and without return, when every entity picked is removed from I.

In the first case, the probability that random sampling (with return) produces
exactly S is equal to

p(S) = pN1
1 pN2

2 ...pNm
m

while in the second case, without return,

p(S) = N1!N2!...Nm!/N !.

Indeed, the probability of the event that the first N1 entities picked all belong
to the first class is equal to pN1

1 (with return) or, without return,

N1

N

N1 − 1
N − 1

...
1

N − N1 + 1
.

Continuing these calculations we get the probability expressions above.

The logarithm of the first of the probabilities, obviously, is equal to log p(S) =
−NH(S). To deal with the second probability, we must assume that all the
integers Nt are large enough to allow using the well known Stirling formula,
log n! ≈ n(log n − 1), which gives the same result, this time as approximate one.

Model 3: Symmetry (Schreider and Sharov 1982). For a given partition S, let
us count the number of one-to-one mappings on I that do not change the partition,
which reflects the extent of the symmetry of partition S. Obviously, each of the
invariant mappings is a permutation of the entities within classes St, which shows
that the total number of the mappings is M(S) = N1!N2!...Nm!. The proportion of
these mappings is M(S)/N ! which is exactly the probability of sampling S without
return. Entropy H(S) is approximately equal to minus the logarithm of this value
divided by N , which means that H(S) measures dissymmetry of the partition.

Models for Qualitative Variance.

Model 1: Error of Proportional Prediction (Somers 1962). For a given S, let an
entity i ∈ I be picked randomly and let there be a recognition device determining
which class i belongs to. The recognition rule is referred to as proportional pre-
diction if it identifies classes randomly according to distribution (S): class St with
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probability pt. Then, since St appears with probability pt, and the probability of
error is 1 − pt, the average error is equal to

∑
t pt(1 − pt), which is exactly V (S).

Model 2: Total Variance. For every class St of S, let us define a binary variable,
zt, having value 1 or 0 with respective probability pt or 1 − pt (binomial distribu-
tion). The variance of the variable zt is equal to pt(1 − pt). Then, the summary
variance of all the variables, z1, z2, ..., zm, considered as mutually independent, is
equal to

∑
t pt(1 − pt) = V (S).

Model 3: Pair Probability (Rand 1971). For a given S, let us consider probabil-
ity of the event that, for any pair of the entities i, j ∈ I, i and j belong to different
classes of S. Obviously, the event is decomposed into the union of m events, the
t-th of which is that i ∈ St while j �∈ St (t = 1, ..., m). The probability of the t-th
event is pt(1 − pt), which makes the overall probability equal to V (S).

Model 4: Similarity Scatter (Mirkin and Cherny 1970). Let us consider a rep-
resentation of S through the corresponding equivalence relation, σ ⊂ I × I, or
its indicator (similarity) matrix, S= (sij), with sij = 1 when both i and j are
in the same class of S and sij = 0 when i and j are in different classes of S.
The square (or module) scatter of the matrix S considered as a data matrix is
d(S) =

∑
i,j s2

ij =
∑

i,j |sij | =
∑m

t=1 N2
t , as follows from Statement 4.1. This im-

plies that V (S) is the complement of d(S)/N2 to unity.

Dual Partitions and the Dissymmetry Principle (Schreider and Sharov
1982).

Let us enumerate classes of an m-class partition S in such a way that Nm ≤
... ≤ N2 ≤ N1. Let us pick an entity from each class and put the entities selected
as a set of representatives, m-element class T1. Class T2 is found the same way in
what is left from S on the remaining N − m entities. Repeating this procedure,
we exhaust Sm after class TNm has been collected. The process is continued over
the remnant classes St. In the end, only S1 remains nonempty (when N1 > N2),
and the classes Tu selected consist of only one entity. After N1 repetitions, we get
a partition T = {T1, ...., TN1} of I which is called dual to S. Obviously, S is a dual
partition to T . The total number of partitions T that are dual to a given S is equal
to M(S) = N1!N2!...Nm!. All the dual partitions have the same distribution (T )
determined by distribution (S).

Regretfully, Yu. Schreider and his coauthors (for references, see Schreider and
Sharov 1982) offer no clear interpretation of the duality concept. In the cluster
analysis context, the dual classes can be considered anti-clusters when the prime
classes are clusters.

In many natural systems, classifications satisfy the so-called Zipf law, log Nt =
A−B log t or Nt = at−B, which means that there is a simple negative (hyperbolic)
relationship between the number Nt and its position t (t = 1, ..., m). Many socially
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determined systems like texts (St is the set of t-letter words) or settlement systems
(classes are sets of settlements (cities, towns or villages) with similar numbers of
residents) satisfy the Zipf law. A well-known saying by a celebrated mathematician,
S. Banach, may be regarded as a metaphoric expression of the systems nature of
the law: “In mathematics, 5% of mathematicians do 95% of mathematics; however,
they would not have done even 5% of the mathematics without the other 95% of
the mathematicians.”

An explanation of this law can be offered in terms of the dual partitions with
the claim that, in a complex natural system, the pair, (S, T ), of dual partitions
emerging must be as dissymmetric as possible. When the symmetry is measured by
the product M(S)M(T ) or, equivalently, by H(S) + H(T ), it can be proved that
any dual pair S, T minimizing M(S)M(T ) (maximizing H(S) + H(T )) satisfies
the following: (1) Nt = a/t, and (2) m log m = bN , where a and b are positive
constants, (3) when N is sufficiently large, there are many singleton classes in S
(Schreider and Sharov 1982). Some may claim that all these are properties of
“natural” classifications.

4.1.4 Comparison of Partitions

A partition S is coarser than a partition T while T is finer than S, T ⊆ S, if any
class of S can be obtained as a union of classes of T ; for corresponding equivalence
relations this is exactly the case when set-theoretic inclusion holds: τ ⊆ σ. Since
the set-theoretic intersection of equivalence relations σ∩τ is an equivalence relation
too, it corresponds to a partition denoted as S ∩ T which has intersections St ∩ Tu

(t = 1, ..., m, u = 1, ..., l) as its classes. This is the coarsest among the partitions
that are finer than both S and T . In mathematics, the concept of a partition
relates to the case of nonempty classes only, but, in our context, admitting some
empty classes seems quite suitable. This allows narrowing the gap between the
concepts of partition and nominal scale variable (p. 382). When a partition S is
restricted by a subset I ′ ⊂ I, which means that sets S′

t = St ∩ I ′ are considered
rather than classes St themselves (t = 1, ..., m), some of S′

t may be empty; however,
we may keep tracking them to consolidate all the information about S with regard
to arbitrary I ′. In particular, the distribution of S ∩ T , with this kind of tracking,
becomes a synonym for the concept of a contingency table, a most popular notion
in the statistics of qualitative data. Such a distribution usually is presented as a
table in the format of Table 4.45.

In Table 4.45, Ntu, Nt+, and N+u denote cardinalities of St∩Tu, St, and Tu (t =
1, ..., m, u = 1, ..., l), respectively. For corresponding proportions (frequencies),
usually symbols ptu = Ntu/N , pt+ = Nt+/N , and p+u = N+u/N are utilized.
Obviously,

∑m
t=1 Ntu = N+u and

∑l
u=1 Ntu = Nt+.
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Class T1 Tl Margin
S1 N11 N1l N1+

Sm Nm1 Nml Nm+

Margin N+1 N+l N

Table 4.45: Distribution of the intersection of two partitions: Contingency table.

In the situation when no particular entity is distinguished from the others, the
contingency table contains quite comprehensive information on the interrelation
between partitions. The other interrelation concepts used so far can be expressed
in terms of the contingency table.

The relation coarser/finer between partitions can be expressed in terms of the
other means for presenting partitions as follows.

Statement 4.4. Partition T is coarser than S if and only if any of the following
conditions hold:

(a) equivalence relation τ includes σ, σ ⊆ τ ;

(b) every entry of the partition matrix S is equal to or less than the correspond-
ing entry in T, S ≤ T;

(c) every row of the contingency table (Table 4.45) contains only one nonzero
element.

Proof: Obvious. �

When neither S nor T is coarser than the other, some measures of association
between partitions are employed. Depending on the underlying representation,
there can be distinguished at least four approaches to the problem of measuring
association between partitions S and T of I:

(1) The structural approach, based on structural comparison of the correspond-
ing equivalence relations as subsets σ, τ ⊆ I × I;

(2) The contingency modeling approach, based on comparison of the observed
contingency table, (S ∩ T ), with the one based on a mathematical model of asso-
ciation between the partitions;

(3) The geometrical approach, based on calculation of correlation measures
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between the similarity matrices associated with the partitions;

(4) The cross-classificational approach, based on combining association mea-
sures between classes, St and Tu (t = 1, ..., m; u = 1, ..., l), of the partitions as
subsets of I.

Let us give some of the most important examples within each of the approaches.

Structural Association Approach

The four-fold table for relations σ, τ ⊆ I × I has form of Table 4.46.

Relation τ τ̄ Margin
σ |σ ∩ τ | |σ| − |σ ∩ τ | |σ|
σ̄ |τ | − |σ ∩ τ | N2 − |σ| − |τ | + |σ ∩ τ | N2 − |σ|

Margin |τ | N2 − |τ | N2

Table 4.46: Four-fold table for relations.

This can be rewritten in terms of the contingency entries, based on Statement
4.1.

Relation τ τ̄ Margin

σ
∑

t,u
N2

tu

∑
t
N2

t+ −∑
t,u

N2
tu

∑
t
N2

t+

σ̄
∑

N2
+u −∑N2

tu N2 −∑N2
t+ −∑N2

+u +
∑

N2
tu N2 −∑

t
N2

t+

Margin
∑

u
N2

+u N2 −∑
u

N2
+u N2

Table 4.47: Four-fold table for partitions expressed in terms of their contingency
table.
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This allows us to formulate two structural coefficients that are complete ana-
logues of the match and mismatch coefficients for subsets.

Equivalence match coefficient:

es(σ, τ) = (N2 −
∑

t

N2
t+ −

∑
u

N2
+u + 2

∑
t,u

N2
tu)/N2 (4.81)

and

Equivalence mismatch coefficient:

eδ(σ, τ) = (
∑

t

N2
t+ +

∑
u

N2
+u − 2

∑
t,u

N2
tu)/N2 (4.82)

The latter coefficient represents the relative symmetric-difference distance be-
tween σ and τ (Hamming distance between S and T), d(σ, τ), as shown in formula
(5.1).

Usually in the literature, only unordered pairs of the entities, {i, j}, i �= j,
are considered. This makes all the squared values x2 in the four-fold Table 4.47
(numbers of the ordered pairs) to be substituted by values x(x− 1)/2 (numbers of
the unordered pairs), which does not change formulas (4.81) and (4.82) too much:
just N2 must be substituted by N(N −1)/2. Modified this way, the formula (4.81)
is quite popular as the Rand index (Rand 1971); its complement to unity, formula
(4.82) modified was introduced even earlier as the relative symmetric-difference
distance (Mirkin and Cherny 1970).

Contingency Modeling Approach

Among the models for contingency tables, the most popular is that of statistical
independence. The partitions S and T are called statistically independent, if ptu =
pt+p+u, for all t = 1, ..., m and u = 1, ..., l. This notion is a basic concept in the
theory of qualitative data analysis.

Since the distribution observed, (ptu), usually is not statistically independent,
the Pearson chi-squared coefficient

X2 =
m∑

t=1

l∑
u=1

(ptu − pt+p+u)2

pt+p+u
(4.83)

is usually used as a measure of deviation of the distribution (S ∩ T ) from
the statistical independence case. It is also referred to frequently as the Pearson
goodness-of-fit coefficient.



394 PARTITION: SQUARE DATA TABLE

Obviously, X2 = 0 if and only if the distribution (S ∩ T ) is statistically inde-
pendent. If, say, m < l, then, X2 is maximum which is equal to m− 1, when every
t-th row in the contingency table has one and only one non-zero element, equal to
pt+. In this case, obviously, the contingency table allows us unanimously to predict
a class of T when a class of S is known since S is coarser than T .

Use of this coefficient is considered substantiated by the following Pearson’s
theorem. Let the set I be a random independent sample from a statistically inde-
pendent bivariate distribution with the marginal distributions, (S) and (T ), fixed,
which means that deviation of X2 from zero is determined by the sample bias
only. Then the probabilistic distribution of NX2 converges to χ2 distribution with
(m − 1)(l − 1) degrees of freedom (when N → ∞). This allows testing statistical
hypotheses of statistical independence of the partitions.

There have been also two normalized versions of X2 proposed: Kramer’s C2 =
X2/ min(m − 1, l − 1) and Tchouprov’s T 2 = X2/

√
(m − 1)(l − 1), to make the

range of the coefficient between 0 and 1, assuming a wider interpretation of X2

as just a partition-to-partition association coefficient. It will be shown that such
a wider use of X2 may be quite relevant, due to yet another expression for the
coefficient:

X2 =
m∑

t=1

l∑
u=1

p2
tu

pt+p+u
− 1, (4.84)

which can be easily proven by squaring the expression in numerator of (4.83) with
the subsequent elementary arithmetic transformations.

Geometrical Approach

The central product-moment correlation coefficient between equivalence indi-
cator matrices S and T is well-known as the Hubert Γ statistic (see, for example,
Hubert 1987, Jain and Dubes 1988).

We limit ourselves here to only covariance and correlation coefficients between
projector matrices, Pus and Put, that have a rather simple structure defined in
Statement 4.2. and considered as N2-dimensional vectors. These coefficients were
analyzed, in the seventies, in France (see, for example, Saporta 1988).

Statement 4.5. Covariance coefficient between Pus and Put is their scalar product
(Pus, Put) = X2, while the correlation coefficient between them is Tchouprov’s
coefficient T 2.

Proof: Indeed, due to Statement 4.2., the matrices Pus and Put are centered
and (Pus, Put) = (Ps, Pt) − (Ps, Pu) − (Pu, Pt) + (Pu, Pu).
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Since the matrices Ps and Pt both have the (i, j)-th entry nonzero only when
(i, j) ∈ St∩Tu for some t, u (in this case, the entries are equal to 1/Nt+ and 1/N+u,
respectively), their scalar product is equal to

∑
t,u N2

tu/Nt+N+u. Each of the other
three scalar products, in the equality above, is equal to 1, as is easy to check. This
proves that the covariance coefficient is indeed X2 due to formula (4.84).

To prove the second part of the statement, it is sufficient to prove that
(Pus, Pus) = m − 1 and (Put, Put) = l − 1, which easily follows from the con-
clusion above (with t = u). �

A similar association coefficient can be derived for S and T presented in class-
indicator form as s and t. In this case, the problem is to measure the resemblance
between the linear subspaces, Lu(S) and Lu(T ), corresponding to the partitions. In
multivariate statistics, the so-called canonical correlation analysis is used as a tool
for evaluating correlation between two linear subspaces: in each of two subspaces,
X and Y, an orthonormal basis is constructed to be maximally correlated with the
other; that is, the first vectors from each basis have their scalar product maximum
over all the elements from the subspaces, the scalar product of the second vectors
in the bases is maximum with regard to all the elements which are orthogonal to
the first ones, etc. It can be shown that the maximum scalar products, actually, are
eigenvalues of the matrix PXPY where PX and PY are orthogonal projectors onto
corresponding subspaces. Thus, the total proximity between the subspaces can be
characterized by the sum of the eigenvalues, which is well-known to be equal to
the sum of the diagonal entries of the matrix, Tr(PXPY), or, equivalently, to the
scalar product of the matrices PX and PY themselves being considered as N × N
vectors. In our case, the projectors are matrices Pus and Put; thus, due to the
statement above, X2 is the summary canonical correlation measure between the
subspaces associated with indicator matrices s and t representing the partitions,
S and T .

Cross-Classificational Approach

In this approach, a measure of overall association between partitions S and T is
produced as an average of the values of a subset-to-subset association coefficient,
c(St, Tu), by all pairs (t, u) (t = 1, ..., m; u = 1, ..., l). Sometimes, for each t,
only one or few of u-s are taken: just those u0 providing c(St, Tu0) to express
maximum association between St and Tu. From all the variety of the subset-to-
subset coefficients averaged, we consider only the three based on overall averaging
of the mismatch, δ and the absolute and relative probability change coefficients, ∆
and Φ (see Section 3.1.2).

In terms of the contingency table the subset-to-subset coefficients can be ex-
pressed as follows:

δ(St, Tu) = pt+ + p+u − 2ptu,

∆(Tu/St) = ptu/pt+ − p+u,
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Φ(Tu/St) =
ptu/pt+ − p+u

p+u
.

Then the averaged coefficients are:

δ(S, T ) =
∑
t,u

ptu(pt+ + p+u − 2ptu) =
∑

t

p2
t+ +

∑
u

p2
+u − 2

∑
t,u

p2
tu,

∆(T/S) =
∑
t,u

ptu(ptu/pt+ − p+u) =
∑
t,u

p2
tu/pt+ −

∑
u

p2
+u,

Φ(T/S) =
∑
t,u

ptu(
ptu/pt+ − p+u

p+u
) =

∑
t,u

p2
tu

pt+p+u
− 1 = X2.

This can be summarized in the following statement.

Statement 4.6. The averaged subset-to-subset mismatch, absolute and relative
probability change coefficients are the equivalence mismatch, proportional prediction
error reduction and Pearson goodness-of-fit coefficients, respectively.

The only part needing explanation is why ∆(T/S) is referred to as the reduction of
the proportional prediction error. The proportional prediction error for partition
T equals V (T ) = 1 −∑u p2

+u, as defined in the preceding subsection. The pro-
portional prediction error within each of the classes St, V (T/St), can be expressed
analogously, V (T/St) = 1 −∑u(ptu/pt+)2. Thus, the average proportional pre-
diction error within classes of S is V (T/S) =

∑
t pt+V (T/St) = 1 −∑u p2

tu/pt+.
The difference, V (T )−V (T/S), shows the reduction of the proportional prediction
error due to information on the class of S occurred, and is exactly ∆(T/S).

The coefficient of proportional prediction error reduction, ∆(T/S), is a core of
the category utility function employed in some conceptual clustering algorithms
(see p. 303), which is just the sum of ∆(T/S) by all variable partitions T involved.

Curiously, ∆(T/S) can be presented as an asymmetric form of the Pearson
chi-squared coefficient (4.83):

∆(T/S) =
m∑

t=1

l∑
u=1

(ptu − pt+p+u)2

pt+
(4.85)

which is proved with elementary arithmetic.

All the coefficients discussed above can be adjusted with a standardizing trans-
formation b(T/S) = ±(a(T )− a(T/S))/a(T ) where a(T/S) is an association mea-
sure and a(T ) is its particular value. Especially easily such indices are produced
when a(T ) is a diversity measure and a(T/S) is obtained by averaging a(T ) within
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classes of S, as was done above for the variance V (S). The corresponding stan-
dardized coefficient,

w(T/S) = (V (T ) − V (T/S))/V (T ) =

∑
t,u p2

tu/pt+ −∑u p2
+u

1 −∑u p2
+u

is well known as the Wallis coefficient evaluating relative reduction of the pro-
portional prediction error of classes Tu when S classes become known. Analo-
gously, an entropy based coefficient can be defined based on the conditional entropy
H(T/S) = −∑t pt+

∑
u(ptu/pt+) log[ptu/pt+] = H(S ∩ T ) − H(S). This leads to

h(T/S) = (H(T ) − H(T/S))/H(T ) = (H(T ) + H(S) − H(S ∩ T ))/H(T ) as the
standardized information-based association measure.

Analogously, some other adjusted measures can be produced. The subject was
reviewed by some other authors (see, for example, Goodman and Kruskal 1979,
Arabie and Hubert 1985) though this presentation is different.

4.1.5 Discussion

1. A partition can be considered two-foldly: as a form of classification and as a
form of nominal scale. In both cases, it concerns the extensional part rather
than intensional one which still waits for an adequate formalization.

2. We distinguish between the following formally different, though equivalent,
notions for representing the concept of partition: (a) partition S as it is; (b)
partition N × m Boolean indicator matrix s; (c) equivalence relation σ; (d)
equivalence Boolean similarity matrix S=ssT , (e) linear m-dimensional and
(m−1)-dimensional subspaces, L(S) and Lu(S), of the N -dimensional vector
space; (f) orthogonal projection onto L(S) or Lu(S) N × N with similarity
matrix Ps or Pus.

3. The diversity of a partition is its important characteristic. There is a com-
mon opinion that rationally designed partitions (as, for example, made for
coding of data or separating technical devices) tend to be uniformly dis-
tributed while the classes in naturally emerged systems (for example, the
biological genera partitions or settlement types), in contrast, are distributed
nonuniformly, Zipf-wisely. We consider two basic characteristics of diversity,
the entropy and qualitative variance, and present several interpretations for
each of them. A principle of maximum dissymmetry of the dual partitions
in complex “natural” systems, expressed in the entropy terms, supports the
idea of the relevance of Zipf distribution.

4. Comparing partitions, especially in cross-classificational form, is a subject
having almost a 100-year history of research. We distinguish between the
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following basic approaches to that: (a) structural, (b) contingency model-
ing, (c) geometrical, and (d) cross-classificational ones. Some of the co-
efficients can be produced within all of the approaches, which should be
considered as a substantiation of their universal applicability: equivalence
match/mismatch (Rand coefficient, symmetric-difference distance), Pearson
chi-squared (goodness-of-fit, average relative change of probability, between-
subspace covariance), and reduction of the proportional prediction error
(Wallis coefficient, average absolute change of probability).

4.2 Admissibility in Agglomerative Clustering

4.2.1 Space and Structure Conserving Properties

Let us consider the agglomerative clustering procedure in the following form. Let
D = (dij) be a dissimilarity entity-to-entity matrix. Initially, each of the entities
(cases) is considered as a single cluster (singleton). The main steps of the algorithm
are as follows.

Step 1. Find the minimum value duv in D and merge clusters u and v.

Step 2. Transform D merging both the rows and columns u and v into a new
row (and column) u ∪ v with its dissimilarities defined as

dt,u∪v = F (dtu, dtv, duv) (4.86)

where F is a pre-fixed numeric function.

If the number of the clusters obtained is larger than 2, go to Step 1, else End.

The Lance and Williams family of agglomerative clustering algorithms
LW (α, β, γ) is defined with F in (4.86) of the following “quasi-linear” form:

dt,u∪v = α(rt, ru)dtu + α(rt, rv)dtv + β(rt, ru, rv)duv + γ(rt)|dtu − dtv| (4.87)

where rt, ru, and rv are the ratios of the cardinalities of t, u, and v, respectively,
to the cardinality of u ∪ v. This format of the coefficients considered in Chen and
Van Ness 1995 covers many clustering algorithms; for example, Ward’s method
in Table 2.32 satisfies formula (4.87) with α(x, y) = (x + y)/(1 + x), β(x, y, z) =
−z/(x + y + z) and γ = 0 for the Euclidean distance squared. An agglomerative
clustering algorithm will be referred to as a LW-algorithm if it can be described
by formula (4.87).

Lance and Williams 1967 made a suggestion to reduce the potential number
of LW-algorithms in such a way that only those of them should be considered
that satisfy some supplementary admissibility conditions. They suggested concepts
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of space-conserving and space-distorting algorithms, formally analyzed later by
Dubien and Warde 1979. The following exposition is based on a recent work by
Chen and Van Ness 1995 who analyzed the following notions, among the others.

Let us denote as mtuv and Mtuv the minimum and maximum of the two dis-
similarities, dtu and dtv. An agglomerative algorithm will be referred to as space-
conserving if mtuv ≤ dt,u∪v ≤ Mtuv; space-contracting if dt,u∪v ≤ mtuv; and space-
dilating if dt,u∪v ≥ Mtuv, for any agglomeration step involving clusters u and v to
be merged. The properties mean that a space-conserving algorithm somehow “av-
erages” the distances to the clusters merged while space-contracting algorithm puts
the merged cluster nearer to the others and a space-dilating one moves it farther
from the other clusters. Curiously, the nearest neighbor (single linkage) algorithm
is space-contracting while the farthest neighbor (complete linkage) algorithm is
space-dilating.

The property of space-conserving is related to yet another useful property of
the clustering algorithms. Let us refer to a partition as a clump structure if all the
within-cluster dissimilarities are smaller than all the between-cluster dissimilarities.
Obviously, for any m ≤ N , it can be no more than one m-cluster clump structure;
and if S and T are the clump structures, then either S ⊆ T or T ⊆ S. An
agglomerative algorithm will be referred to as clump structure admissible if it always
finds the clump structures if they exist.

Statement 4.7. If an agglomerative clustering algorithm is space-conserving, then
it is clump structure admissible.

Proof: Let a partition S = {S1, ..., Sm} be a clump structure; thus the maximum
within-cluster distance, Mw, is smaller than the minimum between-cluster distance,
mb. Obviously, the agglomerative procedure starts combining two entities within
a cluster St, t = 1, ..., m. The distances between the new cluster and the other
clusters in St will be less than or equal to Mw while the distances between the
new cluster and any of the clusters out St will be greater than or equal to mb since
the property of space-conserving holds. When the agglomeration step is reiterated,
the algorithm never combines any two clusters which belong to different clusters
St and Su until all the clusters S1,..., Sm are combined; this completes the proof.
�

When LW-algorithms are considered, these two properties are equivalent (Chen
and Van Ness 1995). To make the original proof of the statement less technical, we
introduce a weaker admissibility concept related to situations when distinct entities
are considered different even if they are in the same location. More explicitly, let
us consider the case when, in nonnegative indifference matrix d, dij can be zero
when i �= j. However, dik = djk is presumed for all k ∈ I when dij = 0 (evenness).
Having this in mind, an agglomerative clustering algorithm will be called proper
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if dt,u∪v = dtu = dtv whenever duv = 0. The proper LW-algorithms can be
characterized by the following.

Statement 4.8. An LW-algorithm is proper if and only if α(x, y)+α(1−x, y) = 1
for any rational x, 0 < x < 1, and y > 0.

Proof: Let us consider two entities, i1 and i2, such that di1i2 = 0 and, thus, dji1 =
dji2 for any j ∈ I. Then, by formula (4.87), dj,i1∪i2 = α(x, y)dji1 + α(1 − x, y)dji2

where x = y = 1/2. The properness of the algorithm, obviously, means that
α(x, y) + α(1 − x, y) = 1. Applying the same operation repeatedly, we’ll have
α(x, y) + α(1 − x, y) = 1 for any rational x, 0 < x < 1, and y > 0. �

Statement 4.9. An LW-algorithm is proper if it is clump structure admissible.

Proof: Let us take three entities, i1, i2, and j, such that di1i2 = δ and dji1 = dji2 =
1+δ where δ > 0. Then, by (4.87), dj,i1∪i2 = (α(x, y)+α(1−x, y))(1+δ)+βδ where
x = y = 1/2. Let δ → 0, then dj,i1∪i2 → α(x, y)+α(1−x, y). Let us take yet another
entity k with dkj = 1+ε and dki1 = dki2 ≥ 2+ε where ε > δ. Since subsets {i1, i2, j}
and {k} are clumps, dj,i1∪i2 < dkj , which implies that α(x, y) + α(1 − x, y) ≤ 1
which is proved by letting ε → 0. To prove that α(x, y) + α(1 − x, y) ≥ 1, let
us suppose dkj = 1 − ε and dki1 = dki2 ≥ 1 + δ. Then, the subsets {i1, i2} and
{j, k} are clumps, which implies the opposite inequality. Repeating this conclusion
for many entities having zero distances from i1 and i2, we get the same equality,
α(x, y) + α(1 − x, y) = 1 for any rational x, 0 < x < 1, and y > 0. �

Now, we are ready to prove the main result.

Statement 4.10. For an LW (α, β, γ)-algorithm, the following properties are
equivalent:

1. The algorithm is space-conserving;

2. The algorithm is clump structure admissible;

3. For any rational x, 0 < x < 1, and y > 0, the following relations hold:

(a) α(x, y) + α(1 − x, y) = 1;

(b) β(x, 1 − x, z) = 0;

(c) |γ(y)| ≤ α(x, y).

Proof: Let us prove that (2) → (3). The equality (a) follows from Statements
4.8. and 4.9.. To prove that β(x, 1 − x, z) = 0, let us consider a configuration of
four points, i1, i2, j, k, such that dji1 = dji2 = 1, di1i2 = δ where δ is a constant
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satisfying δ > ε. Let x = a/b and y = c/d where a, b, c and d are integers. Let
us put ad points in i1, (b − a)d points in i2, cb points in j, and cb points in k.
Being clump structure admissible, the algorithm combines initially all the points
located within i1, i2, j and k without changing the nonzero distances by Statement
4.9. This implies that the derivation is valid for any rational x and y.

When djk = 1+ε, it will be two clumps, {i1, i2, j} and {k}, leading to dj,i1∪i2 <
dkj and, thus, 1+ δβ < 1+ ε which implies β ≤ 0. Taking djk = 1− ε, we similarly
have β ≥ 0 which proves (b).

To show γ(y) ≤ α(x, y), let us consider the same numbers of points put in
i1, i2, j, and k having di1i2 < dji1 < dji2 and djk = dji2 + ε. Then, there are two
clumps, {i1, i2, j} and {k}, leading to dj,i1∪i2 < dkj and, thus, α(x, y)dji1 + (1 −
α(x, y))di2j + γ(dji2 − dji1 ) < dji2 + ε, which leads to γ(y) ≤ α(x, y) when ε → 0.
Now, let us take djk = dji1 − ε, all the other inter-distance relations unchanged.
There are two clumps, {i1, i2} and {j, k}, leading to dj,i1∪i2 > dkj . Letting ε → 0,
it gives γ(y) ≥ −α(x, y) which completes the proof that (2) → (3).

Let us prove now that (3) → (1). Let dtu ≤ dtv; then, (3) implies dt,u∪v =
α(ru, rt)dtu + α(rv , rt)dtv + γ(rt)(dtv − dtu) = dtu + (α(rv, rt) + γ(rt))(dtv − dtu).
The algorithm is space-conserving since 0 ≤ α(rv , rt) + γ(rt) ≤ 1.

The proof is over because (1) → (2) is proved in Statement 4.7. �

Chen and Van Ness 1994 proved that space-dilating WL-algorithms are char-
acterized by the inequality:

α(x, y) + α(1 − x, y) − 1 ≤ max[0,−β(x, 1 − x, y), α(1 − x, y) − γ(y)]

while the space contracting algorithms satisfy the converse inequality for α(x, y) =
α(1 − x, y) − 1 = −γ(y).

4.2.2 Monotone Admissibility

In agglomerative clustering, the cluster index function is defined for every cluster
u in the recursive way: h({i}) = 0 for all i ∈ I and h(u ∪ v) = duv. It is
the index function which is employed in drawing the tree representation for the
results of agglomerative clustering: for every cluster S, its index on the picture
is proportional to h(S). This is why it is considered important that the index
function would be monotone: h(S) > h(T ) whenever T ⊂ S.

It appears, LW-algorithms can lead to non-monotone index functions. Let
us call an agglomerative clustering algorithm monotone if the corresponding index
function is monotone. Using Milligan 1979 result, Batageli 1981 found the following
characterization of monotone LW-algorithms.
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Statement 4.11. An LW (α, β, γ)-algorithm is monotone if and only if

(a) α(x, y) + α(1 − x, y) ≥ 0,

(b) α(x, y) + α(1 − x, y) + β(x, 1 − x, z) ≥ 1, and

(c) γ(y) ≥ −min[α(x, y), α(1 − x, y)],

for any x, y, 0 < x < 1, y > 0.

Proof: The monotonicity of the algorithm means that, for u and v merged,
dt,u∪v ≥ duv for any t in (4.87) because dt,u∪v < duv for some t would mean
that, at the next step, t and u ∪ v must be merged since duv is the minimum of
all the between-cluster distances by definition. Let us suppose that (a) to (c) hold
and prove that dt,u∪v ≥ duv for any t. Without any loss of generality, let dtu ≥ dtv.
Then, (4.87) becomes:

dt,u∪v = (α(x, y) + γ(y))dtu + (α(1 − x, y) − γ(y))dtv + β(x, 1 − x, y)duv .

Since α(x, y) + γ ≥ 0 by (c), dt,u∪v ≥ (α(x, y) + γ(y) + α(1 − x, y) − γ(y))dtv +
β(x, 1−x, y)duv. Since duv ≤ dtv, dt,u∪v ≥ (α(x, y)+α(1−x, y)+β(x, 1−x, y))duv,
by (a), which implies dt,u∪v ≥ duv, by (b).

Conversely, suppose that the algorithm is monotone, that is, dt,u∪v ≥ duv for
all t. This means that

(α(x, y) + γ(y))dtu + (α(1 − x, y) − γ(y))dtv ≥ (1 − β(x, 1 − x, y))duv.

Suppose that (c) does not hold, which means that α(x, y) + γ(y) < 0 (in the
assumption that dtu ≥ dtv). In this case, let us take dtu satisfying inequality

dtu > max[dtv, ((1 − β(x, 1 − x, y)duv − (α(1 − x, y) − γ(y))dtv)/(α(x, y) + γ(y))];

thus leading to non-monotonicity. The contradiction implies that α(x, y)+γ(y) ≥ 0
and, by monotonicity, (α(x, y) + α(1 − x, y))dtv ≥ (1 − β)duv. Again, suppose
α(x, y) + α(1 − x, y) < 0. Then, taking, for some t, dut = dvt > max[(1 −
β)/(α(x, y)+α(1−x, y)), 1]duv, we have a counterexample to the latter inequality;
therefore, (a) holds. This implies dt,u∪v ≥ (α(x, y)+α(1−x, y)+β(x, 1−x, y))duv.
If (b) does not hold, that is, α(x, y) + α(1 − x, y) + β(x, 1 − x, y) < 1, then
dt,u∪v < duv which contradicts the monotonicity. Thus, all conditions, (a), (b),
and (c), hold, which proves the statement. �

Combining this result with Statement 4.10., we have

Corollary 4.1. Any space-conserving (clump structure admissible) LW-algorithm
is monotone.
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4.2.3 Optimality Criterion for Flexible LW-Algorithms

To substantiate the recalculation formula (4.86), a general criterion of optimality
for partitions can be sought such that, at each step, the agglomeration is made to
minimize the criterion increment, as it is done in Ward’s method. To formulate the
problem explicitly, let us restrict ourselves to the criteria having the format of sum-
mary functions F (S) =

∑m
t=1 f(St) where f is a set function and S = {S1, ..., Sm}

is a partition. The between-cluster distance dS1S2 will be called criterion-generated
if there exists a set function f(St) such that dS1,S2 = f(S1∪S2)−f(S1)−f(S2) for
any pair of nonoverlapping clusters. Obviously, this expression represents an incre-
ment of the corresponding criterion, F (S), when clusters S1 and S2 in a partition
are merged, the other clusters unchanged.

The problem is to describe the criterion-generated LW-algorithms and corre-
sponding criteria. We do not know any general answer to the problem. In this
section, a more modest problem will be analyzed related to the class of the so-
called flexible LW-algorithms.

Let us refer to an LW-algorithm as a flexible one if the recalculations are driven
by the following version of formula (4.87):

dt,u∪v = αdtu + αdtv + βduv (4.88)

In the formula, γ = 0 and α and β are arbitrary constants, which is a quite
strong restriction (usually non-required): in practical computations, the coefficients
may heavily depend on the clusters as we have seen in Section 2.2.3. Another
modification concerns the situations when recalculations are made: formula (4.88)
is supposed to be applicable for every pair of clusters u and v merged, not for the
optimal pair only.

It appears, the set of criteria generating flexible LW-algorithms is quite narrow;
actually, it can be considered a unique criterion corresponding to a unique LW-
algorithm when the number of the entities is greater than 4.

Statement 4.12. A flexible LW-algorithm is criterion generated if and only if
α = 1 and β = 0, and the criterion is equal to set function

f(S) = (1/2)
∑

i,j∈S

fij − (|S| − 2)
∑
i∈S

fi

where fij and fi (i ∈ I and N ≥ 4) are some reals.

Proof: Let us consider a flexible criterion-generated LW-algorithm satisfying
equality (4.88) with all the distances expressed through a set function f(S), which
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leads the function to satisfy the following equation:

f(t∪u∪v) = α[f(t∪u)+f(t∪v)]+(1+β)f(u∪v)−(α+β)[f(u)+f(v)]−(2α−1)f(t).

Having (4.88) applied to the distance d(u, t ∪ v) (with t and u exchanged), we
obtain yet another equation:

f(t∪u∪v) = α[f(t∪u)+f(u∪v)]+(1+β)f(t∪v)−(α+β)[f(t)+f(v)]−(2α−1)f(u).

Subtracting one equation from the other, we get: 0 = (α−β−1)(f(t∪v)−f(u∪v))
which implies that α = β + 1 and

f(t ∪ u ∪ v) = α(f(t ∪ u) + f(t ∪ v) + f(u ∪ v)) − (2α − 1)(f(t) + f(u) + f(v)).

Applying the latter formula to f(t∪u∪v∪w) twice (the first time v∪w is considered
as a single cluster), we get: f(t∪ u∪ v ∪w) = αf(t∪u)+α2(f(t∪ v) + f(t∪w)) +
(2α2 − 2α + 1)f(v ∪ w) − 2α(2α − 1)(f(v) + f(w)) − (α + 1)(2α − 1)(f(t) + f(u))
which can be true only when α = 1, by the symmetry-based considerations. This
leads to

f(t ∪ u ∪ v) = f(t ∪ u) + f(t ∪ v) + f(u ∪ v) − (f(t) + f(u) + f(v))

which implies, by induction, the formula of the criterion set function in the state-
ment. �

Corollary 4.2. The only flexible criterion-generated WL-algorithm above involves
the aggregate dissimilarity d(t, u) =

∑
i∈t

∑
j∈u dij where dij = fij−fi−fj, i, j ∈ I.

Corollary 4.3. When the entity weight is constant, fi = f for all i ∈ I, the
formula for the only criterion generating the flexible WL-algorithms becomes

f(S) = (1/2)
∑

i,j∈S

fij − (|S| − 2)|S|f = (1/2)
∑

i,j∈S

(fij − π) + |S|f

where π = 2f (here, the diagonal dissimilarities dii and fii are excluded from the
data). Applied to a partition S = {S1, ..., Sm}, this leads us to criterion

F (S) = (1/2)
m∑

t=1

∑
i,j∈S

(fij − π) + Nf (4.89)

to be maximized by S.

A similar summary threshold linkage-partition criterion will appear in the next
section, though in a different context.
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4.2.4 Discussion

1. Agglomerative clustering may be considered in two ways: as a set of partic-
ular techniques for partitioning or as a method for revealing a hierarchical
structure in the data. In this chapter, we discuss the agglomeration clustering
as a partitioning technique; the other aspect will be considered in Chapter 7.

2. The major line of discussion goes in the framework suggested by Lance and
Williams 1967 along with both some general properties of the agglomeration
steps, like space-conserving and clump cluster admissibility.

3. Three subjects are developed in some detail:

(a) The study of interrelation among a few general properties of the agglom-
eration algorithms, in general, and WL-algorithms, in particular (based
mostly on the recent work of Chen and Van Ness 1994, 1995).

(b) The characterization of the so-called monotone admissibility for LW-
algorithms (Milligan 1979, Batageli 1981) which makes the cluster hi-
erarchy found have a proper graphical representation. The property is
considered usually as a necessary condition for an agglomerative algo-
rithm to be good one; however, in some cases, when duv has no meaning
of “diameter”, the requirement becomes irrelevant, which will be illus-
trated in the next Section 4.3.

(c) Finding a partitioning criterion associated with Lance-Williams formula
in such a manner that the formula provides for the optimal increment
of the criterion while merging. It appears that among flexible LW-
algorithms, there is, actually, only one such criterion and only one
Lance-Williams formula pattern, corresponding to each other.

4. The direction of research outlined deserves to be continued and extended at
least in the following directions:

(a) Formulating general properties of the agglomerative algorithms and in-
vestigation of relationship among the properties, aiming, at least partly,
at eventually getting an axiomatic description of some practically im-
portant algorithms or classes of the algorithms;

(b) Extending the research into different classes of clustering algorithms, as
the moving-center or seriation;

(c) Producing general computing formulas other than that of Lance and
Wiiliams.
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4.3 Uniform Partitioning

4.3.1 Data-Based Validity Criteria

Milligan 1981 considered a representative list of thirty data-based validity criteria.
Each of the criteria was examined in a simulation study as a goodness-of-fit measure
between the input data and partitions found with clustering algorithms. Since the
input data were generated to represent a clear nonoverlapping (although some
noisy) cluster structure, performances of the criteria could be fairly considered
as the testing scores of their recovery characteristics. It turned out, the best six
criteria involve only two kinds of validity measures of the cluster structures in
their relation to the entity-to-entity distances: metric and non-metric correlations.
Let D = (dij), i, j ∈ I, be a distance matrix and S= {S1, ..., Sm} a partition
of I. The metric measures evaluate correlation between D, and the equivalence
indicator function 1− S = (1 − sij) where sij = 1 if both i and j belong to the
same class of S and sij = 0 if not; transformation 1 − sij is used to transform
the similarity measure S into a dissimilarity measure without any change of the
absolute correlation value. The non-metric measures are based on rank correlation
between these matrices. The matrix correlations themselves are among the six best
criteria. Their formulas can be expressed as follows:

r(dij , 1 − sij) = (db − dw)(nbnw)1/2/Nσd (4.90)

and

rr(dij , 1 − sij) = (s+ − s−)/{N(N − 1) − nS)N(N − 1)}1/2 (4.91)

where db, nb and dw, nw are the averages (d) and numbers (n) of the distances
between and within the clusters, respectively, while σd is the standard deviation
of the distances; s+ represents the number of times when two entities clustered
together have a smaller distance than two points which are in the different clusters,
s− counts for the reverse outcomes, and nS is the number of quadruples of the
entities (i, j, k, l) consisting of two pairs, (i, j), (k, l), both within or both between
the clusters.

In the present author’s opinion, the emergence of the matrix correlation mea-
sures as the best cluster validity indices can be interpreted in framework of the lin-
ear approximation clustering. The following concerns the metric product-moment
correlation only; the rank correlation index should be considered just as a good
approximation of the metric one since the order structure of the distances has been
found holding much of the metric structure (Shepard 1966).

To make situation more clear, let us recall the approximational meaning of
the product-moment correlation coefficient (p. 217). It determines the slope and
the residual variance of the linear regression equation y = ax + b + e connecting
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two variables, y and x, with the residuals e least-squares minimized, as follows:
a = ρσy/σx, δ2 = (1 − ρ2)σ2

y . Here, δ2 is the residual variance defined as the
average of the residuals squared. This shows that the least-squares linear regression
criterion is equivalent to the criterion of maximizing the determination coefficient
ρ2.

Let us put this in the clustering context. The distance matrix (dij) stands
for y while the sought equivalence indicator matrix (1 − sij) serves as x, and ρ2

shows the relative decreasing of the variance of the distances after they have been
approximated by a linear function of the indicator matrix (sij). The value of
ρ here must be positive (when the clusters are in accordance with the distances),
thus reflecting quality of the partition in the problem of linear approximation of the
distances by the equivalence indicator matrix. This allows considering Milligan’s
1981 results as an empirical confirmation of validity of the following approximation
clustering model.

4.3.2 Model for Uniform-Threshold Partitioning

Let the data matrix be a similarity matrix A = (aij), i, j ∈ I. Partition
S={S1, ..., Sm} to be found is associated with its equivalence indicator matrix
S=(sij). Let us define, for every S ⊆ I, ν(S) = |S| or ν(S) = |S| − 1 depending
on the diagonal elements aii of A are given or not, respectively. The linear trans-
formation λS+µ translates the equivalence indicator values 1 and 0 into λ+µ and
µ, respectively.

When A can be considered as noisy information on λS+ µ, the following model
seems appropriate:

aij = λsij + µ + eij (4.92)

where eij are the residuals to be minimized. The value of µ relates to a shift of
the origin of the similarity measurement scale. Sometimes, no shift is considered
necessary thus leaving µ = 0; in this latter case, the matrix A is supposed to be
centered (thus having zero as its grand mean).

When both λ and µ are to be adjusted using the least-squares criterion,
the linear regression analogy underscored above remains fair. In this case, the
least-squares criterion (with both λ and µ optimally adjusted) equals L2 =
(1 − r(aij , sij)2)s2

A where r(aij , sij) is defined as (4.90) multiplied by -1 (since
sij , not 1 − sij , is involved here). The optimal λ equals the numerator of the
correlation coefficient, λ = aw − ab, while the optimal µ = ab, which shows the
meaning of the optimal equivalence indicator matrix values: aw within S and ab

between the clusters. With these λ and µ substituted, the equivalent maximized
determination coefficient becomes proportional to

(aw − ab)2nwnb (4.93)
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The maximizing criterion (4.93) is equivalent to maximizing a somewhat simpler
criterion

a2
wnw + a2

bnb (4.94)

which is proved by squaring the parenthesis in (4.93) and using equalities, nb =
Nν(I) − nw and nw = Nν(I) − nb, when appropriate.

This form of the criterion shows that maximizing both values aw and ab is wel-
come which seems somehow confusing: intuition tells us that a reasonable partition
must have aw large and ab small. The coefficients, nw and nb, do not eliminate the
problem although they somewhat diminish it: small nw and large nb help keep the
criterion value up along with properly rated aw and ab.

When µ is restricted to be zero, the partition indicator matrix has λ + µ =
aw and µ = 0 as its within and between entries, respectively. The least-squares
criterion, in this case, reflects only the within partition pairs; it is equivalent to
the problem of maximizing the following expression for a partition’s contribution
to the square data scatter:

a2
wnw (4.95)

which resembles the additive single cluster criterion in (3.59), Section 3.5.1. This
criterion does not involve the between pairs and, in this aspect, seems better than
(4.94) thus substantiating the model with µ = 0.

When both λ > 0 and µ are pre-specified, the least-squares approximation
becomes equivalent to the problem of maximizing yet another criterion,

SU(π, S) =
m∑

t=1

∑
i,j∈St

(aij − π) (4.96)

where the threshold π = λ/2 + µ is, actually, the average of within and between
average similarities. Since the threshold value is the same for every cluster St,
criterion (4.96) can be referred to as the uniform threshold criterion. We can see
that criterion (4.96) falls into formula (4.89) derived in Corollary 4.3. as the only
criterion leading to flexible LW-algorithms.

Analyzing this simpler criterion can give an insight into the nature of the other
two criteria, (4.93) and (4.95), differing from (4.96) by particular choices of the
coefficients, λ and µ. The properties of the uniform threshold criterion in the
case when all the possible partitions are considered feasible, can be summarized as
follows (see Kupershtoh, Mirkin, Trofimov 1976).

1. Value π is a “soft” threshold determining clusters as connected with the
“crisp” threshold graph Gπ = {(i, j) : aij > π}: the objects i, j having
aij > π tend to be put in the same cluster while the objects with aij < π
tend to be kept apart, though this is only a tendency, not a rule, which is
disclosed more clearly in the items 2) and 3) to follow.
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2. If S is optimal, then the total proximity, a(t, t) =
∑

i,j∈St
(aij − π), within

every cluster St is nonnegative while every total between-proximity, a(t, u) =∑
i∈St

∑
j∈Su

(aij − π), is nonpositive (t �= u). Admitting the opposite,
a(t, u) > 0 for some t �= u, we’ll have a contradiction to the optimality
assumption since after merging St and Su in St ∪Su, the maximum criterion
value will be increased by 2a(t, u) > 0 which is impossible if S is optimal.

3. The optimal partition satisfies the following “compactness” properties with
regard to the threshold π:

(a) ab ≤ π ≤ aw;

(b) att ≤ π ≤ atu t �= u

where att and atu are the average similarities in corresponding blocks (St×St

and St × Su, respectively).

4. When π increases, the number of clusters in an optimal partition, in general,
grows, though there are examples when the number of optimal clusters can
decrease when π is increased. In the extreme case when π is so large that
all aij < π, the optimal partition consists of the singletons (in the opposite
case, when aij ≥ π for all i, j ∈ I, the only optimal “partition” consists of the
unique class I). Yet it is another characteristic of S which is co-monotone
to π: the qualitative variance V (S) =

∑
t pt(1 − pt) of the optimal partition

increases when π grows. The proof closely follows the proof of Statement 3.6.
in Section 3.2.3.

4.3.3 Local Search Algorithms

The following three techniques will be presented, initially, for the case when the
threshold π in the criterion (4.96) is constant.

Agglomerating/Strewing

Based on the properties above, let us define two neighborhoods: N1(S) =
S(t, u) : t �= u} where S(t, u) differs from S only in that classes St and Su of S are
merged in one class St ∪ Su in S(t, u), and N2(S) = {St : t = 1, ..., m} where St

differs from S only in that class St of S has been strewed in separate singletons
in St. Then, let N(S) = N1(S) ∪ N2(S). With this neighborhood, an iteration
of the local search algorithm, starting with a partition S as its input, checks all
the values a(t, u) =

∑
i∈St

∑
j∈Su

(aij − π) and takes the maximum of a(t, u) with
regard to t �= u and of −a(t, t) by all t = 1, ..., m. If the maximum holds for
t �= u, the agglomerated partition S(t, u) is taken as S for the next iteration. If
−a(t, t) is maximum, the partition St is taken as the input for the next iteration.
The computation stops when the maximum value is not positive anymore. In this
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case, the current partition S is the result; it satisfies the “compactness” properties
above.

If the starting partition is the trivial partition consisting of N singletons, the
values a(t, t) are always non-negative and, thus, the operation of strewing never
applies. In this case, the algorithm can be considered a hierarchical agglomerative
algorithm, except for the stopping rule which is applied when the criterion (4.96)
begins decreasing (with all a(t, u) ≤ 0). Thus, the criterion does not allow contin-
ued merging when all the clusters become both “cohesive” and “isolated” (up to
the threshold π).

There is no need to calculate the matrix a(t, u) after every agglomeration step;
a simplest version of the Lance-Williams formula is valid:

a(t, u ∪ v) = a(t, u) + a(t, v)

as we have seen in Section 4.2.3.

Exchange

Let us consider yet another neighborhood, N3(S) which consists of the parti-
tions S(i, t) obtained from S by moving entity i �∈ St in St. With this neighbor-
hood, the local search algorithm for criterion (4.96) can be described in terms of
the average linkage function, p. 330. For every i ∈ I and St not containing i, the
values al(i, St) are calculated and their maximum (with regard to t), al(i, St(i)) is
determined. Then, if it is larger than π then i must be moved into St(i), and the
partition S(i, t(i)) is the result of the iteration; if not, the partition S is final. The
reader is invited to prove that this is really a local search algorithm for criterion
(4.96).

Obviously, the resulting partition, in the exchange process, satisfies the follow-
ing “compactness” condition: for every i ∈ I its average linkage to its cluster is
larger than to any other cluster.

The following two modifications of the algorithm seem straightforward: 1) all i
having al(i, St(i)) larger than π are moved in St(i) simultaneously; 2) at each step,
the values al(i, St) are calculated for one i only; after that moving i into St(i), if
qualified, is performed, and a next i is considered for the next iteration.

In the present author’s experiments, the best results have been found with all
the three neighborhoods united; that is, with N(S) = N1(S) ∪ N2(S) ∪ N3(S).

Seriation Techniques

A seriation algorithm with the summary threshold function as the criterion
can be utilized for sequentially obtaining the uniform-threshold clusters. After
separating a cluster, seriation is made again, this time for the reduced set of entities
(with all the already clustered entities being removed). This is repeated until no
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unpartitioned objects remain.

All the techniques considered can be employed for criteria (4.93) and (4.95) as
well. These criteria differ from (4.96) in that they involve optimal values of the
threshold π = λ/2 + µ rather than a constant. Thus, at every step, after partition
S is updated, the threshold must be recalculated as π = (aw + ab)/2, for (4.93), or
π = aw/2, for (4.95).

Let us apply the agglomeration algorithm for uniform partitioning the Functions and
Confusion data sets. The Functions data set is a similarity matrix between 9 elementary
algebraic functions; the grand mean, 2.72, is subtracted from all the entries. In Table 4.48,
the uniform partitions corresponding to different threshold values (two of them optimal)
are presented.

We can see that both π = 1 and π = 1.326 lead to four class partitioning, though the

partitions are different.

Threshold m Partition Residual Variance

-1 2 1-2-5-6-7-8-9, 3-4 0.482
0 3 1-2, 3-4, 5-6-7-8-9 0.436
1 4 1-2, 3-4, 5-6-7-8, 9 0.448
2 5 1-2, 3-4, 5-6, 7-8, 9 0.511
3 5 1-2, 3-4, 5-6, 7-8, 9 0.511
4 7 1-2, 3-4, 5, 6, 7, 8, 9 0.705

0.507 3 1-2, 3-4, 5-6-7-8-9 0.436

1.326 4 1-2, 3-4, 5-6-9, 7-8 0.557

Table 4.48: Uniform partitions of 9 elementary functions (the Functions data set) with
the residual variance estimated due to complete model (4.92); the last two rows correspond
to optimal threshold values based on either complete or zero constant form of the model.

In Table 4.49, the results of uniform partitioning for the centered matrix Confusion

(between 10 symbolic integer digits) are presented. The matrix has been preliminarily

symmetrized and its diagonal entries excluded.

Curiously, the iterative adjustment of the threshold π in the complete model starting

with π = 0 leads to the stationary π = 21.0375 corresponding to the relative residual

variance 0.476 while the optimal threshold is π = 41.927. This is an example of a locally,

not globally, optimal solution.
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Threshold m Partition Residual Variance

-20 2 1-4-7, 2-3-5-6-8-9-0 0.754
0 4 1-4-7, 2, 3-5-9, 6-8-0 0.476

30 6 1-7, 2, 3-9, 4, 5-6, 8-10 0.439
50 6 1-7, 2, 3-9, 4, 5-6, 8-10 0.439
60 7 1-7, 2, 3-9, 4, 5, 6, 8-10 0.468
90 8 1-7, 2, 3-9, 4, 5, 6, 8, 10 0.593

41.927 6 1-7, 2, 3-9, 4, 5-6, 8-10 0.439

46.460 6 1-7, 2, 3-9, 4, 5-6, 8-10 0.489

Table 4.49: Uniform partitions of 10 segmented digits (the Confusion data set) with the
residual variance estimated due to the complete model (4.92); the last two rows correspond
to optimal threshold values based on either complete or zero constant form of the model.

4.3.4 Index-Driven Consensus Partitions

There exists yet another model leading to the same uniform threshold cluster-
ing criterion: index-driven consensus partition. The model can be formulated as
follows.

Let x1, .., xn be nominal descriptors of the entities i ∈ I and xk(i) be a symbol
assigned to i by k-th descriptor (k = 1, ..., n). A partition Sk on I corresponds to
each descriptor xk, k = 1, ..., n; its classes consist of the entities i having the same
category xk(i). The problem is to find such a partition S of I which, in some sense,
could be considered as a “compromise” or “consensus” partition equally reflecting
all the given descriptor partitions Sk (k = 1, ..., n). The problem of consensus
partition can be treated in either an axiomatic or index-driven way (see p. 275).
Here, only the latter approach is considered.

Let µ(S, T ) be a dissimilarity index between partitions on I; then, partition
S will be referred to as a consensus with regard to {S1, ..., Sn} if it minimizes
criterion µ(S)=

∑n
k=1 µ(S, Sk).

It turns out, for some indices µ, the consensus problem is equivalent to a
uniform-threshold partitioning problem. Let us consider two such indices: (1)
equivalence mismatch coefficient ed(S, T ), and (2) average probability change
∆(S/Sk). The latter index being nonsymmetrical can be interpreted as an in-
dex of predictional ability of descriptor Sk toward the consensus partition; it is a
correlation index and should be maximized rather than minimized.

Let us recall that the entries of the equivalence indicator matrix Sk =(sk
ij) are

defined as follows: sk
ij = 1 if i, j belong to the same class of Sk and =0 if not.
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The entries pk
ij of the orthogonal projector Pk=(pk

ij) are defined as 0 if i, j are in
different classes of Sk, and 1/|Sk

t | if both i, j belong to class Sk
t . Then, let A = (aij)

and B = (bij) be similarity matrices defined as A =
∑

k Sk and B =
∑

k Pk: aij

equals the number of the descriptors coinciding for i and j while bij represents the
sum of the weights of these descriptors, the weights being inversely proportional
to the descriptors’ frequencies.

Statement 4.13. The equivalence mismatch consensus partition is a maximizer
of criterion (4.96) SU(π, S) for the similarity matrix A and π = n/2, while the
absolute probability change consensus partition maximizes criterion (4.96) for sim-
ilarity matrix B and π = n/N which is the average similarity.

Proof: Equivalence mismatch consensus partition S minimizes ed(S) =
∑n

k=1∑
i,j∈I(s

k
ij − sij)2. Since squaring does not change Boolean values, (sk

ij − sij)2 =
sk

ij + sij − 2sk
ijsij . This and equality aij =

∑
k sk

ij imply that ed(S) =∑
i,j∈I(aij − 2aijsij + nsij)=

∑
i,j∈I aij − 2SU(n/2, S), which proves the first

part of the statement. The second part can be proved analogously because
∆(S/Sk) = (S,Pk − uuT /N) where (A, B) is the scalar product of matrices A
and B considered as N × N -dimensional vectors, and u is the N -dimensional vec-
tor having all its components equal to unity. �

To illustrate the meaning of the criteria derived, let us consider an example of the

entities i ∈ I , each painted by one of n colors (see Table 4.50 where nine entities are

presented as painted with four colors).

Entity Color
Red Green Blue Yellow

1 + - - -
2 + - - -
3 + - - -
4 - + - -
5 - + - -
6 - - + -
7 - - + -
8 - - + -
9 - - - +

Table 4.50: Indicator matrix of the color descriptor for 9 entities.
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Let us consider n binary variables corresponding to each color (columns of Table 4.50)
and ask ourselves: what is the consensus partition for these binary descriptors? Due to
the statement above, for ed and ∆, the answer can be done in terms of the corresponding
similarity matrices. The general formulas for the similarities can be suggested as follows.
If the entities i and j are of the same color, they belong to the same class in each of the
bi-class partitions Sk, thus yielding aij = n; if they are of different colors, they belong to
different classes only for the corresponding two descriptors, thus providing aij = n − 2.
Comparing these values with the threshold π = n/2, we can see that all aij − n/2 are
non-negative if n ≥ 4 (as in the Table 4.50) thus leading to the universal cluster I as
the only equivalence mismatch consensus partition. Still, when there are two or three
colors, the only positive values aij − n/2 are just for i, j having the same color, which
corresponds to the correct consensus partition, in this particular case.

Similarity matrix A, for the data in Table 4.50, is as follows:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 2 2
2 2 2 2
3 2 2 2
4 2 2
5 2 2
6 2 2 2
7 2 2 2
8 2 2 2
9 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Matrix B for index ∆ can be represented analogously. The consensus partition here
is also unsatisfactory when n ≥ 4.

This result shows that the index-based consensus partition concept can be misleading,

even when such nice indices as eδ and ∆ have been employed. Yet the original matrix-

approximation approach presented by criteria (4.93) to (4.96) works well in this situation.

The grand mean a of A is, obviously, between n − 2 and n, which leads to the centered

similarities being positive only within the color classes; thus, the color descriptor is the

only optimal solution for criterion (4.96) with π = a.

4.3.5 Discussion

1. Though a major portion of the uniform partitioning method was described
long ago (see Kupershtoh, Mirkin, and Trofimov 1976, and Mirkin 1985, for
a complete version), it is still unknown in the international cluster analy-
sis community. Its connection with well-known Milligan’s 1981 experiments
has never been discussed. The Milligan’s 1981 results can be interpreted as
a strong empirical evidence supporting meaningfulness of the partitioning
approximation model with all the classes weighted with the same intensity
weight: the winning criteria are based on the product-moment correlation
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between the data and partition matrices, which is the maximizing criterion
of the model.

2. The basic notion in the uniform partitioning method, “soft” threshold π
is subtracted from the entity-to-entity similarities rather than traditionally
eliminating all the lesser values. This leads to a certain flexibility: threshold
π determines that it is the average (not maximum or minimum) within and
between similarities must comply with it, which underscores the threshold’s
soft action.

3. The threshold determines the number of clusters in the optimal partition;
changing the threshold changes the optimal partition (its qualitative vari-
ance is proved to follow threshold changes). Since the average “diameter”
of all the clusters is determined by the same threshold value, it may lead to
inconvenient results when the “real” data structure contains clusters of really
different sizes.

4. Agglomerative clustering is an especially simple procedure when applied to
the problem of uniform partitioning: this is done with just simple summation
of the rows and columns involved. Moreover, there is a natural stopping
rule: when all the summary between-entries become negative and all the
summary within-entries are positive. Non-monotonicity of the method may
be considered an example when the monotonicity requirement, in the context
of LW-algorithms, looks neither mandatory nor natural.

5. Some index-driven consensus partition problems can be reformulated as
those of uniform partitioning. The symmetric-difference distance consensus
partitioning, which has received recognition (see, for example, Barthélemy,
Leclerc, and Monjardet 1986), is of this kind. However, as the example con-
sidered has shown, its flexibility might need to be improved somehow.

4.4 Additive Clustering

4.4.1 The Model

Real-world cluster patterns may show a great difference in cluster “diameters”.
This kind of structure may lead to ill-structured clusters when the uniform thresh-
old criterion is employed because the cluster sizes, in average, are to be bound by
the same value π.

Let us consider some more realistic model with the clusters having distinct
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intensity weights and, thus, thresholds:

aij =
m∑

t=1

λtsitsjt + µ + eij (4.97)

where st = (sit) is the indicator vector of the sought cluster St, t = 1, ..., m. The
model was introduced by Shepard and Arabie 1979. Simultaneously, in 1976 – 1980,
the author and his collaborators in Russia developed what they called qualitative
factor analysis methods as based on the same model (actually, the model was even
more general, see Mirkin 1987b for detail and references).

The model can be considered when no “intercept” µ is present in the equations
(or, equivalently, when µ = 0); in this case, matrix A should be preliminarily
centered, that is, the grand mean a subtracted from all the similarities.

The model (4.97) can be employed in both of the cases: when clusters St are
assumed to be non-overlapping and when cluster overlaps are admitted. The latter
case has been covered in Section 3.6. In this section, only the case of partitioning
(no clusters overlapping) will be considered. In this case, matrices sts

T
t presented

as items of the matrix model (4.97) are mutually orthogonal, which allows for the
following Pythagorean decomposition (provided that λt are optimal):

∑
i,j∈i

(aij − µ)2 =
m∑

t=1

λ2
t

∑
i,j∈I

sitsjt +
∑
i,j∈I

e2
ij .

where λ2
t = at − µ, at is the average similarity within cluster St and µ is zero or

optimal (µ = ab) depending on the assumption of the model.

The sums
∑

i,j∈I sitsjt can be expressed as |St|ν(St) where ν(St) = |St| if the
diagonal similarities are given or = |St|−1, if not. This leads to the following form
of the decomposition:

∑
i,j∈i

(aij − µ)2 =
m∑

t=1

λ2
t |St|ν(St) +

∑
i,j∈I

e2
ij . (4.98)

Equation (4.98) shows the cluster contribution, λ2
t |St|ν(St), to the square scat-

ter of the similarities (around µ). Moreover, it shows the actual criterion, g(S), to
be maximized with regard to the sought partition (when the least-squares criterion
is employed):

g(S) =
m∑

t=1

λ2
t |St|ν(St) (4.99)
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4.4.2 Agglomerative Algorithm

The additive clustering model usually is considered as a model with overlapping
clusters; apparently no particular additive clustering algorithm for the nonover-
lapping case has been published. Let us show how the standard agglomeration
techniques can be utilized to partition I by maximizing criterion (4.99).

The algorithm starts with the trivial partition consisting of N singletons and
it merges, at each step, two classes, Su and Sv, that maximize the increment of
criterion (4.99):

L(u, v) = g(S(u, v)) − g(S),

where partition S(u, v) is obtained from S by merging its classes Su and Sv to-
gether. The algorithm stops when the increment becomes negative.

The agglomeration procedure, in this case, cannot be presented with the Lance-
Williams formula since different pairs u, v may lead to different values of µ involved
in the computations. Yet it does not mean that the main computation advantage of
the Lance-Williams formula, iterative recalculation of the intercluster similarities,
cannot be kept, though in a somewhat modified version. A computationally safe
agglomeration procedure is presented below.

Additive Nonoverlapping Agglomerative Clustering Algorithm

Step 1 (Initial Setting).

Set m = N and consider interclass similarity matrix (a(t, u)) where a(t, u) =
atu, vector (Nt) of the cluster cardinalities (all Nt = 1 in the beginning), and vector
(at) of the cluster averages (equal to corresponding att or to 0 if the diagonal sim-
ilarities are not given), all of dimension m. Calculate nb = Nν(I)−∑m

t=1 Ntν(Nt)
(number of between-cluster pairs of entities) and Ab =

∑
i,j∈I aij−

∑m
t=1 atNtν(Nt)

(the sum of between similarities). Then let µ = Ab/nb, λt = at − µ, and
g =

∑m
t=1 λ2

t Ntν(Nt). As usual, ν(Nt) denotes Nt if the diagonal similarities
are given and Nt − 1 if not.

Step 2 (Agglomeration).

Phase 1. (Finding a pair of clusters to merge).

Find maximum of values l(u, v), u, v = 1, ..., m, defined as

l(u, v) =
∑

t�=u,v

(at − µ(u, v))2Ntν(Nt) + (auv − µ(u, v))2Nuvν(Nuv)

where Nuv = Nu+Nv, auv = (auNuν(Nu)+avNvν(Nv)+2a(u, v))/Nuvν(Nuv), and
µ(u, v) = µ− 2(nba(u, v)−AbNuNv)/(n2

b − 2nbNuNv). If (u∗, v∗) is a maximizing
cluster pair, check the inequality l(u∗, v∗) > g. If yes, go to the next phase. If no,
end calculation; the partition considered is the result.
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Phase 2. (Merging the clusters).

Merge clusters Su∗ and Sv∗ into the aggregate cluster Su∗v∗ = Su∗ ∪ Sv∗ .
Calculate its characteristics Nu∗v∗ = Nu∗ + Nv∗ and au∗v∗ = (au∗Nu∗ν(Nu∗) +
av∗Nv∗ν(Nv∗) + 2a(u∗, v∗))/Nu∗v∗ν(Nu∗v∗). Then, recalculate general values:
Ab ← Ab − 2a(u∗, v∗), nb ← nb − 2Nu∗Nv∗ , µ ← µ − 2(nba(u∗, v∗) −
AbNu∗Nv∗)/(n2

b − 2nbNu∗Nv∗), and g = l(u∗, v∗).

Finally, recalculate interclass similarity matrix (a(u, t)) just adding up the row
v∗ to the row u∗ component-wise, then analogously adding up the column v∗ to
the column u∗, deleting then both row and column v∗ and considering the row and
column u∗ updated as related to cluster Su∗v∗ .

Phase 3. (Loop.) If m > 2, substitute m by m−1 and go to Phase 1. If m = 2,
end.

Correctness of the algorithm follows from the fact that, actually, l(u, v) equals
g(S(u, v)) since µ(u, v) is the average between-cluster similarity in partition S(u, v).
The latter is easy to prove using the following numerical identity:

a − c

b − d
=

a

b
− bc − ad

b(b − d)
.

Obviously, in the agglomeration process, the value µ decreases at each step,
thus ensuring that the scatter (4.98) increases.

4.4.3 Sequential Fitting Algorithm

Another approach to fitting the model (4.96) is sequential finding of clusters one-by-
one, each step using residual similarities computed due to the model, as a special
case of the SEFIT procedure (see Section 3.6 for detail). An advantage of the
approach is that it can be applied equally to both of the situations, overlapping
and nonoverlapping clusterings.

Let us consider only the case when µ = 0 in the model (4.96). The problem of
finding a satisfactory µ with the sequential fitting approach still has no satisfactory
solution. The present author takes it just equal to the average similarity thus
admitting that the universal cluster I is to be extracted at the initial step.

When the clusters must be nonoverlapping, the sequential fitting procedure
works as follows: at each step a cluster is found minimizing criterion

L2 =
∑

i,j∈I′
(aij − λsisj)2

by unknown real (positive) λ and Boolean si, i ∈ I ′. Here, I ′ is a current entity set
obtained from I by removing all the entities clustered in the previous steps. The
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found cluster St is removed from I ′ making I ′ ← I ′ − St. This provides a natural
end of the clustering process when no unclustered entities remained, I ′ = ∅; the
number of clusters thus defined afterward.

When all clusters St and their intensities λt are found, a kind of adjusting
procedure for the clusters could be suggested based on the idea of iteratively fixing
all the elements of the model (4.96) except for only one or two, and following up
optimizing the criterion by the relaxed elements.

Applying the sequential fitting method for partitioning ten styled digits by the Con-

fusion data (the diagonal entries removed, the matrix symmetrized, and the grand mean

subtracted), we find three nonsingleton clusters presented in Table 4.51.

Cluster Entities Intensity Contribution, %

1 1-7 131.04 25.4
2 3-9 98.04 14.2
3 6-8-0 54.71 13.3

Table 4.51: Non-singleton clusters for 10 segmented digits (Confusion data).

Entities 2, 4, and 5 form singletons having no close connections with the clusters,

though they are quite close to some of the other entities. For instance, 5 is near 9

(a59 = 98.04) while it is not too distant from 3 (a53 = −2.96), which makes al(5, 3− 9) =

(98.04 + 2.96)/2 = 50.5 and shows that it would be quite appropriate to join 5 to cluster

3-9. This is not the case of entity 2: though 3-9 (and 3-5-9) is its closest cluster, still

the average similarity between them is negative, which means that 2 must be a singleton.

Entity 4 is quite close to cluster 1 − 7 with al(4, 1 − 7) = 22.04 and can be added to

it. This produces the set of clusters presented in Table 4.52. Their contribution to

the square scatter of data is somewhat less (42% rather than 52% done by the original

clusters), however the clusters themselves are somewhat larger.

4.4.4 Discussion

The model presented is intermediate between the uniform partitioning and genuine
additive cluster models: it has a format of the latter while only nonoverlapping
clusters are admitted, as in the former model. This makes the cluster sizes flexible
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Cluster Entities Intensity Contribution, %

1 1-4-7 58.37 15.1
2 3-5-9 55.21 13.5
3 6-8-0 54.71 13.3

Table 4.52: Corrected non-singleton clusters for 10 segmented digits (Confusion data).

since the thresholds can be different for different clusters, and, still, the procedures
remain quite simple and stable. The sequential fitting approach can be considered
as a quite close mate to the seriation techniques in Section 3.2: it just requires the
seriation process to start all over again, after each of the clusters separated.

4.5 Structured Partition and Block Model

4.5.1 Uniform Structured Partition

Let A = (aij) be an association matrix and (S, ω) a structured partition on I
represented by the Boolean matrix Sω = (sij) where sij = 1 if and only if (t, u) ∈ ω
for i ∈ St and j ∈ Su. Then, the linear model of the proximities approximated by
Sω, is as follows:

aij = λsij + eij (4.100)

There is no constant term µ here, firstly, for the sake of simplicity, and, secondly,
because the criticisms concerning criterion (4.94) on p.408 seem relevant here, too.
Instead, we suggest the matrix A to have its grand mean subtracted from all the
entries preliminarily.

This model assumes an approximation of the real pattern of association to the
structural equivalence. It suggests uniting in the same class those entities that
identically interact with the others. Let us point out that this does not mean that
the structurally equivalent entities must interact among themselves; such a within-
non-interacting class may correspond to a subsystem purported to serve the others
or to be served by the others; in industries, it could be energy or maintenance
facilities.

When λ is positive, the least squares fitting problem for model (4.100) can be
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equivalently represented as the problem of maximizing

SU(π, S, ω) =
∑

(u,t)∈ω

∑
i∈St

∑
j∈Su

(aij − π) (4.101)

by (S, ω) for π = λ/2.

When there is no constraints on ω and S is fixed, the optimal ω (for given S)
can be easily identified depending on the summary proximity values

a(π, t, u) =
∑
i∈St

∑
j∈Su

(aij − π).

Statement 4.14. The structure ω maximizing (4.101) for given S is

ω(S) = {(t, u) : a(π, t, u) > 0}.

Proof: Obviously, SU(π, S, ω) =
∑

(t,u)∈ω a(π, t, u). Thus, only positive a(π, t, u)
must be included in ω to make (4.101) maximum, thus leaving the negative ones
out of the structure. �

Actually, ω(S) may be considered as a threshold graph on the set of the clusters
defined by “similarities” a(π, t, u) with the threshold equal to zero. The following
corollary is an extended form of that.

Corollary 4.4. When there are no constraints imposed on (S, ω), the optimal
structured partition consists of the singleton clusters connected by the structure
of the π-threshold graph Gπ = {(i, j) : aij > π}.

Proof: The structure of the threshold graph ω = Gπ involves all the positive
entries aij − π and no negative ones, which provides the global maximum to the
value of (4.101). �

Thus, no aggregating is needed to optimize the criterion, which is not an uncom-
mon phenomenon in clustering. The square-error (WGSS) criterion for partitioning
also has better values for the smaller clusters leading to the singletons as the best
partition.

Yet another conclusion from the statement is as follows.

Corollary 4.5. With no constraints on ω, maximizing criterion (4.101) is equiv-
alent to maximizing criterion

AS(π, S) =
m∑

t,u=1

|a(π, t, u)|.
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Proof: Since, for a given π,
∑m

t,u=1 a(π, t, u) = const, maximizing a(ω(S)) =∑
(t,u)∈ω(S) a(π, t, u) keeps its complement to the constant,

∑
(t,u) �∈ω(S) a(π, t, u),

minimal, which corresponds to the maximum of
∑

(t,u) �∈ω(S) |a(π, t, u)| because
a(π, t, u) ≤ 0 for every (t, u) �∈ ω(S). �

This shows that criterion (4.101) can be considered as depending on partition S
only, defining the structure afterward as ω = ω(S). Therefore, optimizing criterion
(4.101) can be done with any local search partitioning algorithm. Let us consider
the traditional agglomeration algorithm, at each step merging those two clusters
St and Su which give the minimal decrease of criterion AS(π, S). It appears, that
difference ∆(t, u) = AS(π, S) − AS(π, S(u, t)) where S(u, t) is partition obtained
from S by merging its classes St and Su, can be expressed as follows:

∆(t, u) =
∑

v �=t,u[sgntuv min(|a(π, t, v)|, |a(π, u, v)|)+
sgnvtu min(|a(π, v, t)|, |a(π, v, u)|)] + 2 min(a+, |a−|), where

sgntuv = |sgn a(π, t, v) − sgn a(π, u, v)|, sgnuvt = |sgn a(π, v, t) − sgn a(π, v, u)|,
and a+ (or a−) is the sum of all positive (or negative) values in the quadruple
a(π, t, t), a(π, t, u), a(π, u, t), a(π, u, u) related to the associations in the fissioned
class.

The proof of the equality is based on simple arithmetic considerations and can
be found in Kupershtoh and Trofimov 1975 (see also Mirkin and Rodin 1984, p.
116-117).

It remains now to consider the case when λ and threshold π = λ/2 are not fixed
but must be optimally adjusted as the average association within the structure:
λ = aw =

∑
i,j∈I aijsij/

∑
i,j sij .

To do that, we need to consider the problem of finding the optimal λ when
partition S is fixed. That can be done with the following iterative process.

Finding Optimal Threshold for S Fixed
1. Let π, initially, be zero.
2. Find ω(S) with the fixed threshold, then calculate the within average
value aw and take π = aw/2.
3. If newly defined π does not coincide with π at the preceding iteration,
go to step 2; else end.

The process converges since the least-squares criterion is decreased at every step
and the number of structures is finite. Moreover, the stationary point corresponds
to the global optimum since the criterion is a convex function of λ.

This algorithm can be utilized beyond clustering, for instance, when a suitable
threshold graph is sought.
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The agglomeration procedure with the optimal λ can be defined as follows.

Agglomeration with Optimal λ
1. Find an optimal threshold value for the trivial partition consisting of
N singleton clusters.
2. With the threshold π and partition S fixed, find the best pair of
clusters, t and u, to merge (based on values of ∆(t, u) above). For the
agglomerate partition, S(t, u), find the optimal threshold π and, with
this π, repeat search for the best pair of clusters of S, until π does not
vary.
3. Merge clusters St and Su, take corresponding optimal threshold and
go to step 2 until the number of clusters becomes two.

Let us consider the Confusion data (between 10 segmented integer digits) from Table
16, p. 198, with the diagonal entries eliminated. The matrix A centered by subtracting
its grand mean, 33.4556 (no diagonal entry is considered), is as follows:

− −26.5 −26.5 −11.5 −29.5 −18.5 26.5 −33.5 −29.5 −29.5
−19.5 − 13.5 −29.5 2.5 13.5 −19.5 −4.5 −26.5 −15.5
−4.5 −4.5 − −26.5 −15.5 −33.5 6.5 −4.5 118.5 −18.5
115.5 −11.5 −29.5 − −29.5 −22.5 −3.5 −26.5 7.5 −33.5
−19.5 −7.5 9.5 −19.5 − 45.5 −26.5 −26.5 92.5 −19.5
−8.5 −19.5 −26.5 −22.5 63.5 − −29.5 121.5 −22.5 9.5
235.5 −29.5 −12.5 −12.5 −26.5 −33.5 − −33.5 −29.5 −26.5
−22.5 −5.5 −5.5 −15.5 −15.5 36.5 −22.5 − 33.5 138.5
−8.5 −4.5 77.5 12.5 48.5 −22.5 −12.5 48.5 − 9.5

−15.5 −29.5 −26.5 −22.5 −26.5 −15.5 −8.5 37.5 −12.5 −
1 2 3 4 5 6 7 8 9 0

The structure of 24 positive entries (threshold graph G0) is presented in Fig.4.43 (a).
The graph looks overcomplicated; it is not easy to realize what are the main flows of
confusion, by this picture. Let us find an optimal threshold π. To do that, let us find
the average proximity in the graph presented in Fig.4.43 (a). It is 53.64, which gives
π = 53.64/2 = 26.82. This threshold cuts out some of the arrows in that graph since
there are only 14 entries, in A, that are larger than this π. The smaller set of arrows gives
a larger average proximity, 84, leading to new π = 42. There are only 11 entries larger
than 42 in A, which leads to a new, recalculated average, 97.13. With the new π = 48.56,
there are 8 remaining entries to be larger than π, which leads to a larger average again.
This new average, 115.72, is final since exactly the same 8 entries remain larger than the
new value π = 57.86. Thus, we have got an optimal threshold graph corresponding to
threshold λ/2 for optimal λ = 115.72 (see Fig.4.43 (b)).

It is not difficult to estimate the contribution of the structure found to the proximity

aij variance: it equals λ squared multiplied by the number of positive entries (ones in

matrix (sij)), 8, related to the square scatter of the proximities: 59.6%.

Interpretation of this graph does not seem difficult: the main line of confusion is

shown quite unambiguously (say, digits 4 and 7 go for 1, etc.) However, for illustrative
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Figure 4.43: Finding an optimal threshold graph for the Confusion data: from (a)
to (b).

purposes, let us try further aggregate the graph. Such an aggregate graph is presented in

Fig.4.44 (a): the non-singleton classes, 4-7, 5-8, and 6-9, unite unconnected entities. The

structure comprises 18 entries in A, some of them being negative, such as, for instance,

a05 = −26.5. This structure is far from optimal, for π = 0. The optimal structure, ω(S)

with π = 0, must include more connections as shown in Fig.4.44 (b). The average of all

the 25 within structure entries is equal to 46.3, which makes π = 23.15 to cut out of the

structure the weakest connections, such as from 2 to 3, with a23 = 13.5 < π. Removing

them, we obtain the structured partition presented in Fig.4.44 (c), which almost coincides

with the threshold-graph-derived structure (a). This is the final structured partition since

its intensity weight, 68.44, does not suggest further cutting out any of its arcs.

Some other examples of structured partitioning (in molecular genetics) can be
found in Mirkin and Rodin 1984.

4.5.2 Block Modeling

Let us recall that a block model is a partition S along with several structures,
ω1, ..., ωn, which represent an aggregate structure of a system with several kinds
of interrelation between its subsystems. In the literature, only some heuristic
algorithms for finding block models have been published so far (see, for example,
Arabie, Boorman, and Levitt 1978, Wasserman and Faust 1992). To put block
modeling in the approximation framework, we suggest a particular model based on
different weights assigned to partition S and structures ωk.
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Figure 4.44: Structured partitions for the Confusion data.

Let the data be represented by a set of association matrices Ak = (aij,k) where
different k, k = 1, ..., n, relate to different aspects of the relationship between the
entities or to different periods of time or to different locations, etc.

The resulting block model will be represented by a partition S on I along with
a set of structures ωk corresponding to respective matrices Ak, k = 1, ..., n.

Let us consider the following model assuming that the associations are just
“noisy” structural interrelations:

aij,k = λsij + µkrij,k + eij (4.102)

where matrix (sij) is the equivalence indicator matrix of partition S (no structural
information included), and (rij,k) is the structure indicator matrix: rij,k = 1 if and
only if i ∈ St and j ∈ Su for t �= u and (t, u) ∈ ωk; the intensity weights λ and µk

may be fixed a priori or found with least-squares adjusting.

Optimal values of λ and µk are equal to the averages of corresponding asso-
ciations: within the partition and within each of the structures ωk, respectively:
λ = (1/n)

∑
i,j,k aij,ksij/

∑
i,j sij , and µk =

∑
i,j aij,krij,k/

∑
i,j rij,k.

With these optimal values put in, the following decomposition holds:

∑
i,j,k

a2
ij,k = nλ2

∑
i,j

sij +
n∑

k=1

µ2
k

∑
i,j

rij,k +
∑
i,j,k

e2
ij,k (4.103)

demonstrating that the least-squares fitting criterion requires maximizing the con-
tribution to the square data scatter of the block model sought:

c(S, ωk) = nλ2
∑
i,j

sij +
n∑

k=1

µ2
k

∑
i,j

rij,k (4.104)
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Again, to analyze the meaning of the criterion, let us assume that the inten-
sity weights, λ and µk, k = 1, ..., n, are constant. It is not difficult to see that
minimizing the least-squares criterion (with the constant weights) is equivalent to
maximizing

CS(λ, µk, S, ωk) = λSU(A, λn/2, S) +
∑

k

µkAS(Ak, µk/2, S, ωk),

or

CS(λ, µk, S, ωk) = λ
∑
i,j∈I

(aij − nλ/2)sij +
∑

k

µk

∑
i,j

(aij,k − µk/2)rij,k (4.105)

where A = (aij) =
∑n

k=1 Ak. Criterion (4.105) is a linear combination of the
uniform-threshold partition criterion and structured partitioning criteria taken
with different thresholds.

For a fixed partition S, an optimal block model is defined based on the ag-
gregate threshold graph as in Statement 4.14. above (all the intensity weights are
assumed positive): E(S) = {(t, t) :

∑
i,j∈St

(aij − nλ/2) > 0} (the loop ties) and
ωk(S) = {(t, u) :

∑
i∈St

∑
j∈Su

(aij,k − µk/2) > 0}. This means that the criterion,
actually, can be optimized by S only since all the structural elements can be defined
afterward with the formulas above.

This allows application of the same agglomeration method as in the case of
structured partitioning. Change ∆(t, u) of the criterion (4.105) when S is substi-
tuted by S(t, u), with St and Su merged into the united cluster Stu = St ∪Su, can
be expressed as:

∆(t, u) = λB(t, u) −
n∑

k=1

µkBk(t, u)

where

B(t, u) = (a(π, t, t) + a(π, t, u) + a(π, u, t) + a(π, u, u))+ − a(π, t, t)+ − a(π, u, u)+

where x+ = max(0, x) and π = nλ/2, and

Bk(t, u) =
∑

v �=t,u

[sgnktuvM(k, t, v)+sgnkvtuM(k, v, t)+ak(πk, t, u)+ +ak(πk, u, t)+

where

sgnktuv = |sgn ak(πk, t, v) − sgn ak(πk, u, v)|,
sgnkuvt = |sgn ak(πk, v, t) − sgn ak(πk, v, u)|,
M(k, t, v) = min(|ak(πk, t, v)|, |ak(πk, u, v)|),
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M(k, v, t) = min(|ak(πk, v, t)|, |ak(πk, v, u)|),
πk = µk/2, and the index k in ak(π, u, v) means that it is computed by Ak =

(aij,k).

To prove the formulas, let us note, initially, that all the items in criterion
(4.105) having no relation to either St or Su are mutually eliminated in ∆(t, u).
Moreover, if sgn ak(πk, t, v) = sgn ak(πk, u, v) then (t, v) ∈ ωk(S) and (u, v) ∈
ωk(S) implies (tu, v) ∈ ωk[S(t, u)], thus, the corresponding items are mutually
excluded also. If sgn ak(πk, t, v) �= sgn ak(πk, u, v), then (tu, v) belongs or does not
belong to ωk[S(t, u)] depending on which value’s module is larger. If, for instance,
ak(πk, t, v) > 0 and ak(πk, t, v) > |ak(πk, u, v)| then (tu, v) ∈ ωk[S(t, u)] and only
the other, negative quantity, ak(πk, u, v) is added to ∆(t, u). If the opposite holds,
ak(πk, t, v) < |ak(πk, u, v)|, then (tu, v) �∈ ωk[S(t, u)] and −ak(πk, t, v) is added in
∆(t, u). All this is represented in Bk(t, u) by the item

−µk/2|sgn ak(πk, t, v) − sgn ak(πk, u, v)|min(|ak(πk, t, v)|, |ak(πk, u, v)|).
The items for arcs (v, tu) are treated analogously. �

Since all B(t, u), Bk(t, u) are positive, merging the classes increases the criterion
if and only if λB(t, u) >

∑n
k=1 µkBk(t, u).

4.5.3 Interpreting Block Modeling as Organization Design

Although the block modeling problem considered has been developed entirely in
the framework of approximation clustering, it can be interpreted also as a partic-
ular problem of organization design. Such an interpretation seems useful both for
better understanding the meaning of the problem and for applying the model in
organization design.

Let an industrial system consist of the elementary working units i ∈ I. Its
organization structure involves a partition of the units in m nonoverlapping di-
visions and a line-staff control system. Line control structure is based on direct
hierarchical subordination, while staff units perform numerous assisting activities
of which only coordinating of interaction between the divisions will be considered
(for terminology, see, for instance, Hutchinson 1967).

Let us form an index for measuring the intensity of control efforts in the or-
ganization. Line control activity is twofold since it provides “interior” control
within divisions and assists in connecting divisions with their counterparts in the
organization. Assuming that the major control effort within division St is being
done towards pair-wise interactions, it can be evaluated as c1|St|2 where c1 is a
scale coefficient. The external control effort is assumed to depend on the inten-
sity of interactions between the division and its within-enterprise partners. The
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more interactions, the higher effort (since the probability of any kind of conflicts,
fall-outs, break-downs, etc. grows). In an industrial system, the intensity of the
“external” interactions can be evaluated based on estimates of pair-wise techno-
logical interactions, aij , between the elementary units i, j ∈ I. For instance, aij

may be just the number of manufactured articles received by j from i in a pro-
duction cycle. In these terms, the external control effort can be evaluated as
d1

∑
i∈St

∑
j �∈St

aij where d1 is a coefficient. Thus, the whole effort of the line
control in St is c1|St|2 + d1

∑
i∈St

∑
j �∈St

aij .

Then, let us assume that the staff coordinating activity is organized in two
ways: some interactions are controlled “individually”, through particular staff of-
ficers, while the others are maintained through an “administrative” system based
on some standard rules and procedures. Let us measure the tension of the efforts
to coordinate interaction between divisions St and Su by c2|St||Su| if it is made
within the “administrative” control subsystem or by d2

∑
i∈St

∑
j∈Su

aij if it is
made within the “individual” control. The difference arises since the effort of the
“individual” control depends on the volume of interactions while the “administra-
tive” effort is determined by the number of interactions.

Let ω denote the set of interacting pairs of divisions controlled in the “admin-
istrative” fashion. Then the total control effort is equal to:

E = c1

∑
t

|St|2 + d1

∑
i∈St

∑
j �∈St

aij + c2

∑
(t,u)∈ω

|St||Su| + d2

∑
(t,u) �∈ω

∑
i∈St

∑
j∈Su

aij

where the coefficients reflect the “relative costs” of distinct control techniques.

With elementary arithmetic, E can be rewritten as

E = (d1 + d2)
∑
i,j∈I

aij − EE

where

EE = (d1 + d2)
∑

t

∑
i,j∈St

(aij − c1

d1 + d2
) + d2

∑
(t,u)∈ω

∑
i∈St

∑
j∈Su

(aij − c2

d2
) (4.106)

Equation (4.106) implies that the problem of designing the organization struc-
ture which minimizes the total effort E is equivalent to the problem of maximizing
EE, which is very similar to the approximation block modeling criterion (4.105)
(for n = 1).

The thresholds here are related to cost ratios c1/(d1 + d2) and c2/d2, respec-
tively. This gives a bilateral relationship between the empirical association data
and organization effort: the thresholds can be defined by the costs and, conversely,
if the thresholds are given, cost ratios can be estimated. This latter dependence can
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be utilized in organization design decisions concerning, for instance, maintenance
or energy or transportation facilities: should they be united in a specialized mainte-
nance/energy/transportation division or, in contrast, assigned each to a particular
production division?

Yet the two models — for organization design and for block modeling — are
different. For instance, the former involves four cost parameters while there are
only two intensity weights in the latter. To reduce the four-parameter diversity to
make the organization design criterion EE be of the block modeling format, it is
necessary and sufficient that the following equalities be held: c1 = (d1 + d2)2 and
c2 = d2

2/2.

Obviously, the present model does not take into account many real organiza-
tional phenomena (other control goals exist, real-world associations are neither
constant nor homogeneous, etc.), however, some of them are involved quite clearly
(line-staff control subsystems or “administrative” and “individual” ways of coor-
dinating control), which suggests that there is potential in the model for further
elaboration.

4.5.4 Discussion

1. The concept of a structured partition is a model for representing interrelated
subsystems in a complex system. It can be used also for further formalizing
various types of qualitative variables depending on the type of structure of
relationship between the categories: for example, a question from a ques-
tionnaire with several ordered categories, such as from “very likely” to “very
unlikely”, may have a category “don’t know” which is completely out of the
order.

2. The approximation approach leads to a problem which admits a threshold
graph as the best solution when no restrictions are imposed on the parti-
tion or the between-class relation structure. With any m-class structured
partition admitted, the problem becomes equivalent to an unstructured par-
titioning problem, though its criterion involves all the within and between
class summary entries; the soft threshold plays as important a role here as it
does in the uniform partitioning problem.

3. In the block model constructing aspect, the approximation approach produces
a partitioning criterion which is an additive mixture of both the structured
and uniform partitioning criteria. This latter criterion admits an interpreta-
tion in terms of organization design, which allows us to look at its features
from a substantive perspective.
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4.6 Aggregation of Mobility Tables

4.6.1 Approximation Model

Let P (I) = (pij), i, j ∈ I, denote an intergenerational occupation mobility table
such as Mobility 5 and 17 data in Tables 21, p. 207, and 7, p. 185. Set I is a
set of occupations and pij is proportion of the cases when, in a family, the (first)
son’s occupation has been j ∈ I while i ∈ I has been his father’s occupation. The
marginal values, pi+ =

∑
j∈I pij and p+j =

∑
i∈I pij , are proportions of fathers’

i and sons’ j occupations, respectively (i, j ∈ I). The problem of aggregation of
such a table may arise from practical reasons (for instance, when set I appears too
large) or because of theoretical considerations (for instance, to analyze the social
class structure supposedly reflected in intergenerational moves, see Breiger 1981).

For a partition S = {S1, ..., Sm} on I, let us consider its N×m indicator matrix
s = (sit), i ∈ I, t = 1, ...m, with its entries

sit =
{

1, if i ∈ St

0, if i �∈ St

Let us consider a pair of columns, st = (sit), su = (siu), and N × N matrix sts
T
u

with the entries sij,tu = sitsju. Obviously, the matrix has all its entries equal to
zero except for the entries (i, j) in box St×Su, each equal to unity. Multiplying this
matrix by any real µtu, we obtain a matrix of the same structure where µtu, not
1, stands for nonzero elements. This gives meaning to the following representation
of the RCP values qij = pij/pi+p+j − 1 through partition S and a set of intensity
weights µtu, t, u = 1, ..., m:

qij =
m∑

t=1

m∑
u=1

µtusitsju + rij (4.107)

where rij are residuals; that is, any rij is defined as the difference between qij and
the double sum in (4.107).

Since the mobility data are aggregable, let us approximate the RCP values qij

with a better adjustment of both partition S and the intensity values µtu(t, u =
1, ..., m) by minimizing the following weighted least-squares criterion:

E2 =
∑
i,j

pipj(qij −
m∑

t,u=1

µtusitsju)2 (4.108)

with respect to unknown sit, sju, µtu for given P (I).
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Let us consider the aggregate m × m table P (S) corresponding to a partition
S, with its entries defined as ptu =

∑
i∈St

∑
j∈Su

pij (t, u = 1, ..., m). The initial
data table is just P (I), corresponding to the trivial partition of I with singletons
as the classes. Pearson goodness-of-fit criterion 4.83, p. 393, will be denoted by
X2(S) or X2(I) when it is calculated for P (S) or P (I), respectively.

The model (4.107)–(4.108) connects the original and aggregate tables as follows
from the two statements below.

Statement 4.15. For any given partition S = {S1, ..., Sm} of I, the optimal values
of µtu, t, u = 1, ..., m, are the aggregate RCP values:

µtu = qtu =
ptu − pt+p+u

pt+p+u

calculated for P (S).

Proof: Obviously seen by setting zero the derivatives of E2 (4.108) with respect
to µtu for each pair (t, u). �

Statement 4.16. For any S and the optimal µtu = qtu (t, u = 1, ..., m), the
following decomposition holds:

X2(I) = X2(S) + E2 (4.109)

Proof: Square the parenthesis in (4.108), with qtu substituted for µtu, and take
into account that the Boolean indicator vectors st are mutually orthogonal and
that X2 can be expressed through RCP values by formula (1.8), p. 237. �

A conclusion from Statement 4.16. is that minimizing criterion (4.108) is equiv-
alent to maximizing the goodness-of-fit statistic X2(S) with respect to partitions
S and corresponding aggregate matrices P (S). Moreover, formula (4.109) can
be considered as a decomposition of the scatter of the initial data (measured by
X2(I)) into “explained” and “unexplained” parts, which means that the value
X2(S) represents the contribution of the partition S into the original value of the
contingency coefficient. This gives yet another interpretation to the coefficient, to
be added to those discussed in Section 4.1.4. In the framework of the approxi-
mation model (4.107), the Pearson chi-squared coefficient has nothing to do with
statistical independence or description of one partition through another one: it is
the ratio X2(S)/X2(I) which should be used for estimating similarity between the
aggregate and original mobility patterns rather than the statistical independence
indices involving χ2-distribution. .
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Decomposition (4.109) may lead also to various computational strategies for
fitting the approximation model (4.107) with criterion (4.108).

For example, the agglomerative algorithm based on a step-by-step merging of
pairs of classes is applied to the rows and columns simultaneously, as follows.

Agglomeration Chi-Squared Algorithm
Each iteration starts with a partition S = {S1, ..., Sm} and correspond-
ing aggregate table P (S) Due to the criterion in (4.109), those two
classes are merged that make the decrement of X2(S) minimum.
The result of the agglomeration process can be represented by a dendro-
gram along with the index values E2, assigned to its internal nodes, each
associated with a particular partition S and corresponding table P (S).
All leaves (singletons) have zero index value while the root’s index value
is X2(I).

The dendrogram in Fig.4.45 represents the result of the agglomeration chi-squared

algorithm applied to the Mobility 17 data in Table 21, p. 207. The tree differentiates the

three major divisions well: Nonmanual (1 to 7), Manual (8 to 15) and Farm (16-17). Five

classes produced by the algorithm, basically, coincide with the Featherman-Hauser ag-

gregation presented in the Mobility 5 data (Table 7, p. 7). However, there is a difference

in the partitioning of the manual workers (occupations 8 to 15): the algorithm sepa-

rates manufacturing worker class, 8-13-14, rather than maintaining Featherman-Hauser’s

Upper-Lower division (the separation of the manufacturers has been suggested in Breiger

1981). Our 5-class partition is somewhat better than that of Featherman-Hauser by the

value of X2 accounted for: it takes 74.8% of the original X2 value while the latter par-

tition accounts for 72.5%. There is also the 8-class Breiger’s 1981 partition present in

Fig.4.45 as compared to that found with the agglomerative chi-squared algorithm; again,

there are not many differences, and the algorithm’s results can be substantiated.

4.6.2 Modeling Aggregate Mobility

The approximation aggregation model presented can be considered yet another
example of a clustering model for which a substantively motivated meaning can be
provided.

Let us assume that the intergenerational mobility process runs according to the
aggregate matrix P (S) in such a way that the individual transition frequencies pij

are determined by the theoretical aggregate frequencies ptu and conditional proba-
bilities, pi/t = pi+/pt+ and pj/u = p+j/p+u, of picking up the father’s occupation,
i, or the occupation of son, j, from their classes St or Su, respectively. This means
that the parent’s and son’s occupation distributions within the S classes are as-
sumed proportional to the proportions observed. The following hypothetical value
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Featherman  and Hauser 1-2-3-4   5-6-7   8-9-10   11-12-13-14-15   16-17

Breiger 1   2-3-4   5    6-7   9-10    8-13-14    11-12-15   16-17

1-2-3-4   5-6-7   9-10   8-13-14   11-12-15  16-17

1   2-3-4    5-6-7   9   10    8-13-14    11-12-15    16-17

1 2 3 4 5 6 7 8 13 14 9 10 11 12 15 16 17

Nonmanual/

Manual/ Farm

Triad

Five   clusters

Eight   clusters

8 clusters

5 clusters

Figure 4.45: Chi-squared agglomeration tree for Mobility 17 data.

of the frequency entry for i ∈ St and j ∈ Su follows from these assumptions:

Fij,tu = pi/tptupj/u, (4.110)

Although this model has never been formulated explicitly, it, actually, underlies
most developments concerning the mobility aggregation problem (Breiger 1981,
Goodman 1981).

If the observed values pij are not equal to the model values (4.110), any of the
traditional χ2 statistics, likelihood-ratio L and goodness-of-fit X2, can be used to
estimate the deviation. The likelihood-ratio statistic is

L(pij , Fij,tu) =
∑
i,j

pij log
pij

Fij,tu
(4.111)
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and the goodness-of-fit is

X2(pij , Fij,tu) =
∑
i,j∈I

(pij − Fij,tu)2

Fij,tu
(4.112)

Although the formulas look quite similar, there is a great difference between
them: the first can be decomposed into the values of L for a traditional statistical
hypothesis of null association (independence), the second cannot. Let us discuss
the subject in more detail.

The independence (null association) between the father’s and son’s occupations
is expressed with the traditional equality pij = pi+p+j ; in the mobility studies it
is frequently referred to as perfect mobility meaning that the people’s behavior is
perfectly random (Hout 1986).

Under the hypothesis of perfect mobility, the expected transition data must be
Fij = pi+p+j , for the individual occupations, and Ftu = pt+p+u, for the aggregate
ones. Using these symbols and substituting (4.110) into (4.111), one can easily
derive that

L(pij , Fij,tu) = L(pij , Fij) − L(ptu, Ftu) (4.113)

The equality (4.113) means that L(pij , Fij,tu), as a measure of discrepancy
between the observed data and the values in (4.110) expected under the model,
can be calculated through values of L as a measure of the sample bias of the
observed and aggregated data from the perfect mobility hypothesis. The number
of degrees of freedom in L(pij , Fij,tu) is equal to the difference (N − 1)2 − (m− 1)2

between the degrees of freedom of the terms in the right side of (4.113). This
allows using standard sampling bias χ2-based reasoning to deal with somewhat
more complicated model (4.110).

In contrast to L in (4.113), the goodness-of-fit value (4.112) cannot be de-
composed into the difference of goodness-of-fit values calculated under the per-
fect mobility hypothesis for the original and aggregate matrices, P (I) and P (S).
Thus, the model in (4.110) cannot be employed to substantiate the correspondence-
analysis-based method of aggregation suggested above. However, another aggre-
gation model can be formulated which admits X2, not L, decomposed.

The alternative model is based upon the assumption that the observed mobility
is a result of two distinct processes, perfect mobility and imperfect mobility, so that
perfect mobility runs in terms of the original occupations while imperfect mobility
is governed by the “imperfectness” of the aggregate process. More explicitly, let the
value ptu − pt+p+u in the theoretical aggregate matrix P (S) reflect the difference
between the “real” and “perfect”, at the aggregate level, mobility. In terms of
the original occupations, this gives pi/t(ptu − pt+p+u)pj/u as the imperfect part of
the overall mobility. Combining this with the perfect mobility part we have the
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alternative model as follows:

pij = pi+p+j + pi/t(ptu − pt+p+u)pj/u (4.114)

Although the right part in (4.114) is equal to that in (4.110), this formulation
allows us further to specify the model. Let us assume that all the difference between
the left part (empirical) and right part (theoretical) in (4.114) is due to the term
related to perfect mobility, thus, admitting that there are no errors in the imperfect
mobility term. This allows us to rewrite the model in the following format:

eij = pij − pi/t(ptu − pt+p+u)pj/u (4.115)

where eij is that part of the observed mobility from i to j which counts for moves
that are subject to the hypothesis of perfect mobility. This implies that: (1) in
a “natural” process, the values eij must be nonnegative, and (2) the χ2 statistic
for eij must admit values Fij = pi+p+j as expected in the corresponding entries
(i, j), i, j ∈ I. Specifically, the goodness-of-fit statistic, in this case, is equal to

X2 =
∑
i,j∈I

(eij − pi+p+j)2

pi+p+j
(4.116)

with the (N − 1)2 − (m− 1)2 degrees of freedom. This value is indeed equal to the
difference between the goodness-of-fit values for matrices P (I) and P (S), under
the perfect mobility hypothesis. Indeed, X2 (4.116) is the minimized criterion E2

in decomposition (4.109) where the other two items are exactly the goodness-of-fit
values discussed.

The likelihood-ratio statistic for the alternative model (4.115) cannot be de-
composed correspondingly.

For Featherman-Hauser 5-class aggregation, there are three negative values of eij

(4.115) present. For the 5-class aggregation produced by the algorithm (Fig.4.45), there

is only one negative eij , which is just quite small, some −0.00001. This can be considered

yet another argument in favor of the aggregation found.

4.6.3 Discussion

1. The aggregation model presented can be considered as an alternative to the
concept of a structured partition: the final aggregate table P (S) itself repre-
sents both the partition and all within- and between-cluster associations in
terms quite expressive of the relative change of probability (RCP) values.

2. The model admits a natural aggregation criterion, in terms of the least de-
creasing of the value X2 which expresses here the (weighted) data scatter,
not a probabilistic-model-based bias from the perfect mobility.
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3. It appears, the approximation model can be further elaborated in such a
way that it becomes connected with aggregate modeling of mobility as a
process. The model developed admits the goodness-of-fit criterion, in con-
trast to the traditional maximum-likelihood based considerations. This has
quite a practical appeal: the goodness-of-fit criterion, as a data scatter index,
can be applied to data containing zero entries (which is a frequent situation,
especially, with detailed original categories) while the maximum-likelihood
criterion cannot since it is based on the entry logarithms.

4. The aggregation method developed can be applied to any other aggregable
interaction data, not only mobility.
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FEATURES

• Bilinear clustering for mixed – quantitative, nominal and bi-
nary – variables is proved to be a theory-motivated extension
of K-Means method.

• Decomposition of the data scatter into “explained” and
“residual” parts is provided (for each of the two norms: sum
of squares and moduli).

• Contribution weights are derived to attack machine learning
problems (conceptual description, selecting and transforming
the variables, and knowledge discovery).

• The explained data scatter parts related to nominal vari-
ables appear to coincide with the chi-squared Pearson coeffi-
cient and some other popular indices, as well.

• Approximation (bi)-partitioning for contingency tables sub-
stantiates and extends some popular clustering techniques.
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5.1 Bilinear Clustering for Mixed Data

5.1.1 Bilinear Clustering Model

In Section 1.1.3, it was shown how to transform a column-conditional data table
containing mixed variables (quantitative, nominal and binary) into a quantitative
rectangular matrix; the rows of the matrix still correspond to the entities while
its columns are expanded to include all the nominal categories. More strictly,
the set V of columns of the transformed matrix is obtained from the original set
K by removing all the columns corresponding to nominal variables k and adding
columns for all their categories v ∈ k instead. With this transformation done,
still the information about which category v belongs to which variable k is kept.
Thus, the data is represented as a data matrix Y = (yiv), i ∈ I, v ∈ V , where
rows yi = (yiv), v ∈ V , correspond to the entities i ∈ I and the entries yiv are
quantitative values associated with corresponding variables/categories v ∈ V .

Let the entities be partitioned into groups (clusters) presented by an additive
type cluster structure which is a set of m clusters, any cluster t, t = 1, ..., m, being
defined with two objects: 1) its membership function zt = (zit), i ∈ I, where zit is
0 or 1 characterizing, thus, cluster set St = {i ∈ I : zit = 1}, 2) its standard point,
or centroid vector, ct = (ctv), v ∈ V , to be combined in an N × |V | cluster-type
matrix with elements

∑m
t=1 ctvzit.

The cluster-type matrix is compared with the given N × |V | matrix Y via
equations

yiv =
m∑

t=1

ctvzit + eiv (5.117)

where residual values eiv show the difference between the data and the type clusters.
When the clusters are not given a priori, they can be found in such a way that the
residuals are made as small as possible, thus minimizing a criterion of form

Φ({|eiv|}) (5.118)

where Φ is an increasing monotone function of its arguments. The equations in
(5.117) along with criterion in (5.118) to be minimized by unknown parameters,
ctv, zit, eiv, for yiv given, will be referred to as bilinear clustering model.

Though the model is quite similar to that of the principal component analysis
(the only difference is that zt are Boolean, not arbitrary, vectors), it has a meaning
on its own, just as a clustering model: every data row yi = (yiv), v ∈ V , is the sum
of the standard points ct of the clusters t containing i, up to the residuals. When
the clusters are required to be nonoverlapping, that means that the membership



5.1. BILINEAR CLUSTERING FOR MIXED DATA 439

functions must be mutually orthogonal or, in the other words, St ∩ St′ = ∅ for
t �= t′. In the nonoverlapping case, the type-cluster matrix

∑m
t=1 ctvzit has a very

simple structure: its rows are the vectors ct = (ctv) only, and every i-th row equals
ct for that specific cluster t which contains the entity i ∈ I.

Two specific Minkovski forms of criterion in (5.118) for minimizing the residuals
are mostly considered here:

L2 =
∑
i∈I

∑
v∈V

e2
iv,

L1 =
∑
i∈I

∑
v∈V

|eiv|,

The strategies based on minimizing these two norms have rather long histories in
statistics: K.F. Gauss (1777-1855) was the most influential proponent of the least-
squares criterion while P.S. Laplace (1749-1827)) is usually credited for promoting
least-moduli.

With the non-overlapping restriction, the Minkovski criteria become especially
simple:

Lp =
∑
i∈I

∑
v∈V

|yiv −
∑

t

ctvzit|p =
∑
v∈V

m∑
t=1

∑
i∈St

|yiv − ctv|p (5.119)

which shows that Lp, actually, is Lp =
∑m

t=1

∑
i∈St

dp(yi, ct) where dp is the p-th
power of the Minkovski distance lp(x − y) associated with Minkovski p-norm.

Due to formula (5.119), when the membership functions are given, the optimal
ctv is determined only by the values yiv within St. For the case when p = 1 or
p = 2, it is quite simple. The least-squares optimal ctv is the average of yiv in St,
ctv =

∑
i∈St

yiv/|St|, while the least-moduli optimal ctv is a median of yiv, i ∈ St;
that is, the mid-term in the ordered series of the variable values. The optimal
cluster vector ct, t = 1, ..., m, will be referred to as the average or the median
(vector), respectively.

The criterion (5.118) value, when its argument is the data matrix Y = (yiv)
itself, Φ({|yiv|}), may be considered as a measure of the scatter of the data. In-
deed, due to the model in (5.117) and (5.118), Φ({|yiv|}) = Φ({|eiv|}) when no
clusters are presented (that is, when yiv = eiv). This definition allows for using
the data scatter concept in the traditional meaning as admitting decomposition in
two major parts: that “explained via the model” and an “unexplained” one. When
Φ(|yiv|) is taken as the scatter of the data and value Φ(|eiv|) in (5.118) is considered
a measure of the “unexplained” scatter, their difference, Φ̄ = Φ(|yiv|)−Φ(|eiv|) will
be nonnegative for any appropriate minimizer of (5.118) since Φ(|eiv|) = Φ(|yiv|)
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when all ctv = 0 which is not an optimal solution. Value Φ̄ can be interpreted
as the “explained” part of the data scatter Φ(|yiv|), which gives the sought de-
composition of the data scatter in the two parts, Φ(|yiv|) = Φ̄ + Φ(|eiv|). Such a
decomposition looks especially appropriate when the “explained” part, Φ̄, can be
further decomposed through the elements of the cluster structure found, as will
take place with criteria L1 and L2.

In this setting, it is the data scatter which is decomposed into explained and
unexplained parts due to the bilinear model; moreover, the unexplained part is
nothing but the minimized criterion of the model. This explains why the data
scatter has been chosen as the base of the data standardization procedures in
Section 1.1.2.

Let us see how the solutions to the bilinear clustering model (5.117)–(5.118)
depend on the standardization parameters.

The dependence certainly exists when the scale parameters are involved. In-
deed, change of the scale of a variable is equivalent to introducing corresponding
weight coefficient for this variable in the criterion (5.119).

The principle of equal contribution, P1, makes all the variables have
the same contribution to the scatter of the data, which makes meaning-
ful comparison of the variables by their contributions to the explained
(or unexplained) part of it. Such comparison may reveal the most con-
tributing, thus salient, variables and categories.

As to the influence of the shift parameters, the situation here somehow differs.
On one hand, we may introduce a constant item in the model equation (5.117) to
eliminate any dependence of the solution on the origin of the data space. Using
this option for a non-overlapping cluster structure, we can see that the optimal
value of such a constant item µ must be zero. Indeed, the optimal value of µ added
to the right parts of equations (5.117) is determined via the same equations based
on the derivative of criterion Lp (5.119) that determine the optimal values ctv; the
only difference is that now item ctv +µ instead of ctv is involved, for every cluster t.
This shows that µ = 0 when ctv are optimal; no shift of the origin is needed. This
looks rather obvious when put in the cluster analysis terms: when the standard
points ct = (ctv) are defined, assigning the entities to the clusters depends on their
distances to the standard points only (as expressed in criterion (5.119)).

On the other hand, when the bilinear model is set forth in a sequential way
with the “factor” axes zt identified one-by-one, not simultaneously, as it is done
in Section 1.3, the solution heavily depends on the origin of the variable/category
space. Indeed, the axes zt are drawn through the origin in the directions of maximal
variance, which can change drastically when the origin is changed.
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The principle of minimizing the data scatter, P2, concerns the sequential
fitting methods when the solution elements are obtained one-by-one.

5.1.2 Least-Squares Criterion: Contributions

With the least-squares criterion, the following decomposition holds.

Statement 5.1. When values ctv are optimal for a partition S = {St} of I, the
following decomposition of the data scatter holds:

∑
i∈I

∑
v∈V

y2
iv =

m∑
t=1

∑
v∈V

c2
tv|St| +

∑
i∈I

∑
v∈V

e2
iv, (5.120)

Proof: This is proved by squaring the parenthesis and putting the optimal values
ctv =

∑
i∈St

yiv/|St| in criterion L2 in form (5.119). �

The decomposition is quite well-known in cluster analysis (see, for example,
Jain and Dubes 1988), though quite under-employed. Usually, it is interpreted in
terms of analysis of variance: divided by N , equation (5.120) shows how the overall
variance of the data (the sum of the single variable variances) is decomposed into
within-group variance,

∑
v

∑
t pt

∑
i∈St

(yiv − ctv)2/Nt, and inter-group variance,∑
v∈V

∑m
t=1 ptc

2
tv, where pt and Nt are frequencies and cardinalities in distribution

(S).

In cluster analysis, interpretation of (5.120) in terms of the contributions to data
scatter seems more helpful. We can see that the contribution of a pair variable-
cluster (v, t) to the explained part of the data scatter is expressed with a rather
simple formula, c2

tv|St|: it is proportional to the cluster cardinality and to the
squared distance from the grand mean of the variable to its mean (standard value)
within the cluster.

Corollary 5.1. Relative contributions of the elements of the cluster structure, due
to criterion L2, are as follows:

a) Variable v to the data scatter: w(v) =
∑m

t=1 c2
tv|St|/

∑
i,v y2

iv;

b) Cluster t to the data scatter: w(t) =
∑

v∈V c2
tv|St|/

∑
i,v y2

iv;

c) Variable v to cluster t: w(v/t) = c2
tv/
∑

v∈V c2
tv;

d) Entity i to cluster t: w(i/t) =
∑

v∈V yivctv/
∑

v∈V c2
tv = (yi, ct)/(ct, ct).

Proof: All the formulas here are just obvious implications from the decomposition
in (5.120), except for w(i/t) which is found with ctv =

∑
i∈St

yiv/|St| put into
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c2
tv|St|:

c2
tv|St| = (

∑
i∈St

yiv/|St|)ctv|St| =
∑
i∈St

yivctv,

which proves the statement. �

Curiously, w(i/t) is the only contribution which can be negative: this occurs
when the scalar product of vectors yi and ct is negative, that is, the angle between
yi and ct (from zero) is obtuse which might be interpreted that the i-th entity is
foreign to its cluster.

Another corollary concerns the contributions of the nominal variables and their
categories to the scatter part “explained” via cluster partition S.

Let us consider, initially, what the standard values ctv are for the qualitative
categories. To do that, let us recall that we denote frequency (proportion of ones) of
the category v in all the set I by pv while using ptv for the proportion of the entities
simultaneously having category v and belonging to cluster St. Then, it is not
difficult to see that, for any category v standardized by formula yiv = (xiv−av)/bv,
its mean within cluster St is equal to

ctv = (pvt − ptav)/(ptbv).

This follows from the fact that the average of the binary variable xiv by i ∈ St

equals ptv/pt. The contribution of a category-cluster pair (v, t) to the explained
part of the data scatter is equal to

s(v, t) = c2
tv|St| = N(pvt − ptav)2/(ptb

2
v), (5.121)

which can be considered a measure of association between category v and cluster
t. In particular,

s(v, t) = N(pvt − ptpv)2/(ptpv),

when bv =
√

pv, or,
s(v, t) = N(pvt − ptpv)2/pt

when bv = 1, etc.

Since every nominal variable k is considered as the set of its categories v, the
joint contribution of k and the set of the clusters St to the scatter of the data is
equal to F (k, S) =

∑
t

∑
v∈k s(v, t) which is

F (k, S) = N

m∑
t=1

∑
v∈k

(pvt − ptav)2

ptb2
v

(5.122)

by (5.121). Substituting the appropriate values of av = pv and bv, we arrive at the
following.



5.1. BILINEAR CLUSTERING FOR MIXED DATA 443

Corollary 5.2. For criterion L2, the contribution of a nominal variable k ∈ K to
that part of the square scatter of the square standardized data which is explained by
the (sought or found or expert-given) cluster partition S = {S1, ..., Sm}, is equal to

M(S/k) =
N

#k − 1

∑
v∈k

m∑
t=1

(pvt − pvpt)2

pvpt
(5.123)

when bv =
√

pv(#k − 1) (the first standardizing option), or

∆(S/k) = N
∑
v∈k

m∑
t=1

(pvt − pvpt)2

pt
(5.124)

when bv = 1 (no normalizing), or

W (S/k) = N
∑
v∈k

m∑
t=1

(pvt − pvpt)2/pt

1 −∑v∈k p2
v

(5.125)

when bv =
√

1 −∑v∈k p2
v (second standardizing option).

All three of the coefficients relate to well known indices of contingency between
the nominal variables: M(S/k) is a normalized version of the Pearson chi-squared
coefficient, ∆(S/k) is proportional to the coefficient of reduction of the error of
proportional prediction, and W (S/k) is nothing but the Wallis coefficient (see
Section 3.1.2 where all three are discussed in various settings). Here, each of the
coefficients turns out to have yet another meaning of a measure of the contribution
of cluster partition S to the square scatter of the indicator matrix of the other
variable, k. Amazingly, it is the method of data standardization which determines
which of the coefficients is produced as the contribution-to-scatter.

Note that the normalization of the Pearson chi-squared coefficient here involves
only the number of categories in k, not the number m of classes in S, which adds
yet another, asymmetrical, normalization to the two well-known normalized forms
of the Pearson coefficient: Cramer’s and Tchouprov’s, both taking into account
both of the numbers, #k − 1 and m − 1 (see Section 3.1.2).

These formulas should be recommended also as the contribution-based measures
of association between partition S and a multiple choice variable k which is just
a set of (overlapping) categories v, since no requirement of nonoverlapping vs has
been utilized in the analysis above.

Taking different values of the shift and scale coefficients, av, bv, other contin-
gency measures can be derived as special cases of the formula (5.122).

Let us finish the discussion with analysis of contribution of a quantitative vari-
able into the explained part of the data scatter. There have not been as many
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indices of association between partitions and quantitative variables developed as
for partition-to-partition case. A most important measure is the so-called correla-
tion ratio (squared) coefficient defined as

η2(S, k) =
σ2

k −∑m
t=1 ptσ

2
tk

σ2
k

(5.126)

where pt = Nt/N is the proportion of entities in St, and σ2
k or σ2

tk is the variance
of the variable k in all the set I or within cluster St, respectively.

The larger correlation ratio, the better association between S and k; it equals
1 when the variable is constant within each of the classes S, and it is 0 when there
is no reduction of the overall variance within the clusters.

It turns out, when the variable k is standardized,

η2(k, S) =
∑

t

c2
tkpt

which means that the contribution of pair (k, S) to the explained part of the data
scatter in decomposition (5.120) is exactly Nη2(k, S).

The part of the square data scatter explained by a partition, S, appears
to be equal to the sum of the correlation measures between the parti-
tion and the variables. The correlation measure is Nη2(k, S) when k
is a quantitative variable, or M(S/k), ∆(S/K), or W (S/K) when k is
nominal, depending on the standardization option accepted.

From the theoretical point of view, the result links different lines in cluster-
ing and statistics and may be considered a support for the standardizing options
suggested in Section 1.1.3 for treating mixed variables.

From a practical point of view, the result gives an equivalent reformulation
of the least-squares criterion and can be used in conceptual clustering: finding
a partition S in terms of the variables k ∈ K can be done with the sum of the
correlation coefficients to be maximized; the conceptual clustering results will be
consistent with those found by traditional square-error clustering.

5.1.3 Least-Squares Clustering: Equivalent Criteria

After having the contributions analyzed, we can formulate several equivalent forms
of the least-squares criterion as applied to the problem of partitioning:

A. Distant Centers:
maxS

∑
v∈V

∑m
t=1 c2

tv|St|
where ctv is the average of the category/variable v in St.
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B. Semi-Averaged Within Similarities:

maxS

∑m
t=1

∑
i,j∈St

aij/|St|
where aij = (yi, yj) =

∑
v yivyjv.

C. Consensus Partition:

maxS

∑
k∈K µ(S, k)

where µ(S, k) = Nη2(S, k) (5.126) when k is a quantitative variable and
µ(S, k) is a contingency coefficient F (k, S) in (5.122); in particular, it can be
the modified Pearson M(S/k) or Wallis W (S/k) coefficient depending on the
standardizing option selected.

D. Within Variance Weighted:

minS

∑m
t=1 ptσ

2
t

where pt is proportion of the entities in St and σt =
∑

v

∑
i∈V (yiv−ctv)2/|St|

is the total variance in St.

E. Semi-Averaged Within Distances Squared:

minS

∑m
t=1

∑
i,j∈St

d2(yi, yj)/|St|
where d2(yi, yj) is the Euclidean distance (squared) between the row-points
corresponding to entities i, j ∈ I.

F. Distance-to-Center Squared:

minS

∑
t=1

∑
i∈St

d2(ct, yi)

where d2(ct, yi) is the Euclidean distance (squared) between the standard
point ct and an entity i’s row-vector.

G. (Within Group) Error Squared:

minS,c

∑m
t=1

∑
v∈V

∑
i∈St

(ctv − yiv)2.

H. Bilinear Residuals Squared:

minc,z

∑
i∈i

∑
v∈V e2

iv

where c, z, e are the variables defined according to the bilinear equations
(5.117).

Each of these criteria expresses a clustering goal, each time involving a different
clustering concept:

(a) finding types (centroids) as far from the grand mean as possible (item A);

(b) minimizing within-cluster variances (item D);

(c) maximizing within cluster similarities (item B) or minimizing within cluster
dissimilarities (item E);
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(d) minimizing the difference between the cluster structure and the data (items
G, H);

(e) maximizing total correlation/contingency between the sought partition and
the variables given (item C).

All the goals above become equivalent when they are explicated with the criteria
considered.

Statement 5.2. The criteria A. through H. are equivalent to each other.

Proof: No proof is needed since all the nontrivial equivalences have been already
proven above. �

Equivalence of the items D to G has been known for quite a long time; what
may be considered non-standard formulations are A, B, C, and H.

5.1.4 Least-Moduli Decomposition

The least-moduli criterion, however mysterious it seems to be, can be accompanied
by a similar additive decomposition of the data scatter into the explained and
unexplained parts.

Let St be an entity subset, and Stv = {i ∈ St : |yiv| < |ctv| & sgn yiv = sgn ctv}
where, as usual, sgn x is 1 if x > 0, 0 if x = 0, and -1 if x < 0. This means that
Stv = {i ∈ St : 0 ≤ yiv ≤ ctv} if ctv is positive or Stv = {i ∈ St : ctv ≤ yiv ≤ 0}
if ctv is negative. Having a value ctv fixed, the set St is partitioned into three
subsets by the variable/category v depending on relations between yiv, i ∈ St,
and ctv. For ctv > 0, let us denote the cardinalities of the subsets where yiv is
larger than, equal to or less than ctv by ntv1, ntv2 and ntv3, respectively. Then, let
ntv = ntv1 + ntv2 − ntv3. For ctv < 0, the symbols ntv1 and ntv3 are interchanged
along with corresponding change of ntv. If ctv is the median of values yv in St

and all the values yiv, i ∈ St, are different, then ntv1 = ntv3 and ntv2 = 0 or = 1
depending on the cardinality of St (even or odd, respectively).

Statement 5.3. When values ctv are L1-optimal for a partition S = {St} of I,
the following decomposition of the module data scatter holds:

∑
i∈I

∑
v∈V

|yiv| =
∑
v∈V

m∑
t=1

(2
∑

i∈Stv

|yiv| − ntv|ctv|) +
∑
i∈I

∑
v∈V

|eiv|. (5.127)

Proof: Since

|a − b| = |a| + |b| − |sgn a + sgn b|min(|a|, |b|)
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for any real a and b, L1 in (5.119) can be expressed as

∑
v

∑
t

∑
i∈St

|yiv−ctv| =
∑

v

∑
t

∑
i∈St

(|yiv|+ |ctv|−|sgn yiv +sgn ctv|min(|yiv|, |ctv|).

Let us consider the right part of this. The first term equals
∑

v

∑
t

∑
i∈St

|yiv| =∑
i,v |yiv| and the second is

∑
v

∑
t |St||ctv|. To analyze the third term, let us

assume ctv > 0. Then, the expression |sgn yiv + sgn ctv|min(|yiv|, |ctv|) is equal
to 2ctv when ctv ≤ yiv (which counts for ntv1 + ntv2 elements i ∈ St), 2yiv when
0 ≤ yiv ≤ ctv, and 0 when yiv < 0 since in that latter case the signs of ctv and
yiv are different. This exactly corresponds to the equality in (5.127). The case of
negative ctv is considered analogously. �

Let us denote the contribution of a variable-cluster pair (v, t) to the mod-
ule scatter by s(t, v) = 2

∑
i∈Rtv

|yiv| − ntv|ctv|. Based on this, various relative
contribution measures can be defined as in Section 5.1.2: (a) variable to scatter,
w(v) =

∑
t s(t, v)/

∑
i,v |yiv|; (b) cluster to scatter, w(t) =

∑
v s(t, v)/

∑
i,v |yiv|;

(c) variable to cluster, w(v/t) = s(t, v)/
∑

v s(t, v); (d) entity to cluster, w(i/t) =
|sgn yiv + sgn ctv|min(|yiv|, |ctv|) − |ctv|. The latter expression follows from the
proof of the statement above.

Let us consider the case when v is a category.

Statement 5.4. For any category v standardized (with arbitrary av and bv), its
median in cluster St is equal to

ctv =

⎧⎨
⎩

−av/bv if ptv < 0.5pt

(1 − 2av)/2bv if ptv = 0.5pt

(1 − av)/bv if ptv > 0.5pt

The contribution of the category-cluster pair, (v, St), to the module data scatter
is equal to

s(t, v) = N |2ptv − pt||ctv|.

Proof: Let us see what the central value is of the initial binary variable, xiv , i ∈ St,
for category v. Obviously, the median is 0, 1/2 or 1 depending on the proportion
of ones, ptv/pt, among xiv , i ∈ St: whether it is less than, equal to or greater than
1/2, respectively. With those values transformed as yv = (xv−av)/bv, the formulas
for ctv are proven.

To derive the formula for s(t, v), let us see that Stv = ∅ since the values ctv and
yiv must have different signs if they are not equal to each other (yiv may have
one of two values only since v is a category). Thus, ntv1 + ntv2 = Nptv and
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ntv3 = N(pt − ptv) when ctv = (1 − av)/bv > 0 where av, bv are the values used
in the module standardization rule. Analogously, ntv1 + ntv2 = N(pt − ptv) and
ntv3 = Nptv when ctv = −av/bv < 0. �

Now we can see what the value is of the part of a nominal variable k ∈ K
explained by the cluster partition S.

Corollary 5.3. The contribution of a nominal variable k ∈ K to the absolute
scatter of the module standardized data, as explained by the clustering partition
S = {S1, ..., Sm}, is equal to

A(S/k) =
N

#k
(
∑

(v,t)∈A+

2pvt − pt

pv
+

∑
(v,t)∈A−

pt − 2pvt

1 − pv
+
∑

v∈A=

|2pvt − pt|) (5.128)

where A+ = {(v, t) : pv < 0.5 and pvt/pt > 0.5}, A− = {(v, t) : pv >
0.5 and pvt/pt < 0.5}, and A= = {v : pv = 0.5}.

The coefficient A(S/k) takes into account the situations when the patterns of
occurrences of the categories v ∈ k in the clusters t differ from those in the entire
set I. Such a difference appears when v is frequent in St (p(v/t) > 0.5) and rare in
I (pv < 0.5), or, conversely, v is rare in St and frequent in I. If, for instance, the
number of categories v ∈ k is five or more, in a common situation, every pv will be
less than 0.5. Then, A(S/k) is high if each cluster collects most of a corresponding
category v, and A(S/k) is zero if the categories v are distributed more or less
uniformly among the clusters.

A(R/k) has a relevant operational meaning and can be considered as an
interesting, though nontraditional, contingency coefficient.

5.1.5 Discussion

Bilinear clustering model for column-conditional data has been employed by the
author for a decade (see Mirkin 1987a, 1990, Mirkin and Yeremin 1991). Some may
say that the model is just a mathematically complicated cover for a simple square-
error clustering strategy; that the equivalent reformulations of the criterion are
mostly well-known; that the square scatter decomposition is well-known, also; and
that though the strategy includes generic forms of K-Means and agglomerative
clustering, it involves also two major drawbacks of the square-error clustering:
(1) only spheroidal clusters can be revealed while, in the real-world data, quite
elongated and odd shapes may be present sometimes, and (2) the results depend
much on the weights/scales of the variables. There is truth in that, however there
is truth beyond, too.

Let us start with the drawbacks mentioned.
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First, a spheroidal (or cubic, with L1 or L∞ criterion) shape seems quite a good
shape for typology making! Type clusters must surround corresponding prototypes.
If it is not so, look at the variables. The fact that the types are dispersed throughout
the variable space and not coherent means that the variables are not appropriate
for explaining the types and must be changed or transformed somehow. As to the
other shapes, they should not be revealed heuristically: a similar way of modeling
must be developed for every particular kind of shape. For example, if a cluster
St must reflect a linear relation between some variables, thus satisfying equation
(ct, yi) = 0 for some particular ct and for yi ∈ St, this can be modeled with equation∑

t

∑
i∈I(ct, yi)sit = e where e is the minimized error (with regard to centroids ct

and indicators st unknown).

Second, the fact that the solution depends on the data standardization should
imply not giving up but developing an adequate data standardization system. The
bilinear model serves as a vehicle for developing such a standardization rule. The
model allows shifting attention from the error minimizing criterion to the data
scatter as the quantity which is to be explained with the model and, thus, is to be
clarified itself, which is the purpose of the standardization principles employed.

On the other hand, the model has led us to several new clustering options.

With the bilinear model, extending the standardizing rules to the mixed data
case has been quite natural. Moreover, analysis of the nominal variable contri-
bution to the data scatter has shown the contribution’s meaning in terms of the
contingency coefficients, which was previously not obvious at all. Even less obvious
was the dependence of the coefficients themselves on the normalizing option. Who
could imagine that normalizing categories by

√
pv versus non-normalizing changes

the coefficient from the reduction of proportional prediction error to the Pearson
chi-squared? In textbooks, it was written that the two coefficients were quite dif-
ferent; the former one bore much more operational meaning than the latter (see,
for example, Reynolds 1977, Goodman and Kruskal 1979, Agresti 1984).

The fact that the bilinear clustering model much resembles that of principal
component analysis has led us to the method of principal cluster analysis hav-
ing a nice geometrical interpretation in terms of the reference-point concept as a
particular parameter in clustering. Usually, the variable space properties are con-
sidered as not depending on its origin. It is not so in principal clustering which is
greatly affected by the origin location (as the principal component analysis is) and
allows thus to model an important classification making phenomenon connected
with difference in classes depending on the viewing point (more on that in the next
section). Principal clustering is also connected with some other linear learning
models (like perceptron) as we saw in Statement 3.16., p. 348.

Shifting to the error-criterion perspective from that of the distance chosen has
made possible a detailed analysis of the least-moduli clustering which is connected
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with non-standard measures of entity-to-entity similarity and cross-classification
contingency.

Last, but not least, the bilinear model allows treating some nonstandard clas-
sification structures such as overlapping or fuzzy clusters. Fuzzy clustering via the
bilinear model has produced a non-traditional kind of cluster modeling ideal type
concept: the standard points of the bilinear fuzzy clusters appear to be extreme,
not “average”, points of the entity cloud in the variable space.

5.2 K-Means and Bilinear Clustering

5.2.1 Principal Clustering and K-Means Extended

Principal cluster analysis method as applied to the model in (5.117), is, actually,
the sequential fitting procedure with single clusters sought at each step. Let us
consider it in both of the two versions: 1) hard (crisp) clusters defined by Boolean
indicator function, and 2) fuzzy clusters defined by fuzzy indicator functions having
the interval between 0 and 1 as their ranges.

Hard/Fuzzy Principal Cluster Partitioning
1. Set t=1 and define data matrix Yt as the initial data matrix stan-
dardized.
2. For Y = Yt find a principal cluster as described in Section 3.4.1, in
the case of hard clustering, and in Section 3.4.2, in the case of fuzzy clus-
tering. Define zt, ct as the cluster solution found (membership function
and the standard point [centroid], respectively); compute its contribu-
tion wt to the data scatter. In the hard clustering case, the clusters are
presumed to be nonoverlapping, thus, the search should be made only
among those entities which are unassigned to the preceding clusters.
In the fuzzy clustering case, the sequential fitting procedure is quite
straightforward when no restriction on the membership functions is im-
posed. However, when a fuzzy partition is sought, that means that the
membership functions must satisfy the “unity” condition,

∑
t zit = 1,

for every i ∈ I. Thus, at any step t, for any i ∈ I, its cumulative mem-
bership αit =

∑
u<t ziu must be taken into account: criterion L(c, z) is

minimized by c and z satisfying inequality zi ≤ 1−αit rather than just
zi ≤ 1.
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3. Stop-Condition. If there must be nonoverlapping hard clusters, check
whether there are yet unclustered entities remaining. (In the other case,
check the stopping rule described in Section 1.3.4): if yes, go to 4; else
go to 5.
4. Compute the residual data y

(t+1)
iv = yt

iv − ctvzit, increase t by 1, and
go to 2. (For hard partitioning, this operation is unnecessary because
the entities, once clustered, never appear again.)
5. End: in the case of hard clustering, present the solution found along
with the contribution weights associated as its interpreting aids. In
the case of fuzzy clustering, find the final fuzzy cluster t + 1 by setting
zi,t+1 = 1 −∑u≤t ziu and, subsequently, calculating ct+1,v by formula
(3.55), p. 355. This final fuzzy cluster is a “ground” cluster since it
relates, mostly, to the area around the grand mean of the entity set, in
contrast to the extreme “ideal types” corresponding to the preceding
fuzzy clusters.

To give a more practical image to the algorithm, let us rephrase it (for the case
of hard clustering) in terms of the K-Means method. Let us recall that this method
starts with an m class partition of I or with m somehow selected tentative standard
points or “seeds”, ct. Then the algorithm repeatedly performs the following two-
step iteration: (1) update the partition based on the standard points: when all ct

are given, make each St the set of yi that are nearest (by Euclidean distance) to
ct, t = 1, ..., m; (2) update the standard points: when all St are given, compute ct

as the mean of the within-cluster vectors. The algorithm stops when the updating
procedure does not change the clustering.

The principal cluster analysis can be considered as a technique that exploits
many of the same mechanisms as the moving-center method, but which mitigates
the need for prior knowledge, and separates clusters from the set of instances one
by one. First, an initial cluster S1 ⊂ I is extracted with its standard point c1;
the complementary set represents the main “body” of instances, which serves as
the source for separating additional clusters one by one. This is reflected in that
fact that the main body’s standard point is fixed at 0, given the square scatter
standardization, and it is not changed during the entire clustering computation.
The principal clustering procedure, in these terms can be reformulated as a kind
of “separate-and-conquer” strategy considered by Pagallo and Haussler 1990.

Algorithm SCC (Separate-and-Conquer Clustering)
Step 0. t ← 1.
Step 1 (Selection of an extreme point). Pick a point, yi∗ , maximizing
Euclidean distance d(0, yi), i ∈ I, from the origin of the variable space.
Take ct = yi∗ as the initial center (seed) of the t-th cluster.
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Step 2 (Separating the cluster). Find a cluster (St, ct) with the
Reference-point-based moving center method in Section 3.3.2 (with
α = 1 and zero as the reference point).
Step 3 (Excluding the entities). Set I = I − St. If I = ∅, end; else set
t=t+1 and go to Step 1.

To give intuition to the algorithm, let us consider a situation when there is only
one variable, uniformly distributed across its range. Then, having the zero point
in the midrange, SCC separates initially one fourth of the range at one extreme,
then one fourth at the other extreme, with one half of the range left to be cut
at extremes again. A traditional divisive version of the method, with both of
the standard points updated, will produce, initially, a split just in the midrange,
splitting then each of the clusters by half, etc. (see Section 6.6.2).

This example reflects a general property that the size of an SCC-designed cluster
depends on its distance from the origin (which is just the reference point) as stated
in (4.113): the nearer to that point, the less the diameter of the cluster! Thus, SCC
could be modified to allow the user to specify the reference-point origin based on
the user’s knowledge of the variable space: the better the knowledge, the smaller
the classes. It can be useful, for instance, for a robot-planning system: the robot
must learn and classify the nearest part of the world in more detail than more
distant objects. Independent use of a reference-point-based approach in a different
substantive study has been made by M. Damashek 1995.

Positioning the reference point as the grand mean causes SCC to separate a sub-
set of instances corresponding to an extreme combination of the variable values. In
this respect, SCC models a typology-making process based on the assumption that
the extreme combinations of the variable values correspond to some “theoretical”
types while points around the grand mean are just a noise.

Let us see how principal partitioning works with the Points data (comprising six
2-dimensional points presented in Table 1.24, p. 214, and Fig.1.15).

Initially, let us consider the data as it is (with no standardizing). In this case, the
reference point is the origin, zero, and, obviously, 6 is the most distant (from zero) point
to start with. It can be seen easily that 5 is the only point which is closer to 6 than to
zero, which makes the first cluster to contain, currently, 5 and 6, with point (3, 2.5) being
their gravity center. All the other points are farther from this gravity center than from
zero, which ends the process of forming S1: we have S1 = 5 − 6. Analogously, starting
with 1, we get all the other points to belong in the second cluster, S2 = 1 − 2 − 3 − 4.
Thus, putting the reference point at zero and having no standardization done, we find
principal cluster partition S = {1− 2− 3− 4, 5− 6}, which seems obvious by the picture
presented in Fig.1.15 (a).

However, the situation becomes quite different after the data have been square scatter
standardized (see Fig.1.15 (b)). Though point 6 still is the farthest from zero, point 5
does not join to the first cluster anymore because its distance from zero, 1.36, is less
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than its distance to 6, 1.46. Thus, point 6 alone forms a cluster. Similarly, all the other
points (except for 1 and 2 joined in the same cluster) form singleton clusters on their
own, because their nearest neighbors are closer to the origin than to them. On the first
glance, such a result, five clusters obtained in the set of six points, looks disappointing.
However, the standardized data present a picture (Fig.1.15 (b)) which does not show
as unambiguous a two-cluster pattern as Fig.1.15 (a) does: some people may see three
clusters formed by pairs: 5, 6; 2, 4; and 1, 3; others may say that any point is so distant
from the others that it should be considered as a singleton cluster, etc. Lack of any specific
cluster pattern can be seen especially clearly if the observer gazes at the coordinate axes
intersection point in Fig.1.15 (b).

However, if the number of the clusters is specified as 2, the extended K-Means algo-

rithm produces exactly the two clusters that have been found for the raw data unstan-

dardized.

What remains important about principal cluster analysis, is that, in all the
considered modifications (for hard overlapping or nonoverlapping clusters and for
fuzzy clusters, as well), the data scatter is additively decomposed into the sum of
the cluster contributions wt and the unexplained part of it. The decomposition
looks as follows:

∑
i∈I

∑
v∈V

y2
iv =

m∑
t=1

∑
v∈V

c2
tv

∑
i∈I

z2
it +

∑
i∈I

∑
v∈V

e2
iv,

for both, fuzzy and hard clustering, when the least-squares criterion is applied. In
the case when the least-moduli criterion is used, the square scatter must be sub-
stituted by the absolute scatter while the cluster contribution wt will be expressed
by the function g1(St) = 2

∑
i∈St

(bt(i, ct) − |ct|) from p. 353.

The principal cluster analysis option is nothing but a sequence of repeated
computations with the reference-point-based moving center method, and can be
used also to extend the K-Means method for a wider class of situations when the
user can fix a few (not all) tentative centers even if she/he does not know the total
number of the clusters or the total number is larger than the number of tentative
centers the user is able to specify.

Let l ≥ 0 be the number of the centers specified by the user, and m ≥ l or m = ∗
(unknown), the number of the clusters. Then, the extended K-Means method can
be formulated as follows.
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Extended K-Means Method
Step 0 (Analysis of the prior information). Standardize the data set.
Take the central point of the data set as the reference point a. Set
A = I. If 0 < l and m is not fixed (m = ∗) or m > l, then go to Step 1,
if l = 0 then go to Step 2, if l = m then go to Step 3.
Step 1 (Reducing the data set when l > 0). For any of prior tentative
centroids, ct, t = 1, ...l, find sets At = {i : d(yi, ct) ≤ d(yi, a)}, t = 1, ...l.
Exclude the found sets; that is, let A = I − ∪l

t=1At.
Step 2 (Principal clusters for initial setting). Repeatedly find a cluster
with the reference-point-based algorithm (with α = 1) for set A of the
entities until m− l (l ≥ 0) clusters is found (or until set A is exhausted
when m = ∗). If the value m − l (when m is pre-fixed) is not reached
until set A is exhausted, then increase α in proportion to the ratio of
m− l to the number of clusters found, and repeat the step with this new
α. If m − l has not been reached yet, α is again increased, until m − l
clusters along with their centroids are found. These m − l centroids
along with the l prior ones are considered initial setting.
Step 3 (Parallel K-Means). Perform parallel K-Means algorithm.

Let us apply the extended K-Means algorithm to the Masterpiece data standardized,
with prefixed number of clusters, 3. The data is a 8 × 7 matrix:

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.775 −0.816 −0.444 −1.291 0.722 −0.354 −0.433
−1.247 −0.898 −1.154 −1.291 −0.433 1.061 −0.433
−1.404 −0.891 −1.154 −1.291 −0.433 1.061 −0.433

0.041 1.428 −0.444 0.775 −0.433 −0.354 0.722
0.151 1.732 0.976 0.775 −0.433 −0.354 0.722
1.470 0.413 −0.444 0.775 −0.433 −0.354 0.722
0.622 −0.652 0.976 0.775 0.722 −0.354 −0.433
1.141 −0.317 1.686 0.775 0.722 −0.354 −0.433

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Upon calculation of all the distances from the row-vectors to zero, the farthest point

appears to be 3. Point 2 is closer to 3 than to zero, which leads to cluster S1 = {2, 3}
separated. Among the remaining six elements, 8 is the most distant from zero, which

leads to separation of another cluster S2 = {7, 8}. The three elements 4, 5, 6 are joined to

the farthest entity, 5, forming another, third cluster. Iterations of parallel K-Means lead

to joining 1 to S1 without any other change. (The principal partitioning algorithm with

no m specified, SCC, produces 4 clusters, separating also entity 1 [the novel in verses,

EugOnegin by A. Pushkin]).

The clusters found correctly identify the authors. Each of the clusters is represented
by three rows in Table 5.53: the first is the cluster centroid in terms of the raw data
matrix X as it is presented in Table 1.26, 226; the second, centroid in the standardized
form of matrix Y ; the third presents the squares of the standardized values multiplied by
the cluster cardinality, c2

tv|St|, which are the contributions of the variable-cluster pairs,



5.2. K-MEANS AND BILINEAR CLUSTERING 455

Cluster LenS LenD NumC InMon Dire Beha Tho Sum

12.67 12.27 1.33 0 0.33 0.67 0
Pushkin -1.14 -0.87 -0.62 -1.29 -0.05 0.59 -0.43

3.91 2.26 1.16 5.00 0.01 1.04 0.56 13.94

25.55 44.10 4.5 1 1 0 0
Tolstoy 0.88 -0.48 1.33 0.775 0.72 -0.35 -0.43

1.45 0.47 3.54 1.20 1.04 0.25 0.37 8.44

23.47 183.13 2.67 1 0 0 1
Dostoevski 0.55 1.19 0.03 0.775 -0.43 -0.35 0.72

0.92 4.25 0.00 1.80 0.56 0.38 1.56 9.48

Sum 6.29 6.99 4.70 8.00 1.61 1.67 2.50 31.86

Table 5.53: Cluster structure of the Masterpiece data; in any cluster, the averages of the
variables in real and standardized scales are shown in the first and second rows; the third
row contains the contributions (weighted averages squared).

due to Corollary 5.1., p. 441.

Summing up all the contributions in a row, we get the cluster contribution to the

square data scatter. The square data scatter itself is equal to 40 (the number of entities

by the number of variables) due to the standardizing option applied. All the values along

with the relative contributions of the variables (per cent) to the clusters are presented in

Table 5.54.

Cluster LenS LenD NumC InMon Dire Beha Tho Total
Pushkin 28.06 16.22 8.30 35.86 0.04 7.47 4.02 34.86
Tolstoy 17.24 5.57 42.01 14.25 12.35 2.96 4.43 21.09

Dosto 9.71 44.86 0.03 19.01 5.92 3.95 16.48 23.71
Total 15.72 17.46 11.76 20.00 4.02 4.16 6.25 79.66

Table 5.54: Contribution weights of the variables to clusters along with the contributions
of the clusters and the variables to the square data scatter (all per cent).

Table 5.54 shows that the three clusters count for almost 80% of the data scatter.
Although the algorithm used tends to design sequential clusters with their contributions
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decreased, the third cluster has greater contribution than the second due to the local,
“greedy” nature of the algorithm. Among the variables, InMon is an obvious leader
contributing all its 20% initial weight to the cluster structure. This occurs because the
variable is constant in each of the clusters. Another qualitative variable’s, Presentat,
contribution is only 4.02 + 4.16 + 6.25 = 14.43% of the data scatter, because it has
different values for Pushkin’s novels. On the other hand, this variable differentiates
between Tolstoy and Dostoevski very clearly, and category Thought is characteristic for
Dostoevski. Why that does not give higher scores? Because, in this example, we don’t
consider the categories as independently meaningful elements: it is all three, not each,
of them get the weight of a variable, N = 8. Thus, for a particular category to get a
higher score, it should be standardized differently. For instance, if we do not put factor
1/(#k − 1) in bv, the weight of category Thought becomes 5, and it becomes 8 if we
consider the category as a particular Boolean variable.

The total contribution of the three categories, 1.609 + 1.666 + 2.498 = 5.773, must

be exactly half the Pearson chi-squared coefficient between Presentat and the cluster

partition, due to the theory presented in Section 5.1.2. To test this, let us consider the

corresponding contingency table:

P =

(
1 2 0
2 0 0
0 0 3

)

Due to a simple calculation formula (4.84), p. 394, Pearson’s coefficient is the sum of
the squared contingency table elements divided by the marginals (minus one) multiplied
by N = 8:

X(S/k) = 8[1/(3 × 3) + 4/(2 × 3) + 4/(2 × 3) + 9/(3 × 3) − 1] = 11.556,

thus, M(S/k) = 5.778 which matches the contribution value (up to the computation
errors). The relative value of M(S/k) (without factor N) is equal to 0.722.

Let us take a look at the value of coefficient A(S/k) emerged in the least-moduli
context (see Corollary 5.3.), with S being the author clusters, and k the unique nominal
variable Presentat. Since all the categories of Presentat have their frequencies pv < 0.5,
only set A+ is involved in the calculation and, obviously, A = {(Pushkin, Behavior),
(Tolstoy, Direct), (Dostoevski, Thought)}. This leads to the relative value of A(R/k)/N =
[(4/8− 3/8)/(2/8)+ (4/8− 2/8)/(3/8)+ (6/8− 3/8)/(3/8)]/3 = [1/2+2/3+1]/3 = 0.72.

When SCC was applied to the Disorders data, the algorithm produced four clusters
coinciding with the four mental disorder classes in Table 11, p. 191 (in the same order),
except that entity 21 was clustered with the fourth class; the same phenomenon has been
reported in Mezzich and Solomon (1990), p. 69 - 73, as occurred for complete linkage,
ISODATA and K-Means clustering.

For the Iris data set, the algorithm finds sequentially 6 clusters, some of which are

parts of the predefined ones while the others are mixed, which is not a wonder since the

Iris predefined classes are quite overlapped in the variable space. The Confusion matrix

for the 6 SCC discovered clusters and 3 predefined classes is presented in Table 5.55.
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Predefined classes SCC discovered clusters
of the Iris data 1 2 3 4 5 6 Total

1 49 1 50
2 12 17 2 19 50
3 26 2 7 15 50

Total 26 49 15 24 17 19 150

Table 5.55: Confusion matrix for the SCC clusters and predefined classes of the Iris data.

The fact that predefined classes 2 and 3 are spread over 4 SCC clusters each confirms
the well-known property that they are non compact. To deal with such a situation, we
believe, some appropriate new variables have to be produced from the original ones in
such a way that the clusters become compact, in that new variable subspace (see Section
5.3.4).

Application of the principal clustering algorithm with the least-maximum criterion
gives 7 clusters that are quite similar to the 6 clusters found with the least-squares criterion
(see the confusion matrix in Table 5.55).

Cl-r 1 Cl-r 2 Cl-r 3 Cl-r 4 Cl-r 5 Cl-r 6 Cl-r 7 Total

Class 1 19 31 50
Class 2 1 11 19 19 50
Class 3 27 12 7 1 3 50

Total 19 31 27 13 18 20 22 150

Table 5.56: Confusion (contingency) table between two Iris set partitions: by
the classes pre-given and by the clusters found with the least-maximum principal
clustering repeated.

5.2.2 How K-Means Parameters Should be Chosen

The user of the K-Means method faces, usually, problems in choosing the following
five important kinds of parameter associated with the method:
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1) preliminary transformation of the raw data X into matrix Y to be processed;

2) entity-to-center distance d(x, c);

3) centroid concept;

4) number of clusters;

5) initial centers.

Traditionally, the parameters above are considered as completely independent
except for the obvious equality of the numbers of clusters and centers. Yet, some-
times the user can know the number of clusters while being uncertain in some or
all of the tentative centers.

The bilinear clustering model suggests that there is no independence anymore:
the parameters are associated to the criterion for model fitting. The least-squares
criterion implies the distance to be Euclidean squared while the centroid, the clus-
ter center of gravity. The least-moduli criterion yields city-block distance and
median vector as the centroid. The data standardization is determined by the
two principles applied to the data scatter (equal variable contributions, P1, and
minimality with respect to the origin, P2).

The number of clusters along with the tentative centers can be identified with
the principal clustering procedure (algorithm SCC). Although the latter suggestion
seems rather shaky, the correspondence among the former three items is based on
the model. Actually, in a detailed setting presented in Table 5.57, the correspon-
dence concerns the choices of criterion, data scatter, distance, centroid, and scale
and shift parameters. The Chebyshev minmax criterion also is included since all
the parameters can be derived from it.

Table 5.57 can be used for determining all six of the parameters when the user
is able to choose at least one of them. If, for instance, the user prefers that the
larger residual is to make larger contribution to the criterion of approximation,
she/he should use the least-squares criterion along with all the parameters in its
row. If, otherwise, the user prefers medians as the centroids, she/he is restricted,
due to the bilinear model, with the least-moduli criterion along with the city-
block distance, etc. When the user does not want to take into account the real
distribution properties, just concerning the ranges of the variables only, the model
dictates using all the parameters related to the minmax criterion.

However, the bilinear model cannot tell which of the fitting criteria to use; what
it tells is the correspondence between otherwise independent parameters.

Analogous correspondences can be traced for the qualitative data when treated
with the bilinear model. It involves interrelations between choice of the normal-
izing (scale) parameter, measure of association between subsets/categories, and
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Criterion Data Metric Centroid Scale Shift
Scatter Parameter Parameter

Least Square Euclidean Average Standard Average
Squares Deviation
Least Absolute City-Block Median Absolute Median
Moduli Value Deviation
Minmax Maximal Chebyshev Midrange Half-range Midrange

Range

Table 5.57: Correspondence between parameters of cluster analysis due to the
bilinear model.

contingency coefficient as presented in Table 5.58 (which refers to the least-squares
fitting criterion only). The second column corresponds to the user-defined option
indicating, for every particular nominal variable, what is considered as an ‘equally
contributing’ item: the variable itself (Var) or every of its categories (Cat). Rows
of the Table 5.58 correspond to the related parameters. If the user can identify
her/his choice for any of them, the others are defined automatically by the bilinear
model.

Standardizing Category/ Normalizing Set-to-Set Contingency
Option Variable Scale Measure Coefficient

First Cat
√

pv RCP= X2(S, k)

Var
√

pv(#k − 1) p(l/m)/p(l) − 1 M(S, k)

Second Cat 1 ACP= P (k/S)

Var
√

1 −∑ p2
v p(l/m) − p(l) W (k/S)

Table 5.58: Correspondences among various characteristics of the nomi-
nal/categorical data due to the bilinear model.
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5.2.3 Discussion

In this section, a further elaboration in using the bilinear model has been described
in the context of K-Means (moving-center) clustering. There are two major sup-
plements beyond what the general analysis, in the previous section, suggests.

The first is an extension of the algorithm to the case when the user’s knowledge
of the situation is more vague than it is assumed usually: the user may know not
all the tentative centroids or even none of them; she/he is also allowed to have no
idea how many clusters there are and where they are. The sequential extraction
of the clusters one by one, starting from the most extreme configurations with
the principal clustering, facilitates finding a starting setting for K-Means. This
procedure can be considered a model for typology making as a process based on
extracting the most unusual, extreme configurations.

The second is a set of links between different clustering parameters emerged
due to the bilinear model. There is no connection between choosing the distance
measure and the centroid concept, in traditional clustering. There is a connection,
in bilinear clustering (see Tables 5.57 and 5.58).

5.3 Contribution-Based Analysis of Partitions

5.3.1 Variable Weights

The concept of the “importance weight” of a variable as a term in an overall additive
evaluation measure is not uncommon in data analysis. The bilinear model provides
quite a natural set of salience weights, both partition-based and cluster-specific,
due to the data scatter decomposition (see Corollary 5.1., 441).

In Table 5.59, the standard point values (means) ctk are presented for the first
cluster of Disorders data, along with corresponding relative contribution weights
w(k/t) from Corollary 5.1.. The farther ctk is from zero (which is the grand mean
here) the easier it is to separate the cluster from the other entities in terms of the
variable k, which is reflected in the weight values.

The contribution weights can be employed in various partition analysis and
interpretation problems, of which four, (a) concept learning, (b) feature selecting,
(c) space transforming, and (d) knowledge discovery, will be considered in the
subsequent sections.
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Variable Mean value Mean Value Contribution
(original scale) (standardized scale) weight (%)

w1 4.64 1.77 5.03
w2 4.64 1.32 2.78
w3 4.73 1.30 2.68
w4 1.73 -1.41 3.18
w5 5.18 3.23 16.67
w6 2.27 -0.98 1.53
w7 0.82 -0.93 1.39
w8 0.09 -2.70 11.70
w9 6.00 3.39 18.34

w10 1.45 -1.59 4.05
w11 1.82 -1.14 2.07
w12 1.00 -1.14 2.07
w13 5.64 3.52 19.85
w14 2.55 -1.00 1.60
w15 3.09 -0.66 0.69
w16 2.36 0.02 0.00
w17 0.73 -2.00 6.40

Table 5.59: Cluster 1 described with 17 psychopathological variables: the central
value in the original scale, the central value in the standardized scale, and the
relative contribution, per cent.

5.3.2 Approximate Conjunctive Concepts

There exist many systems for learning a logical description of a subset of the en-
tities (for references, see Fisher 1987, Michalski 1992, Wnek and Michalski 1994).
The relative contribution weights introduced above give yet another way to find
approximate conjunctive descriptions for every cluster independently. Here, only
square scatter contribution weights will be considered; the absolute scatter contri-
butions are treated analogously.

Based on the right column in Table 5.59, let us pick consecutively the features which

contribute the most to cluster 1 in the Disorders data to form a conjunctive conceptual

description of the cluster. Initially, let us take the range of the most salient variable,

w13 (contribution 19.85%), within the cluster 1: it is interval [5, 6], the boundary points

included. Conceptual description W : 5 ≤ w13 ≤ 6 covers all 11 individuals belonging

to class 1; however, there is one case which is false positive: individual 32 from class 3

satisfies condition W . This relates to what could be called “precision error”, PE, of the

concept W with regard to a class S ⊂ I , which is defined as the number of the elements
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from outside S satisfying W , related to the general number of the entities outside S

(proportion of the false positives). To decrease PE(W ) = 1/33, let us pick the next most

contributing variable, w9 (contribution 18.34%), and consider the conjunctive concept

formed by the within-cluster ranges of both, w13 and w9: W : 5 ≤ w13 ≤ 6&w9 = 6.

Obviously, precision error of this combined category equals zero. Moreover, it is easy

to see that the first term is not necessary; concept W : w9 = 6 corresponds to all 11

individuals from class 1 and no one else. This is an example of the situation when a less

contributing variable (w9) gives a better conceptual description, which reflects the fact

that the statistics-based contribution weights detect the tendencies of the logical relations

rather than the exact patterns of them.

Let us describe a general algorithm for approximational conjunctive conceptual
description W (S) of a class S ⊂ I (the data matrix is assumed square scatter
standardized). The degree of approximation is characterized by the precision error
PE(W (S)) which should be made less than a user-specified value ε. Another
stopping criterion involved bounds the number of conjunctive terms in the concept
W (S) by a user-defined integer n.

ACCL (Approximate Conjunctive Concept Learning)
Step 0. Find the means, ck, of the variables k ∈ K within cluster S and
consider list L of the variables ordered by decreasing their contribution
weights, c2

k. Let conjunction W (S) be empty and PE = 1.
Step 1. Remove the first variable, xk, from list L and consider combined
concept W ′ = W (S) & mSk ≤ xk ≤ MSk where mSk and MSk are min-
imum and maximum of xk within S, respectively. Compute PE(W ′).
Step 2. Take every conjunctive term W of W ′ (in the order of its joining
to W (S)) and consider conjunctive concept W ′′ which is equal to W ′

with W removed. If PE(W ′′) = PE(W ′), put W ′ ← W ′′ and begin Step
2 again. If PE(W ′′) > PE(W ′) for every conjunctive term removed,
check whether the number of the conjunctive terms in W ′ is greater
than n or not. If not, define W (S) ← W ′; if yes, take the conjunction
from the preceding iteration as W (S) and end.
Step 3. If PE(W (S)) ≤ ε or L = ∅, end; otherwise, go to Step 1.

Let us illustrate the algorithm by applying it to class 3 of the Disorders data based on

the variable weights presented in Table 5.60. Let ε = 1/33, thus admitting no more than

one other individual covered by the conjunctive concept sought. The maximum weight

variable with regard to class 3 is w16 (contribution 27.43%). Its within-cluster range

W : 4 ≤ w16 ≤ 6 covers 5 individuals in the other classes (one in class 4 and four in

class 1), which makes PE(W ) = 5/33. Adding the within-cluster range of the next mostly

contributing variable, w8 (contribution 16.73%), we have W : 4 ≤ w16 ≤ 6 & 0 ≤ w8 ≤ 1,

which makes PE(W ) = 4/33 since the previously covered individual from class 4, 44, has

value w8=5 and does not satisfy the combined condition. Variable w16 cannot be removed

from the concept (Step 2) since this makes precision error grow. Then, considering each
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of the next mostly contributing variables, w17, w3, w6, and w10, we can see that adding

of none of them can decrease PE(W ). For example, the within-cluster range of w10 is

[0, 3] which is compatible with values of w10 for all the four individuals, 2, 9, 10, and

11, from class 1, satisfying W . However, the next contributing variable, w2, has its

within-cluster range, [0, 4], incompatible with the values of w2 for individuals 2, 10, and

11, which makes the concept W : 4 ≤ w16 ≤ 6 & 0 ≤ w8 ≤ 1 & 0 ≤ w2 ≤ 4 have

PE(W ) = 1/33. Moreover, w8 now can be removed from the concept at Step 2 of the

algorithm ACCL. This leads to concept W : 4 ≤ w16 ≤ 6 & 0 ≤ w2 ≤ 4 as a solution to

the problem. Subsequent adding w9 (or w13) to W may reduce PE(W ) to zero; however,

no two-variable conjunctive concept can have PE(W ) less than 1/33, for class 3.

Variable Class Class Class Class General,
1 2 3 4 v(k)

w1 5.03 6.71 0.29 0.23 2.44
w2 2.78 3.02 4.92 3.08 2.27
w3 2.68 19.31 9.59 0.02 5.41
w4 3.18 0.00 0.71 1.90 1.09
w5 16.67 3.68 1.32 3.21 5.06
w6 1.53 4.18 5.80 2.14 2.18
w7 1.39 1.92 2.22 2.14 1.27
w8 11.70 15.71 16.73 12.41 9.54
w9 18.34 5.11 0.77 3.66 5.70

w10 4.05 1.59 5.62 9.75 3.39
w11 2.07 0.99 3.65 18.78 3.97
w12 2.07 1.22 1.32 14.26 3.03
w13 19.85 7.05 0.18 8.09 7.00
w14 1.60 0.36 3.95 6.71 1.94
w15 0.69 0.98 0.91 7.82 1.64
w16 0.00 9.53 27.43 2.18 5.57
w17 6.40 18.64 14.61 3.61 7.29

Table 5.60: Relative contributions of 17 psychopathological variables to the original
classes (columns 1 to 4) and to the data scatter according to the partition structure.

With n = 2, that is, with only two conjunctive terms permitted, the approximate

conjunctive concepts found for all the clusterings in the data sets considered can be

presented in Table 5.61.



464 PARTITION: RECTANGULAR TABLE

Disorder Iris Masterpieces
SCC Predefined SCC Predefined SCC Predefined

clusters classes clusters classes clusters classes
Number 4 4 6 3 4 3
Mean PE 0.01 0.01 0.06 0.11 0.00 0.00

Table 5.61: Mean precision error over all clusters in each of the six clusterings
considered.

In the Iris data set, predefined classes can be described by the following concepts:
1 ≤ w3 ≤ 1.9 (class 1, PE=0), 2 ≤ w2 ≤ 3.4 & 3.3 ≤ w3 ≤ 5.1 (class 2, PE=0.15),
and 1.4 ≤ w4 ≤ 2.5 & 4.5 ≤ w3 ≤ 6.9 (class 3, PE=0.18). The relatively high level of
precision error for two of the classes supports the conclusion that they are dispersed in
the variable space.

Masterpiece classes are entirely separated with the following concepts: “InMon=No”
(for Pushkin’s novels), “LenDialogue ≥ 118.6” (for Dostoevski’s), and “Nchar ≥ 4 &
Presentat=Direct” (for Tolstoy’s).

Let us now try to find conceptual descriptions of the Digit classes found by the Con-

fusion table and presented in Table 4.51, p. 419. The four-class corrected partition of

the integer digits found is S = {1 − 4 − 7, 3 − 5 − 9, 6 − 8 − 0, 2}. In the Digit data, the

most contributing variables to the clusters are e7 and e1 (cluster 1), e5 and e7 (cluster

2), e5 and e2 (cluster 3), and e6 (cluster 4). It appears, the clusters are described, with

no error, by the following conjunctive concepts: e7=0, e5=0 & e7=1, e5=1 & e2=1, and

e6=0, respectively. Perhaps, this can be interpreted as an indication of the most confusing

digit segments.

5.3.3 Selecting the Variables

The problem of reducing the space dimensionality through selecting a subset of
the most informative variables (features) has attracted a considerable effort (for
the latest references, see John, Kohavi & Pfleger 1994, Aho & Bankert 1995).
Feature (variable) selection algorithms for learning a partition involve two major
components: an evaluation function, which evaluates performance of every partic-
ular feature subset, and a search algorithm, which searches in the space of feature
subsets. We’ll focus on the search algorithms based on the so-called backward se-
lection strategy starting with all the variables available and repeatedly removing
some of them; usually, only one feature is removed at each step, which is not the
case here because we use some “intermediate” selection rules (as PWS, CWS, and
ACS introduced below). As to the evaluation functions, the following three kinds
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can be distinguished:

(1) numerical evaluation of the relationship between the variables selected and
the classification to be learned;

(2) quality of a classifier involving the variables selected (“wrapper” models,
Aho & Bankert 1995); in our case, the set of approximate conjunctive concepts
designed for the clusters can stand as the classifier while the (average) precision
error can be used as its evaluation function;

(3) evaluation of the difference between a clustering found with a clustering
algorithm (SCC, in our case) and the classification to be learned.

The latter evaluation seems the hardest since if a feature subset is good in
terms of an evaluation function of the third kind, it must be good in terms of
the other kinds of evaluation functions, because the clustering algorithm employed
can be considered both as a particular classifier itself and a device for revealing
relationships between the feature subset and the clustering. This is why we prefer to
use an evaluation function of the third kind. To measure the degree of difference
between two partitions, there are quite a number of measures developed in the
literature as described in Section 4.1.4. Here, it will be sufficient to take just the
number (or proportion) of instances shifted from their “original” classes as the
evaluation function (referred to as “shift error”) to compare a partition with that
one found at the preceding step. For example, shift error of SCC clustering of Iris
data is 56/150, by Table 5.55, since there are only 26+49+19=94 entities unmoved,
in the predefined classification.

A contribution-based searching algorithm can be suggested as consisting of one
or several sequential search iterations. Each iteration starts with a feature (vari-
able) set as its input, and it consists of the following three steps: (a) selection of a
subset of the variables; (b) performing SCC clustering with the subset selected; (c)
evaluation of the partition found. Depending on the evaluation result, the process
ends, or the next iteration is performed (with the parameters of the selection proce-
dure (a) changed). We suggest three version of the selection procedure depending
on which information about the variables is employed:

Partition-Based Weight Selection (PWS)
Let us order the variables according to their partition-based contribution
weights, v(k), and select a number of the most contributing variables.
The number can be determined with one of the following parameters:
(a) a user-defined threshold number of the variables p; (b) a threshold
of relative weight of each of the variables, t; (c) a threshold of the
cumulative relative weight of the subset taken, ct.

For example, set of the Disorder variables, {w8, w17, w13, w9, w16, w3, w5}, would be

selected if either p = 7 or t = 5% or ct = 45% (see the right column in Table 5.60).



466 PARTITION: RECTANGULAR TABLE

Cluster-Specific Weights Selection (CWS)
For each cluster t, order the variables according to their cluster-specific
relative contribution weights, v(k/t), and select a subset of the most
contributing variables from each of the orders. All the three kinds of
parameters above are relevant in this. Then take the union of the subsets
selected.

For example, subset {w3, w5, w8, w9, w11, w13, w16, w17} is selected with threshold

t = 15%, according to Table 5.60.

Approximate Concept Based Selection (ACS)
Take all the variables occurring in the approximate conjunctive concepts
derived with algorithm ACCL for the classification considered. The
parameters here are the parameters of ACCL: the maximum number of
conjunctive terms, n, and the maximum precision error, PE.

For example, subset {w2, w9, w11, w16, w17} corresponds to the conjunctive concepts

found for four Disorder classes (up to PE = 1/33) in Section 5.3.2.

Some results of the selection procedures above applied to SCC discovered clus-
ters for each of the data sets considered are presented in Table 5.62.

Curiously, PWS results in the first row of Table 5.62, though departing from
SCC clustering, approximate the classifications predefined: for Disorder data, the
10-variable subset gives SCC clustering coinciding with the four-class partition
predefined. Selection of the variables for learning the predefined classifications on
Disorder and Masterpieces data leads to similar results (see Table 5.63). Table
5.63 shows that the situation is quite different for Iris data where the predefined
classes are not “compact” in the feature space.

5.3.4 Transforming the Variable Space

To improve performance of the contribution-based method in Iris-like situations,
the feature set should be transformed. The rules suggested above for selection
of the variables can be employed as a vehicle for transforming the variable space
when combined with a special device, a generator of the variables, a subroutine
producing new variables from the original ones. This can be considered what is
called, in machine learning, a hypothesis-driven (actually, cluster-driven) construc-
tive induction system (see Wnek & Michalski 1994 for references and review). Let
us consider a generator of the variables that works iteratively; at the input of each
iteration, a set of variables is considered available; then all pair-wise sums, differ-
ences, products and ratios of the variables (that is, columns of the data matrix) are
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Selection Disorder, Iris,
procedure 4 SCC clusters 6 SCC clusters

Parameter t = 3% p = 3
PWS Subset w8,w17,w13,w9,w16, w3,w4,w1

w3,w5,w11,w10,w12
Shift error 1/44 39/150

Parameter t = 5%
PWS Subset w8,w17,w13,w9,

w16,w3,w5
Shift error 2/44

Parameter t = 10% t = 35%
CWS Subset w3,w5,w8,w9,w11, w1,w2,w4

w12,w13,w16,w17
Shift error 1/44 35/150

Parameter t = 15%
CWS Subset w3,w5,w8,w9,

w11,w13,w16,w17
Shift error 2/44

Parameter n = 2 n = 2
ACS Subset w1,w2,w9, w1,w2,w3

w11,w16,w17
Shift error 2/44 35/150

Table 5.62: Results of selection procedures applied to SCC clusterings.

calculated; either the PWS or CWS or ACS procedure is applied to find a subset
of the most contributing variables to be left for the next iteration.

Two iterations of this method have been applied to the set of three Iris variables,
w2, w3, and w4 (since w1 does not participate in the approximate conjunctive
concepts for the predefined classification). The results are presented in Table 5.64.

In Table 5.64, the best SCC clustering is based on the four ACS variables; it
differs from the predefined classification by only 8 instances of class 3 joined to
class 2. The variables are taken from the approximate conjunctive concepts made
with n = 2: w2/w3 ≥ 1.77 (class 1, PE=0), 0.33 ≤ w2/(w3 ∗ w4) ≤ 0.76 & 9.9 ≤
w3 ∗ w3 ∗ w4 ≤ 42.5 (class 2, PE=0.02), and 7.5 ≤ w3 ∗ w4 ≤ 15.87 & 0.38 ≤
w2/w3 ≤ 0.63 (class 3, PE=0.02).

In general, the latter three tables confirm the hypothesis that the three selection
criteria considered must have different sensitivity and, thus, different performance:
the best is the concept-driven selection procedure ACS while the partition-weight-
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Selection Disorder, Iris,
procedure 4 classes 3 classes

Parameter t = 3% p = 3
PWS Subset w8,w17,w13,w9, w3,w4,w1

w16,w3,w5
Shift error 1/44 68/150

Parameter t = 15% p = 3
CWS Subset w3,w9,w11,w12, w2,w3,w4

w13,w16,w17
Shift error 0 50/150

Parameter n = 2 n = 2
ACS Subset w2,w9,w11, w2,w3,w4

w16,w17
Shift error 1/44 50/150

Table 5.63: Results of selection procedures applied to predefined classifications.

driven procedure PWS is the worst.

5.3.5 Knowledge Discovery

In our context, knowledge is a set of statements about the variables we deal with
(for a review, see Frawley, Piatetsky-Shapiro, and Matheus 1992). The quan-
titative form of knowledge includes quantitative equations like a physical law,
y = F (x1, ..., xn), where y, x1, ..., xn are the variables and F is an explicitly defined
function. The qualitative form of knowledge is based upon logical rules, A → B,
(sometimes called productions) where A and B are some logical combinations of
the variable categories.

Let us focus on the issues connected with derivation of the production rules.
Any production, A → B, can be considered an intensional statement which can
be extensionally presented through a relation between two sets of the objects,
SA and SB, satisfying logical conditions A and B, respectively. The set relation
corresponding to implication A → B is nothing but inclusion SA ⊆ SB. Thus,
the process of knowledge discovery in the form of productions may be thought
of as a process of generating logical expressions A and B in such a way that
SA ⊆ SB holds. Since the empirical data often contain very superficial (having
no explicit theoretical meaning) variables, it is appropriate to admit error in the
relation SA ⊆ SB . The degree of exactness of the relation SA ⊆ SB and implication
A → B can be measured by the proportion of elements of SA belonging to SB,
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Variables w2 − w3, w3 + w4, w3, w2/w3, w4, w2 − w4, w3 ∗ w4
PWS Number of clusters 4

Shift error 34

Variables w2, w2/w3, w2/(w3 ∗ w4), w2/w4,
w2 − w4, w3 ∗ w3 ∗ w4, w3 ∗ w4

CWS Number of clusters 4
Shift error 31

Variables w2/w3, w2/(w3 ∗ w4), w3 ∗ w3 ∗ w4, w3 ∗ w4
ACS Number of clusters 3

Shift error 8

Table 5.64: Performance of the procedures PWS, CWS, and ACS in constructive induc-
tion for learning the predefined classification of the Iris data.

p(B/A) = |SA ∩ SB|/|SA|. This is, actually, the (empirical) probability of B
under condition A (conditional probability). The error of implication A → B is
the complement of that to unity, e(B/A) = 1 − p(B/A). Sometimes, knowledge
is presented as the logical equivalence, A ↔ B, which is a conjunction of two
implications, A → B and B → A. The exactness of such a statement can be
measured with the Jaccard match/mismatch coefficient based on r(B, A) = |SA ∩
SB|/|SA∪SB | rather than with two coefficients p(B/A) and p(A/B) accompanying
the constituent implications.

When the data set is not small so that there are hundreds of entities and
dozens of variables, the number of potentially available expressions A and B whose
extensions satisfy (or approximately satisfy) inclusion SA ⊆ SB may become quite
large. As experience shows, quite a number of them cannot be associated with any
causal or other relations between the features of phenomena in question and, in this
aspect, appear meaningless. Testing meaningfulness of automatically generated
expressions is a hard, still unsolved, problem of artificial intelligence. It could be
helpful if a strategy could be suggested leading to meaningful expressions only. A
simple strategy of this kind is considered below based on the following two major
restrictions:

(1) expressions A are generated using the variables belonging to a subset V1

while another, nonoverlapping variable subset V2 is used for generating Bs: the
underlying assumption is that the user can specify a pair of subsets of the variables
that are hypothetically causally connected;

(2) the logical expressions relate to the clusters of the entities found in V1 or
V2 space.
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The first restriction refers to meaningfulness of the relations to seek for while the
second to that of the expressions A and B themselves. For example, a sociologist
may say that demographic status of a person (variables V1: sex, age, marital
status, etc.) influences her/his vacation time habits (V2: preferred activities).
Then, a cluster of “aged women” may appear in a sample collected, which may be
a subset of the individuals preferring traveling activity. This yields the production
“Aged women prefer traveling as their vacation activity” discovered as a part of
the general knowledge about the population.

With these restrictions made, the following strategy involving the approximate
conjunctive concepts discussed can be suggested for knowledge discovery.

Production Discovery Algorithm
Step 1. Choose subsets of the variables, V1 and V2.
Step 2. Partition the entity set, I, with a clustering algorithm in the
variable space V1.
Step 3. For every cluster St, find corresponding approximate conjunctive
concept At, in space V1, and Bt, in space V2.
Step 4. Evaluate exactness of each of the implications found, At → Bt,
t = 1, ..., m and exclude those having degree of exactness less than
a threshold, the rest represents the productions that express assumed
relationship V1 → V2. If the rest is empty, the hypothesis on that
relationship is considered rejected (with respect to the data analyzed).

By construction of the concepts At and Bt, both subsets SAt and SBt (of the
entities corresponding to concept At or Bt, respectively) include St. However, the
fact that clustering is done by variables V1 guarantees that conceptual description
of the clusters in terms of V1 will be more precise than that in terms of V2. This
yields that the subsets SAt , in general, will be “smaller” than SBt , thus providing
a good exactness of the productions At → Bt.

The method described can be adjusted to the situation when the partition is
pregiven. In this case, at Step 2, transforming the variable spaces V1 and V2 must
be done as described in the previous section.

Let us choose a subset of four Disorders variables characterizing the disorders most

decisively as subset V1 = {w9, w11, w16, w17}. Subset V2 = {w1, w2, w5, w15} is said

to relate to the feelings of the patients. Let us apply the method above to derive what

kind of feelings is implied by a particular mood, based on Disorders data along with the

four classes of the mental disorders. Table 5.65 presents simplest concepts related to the

classes found with the variables of V1 (A concept) and V2 (B concept). It can be seen

that the latter group of variables admits rather large precision errors (amounting to 19, in

class 3), which does not prevent the productions found, A → B, from being quite exact.

As another example, let us turn to the problem of revealing interrelations between two
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Cl Concept PE Concept PE Production Error
A B A → B

1 w9 = 6 0 w1 ≥ 3&w5 ≥ 2 6 w9 = 6 →
w1 ≥ 3&w5 ≥ 2 0

2 w17 = 6 0 w1 ≤ 5&w5 ≤ 1 15 w17 = 6 →
w1 ≤ 5&w5 ≤ 1 0

3 4 ≤ w16 ≤ 6 5 w2 ≤ 4 19 4 ≤ w16 ≤ 6 → w2 ≤ 4 3

4 w11 ≥ 5 2 w15 ≥ 4 14 w11 ≥ 5 → w15 ≥ 4 0

Table 5.65: Concepts and productions discovered for variable subsets V1 and V2

based on the original classes in Disorders data.

aspects of the author’s style raised while discussing the Masterpieces data in Section 0.4.3:

what is the relationship between linguistics (V1 = {LenSent, LenDial}) and presentation

(V2 = {NChar, InMon, Presentat})? We can see quite easily, that the author classes

can be exactly characterized, in V1, just by the intervals of LenDial: Pushkin (≤ 16.6),

Dostoevski (≥ 118.6), and Tolstoy (between 30 and 58). In terms of V2, the classes are

exactly characterized by “InMon=No” (Pushkin), “InMon =Yes & Presentat=Thought”

(Dostoevski), and “InMon =Yes & Presentat=Direct” (Tolstoy). Since all the errors

are zero, we have found that each of the author clusters leads to a particular logical

equivalence, as, for instance, “LenDial ≤ 16.6 ↔ InMon=No” (Pushkin). Up to the

illustrative nature of the data, the knowledge found may serve as a base to look for

supplementary perhaps more deep author’s features to explain the equivalences.

5.3.6 Discussion

Yet another feature of the bilinear clustering model, variable contribution weights,
has been employed, in this section, to develop various learning/interpreting tools
for multivariate classification.

1. The cluster-specific weights derived may present a better tool for describing
the clusters by conjunctive concepts than the partition-based weights, as the
examples suggest. However, the weight as the difference (squared) between
the within-cluster and the grand mean is a statistical concept related to the
“majority”, not all the objects in question. Thus, a less contributing variable
may have a narrower interval to cover the cluster than a more contributing
one, just because there is an entity in the cluster which is an outlier by the
latter variable. Therefore, the weight should be utilized to preliminarily order
the variables to be checked quite thoroughly with the precision error values.



472 PARTITION: RECTANGULAR TABLE

2. In the problem of selecting the most informative variable subspace, we con-
sider the problem of evaluation of the subspace as of crucial importance.
Usually, evaluation is made based on the quality of a discrimination rule in
the subspace: the better discrimination, the better subspace. This is a good
principle when the subspace is sought for discriminating. However, we deal
mostly with the clustering problems; this is why we suggest using the quality
of a clustering, not discriminating, procedure for evaluating a variable sub-
space (the K-Means extended is taken as that clustering procedure). Again,
the weights are used as an intermediate facility to make the variable selection
process easier.

3. The variable selection procedures are suggested for use in transforming the
variable space to make the supervised classes coherent in the space. To do
so, the variables are propagated with simple arithmetical operations to allow
for selecting the best in the breed. In the literature, there are much more
sophisticated methods described. However the simple machinery suggested
may work well too, as demonstrated with adjusting the variable space to the
dispersed Iris classes.

4. Knowledge discovery from data is a hot subject in artificial intelligence. In
the present author’s opinion, the main problems in that are related to “mean-
ingfulness” of the propositions generated, not to the generation itself. The
classification context employed allows us to propose two principles leading to
meaningful rule generating:

1) the subject and predicate of the rule are sought within different subspaces
that must be chosen by the user (restricting the variables);

2) the extensional content of the proposition must be concentrated around
homogeneous clusters found in the “subject” subspace (restricting the enti-
ties).

However, all this seems quite speculative since there is no underlying theory
of “meaningfulness” suggested.

5.4 Partitioning in Aggregable Tables

5.4.1 Row/Column Partitioning

There are two distinctive features of bilinear modeling for contingency data con-
trasting that from the case of processing of the general entity-to-variable tables: 1)
the data entries are transformed into the flow indices that are referred to as RCP
(relative change of probability) coefficients when the data relate to co-occurrences;
the flow indices, not the original data, are employed as the inputs to the bilinear
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modeling; 2) the only fitting criterion used is the weighted least squares, with the
weights being products of the marginal frequencies (probabilities).

Methods for row or column partitioning of contingency data based on the cor-
respondence analysis constructions already have been considered in the literature.
Two of heuristic clustering approaches were developed in detail: agglomerative
clustering (see Jambu 1978, Greenacre 1988) and the moving centers (K-Means)
method (Diday et al. 1979, Govaert 1980); these methods involve the chi-squared
metric as the distance measure to reveal structural similarities between the rows.

In more precise terms, let us consider the problem of partitioning the rows of
a contingency table P = (pij), i ∈ I, j ∈ J ; for the sake of simplicity, the data are
considered after they have been divided by the total flow p++, which means that
p++ = 1. Let S = {S1, ..., Sm} be a partition of the row set I accompanied with
the cluster weights p(t) =

∑
i∈St

pi+ and centroid profiles gt = {(ptj/p(t)) : j ∈ J}
where ptj =

∑
i∈St

pij (t = 1, ..., m). Then, at an agglomeration step, the Ward-like
function

D(u, t) = (p(u)p(t)/(p(u) + p(t)))χ2(gu, gt) (5.129)

is considered to choose such a pair (u, t) for merging that minimizes D(u, t) by
u, t = 1, ..., m, u �= t.

The chi-squared distance d2(gs, gt) is defined as in Section 1.2.3:

χ2(gu, gt) =
∑
j∈J

p+j(puj/p(u) − ptj/p(t))2. (5.130)

After clusters Su and St are merged into cluster Su∪St, its weight and centroid
profile can be calculated based on those for the merged clusters: p(u∪ t) = p(u) +
p(t), and gu∪t = {(puj + ptj)/p(u ∪ t) : j ∈ J}.

As to the correspondence-analysis-wise K-Means method, it is completely de-
fined with indication that the centroids are defined as c(St) = gt while the chi-
squared distance between the profiles,

χ2(i, gt) =
∑
j∈J

p+j(pij/pi+ − ptj/p(t))2,

is considered as the distance between a row-entity i ∈ I and centroid gt.

It appears that both of the methods can be considered as the algorithms of
local optimization which fit a corresponding form of the bilinear model.

Let us remind the reader that the model represents a set of equations

qij =
∑
h∈H

µhvihwjh + eij (5.131)
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where qij = pij/pi+p+j − 1 are the flow indices, or RCP values for the original
data P = (pij), h ∈ H is an index of a cluster represented by two Boolean vectors,
vh = (vih) and wh = (wjh), corresponding to a subset of rows, Vh = {i : vih = 1},
and of columns, Wh = {j : wjh = 1}, respectively, and µh is an intensity weight of
the box-cluster Vh × Wh. Values eij are, as usual, the residuals to be minimized,
this time, with the weighted least-squares criterion:

L2 =
∑
i∈I

∑
j∈J

pi+p+je
2
ij . (5.132)

As it was proved in Section 3.5.4, the criterion provides the optimal µh to be equal
to the flow index values calculated for the boxes:

µh = qVhWh
=

pVhWh

pVh+p+Wh

− 1 (5.133)

where pVhWh
=
∑

i∈Vh

∑
j∈Wh

pij is the aggregate flow (frequency) and the
marginal aggregate flows (frequencies) are defined correspondingly.

To specify the model (5.131)–(5.132) for row partitioning, let us consider an
m-class partition S on I and the trivial |J |-class singleton partition on J . The
model involves boxes St × {j} and their intensities µtj . The equations (5.131), in
this case, can be expressed as

qij =
∑

t

µtjvitwjj + eij ,

where wjj = 1 for all j ∈ J . Substituting this into (5.132), one can have the
following equivalent form of the model: minimize

L2 =
∑
i,j

pipj(qij −
∑

t

µtjvit)2 (5.134)

over arbitrary µtj and Boolean vit. No boxes here could overlap; thus, the optimal
µtj are equal to corresponding flow index values: µtj = qtj = ptj/(p(t)p+j).

The following two statements put the methods discussed in the bilinear model
framework.

Statement 5.5. The agglomerative minimization algorithm for criterion (5.134)
is equivalent to the agglomeration clustering algorithm based on function (5.129).

Proof: Let us analyze the difference, D, between values of L2 (5.134) for a partition
S and for partition S(u, t) obtained by merging its classes Su and St. Obviously,
the difference depends only on the changed classes:

D =
∑

j∈J [p(u)p+j(puj/(p(u)p+j) − 1)2 + p(t)p+j(ptj/(p(t)p+j) − 1)2−
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(p(u) + p(t))p+j((puj + ptj)/((p(u) + p(t))p+j) − 1)2].

After elementary transformations, this expression becomes

D = (puj + ptj)2/((p(u) + p(t))p+j) − p2
uj/(p(u)p+j) − p2

tj/(p(t)p+j) =

p(u)p(t)/(p(u) + p(t)))d2(gu, gt) which equals D(u, t) in (5.129). �

The alternating minimization iterations involve the following groups of vari-
ables: µtj-values (real) and vit values (Boolean).

Statement 5.6. The alternating minimization procedure for criterion (5.134) is
equivalent to the correspondence-analysis-wise K-Means algorithm.

Proof: Let us consider the contents of an iteration in the alternating minimization
algorithm. For a fixed partition S = {S1, ..., Sm} (vit-values) the optimal µtj are
qtj . Then, with these µtj values the criterion in (5.134) can be rewritten in the
following form (taking into account that the sought values vit correspond to a
partition S):

L2 =
∑
i,j

pi+p+j(qij −
∑

t

µtjvit)2 =
m∑

t=1

∑
i∈St

∑
j

pi+p+j(qij − qtj)2

The following easy-to-prove equality,
∑

j pipj(qij − qtj)2 = pi+χ2(i, gt), leads
to L2 =

∑m
t=1

∑
i∈St

pi+χ2(i, gt) which is obviously minimized by the minimal
distance rule (in the moving-center algorithm). �

5.4.2 Bipartitioning

Let us extend the clustering techniques considered to the problem of bipartitioning,
that is, simultaneous partitioning of both, row and column, sets.

The problem of bipartitioning is as follows: find a partition S = {S1, ..., Sm} of
row set I and a partition T = {T1, ..., Tl} of column set J to present the data table
structure in a best way. The bilinear clustering model for bipartitioning can be
stated as the problem of finding |I|-dimensional mutually orthogonal Boolean vec-
tors v1, ..., vm and |J |-dimensional mutually orthogonal Boolean vectors w1, ..., wl

as well as real values µtu (t = 1, ..., m; u = 1, ..., l) satisfying equations

qij =
m∑

t=1

l∑
u=1

µtuvitwju + eij (5.135)

and minimizing the weighted least-squares criterion L2 in (5.131).
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Here, sought Boolean vectors correspond to the sought classes of partitions S
and T as their indicator functions. The classes are St = {i : vit = 1}, t = 1, ...., m,
and Tu = {j : wju = 1}, u = 1, ..., l. The equations (5.135) can be considered as a
special case of the model (5.131) with the box indices h = (t, u). Since boxes St×Tu

are not overlapping, the optimal values of µtu are equal to qtu. The aggregate m× l
class-to-class contingency data table P (S, T ) has entries ptu =

∑
i∈St

∑
j∈Tu

pij .
The original data table can be considered as P = P (I, J) corresponding to the
trivial partitions of I and J with the singletons as their classes.

It can be proved the same way as in Statement 5.5. that the weighted chi-
squared row-distance, D(t, t′) = (pt+pt′+)/(pt++pt′+)χ2(t, t′) (applied to the table
P (S, T )), equals the increment of criterion L2 after merging two S-classes St and
St′ . Dually, the weighted chi-square column-distance D(u, u′) = ((p+up+u′)/(p+u+
p+u′))χ2(u, u′) equals the increment of criterion L2 after merging T -classes Tu and
Tu′ .

Let us describe the local search algorithms for fitting the model (5.135) with
criterion (5.131) to modify both the agglomerative clustering and moving center
methods for the bipartitioning problem.

Agglomerative Bipartitioning
Each iteration of the algorithm consists of the agglomeration step ap-
plied to the rows or to the columns. Finding minimal values of D(t, t′)
(with regard to all t �= t′) and D(u, u′) (by all u �= u′) and then deter-
mining which of them is the least, the decision is made on the following
points: a) what kind of classes, rows or columns, must be merged at the
ongoing iteration; b) the pair of the classes to merge.

Evidently, after |I|+ |J | − 4 iterations a 2× 2 matrix P (S, T ) will be obtained:
one-class partition S or T cannot be reached before since such a one-class partition
implies X2(S, T ) = 0, which contradicts the “minimality of the increment” rule of
the merging procedure. The whole process can be represented by two dendrograms
(one for I, the other for J) with level values L2 assigned to the internal nodes of
both of the partitions to show the differences in the part of data explained at each
step. An important feature is that these level values are measured in the same
scale for both of the dendrograms. Each of the internal nodes corresponds to a
table P (S, T ) generated by corresponding partitions S and T , and its level value
is equal to L2. All the leaves (the singleton classes) have zero as their level value
while the root (corresponding to all the elements united) is assigned the initial
value X2(I, J) as its level value.

In the alternating minimization approach, we deal with two partitions, S (of
rows) and T (of columns), both having pre-fixed numbers of classes.

There are three groups of variables involved: vit (corresponding to S ), wju
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Figure 5.46: Hierarchical biclustering results for the Worries data.

(corresponding to T ), and µtu; however, the last group can be considered as having
no independent meaning: the optimal µtu are functions qtu of the aggregate table
P (S, T ) corresponding to the partitions.

Alternating Minimization Bipartitioning
Each iteration consists of two moving-center steps applied in succession
to the rows (v-variables) and to the columns (w-variables). The iteration
starts with the following elements fixed: (a) partitions S and T , (b)
aggregate m× l contingency table P (S, T ) with the entries ptu, and (c)
the coefficients µtu = qtu (t = 1, ..., m; u = 1, ..., l).
The first step of the iteration: finding a suboptimal m-class row-
partition by the table P (I, T ) using the ordinary alternating minimiza-
tion (moving center) method, starting with S.
The second step: for the found S, the table P (S, J) is considered,
and the moving center method is applied again, this time to the set
of columns, starting from T .

Each step the value of the criterion is decreased by the nature of the algorithm.
So the algorithm converges since the set of all pairs of the partitions is finite.

Bipartitioning, as well as partitioning, can be performed with the sequential
fitting procedure based on sequential one-by-one extraction of the boxes with
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the algorithms described in Section 3.5.4, taking the residual values of the RCPs
qij − µhvihwjh each time the box cluster h had been found. Any kind of a pri-
ori nonoverlapping requirement can be taken into account very easily due to the
seriation nature of the box clustering procedure.

An important feature of bipartitioning for aggregable data is that the
bipartitioned data can be represented by the aggregate table P (S, T ),
thus implying that the clusters may be considered the aggregate ele-
ments along with the aggregate interactions on their own.

Let us apply agglomerative bipartitioning to the Worries data (8 × 5 contingency
table characterizing 8 kinds of worry depending on place of living/origin). The result is
presented in Fig.5.46. We can see the structure of similarity between both the rows and
columns reflected in the common scale of X2 values. If we can sacrifice, say, 10% of the
original data scatter (see dotted line in the picture), then the aggregate table Table 5.66 is
quite sufficient for the subsequent analysis. The aggregation made shrinks all the classes
below the dotted line. In this table, IAA is the category comprising original places/origins
IFI, IFAA and ASAF. The rows MEC and ESM are aggregates of the rows MIL, ECO
and ENR, SAB, MTO, respectively.

The Table 5.66 keeps a huge part of the different (large) flow index values of the

original table, which follows from the meaning of X2 as their average. The correspondence

analysis display shows that the merged items have been quite close in that, also (see

Fig.5.47).

MTO

MIL

EUAM

ECO

POL

IFEA

OTH

ENR

SAB

ASAF

PER

IFAA IFI

Figure 5.47: Displaying similar (merged at 10% level) row/column patterns in the
Worries data.
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EUAM IFEA IAA
POL 118 28 45
MEC 229 30 129
ESM 263 52 182
PER 48 16 127
OTH 128 52 107

Table 5.66: The aggregate cross-classification of 1554 individuals by their worries and
living places obtained by 10% cut of the original data scatter value.

5.4.3 Discussion

1. The correspondence analysis method aims at analysis of the interrelation
between two sets, the rows and the columns. Analogously, the box clustering
model and algorithm, though extended for any aggregable data, basically, are
purported for the same goal. Aggregation of interacting objects, such as in
mobility tables, also aims at the same problem: finding similar patterns of
interrelations between output and input entities. Partitioning, though based
on the same model, shifts the goal: it reveals classes of rows (or columns)
that are similar just as they are (which, in this case, reflects similar pattern of
interrelation with the columns). It appears, in particular, that the standard
local search fitting algorithms are equivalent to the correspondence-analysis-
wise clustering techniques developed earlier by analogy with K-Means and
agglomerative algorithms.

2. Having the model allows quite easily extending the local search fitting al-
gorithms for bipartitioning. Due to mathematical specifics of the model, it
appears that bipartitioning is equivalent to shrinking the data table into an
aggregate matrix with its row/columns being the clusters found and the en-
tries just corresponding total transactions (frequencies). The aggregate data
keeps a certain part of the flow index values of the original data (measured
by the decrement of the chi-squared coefficient).
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Hierarchy as a Clustering
Structure

FEATURES

• Directions for representing and comparing hierarchies are
discussed.

• Clustering methods that are invariant under monotone dis-
similarity transformations are analyzed.

• Most recent theories and methods concerning such concepts
as ultrametric, tree metric, Robinson matrix, pyramid, and
weak hierarchy are presented.

• A linear theory for binary hierarchy is proposed to allow
decomposing the data entries, as well as covariances, by the
clusters.
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6.1 Representing Hierarchy

6.1.1 Rooted Labeled Tree

Hierarchies are represented usually by trees. Tree T = (V, E) is a graph with a
finite set V of its vertices called also nodes and a set E of the edges connecting
some of the nodes pair-wise in such a manner that all the nodes are connected
by paths but still no cycle occurs among the paths. There are a number of other
characterizations for the tree: a) a connected graph with the number of edges equal
to the number of nodes minus one, |E| = |V | − 1; b) a graph in which any two
nodes are connected by one and only one path; c) a connected graph which loses
that property with the deletion of any edge.

1
a b c

1
a b c

2

3

4

c

54321

b

c

b

a’ a’’

1 2 3 4 5

(a) (b)

(c) (d)

5

a

Figure 6.48: A tree (a) after its leaves have been labeled (b) and node c has been
taken as its root (c); a binary tree (d).

Fig.6.48 (a) presents a tree with 8 nodes. There are three kinds of nodes in
the trees: a) branching node which is an interior node adjacent to three or more
other nodes (such as a and b in Fig.6.48 (a)); b) through-node which is adjacent
to two other nodes (such as c in Fig.6.48 (a)); c) leaf or terminal (pendant) node
which is adjacent to only one other node, such as 1 in Fig.6.48 (a). Usually, the
terminal nodes correspond to the entities clusterized, which is presented by labeling
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the leaves by the entities (see Fig.6.48 (b) where labels 1 to 6 are assigned to the
leaves). Such a tree, with all its leaves labeled one-to-one is referred to as a labeled
tree. To represent a hierarchy, tree must be rooted. A rooted tree is a tree with
an interior node singled out; the root gives a partial order to the tree: any node
is preceded by the nodes belonging to the path connecting it with the root. A
rooted tree can be drawn as a genealogy tree, with the root as the forefather (see
Fig.6.48 (c) where labeled tree (b) is presented as a rooted tree with c taken as
the root). For any node in the rooted tree (except for the root itself), there is only
one path from the node to the root and, thus, the only adjacent node, called the
parent, is on this path; all the other adjacent nodes are called children of the node.
The leaves (terminal nodes) have no children. In Fig.6.48 (c), node a has b as its
parent and leaves 1, 2, 3 as children. A rooted labeled tree is referred to as a binary
tree if any non-terminal node has exactly two children. The tree from Fig.6.48 (c),
modified to become a binary one by splitting node a into two nodes, a′ and a′′, is
presented in Fig.6.48 (d).

While the leaves represent entities/species/subsets classified, the tree itself cor-
responds to their combined classification structure. This can be explicated as
follows.

Let us denote by I the leaf set of a rooted labeled tree T , and by In the set of
leaves descending from a node n; such a subset In is referred to as a node cluster.
One can say also that leaf i belongs to In if n lies on the path connecting i with
the root.

For any through-node (below the root) n, its leaf set In coincides with the leaf
set Ic(n) of its only child c(n); this means that these two nodes bear the same
information so that one of them can be excluded without any loss of the classes. In
the remainder, we consider the rooted tree concept with this additional constraint:
such a tree contains no through-nodes (except for perhaps the root itself).

The set I(T ) of all the node clusters of a labeled rooted tree T satisfies the
following properties:

H1. {i} ∈ I(T ) for any i ∈ I (leaves are node clusters);

H2. I ∈ I(T ) (I corresponds to the root);

H3. for any I1, I2 ∈ I(T ), either they are nonoverlapping, I1 ∩ I2 = ∅, or one
of them includes the other, I1 ⊆ I2 or I2 ⊆ I1, which means that I1 ∩ I2 ∈
{∅, I1, I2}.

The properties H1. - H3. characterize the rooted tree completely; that is, if
a set SW = {Sw : w ∈ W} of subsets Sw ⊆ I, w ∈ W , satisfies the properties,
a rooted tree T (SW ) can be defined in such a way that I(T (SW )) = SW . This
tree T (SW ) must have set SW as the set of its nodes, singletons {i}, i ∈ I as
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the leaves and I as the root; an edge connects subsets Sw and Sw′ if one of them
includes the other and no other subset from SW can be put between them (by
inclusion). No cycle can occur since condition H3. is satisfied. Moreover, any node
cluster ISw , obviously, coincides with Sw (after the leaves {i} are identified with
the corresponding elements i ∈ I).

Let us refer to any set of subsets, SW , as a set tree if it satisfies conditions H1.
to H3. We have proven the following statement.

Statement 6.1. A set of subsets SW is the set of all node clusters of a rooted
labeled tree iff it is a set tree.

The root cluster I and singletons {i} are called trivial node clusters. In Fig.6.48
(c), the nontrivial clusters are 1-2-3 and 1-2-3-4.

6.1.2 Indexed Tree and Ultrametric

A classification tree is usually supplied with additional information of either kind:
(a) an index (weight) function or (b) a character function, depending on which
kind of data has been used in drawing the tree: dissimilarity or entity-to-category
data.

The index function reflects degree of internal dissimilarity associated with the
node clusters. Sometimes a two-leaf class can have a larger within dissimilarity
than a bigger class which is farther from the root. The index function of a rooted
tree is a function w(n) defined on the set of its nodes and satisfying the following
conditions: (a) w(i) = 0 for all leaves i ∈ I; (b) w(n) < w(n′) if n is a subordinate of
n′, that is, In ⊂ In′ . Reverse scaling of the index would show the similarity, which
can be defined quite analogously. The index function can be easily implemented in
the drawn presentation of the rooted trees (see Fig.6.49 where, obviously, cluster
1-2 has much greater internal dissimilarity than cluster 3-4-5-6-7).

An indexed tree Tw is a rooted tree T with an associated index function w.

There are some other representations of the indexed trees: weight nested par-
titions and ultrametrics.

A set SW = {Sw : w ∈ W ⊂ [0, a]} of partitions of I is called a weight
nested partition if Sw ⊂ Sw′ when w < w′ (a is a positive real, usually, 1 or
100). Values w, in this case, can be referred to as the weight levels of the nested
partition. Any classification tree produces a nested partition by splitting its levels
corresponding to the interior nodes. For example, the non-trivial partitions in
the nested partition corresponding to the indexed tree in Fig.6.49 are: {1, 2, 3 −
4, 5, 6, 7}(w = 6.25), {1, 2, 3 − 4, 5 − 6, 7}(w = 12.5), {1, 2, 3 − 4 − 5 − 6, 7}(w =
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Figure 6.49: An example of indexed tree.

18.75), {1, 2, 3− 4− 5− 6− 7}(w = 31.25) and {1− 2, 3− 4− 5− 6− 7}(w = 87.5).
Obviously, the tree can be easily reconstructed by its nested partition: the adjacent
partitions show the structure of branching in the corresponding nodes while the
levels provide for the index function values.

Since the weights, actually, correspond to the node clusters merged, the in-
dexed tree can be also represented by the set of corresponding node clusters In

accompanied with weights w(n), which will be called weighted set tree.

For any indexed tree, a dissimilarity measure D = (d(i, j)) on the set of the
entities can be defined as d(i, j) = w(n[i, j]) where n[i, j] is the minimum node
cluster being the ancestor for both i, j ∈ I. Such a measure is special: it is an
ultrametric.

A dissimilarity matrix d = (dij), i, j ∈ I, is called an ultrametric if it satisfies a
strengthened triangle inequality: for any i, j, k ∈ I

dij ≤ max(dik, djk). (6.136)

There is an analogous concept for the similarity measure: ultrasimilarity is a sim-
ilarity matrix b = (bij), i, j ∈ I, satisfying the reverse inequality

bij ≥ min(bik, bjk). (6.137)

Condition (6.137) can be considered as an extension of the transitivity property
for conventional binary relations to the case of fuzzy relations (represented by
similarity matrices); this is why this property is called sometimes fuzzy transitivity.

Obviously, a similarity matrix b is an ultrasimilarity if and only if there exists
an ultrametric d such that bij = c − dij for any i, j ∈ I, where c is a constant. To
find such an ultrametric, it is sufficient to take c = maxi,j∈I bij and let dij = c−bij.
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An intuitive meaning of the ultrametric inequality: for any entities i, j, k ∈ I,
two of the three distances, d(i, j), d(i, k), and d(j, k), have the same value while
the third one is less than or equal to that. This implies that any threshold graph
defined as Gπ = {(i, j) : d(i, j) ≤ π} is an equivalence relation on I. Indeed, Gπ

is transitive: d(i, j) ≤ π and d(j, k) ≤ π imply d(i, k) ≤ π since d(i, k) may not be
greater than the maximum of the two former values.

To prove that the tree-defined dissimilarity D is an ultrametric, let us take
arbitrary i, j, k ∈ I and consider d(i, k) and d(j, k). If d(i, k) = d(j, k), then
both pairs i, k and j, k belong to the same minimal node cluster In, which implies
d(i, j) ≤ d(i, k) = d(j, k) corresponding to (6.136). If the equality does not hold so
that, for instance, d(i, k) < d(j, k), then i, k belong to In′ and j, k belong to In′′

for some nodes n′, n′′. Inclusion In′ ⊂ In′′ holds since the node clusters have their
intersection containing k and, thus, nonempty. This implies that i, j ∈ In′′ and
d(i, j) = d(j, k), which completes the proof.

Obviously, the threshold graphs Gπ for D form a nested set of the equivalence
relations that correspond to the nested partition generated by the tree.

We have proven the following statement.

Statement 6.2. For any indexed tree Tw, its nested partition, weighted set tree,
ultrametric, and set of the threshold equivalence graphs Gw, w ∈ W , are equivalent
representations.

The concept of ultrametric, in the modern classification research, appeared
simultaneously in papers by Hartigan 1967, Jardine, Jardine, and Sibson 1967 and
Johnson 1967 (a detailed account of these and some subsequent developments is
given by Barthélemy and Guenoche 1991, Section 3.5). Yet, it was introduced some
earlier by R. Baire 1905: see F. Hausdorff 1957, p. 116-117, where an ultrametric
is referred to as a Baire space.

6.1.3 Hierarchy and Additive Structure

Let SW = {Sw : w ∈ W} be a weighted set tree, which means that SW satisfies
H1. to H3. and a positive weight λw is assigned to any w ∈ W . Let us consider
corresponding additive hierarchy structure as a similarity measure B = (bij), i, j ∈
I, defined as bij =

∑
w∈W λwsiwsjw where sw = (siw) is the indicator function:

siw = 1 for i ∈ Sw and siw = 0, otherwise. The following result can be found in
Bock 1974, Bandelt and Dress 1990.

Statement 6.3. A similarity measure is an ultrasimilarity if and only if it can be
represented by a uniquely defined additive hierarchy structure.
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Proof: Let B = (bij) be an ultrasimilarity matrix and set SW = {S1, ..., SM}
consist of all different classes of the equivalence threshold graphs Gπ = {(i, j) :
b(i, j) ≥ π} for arbitrary thresholds π. Every Sn ∈ SW can be assigned the value
w(n) being the maximum π such that Sn is a class of Gπ (there is no ambiguity
in that definition since there is only a finite number of similarity values bij and
thus a finite number of different threshold graphs). Obviously, set SW along with
function w(n) is a weighted set tree. Let us define now, for any n, n = 1, ..., M ,
λn = w(n)−w(a(n)) > 0 where a(n) is index of the minimal cluster Sa(n) properly
including Sn. If there is no such cluster, then Sn = I; in this case, let λn = 0.
Let us prove that bij =

∑M
n=1 λnsinsjn where sn is the Boolean indicator vector

of Sn. Indeed, let Sn[i,j] be the minimal class containing both elements i, j. Then,
the classes Sn1 , ..., Snm properly including Sn[i,j] form a chain by inclusion which
makes

∑m
k=1 λnk

+λn[i,j] = w(n[i, j]) = bij . Conversely, let bij =
∑

w∈W λwsiwsjw

for a set tree SW = {Sw : w ∈ W}. Let Sn(i,k), Sn(j,k) be the minimal set clusters
containing both i, k and j, k, respectively. Since these clusters are overlapping (k
belongs to both), one includes the other, say, Sn(i,k) ⊆ Sn(j,k). Thus, bij ≥ bjk =
min(bik, bjk), which proves the statement. �

Ultrasimilarity B = (bij), i, j ∈ I, will be referred to as resolved if no three
different elements i, j, k ∈ I exist for which all the values bij , bik, and bjk are
coinciding.

Corollary 6.1. Ultrasimilarity B = (bij) corresponds to a binary tree iff it is
resolved.

Proof: Indeed, the fact that bij = bik = bjk means that in the corresponding
weighted tree Sn(i,k) = Sn(j,k) and there are nonoverlapping paths from the corre-
sponding interior vertex n to the leaves i, j and ki, which can be only when n is
adjacent to four nodes, at least. �

6.1.4 Nest Indicator Function

This concept is applicable only to the binary hierarchies. For a nonsingleton cluster
Sw = Sw1 ∪ Sw2 (w, w1, w2 ∈ W ) of a binary set tree SW , let us define its three-
value nest indicator function φw as follows:

φiw =

⎧⎨
⎩

aw if i ∈ Sw1

−bw if i ∈ Sw2

0 if i �∈ Sw

where the positive reals aw and bw are selected to satisfy the following two condi-
tions: (1) vector φw is centered; (2) vector φw has its Euclidean norm equal to 1.
To be more precise, let us denote the cardinalities of clusters Sw1 and Sw2 by N1
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and N2, respectively. Obviously, N1 + N2 = Nw where Nw is cardinality of Sw.
Then, (1) means that N1aw − N2bw = 0 while (2), N1a

2
w + N2b

2
w = 1. These two

equations lead to the following uniquely defined values of aw and bw:

aw =
√

N2

N1Nw
=
√

1
N1

− 1
Nw

, bw =
√

N1

N2Nw
=
√

1
N2

− 1
Nw

.

Statement 6.4. The set of vectors φw, w ∈ W , defined by a binary set tree SW =
{Sw : w ∈ W} is an orthogonal basis of the (N − 1)-dimensional Euclidean space
of the centered N -dimensional vectors.

Proof: Let us prove that the vectors φw , w ∈ W , are mutually orthogonal; that
is,
∑

i∈I φiwφiw′ = 0 for different w, w′ ∈ W . If Sw ∩ Sw′ = ∅, then φiwφiw′ = 0
for any i ∈ I since either i �∈ Sw or i �∈ Sw′ . Otherwise, one of the sets includes the
other, say, Sw′ ⊂ Sw, which implies that Sw′ is included in one of the children sets
Sw1, Sw2 (such that Sw is their union), for instance, Sw′ ⊆ Sw1. Then, φiw = aw for
any i ∈ Sw′ , which implies that

∑
i∈I φiwφiw′ = aw

∑
i∈I φiw′ = 0, since vector φw′

is centered. Thus, the orthogonality is proven. The number of nontrivial vertices
w ∈ W in a binary set tree and, therefore, the number of mutually orthogonal
vectors φw, w ∈ W , is equal to N − 1 which is exactly the dimension of the space
of all the centered N -dimensional vectors. �

This statement guarantees that any entity-to-variable matrix can be decom-
posed by any binary hierarchy, provided that the variables have been centered
preliminarily.

Can the similarity data be decomposed by a binary tree? In general, no: there
are N(N − 1)/2 arbitrary similarity entries while only N − 1 binary tree nodes.
However, the ultrasimilarity data can.

Let us consider a similarity matrix Pw = φwφT
w = (φiwφjw) corresponding

to a node of a binary tree SW . Non-zero entries of such a matrix are within
the subset Sw in such a way that φiwφjw = −1/Nw (negative) when i and j
are split in the children of Sw, and (i, j) entry equals 1

Nk
− 1

Nw
(positive) when

i, j ∈ Swk (k = 1, 2). This is, obviously, the projector matrix onto the linear
subspace Lu(Sw) corresponding to partition of Sw in two classes, Sw1 and Sw2 (see
Section 4.1.4). Since matrices Pw have all their rows centered, we have to deal with
the row-centered ultrasimilarity matrices, as well, which necessitates considering
the diagonal similarities that so far did not matter. Columns of such a matrix will
be centered too due to symmetry. Thus, let ultrasimilarity matrix S = (sij) satisfy
equalities sii = −∑j �=i sij , i ∈ I (the latter formula can be considered a rule for
determining appropriate values of the diagonal entries). Evidently, the matrices of
this form, corresponding to a set tree, form a linear subspace of the linear space of
all symmetric N × N matrices considered as N2-dimensional vectors.
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Corollary 6.2. The projection matrices Pw = (φiwφjw), i, j ∈ I, defined by a
binary set tree SW are mutually orthogonal and form a basis of the subspace of all
the row-centered ultrasimilarity matrices corresponding to the tree SW .

Proof: The orthogonality follows from the Statement 6.4.; thus N − 1 of the
matrices are enough to determine all the N − 1 ultrasimilarity values. �

The nest indicator functions were considered by Benzécri 1973, but only in a
specific context of the Correspondence analysis theory.

6.1.5 Edge-Weighted Tree and Tree Metric

There is an important generalization of the indexed tree concept related to the
situation when the weights are assigned to the tree edges rather than to the nodes.
Such a tree can be referred to as an (edge) weighted tree. The tree distance d(i, j) is
defined as the sum of the weights of the edges belonging to the unique path, T (i, j),
between i and j. The distance can be related to some latent attributes differing at
the entities involved (see Sattah and Tversky 1977, Corter and Tversky 1986). The
concept is widely employed in molecular biology as a model of evolutionary history
for the entities being currently living species: the number of mutation changes
between the species has been supposedly accumulated during their descent from
the ancestors represented by the internal nodes (as in Fig.6, p. 165). Since any
(node) weighted tree can be transformed into an edge weighted tree (keeping the
property that, for any i, j ∈ I, the total distances between i or j and the minimal
node n[i, j] containing both i and j are equal to w(n[i, j])/2), the ultrametric is
a tree distance. In general, the tree distance is characterized by the so-called
four-point condition coined first by Zaretsky 1965 and supplemented by Smolensky
1969, though the most frequent reference is Buneman 1971 who gave the statement
in its current formulation: for any i, j, k, l ∈ I two of the three values, d(i, j) +
d(k, l), d(i, k)+ d(j, l), and d(i, l)+ d(j, k), coincide while the third one is less than
or equal to that common value:

d(i, j) + d(k, l) ≤ max(d(i, k) + d(j, l), d(i, l) + d(j, k)). (6.138)

The proof, actually, can be easily derived from the picture in Fig.6.50 presenting
the general pattern of the tree paths pair-wisely joining the four vertices involved in
(6.138). Indeed, all of the sums in (6.138) include d(i, x)+d(j, x)+d(k, y)+d(l, y)
while two of them contain also 2d(x, y) (see Mirkin and Rodin 1984, Barthélemy
and Guenoche 1991).

The four-point condition resembles that of the ultrametric, which is employed
in the following construction, due to Farris, Kluge and Eckart 1970 (see also Leclerc
1995): let us pick an arbitrary c ∈ I and define yet another distance

dc(i, j) = MM + dij − dic − djc (i, j ∈ I − {c}) (6.139)
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Figure 6.50: Four-point pattern in an edge weighted tree.

where MM > 0 is chosen to make all the values of dc non-negative; for instance,
MM = 2 maxi,j∈I dij makes it for sure.

Statement 6.5. For a dissimilarity d on I, the following properties are equivalent:

(1) d is a tree metric;

(2) dc is an ultrametric for any c ∈ I;

(3) dc is an ultrametric for some c ∈ I.

Proof: Let us take (6.138) with l substituted by any c ∈ I and subtract dic +
djc + dkc − MM from both parts of the inequality, which gives the ultrametric
inequality for dc immediately. This proves that (1) implies (2). To prove that (3)
implies (1), let us assume that dc is an ultrametric for some c and consider some
i, j, k, l ∈ I − {c}. Then, obviously, dij + dkl = dc(i, j) + dc(k, l) + C, dik + djl =
dc(i, k) + dc(j, l) + C, and dil + djk = dc(i, l) + dc(j, k) + C where C = dic + djc +
dkc + dlc − 2MM . Since dc as an ultrametric satisfies the four-point condition so
does d, which completes the proof since implication (2) → (3) is trivial. �

In the sequel, the derived metric dc(i, j) will be referred to as FKE-transform
of the original dissimilarity dij .

Correspondence between the tree representations of a tree metric d and its FKE-
transform dc is illustrated in Fig.6.51. One way, d → dc, is simple: tree (a) yields
its tree metric (b) which is FKE-transformed into an ultrametric (c) corresponding
to hierarchy (d). The other way is not that obvious, although not complicated. It is
based on the inverse version of the equation (6.139), dij = dc(i, j)+dic+djc−MM .
For the indexed tree derived from ultrametric dc, let us define new index values for
all its leaves: w(i) = MM/2 − dic (i ∈ I − {c}); then let us add the leaf c to the
tree, as joined by an edge to the root r, and define w(c) = MM/2; the other index
values remain unchanged. In the new tree Tc (see Fig.6.51 (e)), the edge weights
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Figure 6.51: Weighted tree (a) and its tree metric (b) transformed into ultrametric
(c) and indexed hierarchy (d) with FKE-transformation; (e) is the tree resulting
with the inverse transformation.

are defined as d(u, v) = w(u)−w(v) for all its edges {u, v} with u being the parent
of v in the original rooted tree (see Fig.6.51 (e)). This means that the length of
every interior edge remains invariant while each of the terminal edges (leading to
a leaf, i) is subtracted by the value w(i) defined. The only thing left is to prove
that the tree found gives exactly the original tree metric.

Statement 6.6. For tree Tc obtained from the ultrametric dc, its tree metric co-
incides with the original metric d.

Proof: Let us start with the distances d(i, c), i ∈ I − {c}. By definition, d(i, c) =
w(c) − w(i) = MM/2 − (MM/2 − d(i, c) = dic. Now, for any i, j �= c, d(i, j) =
d(i, c) + d(j, c) − 2d(u, c) where u is the node at the path between i and j, T (i, j),
where c joins T (i, j). This implies d(i, j) = dic + djc − 2(w(c) − w(u)) = dij since
w(u) = dc(i, j)/2 = [MM + dij − dic − djc]/2 because corresponding node cluster
Iu is the minimal one to contain both i and j in the rooted hierarchy. �

Construction of the tree Tc involves ultrametric dc and the weight function w
defined for every node of the tree. This gives rise to yet another characterization
of the tree metric, using the so-called star-dissimilarity concept (Carroll 1976). A
dissimilarity matrix D = (d(i, j)) is referred to as star dissimilarity measure if,
for any different i, j ∈ I, d(i, j) = wi + wj where g = (wi) is a vector (perhaps,
nonpositive) defined for i ∈ I. The name of the concept is based on a graphical
representation of the distance D in terms of a star, which is, basically, a root
directly connected to all the leaves i ∈ I with wi as the corresponding edge weights.
In the example of Fig.6.51, the star vector is g = (0,−4, 5, 1,−3) thus containing
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two negative rays, which is reflected in Fig.6.51 (e).
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Figure 6.52: Two topologically equivalent trees generate different ultrametrics de-
pending on the weights and root r location.

Statement 6.7. A tree distance d = (dij) can be decomposed into the sum of a
star dissimilarity and an ultrametric in infinitely many ways.

The proof follows from the construction above (and can be found in Barthélemy
and Guenoche 1991, p. 114-115). These authors note also that there is no sim-
ple relationship between the tree distances and corresponding ultrametrics; the
quantitative information contained in the tree distances can be related to differ-
ent ultrametric hierarchies. To illustrate that, let us consider an example from
Barthélemy and Guenoche 1991, p. 116-117 (see Fig.6.52). We can see that the
edge-weighted trees in (a) and (b) are topologically equivalent, though the roots
and weights of the edges are different. But the weighted hierarchies representing
corresponding tree metrics (turned out ultrametrics!) are very different topologi-
cally. This raises the following problem: find a description and a diagnostic tool
for all the ultrametrics generated by the same edge-weighted tree. The notion of a
T -split described below might be a convenient concept for that.
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6.1.6 T-Splits

Let T be an unrooted edge-weighted tree with leaf set I. Let us refer to a biclass
partition S = {A, B} of I as a T -split if it is obtained by splitting the tree by one
of its edges: eliminating an edge makes the resulting graph have two connected
components, A (or B) is just the subset of the leaves belonging to one of them.
Eliminating leaf edges we produce the trivial splits consisting of a singleton and
all-the-others subset. In Fig.6.53, there are only two nontrivial splits: S1 = {a −
b, c − d − e} and S2 = {a − b − c, d − e}.

a

b c d

e

a b d ce

(a) (b)

Figure 6.53: Hierarchy (b) produced by the left nontrivial split of tree (a).

Obviously, the split concept can be considered as a symmetrized version of the
node cluster: all the node clusters are classes of the T -splits, though some of the
T -split classes are not node-clusters. Let us create a rooted version of T putting
the root in the middle of a tree edge, thus, taking corresponding split as the root
divergence (in Fig.6.53 (b) a rooted tree is shown as based on the first of the
nontrivial splits, S1). Then, all the T-splits will be biclass partitions consisting
of a node cluster and its complement in I; note that, within the T -split concept,
there is no opportunity to distinguish the clusters from non-clusters. It seems quite
evident that the set ST of all T -splits (for a T fixed) can be characterized by a
symmetrized version of the characteristic H1-H3 of the node clusters, p. 483:

G1. All the trivial splits belong to ST .

G2. For any two different splits S = {A, B} and U = {C, D} from ST , exactly
one of the intersections, A ∩ C, A ∩ D, B ∩ C, B ∩ D, is empty.

Obviously, G1 is equivalent to H1 while G2 is equivalent to H3; there is no
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symmetrical match to H2. To make the equivalence between G2 and H3 more
clear, let us show how the node clusters can be reconstructed from the splits. To
do that, we need to find a rooted-tree-point of view on the splits. This can be
done taking a split, S = {A, B}, as the root-specified one. All the other splits
can be sorted depending on which of the classes A or B includes a class from a
split considered (the fact that such an inclusion occurs is guaranteed by G2). The
classes included are to be considered as the node clusters; H3 for them follows from
G2 (Fig.6.53 illustrates this procedure). We have proven the following statement.

Statement 6.8. A set of biclass partitions is a T -split set (for a tree T ) if and
only if it satisfies conditions G1 and G2.

6.1.7 Neighbors Relation

Another concept for structural representation of the trees employed in the literature
is a quaternary “neighbors” relation on the leaf set (Colonius and Shulze 1981,
Bandelt and Dress 1986, Barthélemy and Guenoche 1991, Bandelt and Dress 1994).
Traditionally, the neighbors relation is considered for unrooted trees only. We
consider it for both rooted and unrooted trees.

Let T be a rooted tree with leaf set I and S ∈ I(T ). Then, for any i, j, k, l ∈ I
such that i, j ∈ S while k, l �∈ S, we say that the quadruple (i, j, k, l) belongs to the
rooted neighbors relation ϕT ⊂ I4; symbol ij‖kl is usually employed as a synonym
to (i, j, k, l) ∈ ϕT .

Obviously, the rooted neighbors relation satisfies the following properties, for
any i, j, k, l ∈ I:

(a) antisymmetric comparability: one and only one of ij‖kl, ik‖jl, il‖jk holds;

(b) symmetry: ij‖kl implies ji‖kl and ij‖lk;

(c) substitution: for any m ∈ I, ij‖kl implies ij‖km or im‖kl.

In fact, these conditions are also sufficient.

Statement 6.9. A quaternary relation ϕ ⊂ I4 is a rooted neighbors relation if
and only if it satisfies the properties (a) through (c) above.

Proof: We only need to prove that if ϕ ⊂ I4 satisfy (a) to (c), a tree can be
uniquely defined. Let us define a subset S be a cluster if it satisfies inclusion
S × S × (I − S) × (I − S) ⊂ ϕ. Let us prove that if clusters S1 and S2 are
overlapping, one of them is a part of the other. If, conversely, there are i ∈
S1∩S2, j ∈ S1−S2, k ∈ S2 −S1, and l ∈ S̄1∩ S̄2, then both ij‖kl and ik‖jl, which
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contradicts (a); thus, the clusters form a rooted tree T . To show that ϕT = ϕ, let
us prove, initially, that ϕ is transitive, that is, 1) ij‖kl and im‖kl imply jm‖kl,
and 2) ij‖kl and ij‖km imply ij‖lm. Indeed, ij‖kl implies, by (c) and (b), jm‖kl
or ij‖km. Analogously, im‖kl implies jm‖kl or im‖kj. Suppose jm‖kl is not
true. Then both ij‖km and im‖kj hold simultaneously, which contradicts (a) and
proves (1); (2) is proved analogously. The transitivity is proved. Now, let ij‖kl
and S be the set of all the leaves m satisfying condition im‖kl. Let us show that S
is a cluster as defined above in the proof; that is, for any m′, m′′ ∈ S and l′, l′′ �∈ S,
m′m′′‖l′l′′. Indeed, m′m′′‖kl by the property 1) of transitivity of ϕ since im′‖kl
and im′′‖kl by definition of S; l′, l′′ �∈ S are easy to put in the condition since
im‖kl implies, by (c), il′‖kl or im‖kl′ where the former is not true by definition of
S. �

The unrooted neighbors relation is defined, for an unrooted tree T , by its splits:
ij‖kl if i, j ∈ A and k, l ∈ B for a T -split S = {A, B}. A most important feature
of the unrooted neighbors relation is that it can be recovered from the tree metric
without knowing the tree itself (Colonius and Schulze 1981, Bandelt and Dress
1986). This follows from the following fact:

Statement 6.10. For any unrooted tree T and corresponding tree metric d =
(dij), ij‖kl if and only if

dij + dkl < dik + djl = dil + djk.

The proof, actually, is quite obvious from the picture shown in Fig.6.50.

A score function σ(i, j) is associated with any neighbors relation; it is defined
as

σ(i, j) = |{(k, l) : ij‖kl}| (6.140)

It can be easily seen that, for a rooted neighbors relation, σ(i, j) = |I −S[i, j]|2
where S[i, j] is the minimal node cluster containing both i and j. This implies that,
in this case, the score function is an ultrasimilarity. For the unrooted neighbor
relations, the score function is far more complex. Still, it can be proven that
the score function for any unrooted neighbor relation satisfies the reverse four-
point condition. More precisely, function ν(i, j) = MM − σ(i, j) (where MM >
maxσ(i, j)) is a tree metric corresponding to the same tree T (Colonius and Schulze
1981, Bandelt and Dress 1986).

6.1.8 Character Rooted Trees

A character rooted tree is a rooted tree along with some characters assigned one-
to-one to all its nodes (root excluded). The characters are taken from a set C;
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their assignment may be considered as made to the edges rather than to the nodes
since, in every rooted tree, there is one-to-one correspondence between the nodes
and edges: each node is adjacent to one and only one edge belonging to the path
between the node and root.

Every node in a character rooted tree is characterized by the sequence of the
characters along the path from root to the node. This sequence (set) of the char-
acters is used as an identification key of the objects in corresponding node cluster.
For example, when characters present some categories or predicates defined for an
entity set (like in Fig.3, 2.26, and 2.33) the character tree represents the so-called
decision tree or a concept (in terms of machine learning discipline, see Breiman et
al. 1984 and Michalski 1992): each node relates to a subset of the entities defined
by conjunction of the categories along the path from root to the node. In another
applied area, biological taxonomy, the leaves represent species, interior nodes, the
higher taxa or ancestral organisms, and the characters correspond to biological
parameters (usually, binary “present-absent” attributes).

Another way of representing such a character rooted tree is through the rectan-
gular “leaf-to-character” Boolean matrix F = (fic), i ∈ I, c ∈ C, where fic = 1 iff
character c belongs to the character sequence corresponding to the leaf i. There is
a simple correspondence between this kind of matrices and character rooted trees
(Estabrook, Johnson, and McMorris 1975, Gusfield 1991). Let us define a subset
Fc = {i : fic = 1} of the leaves covered by the character c.

Statement 6.11. Matrix F corresponds to a character rooted tree if and only if
set {Fc : c ∈ C} is a set tree, that is, for any c, c′ ∈ C, subsets Fc, Fc′ are disjoint
or one contains the other.

6.1.9 Comparing Hierarchies

Above, four basic representation formats of the hierarchies have been considered:
graph (rooted and unrooted tree), set (node clusters, neighbors relation, T-splits),
nested partition, and matrix (tree metric, ultrametric, and nest indicator matrix).
Comparing the hierarchies depends much on the representation format. Let us
consider similarity/dissimilarity measures accordingly.

Graph

The most known dissimilarity measure between the hierarchies in terms of the
labeled trees was proposed by Robinson 1971. The measure counts the smallest
number of steps involving an exchange between two branches in a tree necessary
to transform one of the trees into the other.

In Fig.6.54, three exchanges between the branches are needed to transform tree
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Figure 6.54: Exchange between nodes A and B produces (b) from (a); then (c) is
obtained with two pairs of the leaves exchanged: 1 and 3, and 4 and 5.

(a) into tree (c); (b) represents the result of exchange between nodes A and B,
after which just simple switch of 1 and 3, and 4 and 5 gives (c). This makes the
distance equal to 3. This seemingly simple dissimilarity measure is, in fact, quite
complicated because of irregularities involved in the exchanges. To see the irreg-
ularities, the exchange step should be reformulated in terms of the node clusters.
We leave this as an exercise to the reader. Other measures defined so far in terms
of the number of some elementary graph-transforming operations needed to trans-
form one of the trees in the other, also become quite complicated when translated
into set terms.

Set

When presented by their node clusters, the trees can be compared using any
measure discussed in Section 3.1.2. The mismatch coefficient (sometimes referred to
as a partition metric [Steel 1993]) has become most popular. It counts the number
of node clusters that are present in one and only one of the trees. Obviously, only
non-trivial clusters corresponding to the branching internal nodes may give the
difference. The trees (a) and (c) in Fig.6.54 have their nontrivial node cluster sets
2-3, 5-6, 4-5-6, 2-3-4-5-6, and 1-2, 1-2-3, 4-6, 4-5-6, respectively, which leads to the
mismatch number equal to 6. Having the maximum number of nontrivial clusters
in both of the trees equal to 2(N − 2) = 8, we get the relative mismatch 6/8 = 3/4
while the match coefficient is 1 − 3/4 = 1/4. The Jaccard match coefficient seems
quite relevant here; it equals 1/7 as there is only one cluster, 456, coinciding in
both of the trees, out of the seven different clusters available.

The difference between neighbors relations, measured by the mismatch coeffi-
cient, is considered sometimes as relevant to the evolutionary considerations; Es-
tabrook, McMorris and Meachem 1985 analyzed that for unrooted trees (quartet
distance). It seems, the rooted neighbors relation is a simpler structure which also
can be used for the purpose.
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For a set tree SW = {Sw : w ∈ W}, the rooted neighbors relation can be
presented as ν = ∪w∈W Sw × Sw × (I − Sw) × (I − Sw), which implies that the
number of quadruples in ν is equal to |ν| =

∑
w∈W N2

w[(N −Nw)2 − (N −NPw)2]
where N = |I|, Nw = |Sw|, and NPw are the total number of the entities (leaves),
the cardinality of Sw and its parent, respectively. For two neighbors relations,
ν = ∪w∈W Sw×Sw×(I−Sw)×(I−Sw) and µ = ∪v∈V Tv×Tv×(I−Tv)×(I−Tv),
their intersection equals, obviously,

ν ∩ µ = ∪(w,v)∈W×V (Sw ∩ Tv) × (Sw ∩ Tv) × (I − (Sw ∪ Tv)) × (I − (Sw ∪ Tv),

which, regretfully, does not lead to as simple counting formula for |ν ∩µ| as for |ν|.
This can be seen with the two trees, (a) and (c), in Figure 6.54.

To find |ν| for tree (a), we start with the maximum cluster α = 2−3−4−5−6 which
supplies quadruples (i, j, 1, 1) in ν, with their amount equal to 5212 = 25. Next cluster,
β = 4 − 5 − 6 counts for 32(32 − 12) = 72 quadruples since we must exclude quadruples
like (4, 5, 1, 1) as already taken into account in relation to the cluster α. The next cluster
γ = 5 − 6 adds 22(42 − 32) = 28 of the quadruples; the subtracted number concerns
quadruples like (5, 6, 1, 2) already counted with cluster β. The last cluster, δ = 2−3 adds
22(42−1) = 60 where subtracted are the quadruples, like (2, 3, 1, 1), already counted with
the parent cluster α. Thus, |ν| = 25 + 72 + 28 + 60 = 185. Analogously, the cardinality
of the neighbors relation for tree (c) is equal 218, as the sum of two times 81 related to
clusters a = 4 − 5 − 6 and b = 1 − 2 − 3, and of two times 28 related to smaller clusters
c = 4 − 6 and d = 1 − 2. What about the intersection of these neighbors relations?
The quadruple subsets generated by the clusters from tree (c) and α from (a) are as
follows: 4 − 5 − 6 × 4 − 5 − 6 × 1 × 1 corresponding to α ∩ a, 2 − 3 × 2 − 3 × 1 × 1
corresponding to α∩ b, 4− 6× 4− 6× 1× 1 for α ∩ c, 2× 2× 1× 1 for α∩ d. Obviously,
the latter two subsets are absorbed by the former two and do not contribute to the
intersection. Analogously, two nonempty intersections of cluster β with the clusters from
(c) are 4−6×4−6×1−2−3×1−2−3 and 4−6×4−6×1×1 (absorbed). Cluster γ gives
5−6×5−6×1−2−3×1−2−3 and 6×6×1−2−3×1−2−3 (absorbed). Cluster δ gives
2−3×2−3×4−5−6×4−5−6 and 2×2×4−5−6×4−5−6 (absorbed). Two maximal
subsets related to cluster α contribute to |ν ∩µ| with 3212 = 9 and 2212 = 4, respectively.
With the quadruples related to unity subtracted, subset 4−6×4−6×1−2−3×1−2−3 for
β gives 22(32 − 1) = 32. With quadruples like (6, 6, 1, 2) already counted at the previous
step, the unabsorbed subset 5−6×5−6×1−2−3×1−2−3 (for γ) adds 3(32 −1) = 24.
The unabsorbed subset for δ adds 2232 = 36 raising the total number of the common
quadruples to 105.

The mismatch number equals 218 + 185 − 2 × 105 = 193; the relative mismatch

(divided by the maximum number of the quadruples 64 = 1296) equals 0.15. This is an

underestimate: the cause is that no tree can produce as many clusters as 1296 or even

approximate the figure. Jaccard mismatch coefficient seems more appropriate here; it

equals 193/(218+185-105)= 0.65, which shows quite a difference.

In substantive research, even more strange measures can emerge, such as that
one in Mirkin, Muchnik, Smith 1995: it counts the number of co-occurrences of
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such nodes s in S and t in T that node cluster It partly overlaps both node cluster
of s and of each of its children; the maximal pairs (s, t) among them, proved to
correspond to “gene duplications”, appear to be counted four times each.

Nested Partition

The hierarchies considered as nested partitions can, virtually, lead to an enor-
mous number of coefficients based on the partition-to-partition indices. Fowlkes
and Mallows 1983 suggested calculating a series of index values (m, cm) where m
is an integer between 2 and N-1 and cm is a similarity index between m-class par-
titions taken from the compared hierarchies. This allows to analyze which parts of
the hierarchies, say, upper (m is small) or lower (m is large) ones, are nearer to or
farther from each other.

Matrix

Matrix representation of the hierarchies allows for using the matrix correla-
tion coefficients (started by Sokal and Rohlf 1962). This subject has received no
extensive analysis yet. Some may consider the matrix correlation coefficient as a
measure of goodness-of-fit for comparing the original similarity/dissimilarity data
with the distance matrix corresponding to the found hierarchy. However, such a
measure has tremendously low capability to differentiate between good and bad
solutions since, ordinarily, the correlation coefficient values are quite close to 1, in
this case, because, on average, the pattern of changes in ultrametric or tree metric
values is very similar to that in the raw matrix.

As a whole, the study of dissimilarity between hierarchies seems still under-
done. There have been made some attempts of abstract algebraic considerations
(Monjardet 1981, Leclerc 1985) and of analysis of the probabilistic distribution for
some of the indices under a hypothesis on the distribution of the trees (usually, the
uniform one) (Lapointe and Legendre 1992, Steel 1993).

6.1.10 Discussion

The most customary representations of hierarchical classification are the rooted
labeled tree, set tree, and ultrametric. However, unrooted labeled trees, splits and
tree metrics, currently, have become quite popular in some substantive studies,
especially in molecular evolution and psychology research. Nest indicator bases
and neighbors relations are examples of somewhat more strange representations of
the hierarchical classification.

An overview presented is an attempt to have a more or less complete list of
the representations along with characterizations and interconnection results. More
systematic theory of these and, perhaps, other representations of the hierarchical
classification is a subject for future research.
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6.2 Monotone Equivariant Methods

6.2.1 Monotone Equivariance and Threshold Graphs

Any hierarchical clustering method dealing with dissimilarity matrices d = (dij)
can be considered as a map F defined on the set D of all dissimilarity matrices
d into the set of all ultrametrics U . Jardine and Sibson 1971 suggested a set of
requirements (axioms) for a “universally acceptable” clustering method F : D →
U . One of the axioms will be investigated in this section.

Let us consider, out of all the clustering methods, F : D → U , those that are
invariant with regard to monotone transformations of the between-entity dissimi-
larities. Actually, Jardine and Sibson 1971 claimed that only such methods should
be considered as appropriate ones, rejecting thus such powerful clustering tech-
niques as based on the square-error criterion which is one of the major concerns in
this book. Although monotone-invariance seems neither universal nor necessary, it
is a nice property, and it is interesting to learn what the clustering techniques are
which satisfy the requirement. The study was undertaken by M. Janowitz and his
collaborators (see, for example, Janowitz 1978, Janowitz and Stinebrickner 1993,
and Janowitz and Wille 1995).

First, let us specify the monotone transformations. Let us consider the set of
all non-negative reals [0,∞); a mapping θ on this set will be referred to as isotone
if θ(0) = 0 and a ≤ b → θ(a) ≤ θ(b). (Note that, usually, the isotone mappings are
not required to be 0-preserving, but here we confine ourselves with this narrower
concept only). A one-to-one isotone mapping of [0,∞) onto itself is referred to as
an order automorphism on [0,∞).

Second, let us specify the concept of cluster method: this is any mapping F of
the dissimilarity matrices d ∈ D into ultrametrics F (d) ∈ U ; the set D consists of
all the dissimilarities d : I × I → [0,∞) such that dii = 0, and U ⊂ D, of all the
ultrametrics defined at the same N -entity set I.

Now, we define a cluster method F as being θ-compatible if F (θd) = θF (d)
for any dissimilarity d ∈ D, where θd(i, j) = θ(d(i, j)). A cluster method is
called monotone-equivariant if it is θ-compatible for every order automorphism
θ on [0,∞).

Intuitively, the monotone-equivariance must guarantee that the method reflects
only structural, not quantitative, properties of the dissimilarities. To put this intu-
ition in a formal setting, let us separate the quantitative and structural information
contained in a dissimilarity measure d ∈ D. Let h(d) = {h0, h1, h2, ..., hn, hn+1}
be the image of d, that is, the set of different d-values, naturally ordered: 0 = h0 <
h1 < h2 < ... < hn+1. This is the quantitative information. The set of all threshold
graphs TG(d) = {Gh0 , Gh1 , ..., Ghn+1} where Gh = {(i, j) : dij ≤ h} represents the
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structural information. Obviously, ∆ ⊆ Gh0 ⊂ Gh1 ⊂ ... ⊂ Ghn+1 = I × I where
∆ = {(i, i) : i ∈ I}. Since the maximum dissimilarity always gives I × I as the cor-
responding threshold graph, it will be convenient to eliminate it from our consider-
ation. In the sequel, h(d) = {h0, h1, h2, ..., hn} where hn is the second-maximum of
the dissimilarities, and, respectively, TG(d) does not contain I×I (unless d(i, j) = 0
for all i, j ∈ I, which is the zero metric), TG(d) = {Gh0 , Gh1 , ..., Ghn}.

Statement 6.12. A cluster method F is monotone-equivariant if and only if
h(F (d)) ⊆ h(d) and TG(F (d)) depends only on TG(d).

Proof: Let F be monotone-equivariant and d1, d2 ∈ D have their threshold graph
sets coinciding, TG(d1) = TG(d2), while their images may be different. However,
since both of the image value sets are ordered by the relation <, there are infinitely
many order automorphisms θ mapping one image set onto the other, meaning that
d1 = θd2. Thus, F (d1) = F (θd2) = θF (d2) which implies that F (d1) and F (d2)
also have coinciding threshold graph sets, TG(F (d1)) = TG(F (d2)). Moreover, if
a ∈ F (d) and a �∈ h(d), then any order automorphism θ′ which has all hk ∈ h(d)
fixed, θ′(hk) = hk, but a moved, θ′(a) �= a, satisfies equation d = θ′d followed by
F (d) = F (θ′d) = θ′F (d), which implies that θ′(a) = a. This contradiction implies
that h(F (d)) ⊆ h(d). The theorem is proved since the reverse statement is trivial.
�

So, any monotone-equivariant cluster method F works as a device collapsing
the set of the original distance values h(d) (numbering up to (N-1)N/2) into at
most N − 1 ultrametric values h(F (d)) and generating threshold graphs that are
equivalence relations (partitions). It can be claimed, also, that the monotone-
equivariant methods, intrinsically, are graph-theoretical since they are based on
processing the set of threshold graphs.

A simple example of such a method is the single-linkage method: it takes the
values h ∈ h(d) corresponding to the minimum spanning tree and generates the
equivalence relations Fh = ε(Gh) where ε(G) is defined as the transitive closure of
G, that is, the set of pairs (i, j) such that i and j belong to the same connected
component of G. Curiously, Fh, in this method, depends only on corresponding
Gh, although, in general, designing Fh may require all the threshold graphs from
TG(d). Such a method, with Fh depending only on Gh, is called a flat cluster
method (Jardine and Sibson 1971, Janowitz 1978).

6.2.2 Isotone Cluster Methods

Let us look at the monotone-equivariant cluster methods, in relation to more rough
(that is, not necessarily one-to-one) isotone mappings ξ of [0,∞). For an arbi-
trary isotone ξ, let us look upon the class F (ξ) of all the ξ-compatible monotone-
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equivariant methods F . Such a class of cluster methods will be referred to as an
isotone class.

Before going into further analysis, let us present here some examples of the
isotone classes we deal with. Any flat method is generated by a two-valued isotone
mapping ξh, which is equal to 0 for any x ≤ h and a constant k for x > h. Indeed,
ξhd equals zero, for every (i, j) ∈ Gh, and k, otherwise. This implies that the only
nontrivial threshold equivalence for ξhF (d) is Fh, thus completely corresponding
to what was defined above as flat methods. Two other examples are the so-called
divisive and agglomerative methods. In divisive methods, any resulting thresh-
old equivalence depends only on the threshold graphs from TG(d) corresponding
to the same and larger thresholds. Dually, the threshold equivalences obtained
with an agglomerative method depend only on the threshold graphs from TG(d)
corresponding to the same and smaller thresholds. This terminology matches the
standard notions since the traditional agglomerative methods generate partitions
joining smaller clusters (having smaller within dissimilarity values) while the di-
visive ones generate partitions splitting larger clusters in the smaller ones, thus
decreasing the within-cluster distances. Yet a vast majority of cluster agglom-
erative/divisive techniques are not monotone-equivariant. The fact that the two
classes defined are isotone will be proved later.

There are also three isotone classes of somewhat more artificial kind: 0-flat,
0-divisive, and 0-stable cluster methods which differ from corresponding classes of
flat, divisive and general monotone-equivariant methods, respectively, in that they
admit a particular kind of dependency on the pattern of zeros in the dissimilarity
matrix d provided by G0: F0 depends only upon G0 while the other threshold
equivalences Fh depend on their respective arguments, Gh (0-flat), Ghk

for hk ≥ h
(0-divisive), and all TG(d) (0-stable), supplemented by G0. More precise defini-
tions along with the proofs of isotonicity will be given within the Statement to
follow.

Let us define x, y ∈ [0,∞) as ξ−equivalent if ξ(x) = ξ(y). Obviously, ξ-
equivalence classes are either proper intervals (on which ξ is constant) or singletons
(belonging to the intervals where ξ makes a one-to-one mapping). Thus, the max-
imal intervals where ξ is constant along with the maximal intervals on which ξ
is a one-to-one mapping cover all the real line, except for the boundary points of
the intervals in the case when they are open (an open interval does not contain its
extreme point(s)). This means that the maximal intervals along with the boundary
singletons give a partition of [0,∞) called kernel of ξ and denoted ker(ξ).

The kernel consists of at most a countable number of intervals. Each of the
intervals is either a (boundary) single point or a proper interval on which ξ is
constant or one-to-one. Denote these three types of intervals, respectively, by the
symbols s, c, and o. If we think of a word in the alphabet {s, c, o} as a mapping
from the intervals of ker(ξ) into {s, c, o}, this produces a representation of ker(ξ)
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as a finite or countably infinite word in that alphabet.

Since, obviously, ker(ξ1) = ker(ξ2) implies F (ξ1) = F (ξ2), any isotone class
F (ξ), actually, is determined by the word corresponding to ker(ξ). This allows us
to change the denotation of the isotone classes from F (ξ) to F (w) where w belongs
to the set W (s, c, o) of all finite and countably infinite words in the alphabet {s, c, o}
(the empty word included). Actually, as it is proved below, there is no need to
consider the infinite words, for all of them are equivalent to some two- or three-
letter words.

6.2.3 Classes of Isotone Methods

Now we are ready to formulate the major result (Janowitz and Wille 1995).

Statement 6.13. There are only seven different isotone classes of cluster meth-
ods, F (o), F (cc), F (scc), F (sc), F (co), F (oc), and F (sco).

Proof: First, let us note that, by definition of the kernel, the following sub-words
are illegal: ss, so, os, and oo. Moreover, no proper word can end with s since
[0,∞) has no largest element.

This implies that the possible 1-letter, 2-letter and 3-letter words are: c (con-
stant), o (morphism), sc, cc, co, oc, scc, sco, csc, ccc, cco, coc, occ, and oco.

Obviously, F (o) consists of all the monotone-equivariant methods since, ac-
tually, the isotone mappings with kernel o are one-to-one mappings very much
resembling the order automorphisms. Moreover, F (c) = F (o). Indeed, there is
only one constant isotone map ξ such that ξ(0) = 0: it is the zero mapping,
ξ(x) = 0 for every x ∈ [0,∞). But every monotone-equivariant cluster method
satisfies F (0) = 0 where 0 denotes the zero metric (equal to zero for every i, j ∈ I),
thus belonging to F (c).

When ker(ξ) = cc, there is an h > 0 such that ξ(x) = 0 for 0 ≤ x ≤ h and
ξ(x) = k for x > h where k is a constant. This means that ξd has Gh as the only
proper threshold graph. Thus, to be ξ-compatible, a cluster method F must have
its result depending on Gh only, that is, be flat. Moreover, if ker(ξ) = cw1cw2

where w1, w2 ∈ W (s, c, o), then for any dissimilarity d, the w1 and w2 portions of ξ
can be shifted by an order automorphism so that they miss the image h(d), which
means again that the only threshold graph the cluster method F deals with is Gh

for an arbitrary h > 0. This proves that F (cw1cw2) = F (cc).

Let us prove now that all the other words containing two or more occurrences of
c are equivalent to scc. Let us, first, consider the most general form containing scc,
ker(ξ) = sw1cw2cw3 where w1, w2, w3 ∈ W (s, c, o). Again, for any dissimilarity d,
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we can apply an order automorphism θ so that w1, w2, w3 miss all values in the
image h(d). This means that we may choose ξ so that ξd has only two different
threshold graphs, G0 and Gh, and G0 cannot be eliminated since ξ(h) > 0 for
every h > 0 by the formula of ker(ξ). Thus, F ∈ F (sw1cw2cw3) acts so that
every threshold graph Fh of its image F (d) depends only on G0 and Gh. This
class of cluster methods is referred to as 0-flat. Analogous argument shows that
F (ow1cw2cw3) = F (scc) thus proving that only 0-flat methods are compatible with
the mappings having their kernels sw1cw2cw3 or ow1cw2cw3.

We have proven that all the methods which are compatible with isotone map-
pings having more than one c in their kernels, are flat (if there is no prefix to
c) or 0-flat (if there is a prefix to c). This implies also that there is no need to
consider (countably) infinite words: obviously, the infinite words must contain an
infinite number of occurrences of c (intervals on which ξ is constant), which has
been proven to be equivalent to having two cs only. There are only five possibilities
remaining: sc, co, oc, sco, and oco (since ss, oo, so, and os are forbidden). These
possibilities are considered in turn:

1) If ker(ξ) = sc, then ξ(0) = 0 and ξ(x) = k for any x > 0 where k is a
constant. That means that each of ξd and ξF (d) have, respectively, G0 or F0 as
the only proper threshold graph, which implies that F0 depends on G0 only. As
to the other threshold equivalences Fh in h(F (d)), the resulting ultrametric ξF (d)
does not depend on them at all, which means that F (sc) consists of all the cluster
methods having F0 depending on G0 only while Fh may depend on all the set of
threshold graphs TG(d). These methods are called 0-stable.

2) If ker(ξ) = co, then there is an h > 0 such that ξ(x) = 0 and all ξ(hk) are
different for hk > h (hk ∈ h(d)). This shows that F ∈ F (ξ) must have its threshold
equivalences Fh depending on all Ghk

for hk ≥ h. This kind of method is called
divisive.

3) If ker(ξ) = oc, then the situation is dual to that in 2): F ∈ F (oc) must
have its threshold equivalences Fh depending on all Ghk

for hk ≤ h. This kind of
method is called agglomerative.

4) If ker(ξ) = sco, then the situation is much as in 2). If ξ is chosen to have all
the image of d mapped into a constant, which means that there is only one proper
threshold graph G0 for ξd, then F0 of F (d) must depend on that. In a general
situation, ξ maps 0 in 0, collapses some lower levels of positive d values, and maps
the larger hk values in different values ξ(hk). That means that Fh may depend
only on G0 and Ghk

for all hk ≥ h. Such a method is called 0-divisive.

5) If ker(ξ) = oco, then F (ξ) = F (scc). Indeed, it is obvious that if F (ξ1) =
F (ξ2) then F (ξ2ξ1) is the same. Let ξ2 have its c-interval being the end part of the
first o-interval of ξ1, then ker(ξ2ξ1) = occo, which proves that F (oco) = F (occo) =
F (scc) as is proved above. �
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Figure 6.55: Seven classes of isotone-equivalent monotone-equivariant clustering
methods presented in the set-theoretic inclusion order.

The classes of the monotone-equivariant cluster methods are presented in
Fig.6.55 according to the set-theoretic inclusion. This follows from the depen-
dencies between the structures of TG(d) and TG(F (d)) revealed: for example, flat
methods are 0-flat since dependence of Fh on only Gh is a special case of more
general dependence of Fh on F0 and Fh, which itself is a special case of more gen-
eral dependencies in agglomerative and 0-divisive methods. The “meets” in the
diagram in Fig.6.55 correspond to the intersections of the corresponding classes,
which again can be proved by analyzing the structural dependencies.

6.2.4 Discussion

Another example of axiomatic analysis is presented. The monotone equivariance
requirement is a nice mathematical property, though a cluster method should not
be considered as being at a disadvantage if it does not satisfy it.

Basically, the requirement picks out the methods based on processing the
threshold graphs on the entity set. All the most interesting methods involving
averaging or more complicated arithmetic operations applied to the dissimilarity
data fail to satisfy the requirement and drop out. Still, in some situations, when
the dissimilarities are known up to their ordering only, using the arithmetic-driven
methods may seem meaningless, and this is a case when the monotone equivariant
methods are welcome.
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By further strengthening the requirement, we arrive at clustering methods that
are equivalent to each other with regard to an isotone mapping on the real line.
Such a mapping may collapse some different distances into the same value, and
the methods may not distinguish those distances anymore. It happens that there
are only seven isotone equivalence classes of monotone-equivariant methods. This
kind of result seems to belong to meta-classification studies; it illustrates both the
gains and limits of the axiomatic approach.

6.3 Ultrametrics and Tree Metrics

6.3.1 Ultrametric and Minimum Spanning Trees

An ultrametric is a distance matrix D = (dij), i, j ∈ I, satisfying a strengthened
triangle inequality for any i, j, k ∈ I:

dij ≤ max(dik, djk). (6.141)

A wide set of flat clustering techniques can be proposed, based on relations
between the ultrametrics and minimum spanning trees (Gower and Ross 1969,
Leclerc 1981). Let us recall that a tree T = (I, E) is referred to as a spanning tree
of length l(T ) =

∑
ij∈E dij where d is a dissimilarity measure between the entities.

T (i, j) denotes the only path in T joining its nodes i, j ∈ I. Here, I is set of all the
nodes, not just leaves only. A minimum (maximum) spanning tree mT (MT ) has
minimum (maximum) length l(T ). A simple algorithm for constructing a minimum
(maximum) spanning tree has been described in Section 1.2.4. What is important
here is that the minimum (maximum) spanning tree depends only on the order
of the dissimilarities, not their quantitative values. This is especially readily seen
from the following characteristic property of the minimum and maximum spanning
trees (Leclerc 1981).

Statement 6.14. Spanning tree T is an mT if and only if, for any i, j, k, l ∈ I,
(i, j) ∈ T (k, l) implies dij ≤ dkl, and, dually, T is an MT if and only if, for any
i, j, k, l ∈ I, (i, j) ∈ T (k, l) implies dij ≥ dkl.

Proof: Let (i, j) ∈ mT (k, l); then dij ≤ dkl since if dij > dkl then putting (k, l)
instead of (i, j) in mT would make its length lesser, which contradicts the definition
of mT . If, conversely, T is a spanning tree satisfying the condition, then its length
must be minimum since its edges cannot be substituted by other ones with the
total length decreased. �
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Any spanning tree contains exactly N − 1 edges while any ultrametric has at
most N −1 different values; this gives us a hint that ultrametrics may be somehow
encoded with spanning trees. An explicit definition follows.

i

j

k

u

Figure 6.56: A general pattern of joining three leaves in a labeled tree.

For any spanning tree T = (I, E) and dissimilarity d, let us construct a dissim-
ilarity dT :

dT (i, j) = max{di′j′ : (i′, j′) ∈ T (i, j)}
where T (i, j) is the unique path between the vertices i and j in tree T . As can
be easily seen in Fig.6.56, the paths T (i, k) and T (j, k) cover path T (i, j), which
implies max[dT (i, k), dT (j, k)] ≥ dT (i, j) and proves that dT is an ultrametric.
Moreover, method F (d) = dT is flat since all classes of the equivalence threshold
graphs defined by dT are connected components of corresponding threshold graphs
defined by d. Although the method derives an ultrametric distance matrix, not
the hierarchy itself, its construction does not present any difficulties: the spanning
tree T employed gives all the necessary information. The different metric values
d1 < d2 < ... < dn are the node cluster indices while, for every dh, h = 1, ..., n, the
node clusters are just connected components of the dh-threshold graph obtained
from T .

Obviously,
dmT ≤ d ≤ dMT

where mT and MT are minimum and maximum spanning trees defined for d,
respectively. Moreover, dmT is the maximum ultrametric satisfying inequality
dmT ≤ d since dmT (i, j) = dij for all edges in mT and there are no other val-
ues involved in dmT . Regretfully, no dual statement holds about dMT .
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The minimum spanning tree is associated with single linkage clustering.

Statement 6.15. For any minimum spanning tree, mT , defined for a given dis-
similarity d, the mT -ultrametric corresponds to a hierarchy found with the single
linkage (nearest neighbor) method.

Proof: We’ll prove that every cluster found with the single linkage corresponds to a
connected component of the minimum spanning tree mT , and the nearest-neighbor
dissimilarity between two single-linkage clusters d(S, T ) = mini∈S,j∈T dij can be
realized with an edge (i∗, j∗) belonging to mT . Since the minimal dissimilarity
value di0j0 is present in mT for a pair i0, j0 ∈ I, the cluster {i0, j0} can be found
with the single linkage and it is a connected component of mT . Then, let some two
clusters S and T be connected components in T while their joining pair (i∗, j∗) ∈
S × T is not an edge of mT . This implies that di∗j∗ = di′j′ where (i′, j′) is the
only edge of mT connecting S and T . Indeed, di∗j∗ < di′j′ contradicts minimality
of mT and di∗j∗ > di′j′ is impossible by the definition of the single linkage. Thus,
the pair (i′, j′) can be taken in the single linkage method for merging S and T ,
which proves the statement. �
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Figure 6.57: The minimum (b, c, d) and maximum (e, f, g) spanning tree generated
hierarchies for Primates data (a).

In Fig.6.57, the mT - and MT -ultrametrics ((b) and (e), respectively) are shown
for the Primates dissimilarity data (a). Corresponding hierarchies are presented in
(d) and (g). The results found are much different: chain (b) versus star (e), and
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the hierarchies (d) and (g) are reversely nested. This is caused by the fact that the
N − 1 entries determining mT are almost nonoverlapping with the N − 1 entries
determining MT ; this can and does produce as great a difference in the results as
possible. The peculiarity of the methods that they involve just N − 1 dissimilarity
entries rather than all N(N − 1)/2 of them results in a twofold effect: (1) a nice
mathematical theory, (2) a poor application capability.

An analogous theory can be developed for the case of the rectangular dissimi-
larity data d = (dij), i ∈ I, j ∈ J, where I ∩J = ∅; some details can be seen in De
Soete et al. 1984 including the following extension of the ultrametric inequality:

dij ≤ max(di′j , dij′ , di′j′ ))

for all i, i′ ∈ I, j, j′ ∈ J .

6.3.2 Tree Metric and Its Adjustment

A dissimilarity d = (dij) is a tree metric if it satisfies four-point condition (6.138):

dij + dkl ≤ max(dik + djl, dil + djk). (6.142)

How can one derive a weighted tree representing a given tree metric? There
have been developed several approaches to the problem as based on: (1) defini-
tion, (2) FKE-transform reduction to the ultrametric, and (3) sequentially finding
“immediate” neighbors. Let us discuss, in brief, all the three approaches.

Most straightforward and perhaps the simplest, definition-based approach relies
on the fact that, for any i, j ∈ I, the tree metric distance from another entity k ∈ I
to the only path T (i, j) joining i and j in T is equal to d(k, u) = (dik +djk −dij)/2,
which is obvious from the picture in Fig.6.56. Thus, we may start drawing the tree
from any pair i, j joined by an edge of length dij considered as a starting draft of
the path T (i, j) between i and j in T . To join an arbitrary k with this “current
path draft”, we determine its distance from that, d(k, u), which allows us putting u
on the path draft after its location is determined uniquely with the distances from i
and j, d(u, i) = dik−d(k, u) and d(u, j) = djk−d(k, u). Continuing this process, we
arrive at a tree sought (see Waterman et al. 1977). A drawback of this approach is
that it cannot be applied to arbitrary dissimilarity data since values d(k, u) based
on different pairs i, j are inconsistent with each other and with distances from the
other entities to T (i, j). In this aspect, the other two approaches seem somewhat
better since they lead to a uniquely defined tree even when the data does not satisfy
the four-point condition. However, the meaning of the tree found remains unclear
and heuristic.

Let us discuss the FKE-transform based approach. Selecting an arbitrary c ∈ I
and defining a derivative ultrametric dc(i, j) = dij − dic − djc (see Statement 6.5.),
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we can see that, actually, the tree metric has at most 2N − 3 different values.
Indeed, ultrametric dc has at most N − 2 values since it is defined on set I − {c},
and there are N −1 values dic, i �= c; these 2N −3 values determine the tree metric
completely due to the equations dij = dc(i, j) + dic + djc. This allows us to use a
minimum spanning tree mTc of the ultrametric dc to store all the information on
the tree metric (Bandelt 1990); the restoring formula:

dij = max
(k,l)∈mTc(i,j)

dc(k, l) + dic + djc (6.143)

is based on Statement 6.14.

The same formula can be utilized when an arbitrary dissimilarity measure d =
(dij) is given to approximate it (in an intuitive sense) by a tree metric. To do that,
let us:

1) choose a c ∈ I;

2) calculate dissimilarity dc(i, j) = MM +dij −dic −djc for every i, j ∈ I −{c}
(where MM is a large number, say, MM = 2 maxi,j∈I dij);

3) determine a minimum spanning tree mTc for dc;

4) calculate a tree dissimilarity with formula (6.143).

A nice property of the procedure is that the dissimilarity found satisfies the
four-point condition (6.142); thus, the procedure restores the given d when it is a
tree metric. Yet there are also some drawbacks: (1) each c ∈ I chosen may lead
to a different result, (2) the dissimilarity found may have some negative values
(Leclerc 1995). A more direct way for storing and restoring the tree metric based
just on a minimum spanning tree constructed for the tree metric itself has been
suggested recently by Leclerc 1995 (based on a method elaborated by Critchley
1994 for a particular case).

Sattah and Tversky 1977 developed an approach based on the following ob-
servation. A pair of leaves of a tree are called immediate neighbors if they are
connected through a single interior node; the interior connecting node will be re-
ferred to as the marginal node. It is obvious that, in any tree, there is at least one
pair of immediate neighbors. Let us assume that we always can identify a pair of
immediate neighbors by the tree metric. This gives rise to the following algorithm
for designing an underlying tree, which is referred to usually as the neighbor joining
(NJ) algorithm (Saitou and Nei 1987).
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Neighbor Joining Algorithm
1. Pick a pair of immediate neighbors, i and j.
2. Form a new node u with its distances du,k = (dik + djk − dij)/2, k ∈
I − {i, j}, put it in I and remove i and j (after deleting i and j, u
becomes a leaf).
3. If there are still some entities of I unremoved, go to step 1 (with the
data reduced); otherwise end.
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Figure 6.58: After removal of the immediate neighbors i and j, u remains a leaf.

The process can be illustrated with Fig.6.58. If the underlying tree is not
binary, for example, the distance between u and x on Fig.6.58 is zero, it will be
manifested in the fact that all the distances defined for x will be the same as for
u: d(u, k) = d(x, k) for any k ∈ I − {i, j, j′}. The distances d(i, u) and d(j, u) are
evaluated based on the same considerations: say, d(i, u) = (dik + dij − dkj)/2 for
any k ∈ I − {i, j} when the distance d is a tree metric.

To perform the first step of NJ algorithm, a procedure for determining a pair
of immediate neighbors is needed. Sattah and Tversky 1977 pointed out that the
immediate neighbors i and j must satisfy inequality

dij + dkl < dik + djl

for every pair {k, l} �= {i, j}; they proposed to count, for every pair i, j, the number
of the pairs {k, l} satisfying the inequality above (which is just the score function
σ(i, j) (6.140)). Obviously, when the dissimilarity is a tree metric, any pair which
has received the maximum number of counts (maximum σ(i, j)) must be immediate
neighbors; this principle is utilized in their version of the NJ algorithm (Sattah and
Tversky 1977).
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Gascuel 1994 demonstrated that the other neighbor-joining algorithms sug-
gested by Saitou and Nei 1987 and Studier and Keppler 1988, actually, are based
on maximization of a quantitative form of Sattah and Tversky’s criterion:

D(i, j) =
∑

k,l∈I−{i,j}
(dik + djl + dil + djk − 2dij − 2dkl)/2.

We suggest using, for the same purpose, a centrality index of the path T (i, j)
between i, j ∈ I defined as

c(i, j) =
∑
k∈I

d(k, T (i, j))

where d(k, T (i, j)) is the distance between k ∈ I and the node u in T (i, j) where
k joins the path (see Fig.6.56). For the points i and j themselves the distances
d(i, T (i, j)) and d(j, T (i, j)) can be defined as equal to d(i, j)/2.

With elementary arithmetic, it can be proven that the centrality and Gascuel’s
indices are linearly related:

(N − 1)c(i, j) =
∑
i,j∈I

dij + D(i, j).

The centrality index can be calculated with a simpler formula derived from the
equality d(k, u) = (dik + djk − dij)/2:

c(i, j) = (di+ + dj+ − (N − 2)dij)/2

where di+ =
∑

k∈I dik for any i ∈ I. This formula allows much simpler calculation
since it is based on pairs of the entities, not quadruples of them, as the other ones.

The NJ algorithm is correct if the claim that the maximum of the centrality
index (or, equivalently, of Saitou-Nei or Studier-Keppler index) corresponds to a
pair of immediate neighbors is correct; though the proofs published by the latter
authors do not seem to be quite clear, the fact seems quite plausible.

In Fig.6.59, the sequential iterations of the NJ algorithm applied to the 5 by 5 Primates
dissimilarity matrix are presented. The matrix is presented along with the summary
distances di, i = 1, ..., 5 in (a); corresponding centrality index values are in matrix (b).
We can see that the maximum equals c(4, 5) = 12.16; this allows us to agglomerate the
species 4 and 5 into an interior (ancestral species) node 45, as shown in (c). The distances
between 45 and its constituents are calculated based on the formula mentioned above,
d(i, u) = (dik − djk + dij)/2, where u is the agglomerate of i and j and k ∈ I is arbitrary.
The latter formula holds when d is a tree metric. When the dissimilarity is arbitrary,
there is no preference for choice of k �= i, j. The standard practice, in this case, is to
average the estimates by k �= i, j, which leads to

d(i, u) = [
∑
k �=i,j

(dik − djk)/(N − 2) + dij ]/2,
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Figure 6.59: NJ-algorithm applied to Primates data.

and an analogous formula is utilized to estimate d(j, u). In our case,
∑

k �=4,5
(d4k −

d5k)/3 = (4.53 + 4.61 + 4.35)/3 = 4.50. This results in the estimates d(4, 45) = (4.50 +

7.10)/2 = 5.80 and d(5, 45) = (−4.50 + 7.10)/2 = 1.30 (see 6.59 (c)). It remains to

recalculate dissimilarities between the new node 45 and the others using formula d(u, k) =

(d(i, k) + d(j, k) − d(i, j))/2 (see the resulting distances in Fig.6.59 (d)). At the next

iteration, we can see that the centrality index (e) has two maxima: c(1, 2) = c(45, 3) =

3.24. Actually, this can be used for parallel merging 1 with 2 and 45 with 3 since such

a result clearly indicates that both pairs are immediate neighbors (in the case when d

is a tree metric). However, let us do it sequentially: merge 3 and 45 along with the

subsequent estimation of the edges obtained (Fig.6.59 (f)). Once again, we start with an

aggregate data (g), this time having all the centrality index values equal (h), which clearly

indicates that all three nodes, 345, 1, and 2, must be merged into the same aggregate



514 HIERARCHY AS A CLUSTERING STRUCTURE

node u (see Fig.6.59 (i)). The tree is found, but there is no information to choose the

root location. In molecular biology, supplementary information is utilized. Usually, this

is done by adding to I yet another species which is known to have quite a small degree of

the evolutionary kinship to the species in I . The node of joining this particular species

to the tree constructed for I , indicates the location of the “ancestral” root of the species

in I . In our case, the species 5, Rhesus monkey, is, obviously, more distant from the

others, thus indicating the root location for the other four species (between 3 and 4), as

well as for all the set of five (between 4 and 5). A corresponding rooted tree (with the

appropriate edge lengths) is shown in Fig.6.59 (j). The tree metric (k), in this particular

case, does not look too different from the original data.

It should be noted, that due to the sequential organization of the process con-
sidered, the following regularity holds: the farther from the immediate neighbors,
the larger the differences between the original and derived dissimilarities.

6.3.3 Discussion

There are three major questions about each of the two classes of metrics considered,
ultrametric and tree metric:

(1) Whether a given dissimilarity metric belongs to a class (recognition prob-
lem);

(2) If yes, how a corresponding tree can be reconstructed; and how all the set
of corresponding trees can be characterized (reconstruction problem);

(3) If no, how the given data set can be approximated in a class of metrics
considered (approximation problem).

Addressing the two former questions is not an issue; a handful of possible ap-
proaches to that have been described above. The methods of recognition and
reconstruction for both ultrametric and tree metric seem quite satisfactory com-
putationally. Moreover, the tree reconstructed is uniquely defined. On the other
hand, we have presented nothing but heuristic methods for the approximation prob-
lem. The problem of approximation with least-squares or least-moduli criterion
has been proven computationally hard (Day 1987), though minimizing maximum-
moduli criterion may be computationally easier (Agarwala et al. 1995). Eventually,
substantive research may suggest other forms of approximation criteria.

Yet there is another aspect of the analysis: the relationship between the two
kinds of metrics provided by FKE-transformation. There is something mysterious
in that. The ultrametric inequality holds up to monotone transformations of the
distance: for any non-decreasing real function ξ, distance ξd is an ultrametric iff d
is, which is not true when d is a tree metric; the four-point condition holds up to
any non-decreasing linear (not arbitrary monotone) function, ξ(x) = ax+ b, where
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a ≥ 0. This means that the topology of a rooted tree can be reconstructed in a
unique way under any non-decreasing transformation ξd of the ultrametric d while
the unrooted tree reconstructed from a tree metric d is invariant only with regard
to linear functions ξ. The question is this: what makes the switching between the
ordinal and cardinal kinds of data so easy?

6.4 Split Decomposition Theory

6.4.1 Split Metrics and Canonical Decomposition

Let d = (dij), i, j ∈ I, be a tree metric on an N -element set I where N ≥ 5. As
we have stated already, for any i, j, k, l ∈ I, inequality in the four-point condition,

dij + dkl < max(dik + djl, dil + djk),

indicates that vertices i and j can be separated from k and l in the corresponding
weighted tree by eliminating an edge. To fix the split edge location, we need
information on the whole T -split S = {A, B}. Moreover, the weight of the split
edge can be estimated with the following “four-point” dissimilarity function

d(ij, kl) = [max(dij + dkl, dik + djl, dil + djk) − dij − dkl]/2, (6.144)

applied to every i, j ∈ A and k, l ∈ B. The weight equals

d(A, B) = min
i,j∈A,k,l∈B

d(ij, kl) (6.145)

which can be easily seen in Fig.6.50.

The T -splits S = {A, B} can be recovered from d as the biclass partitions of I
such that for every i, j ∈ A and k, l ∈ B the strong four-point inequality above is
true.

When d is an observed symmetrical dissimilarity function, not an exact tree
metric, this method can be generalized in various ways. The following discussion
presents the results found by Bandelt and Dress 1992 based on use of formula
(6.145) applied to all possible pairs of nonoverlapping subsets A, B ⊂ I, biclass
partitions included.

Obviously, d(A, B) ≥ 0 since d(ij, kl) ≥ 0 by its definition in (6.144). The pairs
{A, B} with d(A, B) > 0 will be called d-splits (with added adjective “partial” when
A∪B �= I). Since some of i, j and k, l may be coincident, in general, d({i, j}, {k, l})
may be less than d(ij, kl). However, these values coincide when d satisfies the
triangle axiom because, in this case, d(ij, kl) cannot be larger than any d(i1i2, k1k2)
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with i1, i2 ∈ {i, j} and k1, k2 ∈ {k, l}. For example, dik + djl − dij − dkl ≤
dik + dil − dkl = 2d(ii, kl) ≤ 2dik = 2d(ii, kk).

Let us denote the set of all d-splits by S(d). For a partial split {{i, j}, {k, l}},
let us denote S(d)(ij, kl) the set of all d-splits {A, B} ∈ S(d) extending it, that
is, such that {i, j} is included in one of the classes A, B while {k, l} in the other.
Since, obviously, at least one of the values d(ij, kl), d(ik, jl), and d(il, jk) is zero,
the set of d-splits must be compatible in that, for every quadruple i, j, k, l ∈ I,
S(d)(ij, kl) ∩ S(d)(ik, jl) ∩ S(d)(il, jk) = ∅. This latter equation will be referred
to as the condition of weak compatibility (which extends the previous condition of
mere compatibility held for T -splits). A dissimilarity function d may have S(d)
empty, which means that d(A, B) = 0 for every split {A, B}; such a d is called split-
prime. The simple mismatch coefficient between all 8 subsets of a three-element
set (or Hamming distance between all 3-digit Boolean vectors, which is the same)
is an example of the split-prime metric.

Any split S = {A, B} can be associated with a so-called split metric dAB defined
so that dAB(i, j) = 1 whenever i and j belong to different classes of the split, and
dAB(i, j) = 0 when i, j are in the same class, A or B. Actually, this is dissimilarity
1 − sij associated with the equivalence indicator matrix for partition S, p. 382;
another term used here underscores its metric application.

Since a set of d-splits, S(d), obviously, does not change when d is multiplied
or/and added with a real, that is, S(d) = S(αd + β), for any real β and positive
α, in the rest of this section, we consider only nonnegative dissimilarities with zero
diagonal, dij ≥ dii = 0 for every i, j ∈ I. It appears (Bandelt and Dress 1992) that
the set S(d) has remarkable properties:
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Properties of d-splits

1. For each d-split S = {A, B}, there exist i, j, k, l ∈ I (some of i, j
or/and k, l may coincide) defined by condition d(A, B) = d(ij, kl)
such that S(d)(ij, kl) = {S}; that is, S is the only element of
S(d)(ij, kl).

2. The following canonical decomposition holds:

d =
∑

{A,B}∈S(d)

d(A, B)dAB + d0 (6.146)

where residue d0 is a split-prime nonnegative dissimilarity function
(which is a metric if d is a metric).

3. All the elements of the canonical decomposition (d-split metrics,
dAB , and the split-prime residue, d0) are linearly independent in
N(N − 1)/2-dimensional space of the dissimilarity functions on I.

4. Any set of splits of I is a set of d-splits for a dissimilarity function
d if and only if it is weak compatible.

5. A dissimilarity d has its split-prime residue d0 vanished, d0 = 0, if
and only if d satisfies the following five-point condition: for every
i, j, k, l, u ∈ I,

d(ij, kl) ≤ d(iu, kl) + d(ij, ku).

These statements show that the number of d-splits is not larger than N(N −
1)/2, and d0 = 0 when the bound is exact. To find all the d-splits, the following
recursive procedure can be carried out.

Finding d-splits
Suppose that all partial d-splits have been found for a proper k-element
subset X ⊂ I. Then, pick any u ∈ I − X and check whether {X, {u}}
or {A ∪ {u}, B} or {A, B ∪ {u}} is a partial split of X ∪ {u}, for any
partial d-split {A, B} of X . In this way, all partial d-splits of X ∪ {u}
will be found. The values d(A, B) are updated at each iteration.

After some O(N) iterations all the d-splits S along with their d(S) will be found.
Since every iteration step involves some O(k3k(k − 1)/2) = O(k5) comparisons
(where k = |X |), the complexity of the whole procedure is O(N6), and it remains
to find out whether any procedure of lesser complexity exists.

Let us apply the procedure to Primates 5 × 5 distance data. It can be seen rather
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easily that there are 10 d-splits listed in Table 6.67. Curiously, the number of d-splits

Split Index

1 0.695
2 0.705
3 0.695
4 1.245
5 5.725
1-2 0.03
1-3 0.01
2-4 0.04
3-5 0.09
4-5 0.96

Table 6.67: Set of all d-splits for the Primates distance data; each presented with
its smaller class and split index value.

found is exactly N(N − 1)/2 = 10 for N = 5, which means that there is no residue in

decomposition of the metric through the splits. For instance, d34 = 3.04 = 0.695+1.245+

0.01+0.04+0.09+0.96 where terms correspond to splits 3, 4, 1-3, 2-4, 3-5, and 4-5 from

Table 6.67, respectively.

No simple visual representation for the canonical decomposition has been found
yet. However, an approximate tree representation has been proposed by Bandelt
and Dress 1994 via finding a compatible subset of splits. A greedy procedure works
as follows.

Greedy Split-Based Tree
Order the splits in order of decreasing split indices. Pick them in this
order checking whether the current is compatible with those previously
selected. If yes, add it to the collection; if no, drop it out, and take the
next one.

Applied to the data in Table 6.67 already ordered bottom-up, the algorithm leads to

a collection consisting of only two nontrivial splits, 1-2 and 4-5 (the others are noncom-

patible with split 4-5 taken first). The trivial splits are compatible always and may be

omitted from the procedure. This gives the tree presented in Fig.6.60 along with corre-

sponding tree metric. The metric is obviously subdominant to the original metric, which
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Figure 6.60: The weighted tree and its tree metric produced by the “greedy” splits
for Primates data.

reflects the fact that three d-splits have been excluded from the tree.

6.4.2 Mathematical Properties

The statements 1 to 4 in the box on p. 517 will be proved in this section to
substantiate the algorithm described.

To prove item 1, let us demonstrate that the following holds.

Statement 6.16. For any partial d-split {A0, B0}∑
{A,B}∈S(d)(A0,B0)

d(A, B) ≤ d(A0, B0).

Proof: Let us prove that, for any u �= i, j, k, l,

d({i, j, u}, {k, l}) + d({i, j}, {k, l, u}) ≤ d(ij, kl). (6.147)

Let the inequality fail; that is, d({i1, i2, u}, {k1, k2}) + d({i1, i2}, {k1, k2, u}) >
d(i1i2, k1k2) for some i1, i2, k1, k2, u. The fact that d(i1i2, k1k2) > 0 implies that
all the three quantities are positive since no single item on the left can be larger
than d(i1i2, k1k2), by definition.

Let {p, q} = {1, 2} so that d(i1u, k1k2) = (di1kq + dukp − di1u − dk1k2)/2. By
the assumption,

d(i1u, k1k2) + d(i1i2, ukp) ≥ d({i1, i2, u}, {k1, k2}) + d({i1, i2}, {k1, k2, u}) >
d(i1i2, k1k2),

which means that
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di1kq − di1u + max(di1u + di2kp , di1kp + di2u) > max(di1k1 + di2k2 , di1k2 + di2k1).

This strict inequality may only hold when max(di1u + di2kp , di1kp + di2u) �=
di1u + di2kp , that is, when di1u + di2kp < di1kp + di2u for p = 1, 2. With i1 and i2
in the argument above interchanged, the same items appear in the reverse strict
inequality, which is impossible, thus proving the inequality.

Let now S = {A′, B′} be a partial split extending {{i, j}, {k, l}} (that is, i, j ∈
A′ and k, l ∈ B′) and satisfying d(A′, B′) = d(ij, kl). For any u �∈ A′ ∪ B′,

d(A′ ∪ {u}, B′) + d(A′, B′ ∪ {u}) ≤ d(A′, B′)

by (6.147) since d(A′ ∪ {u}, B′) ≤ d({i, j, u}, {k, l}) and d(A′, B′ ∪ {u}) ≤
d({i, j}, {k, l, u}). This means that the statement is proven for the situation when
partial split {A0, B0} takes into account all but one element of I.

Let us now make inductive assumption that the statement holds when |I−(A0∪
B0)| = n and prove it for |I − (A0 ∪ B0)| = n + 1. In the latter case, obviously,∑

{A,B}∈S(d)(A0,B0)
d(A, B) =

∑
{A,B}∈S(d)(A0∪{u},B0) d(A, B)+∑

{A,B}∈S(d)(A0,B0∪{u}) d(A, B) ≤ d(A0 ∪ {u}, B0) + d(A0, B0 ∪ {u}) ≤ d(ij, kl),

which proves the statement. �

Statement 6.17. For every d-split S = {A, B}, there exist i, j, k, l ∈ I (some of
i, j or/and k, l may coincide), defined by condition d(A, B) = d(ij, kl) such that
S(d)(ij, kl) = {S}; that is, S is the only element of S(d)(ij, kl).

Proof: We have

d(A, B) ≤
∑

{A′,B′}∈S(d)(ij,kl)

d(A′, B′) ≤ d(ij, kl) = d(A, B).

This shows that d(A′, B′) = 0 unless {A′, B′} = {A, B}. �

The first claim in the box is proven. To prove the second one, let us state the
following.

Statement 6.18. For a d-split {A, B} and λ ≤ d(A, B), function

d′ = d − λdAB

is nonnegative (satisfying the triangle inequality if d does) and d′(A′, B′) =
d(A′, B′) for all d-splits {A′, B′} �= {A, B} while d′(A, B) = d(A, B) − λ.

Proof: To prove that d′ is nonnegative, note that d′ij = dij when i, j ∈ A or i, j ∈
B. For i ∈ A and j ∈ B, we have d′ij = dij − λ = d(ii, jj) − λ ≥ d(A, B) − λ ≥ 0.
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When d satisfies the triangle inequality, dij ≤ dik + dkj , two kinds of situations
are possible: (a) all i, j, k belong to one of the classes, say, A, (b) two of the
entities, say, i, j belong to one of the classes, A, while k ∈ B. Case (a) is trivial
since d′ = d within the classes. In the second case, d′ij = dij while d′ik = dik − λ
and d′jk = djk − λ. Since λ ≤ d(A, B) ≤ d(ij, kk) = (dik + djk − dij)/2, we have
dij ≤ (dik − λ) + (djk − λ), which proves the triangle inequality for d′.

Let us prove that d′(ik, jl) = d(ik, jl) for all disjoint pairs of sets {i, k} and
{j, l} such that {A, B} �∈ S(d)(ik, jl). If either of A or B contains at least three
of i, j, k, l, then the equality is trivial. When A contains only two of i, j, k, l, say,
i, k ∈ A (and thus j, l ∈ B),

dik + djl ≤ max(dij + dkl − 2λ, dil + djk − 2λ)

since λ ≤ d(A, B) ≤ d(ik, jl) = [max(dij + dkl, dil + djk) − dik − djl]/2.

This implies that d′(ik, jl) = [max(dij + dkl − 2λ, dik + djl, dil + djk − 2λ) −
dik − djl + 2λ]/2 = [max(dij + dkl − 2λ, dil + djk − 2λ) − dik − djl + 2λ]/2 =
[max(dij + dkl, dil + djk) − dik − djl]/2 = d(ik, jl), as required.

When {A, B} ∈ S(d)(ij, kl), obviously, d′(ij, kl) = [max(dik + djl − 2λ, dil +
djk − 2λ) − dij − dkl]/2 = d(ij, kl) − λ. This implies that d′(A, B) = d(A, B) − λ
since {A, B} is the only d-split to extend {i, j}, {k, l}.

It remains to show that d′(A′, B′) = d(A′, B′) for all the other d-splits. Choose
i, k ∈ A′ and j, l ∈ B′ such that d(A′, B′) = d(ik, jl). Since {A, B} �∈ S(d)(ik, jl)
by the Statement 6.17. above, that implies that d(A′, B′) = d(ik, jl) = d′(ik, jl) ≥
d′(A′, B′). To prove the reverse inequality, assume that d′(A′, B′) = d′(tu, vw).
Then, d(A′, B′) ≤ d(tu, vw) = d′(tu, vw) = d′(A, B) when {A, B} �∈ S(d)(tu, vw).
Otherwise, if {A, B} ∈ S(d)(tu, vw), then d(A′, B′) ≤ d(A′, B′) + d(A, B) − λ ≤
d(tu, vw) − λ = d′(tu, vw), which completes the proof. �

The statement proven shows that the set of d-splits can be contracted by one-
by-one eliminating the splits sequentially via subtractions d′ = d − d(A, B)dAB

since the only difference in the split structure of d′ and d is that {A, B} is not
a d′-split. This shows that, actually, the second claim has been proven and the
following theorem holds.

Statement 6.19. The canonical decomposition (6.146) holds along with the
residue d0 being a split-prime nonnegative dissimilarity function (which is a metric
if d is a metric).

Let us now analyze the concept of weak compatibility.

Statement 6.20. For any collection S of weakly compatible splits of I and positive
λS chosen for every S ∈ S, dissimilarity function d =

∑
S∈S λSdS is a metric

having its d-split set equal to S along with d(S) = λS for every S ∈ S.
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Proof: Let us consider a split S = {A, B} ∈ S and pick i, j ∈ A and k, l ∈ B
such that d(A, B) = d(ij, kl). Let us prove that d(A, B) > 0, that is, {A, B} is a
d-split. By weak compatibility, there is no split in S extending, say, {i, l}, {j, k}.
Thus, we can partition S into three parts, S1 collecting all those S ∈ S that extend
{i, j}, {k, l}, S2 consisting of all those S ∈ S that extend {i, k}, {j, l}, and S3 = S
-(S1 ∪S2). Since all the splits from S3 equally contribute to each of the four-point
distance sums involving i, j, k, l, we have

d(ij, kl) = [max(dik + djl, dil + djk) − dij − dkl]/2 =

max(
∑

S∈S1
λS ,

∑
S∈S1∪S2

λS) −∑S∈S2
λS =

∑
S∈S1

λS ≥ λ{A,B} > 0,

which proves that {A, B} is a d-split. Thus, the set of d-splits includes S. Canon-
ically decomposing d, we have d = d0 +

∑
d−splitsS d(S)dS ≥ ∑

S∈Sd(S)dS ≥∑
S∈SλSdS = d, which implies d0 = 0 and d(S) = λS for S ∈ S, or dS = 0,

otherwise. �

Statement 6.21. The split metrics dS for any collection S of weakly compatible
splits of I are linearly independent, thus, S cannot contain more than N(N − 1)/2
splits.

Proof: Assume that
∑

S∈SλSdS = 0 for some real λS , S ∈ S. Partition S into
three classes, S1, S2 and S3, with S1 corresponding to positive, S2 negative, and
S3 zero lambdas. Then consider metric d given by either of the equal expressions∑

S∈S1

λSdS =
∑

S∈S2

(−λS)dS .

The previous statement implies that S1 = S2 which can be true only if both of the
sets are empty. Thus S=S3 and all λS = 0, which proves that the split metrics
dS , S ∈ S, are linearly independent. The dimensionality of the set of N by N
symmetric matrices with zero diagonal equals, obviously, N(N − 1)/2, and the
statement is proven. �

To complete the proof of the first four properties of d-splits listed in the box,
it remains to prove that the split-prime residue is linearly independent from the
d-split metrics.

Statement 6.22. The split-prime residue d0 in canonical decomposition (6.146)
is linearly independent from the all d-split metrics.

Proof: Let d0 be a linear combination of d-split metrics dS , d0 =
∑

S λSdS . Let
us denote the set of all d-splits S with nonnegative λS ≥ 0 by S1, and the set of
all d-splits with negative λS < 0, by S2. Consider metric

d′ =
∑

S∈S1

d(S)dS +
∑

S∈S2

(d(S) + λS)dS .
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For any split S of I, d′(S) = d(S) if S ∈ S1, d′(S) = d(S) + λS if S ∈ S2, and
d′(S) = 0, otherwise.

On the other hand, d′ = d−∑S∈S1
λSdS . This implies that d′(S) = d(S)−λS

if S ∈ S1 and d′(S) = d(S) if S ∈ S2. Comparing the equations for d′(S), we
conclude that all λS = 0, which proves the statement. �

6.4.3 Weak Clusters and Weak Hierarchy

The concept of weak cluster has been considered in Section 2.2.1, p. 282. Let us
put it here in the following way. For a distance matrix d = (dij), let us define a
three-argument function: d(i, j/k) = max(dij , dik, djk) − dij . A subset A ⊂ I is
a weak cluster if, for any i, j ∈ A and k �∈ A, d(i, j/k) > 0. The minimum value
d(A) = mink �∈A mini,j∈A d(i, j/k) is called the isolation index of A; obviously, A is
a weak cluster if and only if d(A) > 0.

The isolation index can be presented as d(A) = mink �∈Ad(k, A) where d(k, A) =
mini,j∈A d(i, j/k) is a linkage function which is obviously monotone (as defined in
Section 3.2.5). Thus, the isolation index is a quasi-convex set function, that is, it
satisfies inequality d(A∩B) ≥ min(d(A), d(B)) when A∩B �= ∅. Obviously, every
entity i forms a weak cluster on its own since d(i, i/k) > 0 when k �= i (we do not
consider the trivial zero distance here).

Statement 6.23. If weak clusters A and B have nonempty intersection A ∩ B,
then it is a weak cluster also.

Proof: Indeed, d(A ∩ B) ≥ min(d(A), d(B)) > 0. �

This implies that, actually, the intersection of any number of weak clusters is
a weak cluster if not empty.

Statement 6.24. If S1, S2 and S3 are weak clusters, then S1 ∩ S2 ∩ S3 = Sk ∩ Sl

for some k, l ∈ {1, 2, 3}.

Proof: Let S1 ∩ S2 ∩ S3 not be equal to any of S1 ∩ S2, S1 ∩ S3, S2 ∩ S3. Then
there exists xi ∈ Sj ∩ Sk − Si for {i, j, k} = {1, 2, 3} (see Fig.6.61). Let, without
loss of generality, dx1x2 ≤ dx2x3 ≤ dx1x3 . Then d(x1, x3/x2) ≤ 0, which contradicts
the assumption that S2 is a weak cluster. �

Let us remind the reader the concept of weak hierarchy. A weak hierarchy is
a set SW of subsets Sw, w ∈ W , satisfying the following two properties: (1) for
any S1, S2 ∈ SW , S1 ∩ S2 �= ∅ implies S1 ∩ S2 ∈ SW ; (2) for all S1, S2, S3 ∈ SW ,
S1 ∩ S2 ∩ S3 = Sk ∩ Sl for some k, l ∈ {1, 2, 3}.
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Figure 6.61: A three subset pattern which does not fit in the weak hierarchy
definition.

The properties proven mean that the set of all weak clusters, for a given dissim-
ilarity d, is a weak hierarchy. There exists yet another characteristic of the weak
hierarchies, in terms of the closure operator associated. For any subset A ⊂ I,
let us denote its SW -closure, that is, the intersection of all the Sw ∈ SW contain-
ing A, through 〈A〉. Then, it can be proved that any weak cluster is, really, the
closure of a pair of the entities (Jamison-Waldner 1982, Bandelt and Dress 1989).
The set trees also have this property. Howewer, for the weak hierarchies, it is a
characteristic.

Statement 6.25. An intersection-closed set of subsets, SW , is a weak hierarchy
if and only if, for any cluster A ∈ SW , there exists a pair of the entities, i, j ∈ A
(perhaps coinciding) such that A = 〈i, j〉.

Proof: Let SW be a weak hierarchy while there exists A ∈ SM such that A �= 〈i, j〉,
for any i, j ∈ A. Let us take a pair i, j ∈ A such that 〈i, j〉 is maximal. Let
k ∈ A − 〈i, j〉. Then i �∈ 〈k, j〉 and j �∈ 〈i, k〉 since 〈i, j〉 is maximal. This contra-
dicts property 2 in the definition of weak hierarchy. Conversely, if the nonempty
intersection of S1, S2, and S3 from SW is not equal to either S1 ∩ S2 or S1 ∩ S3 or
S2 ∩S3, then the latter three intersections contain elements x3, x2, and x1, respec-
tively, not belonging to S1 ∩ S2 ∩ S3. This implies that 〈x1, x2, x3〉 �= 〈xi, xj〉 for
all i, j ∈ {1, 2, 3}, which contradicts the assumed property. �

Due to the statement, all the weak clusters are closures of subsets consisting of
one or two of the entities, which implies that number of the weak clusters cannot
exceed the total number of those, N + N(N − 1)/2 = N(N + 1)/2.

The concepts of weak clusters and d-splits are quite interrelated.

Let us employ a given dissimilarity d = (dij) as a d-split generator while weak
clusters will be defined in set Ic = I − {c} where c is an arbitrary element of I.
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Let us recall that FKE-transform (6.139) is a dissimilarity function defined on Ic:

dc(i, j) = MM + dij − dic − djc (i, j ∈ I − {c})

where MM > 0 is chosen to make all the values of dc positive. Analogously, an
FKE-transform similarity function can be defined as:

ac(i, j) = dic + djc − dij

thus satisfying equation ac = MM − dc.

The concept of a dc-weak cluster as a subset A ⊆ Ic satisfying inequality

dc(A) = min
i,j∈A,k �∈A

dc(i, j/k) > 0

where dc(i, j/k) = max(dc(i, j), dc(i, k), dc(j, k)) − dc(i, j), can be easily reformu-
lated in terms of ac. A subset A ⊂ Ic is a weak ac-cluster if and only if, for every
i, j ∈ A and k ∈ Ic − A,

ac(i, j/k) = ac(i, j) − min(ac(i, j), ac(i, k), ac(j, k)) > 0.

The minimum value of ac(i, j/k) in the condition above will be referred to as the
similarity isolation index ac(A) of A. Obviously, ac(A) = dc(A).

A major observation made by Bandelt and Dress 1992 is the following corre-
spondence between d-splits and weak dc-clusters.

Statement 6.26. In every d-split {A, B}, one of the classes – that one not con-
taining c – is a weak dc-cluster. A biclass partition {A, B} is a d-split if and only
if A is a weak dc-cluster for every c ∈ B, and d(A,B) equals the minimum of
dc(A), c ∈ B.

Proof: Let us consider d(ij, kc) = max(dij + dkc, dik + djc, dic + djk) − (dij +
dkc). After adding MM − djc − dic − dkc to every term, we have: d(ij, kc) =
max[dc(i, j), dc(i, k), dc(j, k)] − dc(i, j) = dc(i, j/k). Thus A is a weak dc-cluster if
and only if {A, {k, c}} is a partial d-split for every k ∈ I − A − {c}. �

Let us extend the concept of additive structure to the weak hierarchy. Let us
consider an arbitrary non-negative function λ(Sw) for the clusters Sw belonging
to a given weak hierarchy SW (c) on the set Ic, which is assumed positive for the
irreducible clusters (not being intersections of the other clusters). The cluster
indicator function sw is defined, as usual, with siw = 1 if i ∈ Sw and siw = 0 if
i �∈ Sw. A matrix indicator function is defined as sc

w(i, j) = siwsjw , being equal to
unity if both i and j belong to Sw. Curiously, this function is the FKE-transform
similarity function for the split metric of the corresponding split {Sw, I − Sw}:
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sc
w(i, j) = (dSw,I−Sw(i, c) + dSw ,I−Sw(j, c) − dSw,I−Sw(i, j))/2,

which is easily proven by checking out all the possibilities: (a) both i, j belong
to Sw; (b) one of i, j belongs to Sw; (c) both of i, j belong to I − Sw. Then
the additive (Sw, λ)-structure is defined as matrix ac =

∑
Sw∈SW (c) λ(Sw)sc

w. A
similarity matrix is called a weak hierarchy additive structure if it is a (Sw, λ)-
structure for a weak hierarchy SW and a function λ.

The following fact holds (see proposition 6 in Bandelt and Dress 1992).

Statement 6.27. A metric d = (dij) (i, j ∈ I) is d-split decomposable if and only
if its FKE-transform similarity matrix ac is a weak hierarchy additive structure for
all c ∈ I.

Proof: Let S(c) be the set of all A ⊆ I − {c} for which {A, I − A} is a
d-split. Since metric d is d-split decomposable, it can be presented as d =∑

A∈S(c) d(A, I − A)dA,I−A. Applying the FKE-transformation to both parts
of the equality, we have ac =

∑
A∈S(c) d(A, I − A)sc

A. Conversely, let ac =∑
A∈S(c) λ(A)sc

A for some c ∈ I. It implies that dic = ac(i, i) =
∑

i∈A∈S(c) λ(A).
The equation can be rewritten as follows: dij −∑A∈S(c) λ(A)dA,I−A = (dic −∑

i∈A∈S(c) λ(A)) + (djc −∑j∈A∈S(c) λ(A)) for any i, j ∈ Ic, which implies that
di,j =

∑
A∈S(c) λ(A)dA,I−A(i, j), or d =

∑
A∈S(c) λ(A)dA,I−A. Thus, λ(A) =

d(A, I − A) for any A ∈ S(c) by the previous statement. �

We can note that the weak clusters are uniquely defined up to any mono-
tone transformation of the similarity/dissimilarity function while the d-splits would
change under a nonlinear transformation of the distances, which is again connected
somehow with FKE-transformation (see p. 514).

More on the theory of weak clusters and hierarchies can be found in Bandelt
and Dress 1989, 1992.

6.4.4 Discussion

The contents of this section is an outline of a theory developed, mainly, by Bandelt
and Dress, on the tree-like structure information which can be extracted from any
nonnegative dissimilarity function d. It appears, there is quite a structure out
there.

1. There exists a uniquely defined set of biclass partitions {A, B} (d-splits) along
with weights d(A, B) such that corresponding matrix indicator functions,
dAB (d-split metrics), are linearly independent as N ×N dimensional vectors
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and, moreover, form the weighted summary dissimilarity function d′ which
is super-dominated by d, that is, d′ ≤ d.

2. The weight d(A, B) of a split {A, B} is equal to the weight of the edge splitting
A and B in the tree representing d when d is a tree metric.

3. The splits {A, B} with positive weights can be found sequentially, one-by-one,
sequentially subtracting the corresponding metric d(A, B)dAB from d after
a split {A, B} is found, which makes a theoretically determined alternative
to the heuristic subtraction process in the framework of a sequential fitting
clustering strategy SEFIT.

4. The biclass splits, in general, do not form a hierarchy; they do form a re-
stricted structure (weak compatibility) which relates to the weak hierarchy
formed by classes of the splits that are weak clusters of a corresponding FKE-
transform similarity ac of d. The weak hierarchy is a nice generalization of
the hierarchy concept in that every cluster can be considered as the intersec-
tion of all the clusters containing some pair of the entities, but, in contrast to
the ordinary hierarchy, the number of parents of a cluster in a weak hierarchy
may be more than one.

5. When the residual d − d′ is zero, the FKE-transform similarity matrix ac

is an additive cluster structure which can be effectively decomposed into a
weighted sum of uniquely defined cluster indicator matrices (following the
split decomposition of d).

6.5 Pyramids and Robinson Matrices

6.5.1 Pyramids

Let P = (i1, i2, ..., iN) be an ordering of I. A subset S ⊂ I is called P -compatible if
it can be represented as an interval of P , which means that if iP jPk and i, k ∈ S,
then j ∈ S. A pyramid (Diday 1986) is a set of subsets SW = {Sw ⊆ I : w ∈ W}
satisfying the following conditions:

1. {i} ∈ SW for any i ∈ I (singleton clusters);

2. I ∈ SW (universal cluster);

3. For any Sw and Sv (v, w ∈ W ), either Sv ∩ Sw = ∅ or Sv ∩ Sw ∈ SW ;

4. There exists an ordering P such that Sw is P -compatible for any w ∈ W .
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The definition immediately implies that any set hierarchy is a pyramid. Any
pyramid is a weak hierarchy; this follows from the properties of intervals: the
intersection of three intervals, if nonempty, must be the intersection of two of
them (see Fig.6.63 where the intersection of the intervals having a, b and c as their
endpoints is, obviously, the intersection of the b and c intervals).

C I V L M F W Y H EN D Q K R S T A G P
5

3

2

1

0

Score

Figure 6.62: Twenty protein indexed pyramid according to Smith and Smith 1990.

According to Smith and Smith 1990, the scores of the twenty amino acids in
problems of finding the best alignment of protein sequences can be represented by
the picture in Fig.6.62 which is nothing but a pyramid; the order of the amino
acids is compatible with all the clusters. Curiously, no node in the pyramid has
more than two parents. This is not a coincidence.

Statement 6.28. No cluster S ∈ SW in a pyramid SW has more than two parents.

Proof: Let S have three parents, S1, S2, and S3, at least. Obviously, S = S1∩S2∩
S3. Then, there must be a pair among the parents which gives S as their overlap
since SW is a weak hierarchy. Let it be S1 and S2 so that S = S1∩S2. It can be, in
terms of Fig.6.63, S1 = [a, b] and S2 = [c, d] so that S = [c, b]. The other interval,
S3 = [e, f ], must have e ≤ c and f ≥ b, to include S (here, the real-line relation
symbols, ≤ and ≥, are used to denote the corresponding pyramidal ordering P ).
Moreover, relation a < e would imply that interval set [e, b] belongs to SW , which
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contradicts the assumption that S1 = [a, b] is a parent of S since [e, b] ⊆ [a, b].
Thus, e ≤ a and, therefore, S1 ⊆ S3, which contradicts the assumption that S3 is
a parent of S. �

a bc d

Figure 6.63: Four real line intervals represented with their left (a, c) and right (b,
d) end-points.

An indexed pyramid is a pair (SW , h) where SW is a pyramid and h is an index
function satisfying the following conditions:

1. S ⊂ T implies h(S) < h(T ) for any S, T ∈ SW ;

2. h(S) = 0 if and only if S = {i} for some i ∈ I.

The two-parent property proven guarantees that any indexed pyramid can be
presented graphically by a dendrogram (having its singletons ordered according to
the pyramid ordering) as in Fig.6.62.

Diday and Bertrand 1986 also considered a wider class of index functions: a set
function h is referred to as a weak index for pyramid SW if it satisfies the following
conditions:

1. S ⊂ T implies h(S) ≤ h(T ) for any S, T ∈ SW ;

2. h(S) = 0 if and only if S = {i} for some i ∈ I;

3. S ⊂ T and h(S) = h(T ) implies that there exist clusters S1, S2 ∈ SW (differ-
ent from S) such that S = S1 ∩ S2.

Let us consider a pyramid having {a, b, c}, {b, c, d}, and {b, c} as its only nontrivial

clusters. With its index function equal to 1 at the two-element cluster and 2 at the three-

element clusters, the pyramid can be represented as in Fig.6.64 (1). With weak index
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Figure 6.64: Three subsets, a-b-c, b-c-d, and b-c, represented as an indexed pyra-
mid (1); when all the index values are 2 (weak index), the pyramid cannot be
drawn corectly (2), however, it can be visualized with a matrix pattern (3).

function equal to 2 for each of the clusters, no such picture can be drawn: in Fig.6.64 (2),

if both a and d would be joined with the top of cluster {b, c}, no three-element cluster

could be separated; in this case, the pyramid can be represented with just the weak index

function highlighted by crosses in Fig.6.64 (3).

Obviously, if h is a (weak) pyramid index function, fh is also a (weak) pyramid
index function, for any monotone function f .

An indexed pyramid defines a dissimilarity index for every pair of entities:
d(i, j) = h(Sij) where Sij is the smallest cluster containing both i and j (i, j ∈ I).
For example, d(C, Y ) = 1 and d(F, Y ) = 3 by the pyramid in Fig.6.62 indexed
(though in the opposite direction) by its score function. It turns out, the pyramidal
dissimilarity indices are closely related to the so-called Robinson matrices (called
linear, in Mirkin and Rodin 1984).

A dissimilarity measure d = (dij) is referred to as having Robinson form with
respect to an ordering P of I, if

dij ≥ max(dik, dkj)

whenever iPkPj. A Robinson similarity measure a = (aij) is defined analogously,
by the inequality aij ≤ min(aik, akj) whenever iPkPj. The entries in matrix d
(or a), subject to the row/column ordering P , never decrease (or increase) when
moving away from a main diagonal entry within any row or column. Actually, since
the matrix is symmetrical, even more may be said: the entries in matrix d (or a),
subject to the row/column ordering P , never increase (respectively, decrease) when
moving towards the main diagonal entries from any non-diagonal entry (i, j) within
its row i and column j border. This means that dkl ≤ dij when iPkP lPj, which
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follows from the inequalities dkl ≤ dkj and dkj ≤ dij implied by the definition of
the Robinson form.

Let us introduce also a stronger kind of Robinson dissimilarity measure. Let
d = (dij) be a Robinson form matrix with respect to the natural order of
its row/columns. We say that the strong inequality condition holds if dkj <
min(dij , dkl) whenever max(dij , dkl) < dil, 1 ≤ i < k < j < l ≤ N . A dissim-
ilarity measure d will be referred to as pyramidal if I can be reordered in such a
way that d becomes a Robinson matrix satisfying the strong inequality condition.

Obviously, for any monotone function ξ, matrices d and ξd simultaneously have
or do not have Robinson (pyramidal) form with respect to an order P .

Obviously, the chain CP = {(ik, ik + 1) : k = 1, ..., N − 1} along the order-
ing P = (i1...iN ) for a Robinson matrix is a minimum spanning tree (MST) in the
corresponding weighted graph. This can be utilized for recognition: given a dissim-
ilarity matrix, is it of Robinson form or not? It is sufficient to find all the minimum
spanning trees that are chains, and check the basic inequality in the Robinson form
definition with respect to the ordering corresponding to such a chain. The matrix
is not Robinson if the test fails, for instance, because there are no chains among
the minimum spanning trees.

Yet some other ways can be utilized to address the problem. One is based on the
fact that any dissimilarity matrix is Robinson if and only if all its threshold graphs
have their maximal cliques compatible with the same ordering P (Roberts 1979,
Gross and Fulkerson 1965). Finding maximal cliques is, in general, an NP-hard
problem; however, it is a simple problem for interval threshold graphs (see Booth
and Lueker 1976 who also provide a linear-time algorithm to analyze whether a
graph is an interval one or not [A graph G = (V, E) is called an interval graph if its
vertices can be represented as real line intervals in such a way that the intervals are
overlapping if and only if the corresponding vertices are joined by an edge in E.]).
Another way is based on “threshold” subsets (balls) B(i, h) = {k : dik ≤ h} (i ∈ I
and h is a real); B(i, h) is just the set consisting of i and the vertices adjacent
to i in the h-threshold graph Gh for dissimilarity d = (dij). The balls B(i, h) are
P -compatible if and only if matrix d is Robinson with respect to P (Kupershtoh
and Mirkin 1971). Based on this, the problem becomes one of checking whether
the incidence matrix for the set of all balls (whose cardinality, obviously, does not
exceed N2) can be reordered in such a way that every column has the consecutive
ones property (every B(i, h) is an interval of the order obtained); this can be
resolved with the PQ-tree algorithm of Booth and Lueker 1976.

It appears that the Robinson or pyramidal matrices are exactly the pyramidal
indices corresponding to weak index functions or to index functions, respectively.
The former result belongs to E. Diday who introduced the concept of pyramid itself
(Diday 1986, Diday and Bertrand 1986); the latter statement seems new, though
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some related concepts and results can be found in Durand and Fichet 1988, Diatta
and Fichet 1994.

To prove the statements, let us associate a pyramid with any given Robinson
matrix d. For the sake of simplicity, the dissimilarity d is assumed even, so that
dik = djk for all k ∈ I when dij = 0. Let Sh be a threshold clique, which means that
Sh is a maximal clique of the h-threshold graph Gh = {(i, j) : dij ≤ h}. Obviously,
if d is Robinson with respect to an ordering P , then Sh is P -compatible, as well
as the intersection Sh1 ∩ Sh2 (if not empty) of threshold cliques. Consider the set
SPd of all subsets of the form Sh or Sh1 ∩ Sh2 for some h, h1 and h2. The overlap
Sh1 ∩Sh2 may be not a threshold clique, as can be seen from the following example
of a Robinson matrix d:

d =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 5 5 5 5
1 0 1 2 3 4
5 1 0 2 2 3
5 2 2 0 1 2
5 3 2 1 0 1
5 4 3 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Sets S2 = {2, 3, 4} and T2 = {3, 4, 5} are maximal cliques of the 2-threshold
graph while their intersection S2 ∩ T2 = {3, 4} is not a maximal clique in Gh, for
any h > 0.

On the other hand, any non-empty intersection of the threshold clique inter-
sections is a threshold clique intersection itself as is clearly seen in Fig.6.63. In the
real line representing the ordering P , we can distinguish four intervals Sh labeled
by their endpoints a, c (the “clique” sets are to the right of them) and b and d (the
intervals are to the left); their intersections are the line segments [a, b] and [c, d]
having themselves segment [c, b] as their overlap. However, the overlap [c, b] is the
intersection of the primary interval sets labeled by c and b. This proves that the
set SPd is a pyramid.

Let us show that set function hd(S) = maxi,j∈S dij is a weak index function
for the pyramid SPd. The first two items in the definition are obvious; the third
follows from the fact that SPd contains only the threshold cliques Sh and their
pair-wise intersections.

It can be seen also that when the strong inequality condition holds for a Robin-
son matrix d rearranged according to the ordering P , the weak index hd is an index
function for the pyramid SPd thus satisfying the property that h(S) < h(T ) when-
ever S ⊂ T for S, T ∈ SPd. Indeed, strict inclusion S ⊂ T can hold in one of the
following two cases: (1) S = Sh1 and T = Sh2 ; (2) S = Sh1 ∩ Sh2 and T = Sh1 or
T = Sh2 . In the first case, h1 < h2 since the opposite inequality would contradict
the maximality of S and T as cliques, which means that hd(S) < hd(T ). In the
second case, let i and j be the first and the last elements of Sh1 in the ordering
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P while k and l are those of Sh2 . Obviously, i < k < j < l since the overlap S is
not empty. Let, say, h1 = max(h1, h2). Then dil > h1 since, in the opposite case,
the vertex l would be adjacent to all the elements of Sh1 in Gh1 , which contradicts
the assumption that Sh1 is a maximal clique in Gh1 . This implies that both dij

and dkl are smaller than dil since (i, j) ∈ Gh1 and (k, l) ∈ Gh2 . Thus, due to the
strong inequality condition, dkj < min(h1, h2), and therefore, all the dissimilarities
within S are smaller than min(h1, h2), which implies hd(S) < min(hd(S1), hd(S2),
and proves that hd is an index function.

We have proven a part in the following statement.

Statement 6.29. A dissimilarity matrix d = (dij) is Robinson or pyramidal (with
respect to an order P ) if and only if it corresponds to a pyramid (with respect to the
same order) indexed with a weak index function or an index function, respectively.

Proof: It remains to prove that a weakly indexed or an indexed hierarchy corre-
sponds to a Robinson or pyramidal dissimilarity, respectively. Let SW be a pyramid
weakly indexed with index function h (without any loss of generality, we assume
that the entities are numbered in the corresponding P order). Define a correspond-
ing dissimilarity d by the following rule: for any i, j ∈ I, d(i, j) = h(S(i, j)) where
S(i, j) is the minimum cluster containing both i and j. To prove that the dis-
similarity satisfies the Robinson condition (with regard to the pyramidal ordering
P ), d(i, k) ≥ max(d(i, j), d(j, k)) whenever i < j < k, assume that it is not true
and, thus, d(i, k) < d(i, j) for some i, j, k such that i < j < k. But S(i, k) must
contain j implying that S(i, j) ⊆ S(i, k) and in turn h(S(i, j)) ≤ h(S(i, k)) and
d(i, j) ≤ d(i, k). This proves that d is a Robinson matrix.

Assume now that h is an index function and max(d(i, j), d(k, l)) < d(i, l) where
i < k < j < l. The fact that d(i, j) < d(i, l) implies there exists a cluster,
S1, such that d(i, j) = h(S1), containing both i, j (and, therefore, k) but not l.
Analogously, there exists a cluster, S2, such that d(k, l) = h(S2), containing both
k, l (and, therefore, j) but not i. The intersection S = S1 ∩ S2 thus contains both
j and k but neither i nor l, which implies that h(S) is less than each of h(S1) and
h(S2). Thus, d(j, k) < min(d(i, j), d(k, l) since d(j, k) ≤ h(S). The statement is
proven. �

6.5.2 Least-Squares Fitting

There exist agglomerative versions of pyramidal clustering (Diday and Bertrand
1986, Gaul and Shader 1994) involving expanding an ordering with respect to
clusters merged, starting from the initial setting: the singletons with no order
prescribed. The idea of the algorithm can be illustrated with an example from
Diday and Bertrand 1986, p. 40, shown in Fig.6.65. Initially, the nearest neighbors
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a and b are joined and put together in the order sought. Then, the second nearest
neighbors b, c must be joined, which places c to the right of b in the resulting order.
In the hierarchy, joining b and c (without a involved) is forbidden, which creates a
different picture.

1

2

3

1

3

a b c

a b c

a  0  1  3

b      0  3

c          0
   a   b  ca   0  1  3

b      0  2

c          0
    a  b  c

a   0  1  3

b      0  2

c          0
    a  b  c

Induced  ultrametric

Induced  pyramidal
           index

Hierarchy

Pyramid

Raw  dissimilarity

Figure 6.65: An example of pyramid and hierarchy corresponding to the same
distance data.

In this section, an alternating optimization method developed by Hubert and
Arabie 1994 in the least-squares fitting framework will be presented.

The presentation will be given in terms of similarity data. Let a = (aij) denote
an original similarity matrix and s = (sij) a sought Robinson similarity matrix
with respect to a sought ordering P = (i1, i2, ..., iN) of I. The problem of mini-
mizing the least-squares criterion L(s, P ) =

∑
i,j∈I(aij − sij)2 is treated with the

following alternating minimization strategy: (1) matrix s given, minimize L(s, P )
with respect to ordering P , then (2) ordering P specified, minimize L(s, P ) with
respect to s subject to the following Robinson constraints:

sikil
≥ sikil−1 and sikil

≥ sik−1il

for any k, l such that 1 ≤ k < l ≤ N . As usual, the process stops when no criterion
improvement is observed; the convergence of the procedure follows from the fact
that there are only a finite number of orderings of I (though the authors believe
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the procedure may meet some computational anomalies, see Hubert and Arabie
1994, p. 12).

To initialize the procedure, an ordering P is selected somehow (Hubert
and Arabie 1994 recommend choosing randomly; however, some expert-given or
preprocessing-driven choice might be preferred, such as, for example, the seri-
ation based on criterion LL, p. 333), and the initial estimates of sij are taken
as sikil

= N − |k − l|, due to the ordering P , which provides an equally spaced
Robinson structure.

The first step at an iteration, with s fixed, is performed maximizing the only
varying part of the criterion, g(P ) =

∑
k,l∈I aklsikil

, with a set of local operations
on P . The authors employ the following three classes of operations: (i) all pair-
wise interchanges; (ii) all insertions of subintervals of length k (k varies from 1 to
N − 1) between every pair of remaining objects; and (iii) all reversals of ordering
in intervals of lengths from 2 to N − 1.

The second step, adjusting s while P is fixed, can be performed with any kind of
algorithm for the linear-inequality constrained least-squares task. In particular, an
iterative method by Dykstra 1983, in the present context, can be applied as follows
(Hubert and Arabie 1994). The algorithm begins with s = a and sequentially
modifies the matrix based on considering all the order constraints in turn. If an
order constraint fails to be satisfied by a pair of values, these are merely replaced by
their average. The change made in the two values is labeled; to ensure convergence,
a previous change must first be “undone” when the same constraint is reconsidered
during the next pass through the set of constraints. Repeatedly cycling through
the order constraints, a solution matrix s is found.

Obviously, the square scatter decomposition (1.21) in Section 1.3.4 holds for
the result obtained: ∑

ı,j∈I

a2
ij =

∑
ı,j∈I

s2
ij + L(s, P ).

The procedure can be performed in the framework of the SEFIT strategy: repeat-
edly finding pairs st, Pt for the residual similarity matrix at = at−1−st, t = 1, 2, ...;
a0 is taken equal to a. This provides an extension of the square scatter decompo-
sition to allow evaluation of the contribution for every Robinson matrix st found
based just on the sum of its squared entries.

After employing this sequential fitting strategy, Hubert and Arabie 1994 recom-
mend utilizing a follow-up sequential adjustment of the solutions st to the matrix
a −∑u�=t su, in turn; though, they observe that, actually, in their experiments,
there is not a dramatic (if at all) difference between the initial SEFIT solutions
and those after adjustment (which confirms the present author’s experience with
other kinds of clustering structures obtained with SEFIT).

Applied to the Kinship data summed up into a unique similarity matrix, then stan-
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dardized, two Robinson matrices have been found in Hubert and Arabie 1994, accounting
for 62% and 33% of the grand variance, respectively. The first matrix gives, basically,
the solution already found in Section 3.6.2, Table 3.41: there are three major clusters,
“Grand”ones, nuclear family, and collateral kinship; strong dyads within each of these
reflect opposite-gender parallel terms (mother/father, son/sister, etc.) are underscored
with a much smaller level of dissimilarity.

The second matrix points out division by sex (excluding “cousin” which is a gender-

neutral kinship term). Within the two sex-based clusters, there are two parallel subgroup-

ings according to generation: 1) son, nephew, grandson, brother; 2) father, grandfather,

uncle; 3) daughter, niece, granddaughter, sister; and 4) grandmother, aunt, mother.

6.5.3 Discussion

In the concept of a Robinson matrix, two important mathematical structures, clas-
sification and order, are united. Two substantive lines of research, archaeology
and genetics, contributed to the development of the corresponding mathematical
concepts. Similar concepts have proven to be useful in some engineering problems.
Mathematically, Robinson dissimilarity and pyramid is a structure between hier-
archy and weak hierarchy; however, there is not much known about its properties.

The recognition and reconstruction problems are not difficult for this kind of
structure. In contrast, the approximation problems seem quite hard. Hubert
and Arabie 1994 provided a method for extracting the Robinson matrices from a
dissimilarity/similarity matrix in the framework of a doubly local search strategy
using square-error sequential fitting (see Section 1.3.4).

6.6 A Linear Theory for Binary Hierarchies

6.6.1 Binary Hierarchy Decomposition of a Data Matrix

The contents of this section is based on Mirkin 1995. Let us consider a binary
hierarchy SW = {Sw : w ∈ W} and an N × n column-conditional data matrix
Y = (yik) where rows i ∈ I are the labels of the labeled singletons in the hierarchy
(which means, basically, that Sw ⊆ I, for any w ∈ W ). Let us suppose all the
columns, yk = (yik), i ∈ I, centered, k = 1, ..., n.

Let us define the nest indicator functions, φw, for every w ∈ W and consider
N × (N − 1) matrix Φ = (φiw). Since the nest indicator functions form a basis
of the (N − 1)-dimensional space, every column-vector yk, k = 1, ..., n, can be
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decomposed by the basis so that

Y = ΦC (6.148)

where C = (cwk) is the (N − 1) × n matrix of the coefficients of the linear decom-
positions of yks (that are centered) by φws, yik =

∑
w∈W φiwcwk.

Since ΦT Φ is the identity matrix, multiplying the equality in (6.148) by ΦT

leads to
C = ΦT Y (6.149)

which gives the value of every entry cwk =
∑

i∈I φiwyik of matrix C expressed
through the data as follows:

cwk = aw

∑
i∈Sw1

yik − bw

∑
i∈Sw2

yik =
√

Nw1Nw2

Nw
(ȳw1k − ȳw2k), (6.150)

where Sw1 and Sw2 are children of Sw (Nw1, Nw2 and Nw are their respective
cardinalities) and ȳw1k and ȳw2k are the means of k-th variable in Sw1 and Sw2,
respectively.

An entry in C, cwk, can be referred to as loading of the variable k at cluster
Sw, w ∈ W . After simple arithmetic transformations, we can arrive at yet another
formula for cwk:

cwk =
√

Nw1Nw

Nw2
(ȳw1k − ȳwk), (6.151)

where ȳwk is the average of k-th variable in the whole Sw = Sw1 ∪ Sw2. An
analogous formula holds with 2 and 1 exchanged (though, multiplied by -1).

Let us consider the m-dimensional vector yw of the variable means within a
cluster Sw, w ∈ W . The equation in (6.150) implies that Euclidean norm ‖cw‖ =√

(cw, cw) of vector cw = (cwk) is equal to

µw =
√

Nw1Nw2

Nw
d(yw1, yw2) (6.152)

where d(x, y) is the Euclidean distance between vectors x, y. The value µw is
positive if x �= y, and zero if x = y.

Let M be a diagonal (N −1)× (N −1) matrix with µw, w ∈ W , as its diagonal
entries and let vectors cw be normed. Then the equation in (6.148) becomes an
analogue of the singular-value decomposition (SVD) of matrix Y since, in this
case, Y = ΦMC where Φ is the matrix of an orthonormal vector set and M
is a diagonal matrix with nonnegative diagonal entries (see Section 6.1.4). The
weighted distances in (6.152) are analogues of the singular values; they will be
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referred to as the cluster values. Yet the decomposition is not a SVD since the
vectors cw, w ∈ W , in general, are not mutually orthogonal. For the sake of
simplicity, in the rest, vectors cw, w ∈ W , will be considered unnormed, thus
holding all the formulas above as they are.

On the other hand, the decomposition in (6.148) has the nice property that the
expression in (6.152) holds for any norm ‖ · ‖ as a function defined for the vectors
cw, w ∈ W , if the distance is defined accordingly as d(yw1, yw2) = ‖yw1 − yw2‖.
Moreover, function ‖ · ‖ suffices to be any monotone function thus defining d as
a dissimilarity measure which might fail to satisfy some of the metric properties.
This obviously follows from (6.150).

Another useful property of the decomposition (6.148) is that

Y T Y = CT C (6.153)

which is proved multiplying (6.148) by its transposed version since ΦT Φ is the
identity matrix.

Since the columns of Y are centered, the elements (yk, yl) of matrix Y T Y have
the meaning of covariance coefficients between the variables k and l (differing from
those only by the constant factor N , or by N − 1 in the estimation problems that
are not considered here). When the columns of Y are also normed (in the Euclidean
norm), these values are equal to the correlation coefficients (up to the same factor
N or N − 1). Due to formula (6.150), equation (6.153) can be rewritten:

(yk, yl) =
∑

w∈W

Nw1Nw2

Nw
(yw1k − yw2k)(yw1l − yw2l) (6.154)

This equality can be interpreted as a decomposition of the total covariation
(correlation) coefficient by the hierarchy SW clusters. When k = l, we have the
variance of the variable k decomposed by the clusters:

(yk, yk) =
∑

w∈W

c2
wk =

∑
w∈W

Nw1Nw2

Nw
(yw1k − yw2k)2 (6.155)

where
c2
wk =

Nw1Nw2

Nw
(yw1k − yw2k)2

presents the contribution of the cluster Sw, w ∈ W, to the variance of the variable
k, k = 1, .., M .

Due to the orthonormality of the columns in Φ, yet another property of the SVD
decomposition holds in the case considered: the equality (6.150) can be derived
even when a part of the hierarchy is known only, as minimizing the least-squares
difference between Y and corresponding part of the cluster structure. Let the part
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of all the nest indicator functions known consist of φw for w ∈ W ′ where W ′ ⊂ W .
Let us denote by Φ′ the corresponding N × |W ′| submatrix of Φ. The problem is
to find a |W ′| × M matrix C′ = (c′wk) minimizing the difference between Y and
Φ′C′ as measured by the ordinary least-squares criterion:

Dm(C′) = Tr[(Y − Φ′C′)T (Y − Φ′C′)] =
N∑

i=1

M∑
k=1

(yik −
∑

w∈W ′
φiwcwk)2 (6.156)

Statement 6.30. The minimum value of Dm(C′) equals the sum of the squared
cluster values by the clusters excluded, Dm(C′) =

∑
w �∈W ′ µ2

w, while the optimal C′

is determined by formula C′ = Φ′T Y which is analogous to (6.149).

Proof: After differentiating criterion (6.156) by unknown C′, the equality C′ =
Φ′T Y is derived easily as the necessary condition for minimality of (6.156).

Putting this into (6.156), the equality DM (C′) = Tr(Y T Y −C′T C′) is derived.
Since Tr(C′T C′) =

∑
w∈W ′

∑
k c2

wk and Tr(Y T Y ) equals the sum of expressions
(6.155), the statement is proven. �

An important feature of the formula C′ = Φ′T Y is that it holds only when the
least-square approximation is considered while the generic equality (6.149) holds
always.

6.6.2 Cluster Value Strategy for Divisive Clustering

Amazingly, cluster value (6.152) squared is exactly the criterion

µ2
w =

Nw1Nw2

Nw
d2(yw1, yw2) (6.157)

minimized at agglomerative steps in Ward’s agglomerative clustering method (see
p. 293). The same expression was employed by Edwards and Cavalli-Sforza 1965
for divisive clustering, to be maximized by splitting a cluster Sw into Sw1 and Sw2.
Equation ∑

i,k

y2
ik = Tr(Y T Y ) = Tr(CT C) =

∑
w∈W

µ2
w (6.158)

allows us to use the cluster values as the cluster contributions to the square data
scatter (which is proportional to the sum of the variable variances, in this case). We
can see that µ2

w/T r(Y T Y ) provides a measure of comparative salience of cluster
Sw. With the cluster values renumbered in a decreasing order, the cumulative



540 HIERARCHY AS A CLUSTERING STRUCTURE

contribution
∑m

w=1 µ2
w cannot be larger than the sum of the first m eigenvalues of

Y T Y because vectors φw cannot fit better than the eigenvectors.

In these terms, error-square based divisive clustering looks quite analogous
to the one-by-one SEFIT strategy of the principal component analysis. Indeed,
finding the first cluster split (that is, vector φ1 along with its cluster loadings),
maximizing µ2

1 in (6.157) to divide all the set I in two clusters is exactly what
is to be done for finding the first singular triple except for the set of feasible
solutions which is restricted here to consist of the nest indicator functions. Then,
in SEFIT, the residual data matrix must be calculated; however, in this particular
case, subtracting the matrix φ1c

T
1 from Y may be skipped because the former

matrix’s rows coincide within the clusters; thus, the operation would not affect
the within cluster distances since d(x, y) = d(x − a, y − a) = ‖x − y‖ for every
norm-driven metric, Euclidean distance included. Thus, the second cluster split
can be sought by dividing one of the clusters found at the first step (by maximizing
criterion (6.157) within the cluster). Reiterating the within-cluster splitting steps,
we arrive, after N − 1 iterations, at the resulting binary hierarchy. Curiously, the
order of splitting the clusters is not important since the operation of calculating
the residuals is not performed and every nonsingleton cluster must be partitioned
in two. Just the clusters can be enumerated in the order of the values of µ2

w in
(6.157) decreased, after all of them are found.

On the other hand, if only a few upper clusters can satisfy the user, the order of
the clusters to be partitioned becomes important: only the clusters having larger
µw must be utilized. In this case, the general SEFIT stopping rule can be applied:
the splitting stops when either the accumulated contribution to the data scatter
becomes too large or a single cluster contribution becomes too small or just because
the number of the clusters found has reached a pre-fixed limit (see p. 253).

Let us consider a cluster Sw splitting step in more detail. Depending on the
formula for cwk, (6.150) or (6.151), the value of the maximized criterion µ2 can be
expressed by formula (6.157) or

µ2
w =

NwNw1

Nw2
d2(yw1, yw) (6.159)

Each of these two formulas can be employed in a corresponding local search algo-
rithm.

Formula (6.157) implies an algorithm which is just a version of the moving-
center technique.
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Maximizing (6.157)
Initially, the most distant points y1 and y2 in Sw are determined to be
used as the initial centers of the clusters.
Then, sequentially, the usual two steps are performed iteratively: (a)
assigning the entities to the clusters (the nearest center wins) and (b)
recomputing the centers (as the centers of gravity of the clusters ob-
tained in (a)). The computation ends when the iteration (a) leaves the
clusters unchanged.

Evidently, this version of the K-Means technique is nothing but the alternating
minimization of the square error (WGSS) criterion by two groups of the variables,
those related to membership of the entities to the clusters (a) and to the cluster
centers (b). Simultaneously, it is an alternating maximization algorithm for the
criterion (6.157).

The second algorithm, based on formula (6.159), is a seriation algorithm.

Splitting by Maximizing (6.159)
Initially, a point y1 is found maximizing its distance to yw, the center
of Sw, setting Sw1 = {y1}. On a general step, a current Sw1 along
with its center yw1 is considered and an entity-point yj , closest to yw1

by Euclidean distance, is sought. It is added to Sw1 if the quotient
q = d2(yw1, yw)/d2, where d is the distance between yw and the center
of Sw ∪ {yj}, satisfies the inequality

q <
N1N2 + N2

N1N2 − N1
,

and the process stops if not.

y

y

y

w

w1

j d

Figure 6.66: After point yj is added, the cluster center yw1 moves toward yj , which
decreases the distance between yw and the center.
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The inequality involved is equivalent to the fact that value of µ2
w (6.159) in-

creases when yj is added to Sw. Basically, there is a trade-off between an increase
of the coefficient Nw1/Nw2 and a decrease of the distance d2(yw1, yw). The fact
that the distance may only decrease in the adding process is well seen in Fig.6.66.

The latter algorithm is a seriation process based on linkage function d(y, S) =
d(y, c(S)) where c(S) is the gravity center of S.

Though the analogy of SVD one-by-one strategy and the square-error divisive
clustering seems rather deep, there is a feature of the binary hierarchy which makes
the two unlike: any binary hierarchy defines a SVD-like basis while there is only
one genuine SVD basis consisting of the singular vectors. There are two issues fol-
lowing from the feature we wish to underscore. First, there is nothing to say about
normalizing the variables. The bilinear model, with its residuals to be aggregated
somehow, suggests a principle for that (see Section 5.1), but there are no residuals
in decomposition (6.150), which means that there is no norming preferred. Sec-
ond, the SVD-like one-by-one extracting strategy can be extended to any kind of
dissimilarity function d in formulas (6.157) and (6.159).

This leads to a family of divisive clustering algorithms (both local splitting al-
gorithms above remain valid with any dissimilarity function d) involving strictly
defined cluster gravity centers and weighting coefficients with the arbitrary dis-
similarity measure. The family is not included in the LW-algorithms family since
there exist dissimilarity functions (such as that generated by Chebyshev norm,
l∞(x − y) = maxi|xi − yi|) that do not allow expression of the merged cluster
distances through the original distances (because, with the Chebyshev metric, the
merged cluster center may have completely different components maximally devi-
ated).

A computational strategy for divisive clustering, based on the theory above,
can be set as follows:

1. Standardize the entity-to-variable data by shifting the origin into the point
of the variable averages and norming the variables by a norm chosen.

2. Choose a dissimilarity function (it may be different from the distance driven
by the norm chosen for standardizing).

3. Choose a clustering strategy (only the divisive one has been discussed above)
and create a cluster hierarchy SW with the strategy.

4. Draw a tree hierarchy representation reflecting the cluster values µw by the
heights of the corresponding division nodes.

5. Interpret the hierarchy designed using:

1) the drawn pattern of clustering;
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2) contributions of the clusters and cluster–variable pairs to the square scatter
of the data as reflected in values of

∑n
k=1 c2

wk and c2
wk (6.150), respectively

(w ∈ W, k = 1, ..., n);

3) the cluster variable-to-variable covariance/correlations, Nw1Nw2(yw1k −
yw2k)(yw1l − yw2l)/Nw, as items in the additive decomposition of the overall
covariance (6.154);

4) decompositions (6.148) of the entries yik by the clusters.

The hierarchical classification found with the divisive clustering algorithm maximizing
the contribution to the total variance at each partition step (the first algorithm) is pre-
sented in Fig.6.67 as indexed by the corresponding cluster values (reflected in the heights
of the vertical edges). The squared cluster values µ2

w , which are equal to contributions
of the divisions to the total variance, are presented (per cent) for the most contributing
clusters. The general pattern of variable-to-variable correlation is pair-wise negative as

Figure 6.67: Binary hierarchy found for square scatter standardized Body data with the
minimum-of-the-error criterion; the numbers show contributions of the major splits to
the data variance.
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is seen in the correlation matrix (the variances are presented in the principal diagonal):

1 1.00
2 −0.48 1.00
3 −0.24 −0.27 1.00
4 −0.45 −0.15 −0.24 1.00

1 2 3 4

Its decomposition by the first three separations, due to formula (6.154), is presented by

the following respective matrix terms:

1 0.44
2 −0.43 0.42
3 0.32 −0.31 0.23
4 −0.42 0.41 −0.30 0.40

1 2 3 4

(first division),
1 0.00
2 −0.01 0.56
3 0.00 −0.01 0.00
4 0.01 −0.57 0.01 0.58

1 2 3 4

(second division),
1 0.43
2 −0.02 0.00
3 −0.54 0.02 0.60
4 −0.01 0.00 0.02 0.00

1 2 3 4

(third division).

These three matrix items take into account most of the variance and correlation.
It can be seen from the diagonal entries, that all the variables contribute to the first
separation, though the variable 3 is some-what less important (with its only 23% of the
variance accounted for) while the contribution of variable 1 is some-what higher (44%
of the variance). The second separation is due to the variables 2 and 4 while the third
separation is made by the variables 1 and 3 (since the other variables in either case do
not contribute to the variance at all).

Decomposition of the correlation coefficients confirms and details this conclusion. In
particular, the negative correlations between the variables 1 and 3, as well as between 2
and 4, become positive at the first separation while sharper at the third and second sep-
arations, respectively. All the other correlations disappear in the clusters. The variance
of variable 3 is not exhausted by the three first separations: this variable contributes to
the separation of the smaller Head cluster.

The last interpretation aid concerns decomposition of all the standardized data entries
yik by the clusters due to equation (6.148). Let us demonstrate the decomposition for
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the 16-th entity, Waist, belonging to the four clusters nested shown by the bold nodes in
Fig.6.67. The cluster decompositions of all the four variables, at Waist, are as follows:

1 0.52 = −0.52+ 1.09− 0.01− 0.05
2 0.28 = 0.50− 0.04− 0.06− 0.12
3 −1.46 = −0.37− 1.20− 0.36+ 0.47
4 0.36 = 0.49− 0.03− 0.05− 0.04

Every single column of the decomposition relates to its cluster (as the weighted difference

between the centers of its split parts) reflecting the features of the cluster: the smaller

values of the variables 1 and 3 in the first cluster correspond to its Head–Chest nature

while the next cluster shows the split between these variables: enlarged 1 and reduced

3 correspond to the Chest membership of the entity. The last column represents the

individual traits of the entity.

Another tree (Fig.6.68) is generated with the divisive strategy when the criterion has
been changed for Chebyshev norm-driven metric. Every variable had been standardized
with the same norm: the maximum absolute deviation from the average became unity
after norming was completed. There are two major differences between the two trees

Figure 6.68: Binary hierarchy found for Body data with the Chebyshev norm; the num-
bers show the relative contributions of the major splits to the data variance.

presented in Fig.6.67 and 6.68: one is substantive (the “head” cluster is separated first
in Fig.6.68 rather than the “extremity” cluster in Fig.6.67), the second is technical (the



546 HIERARCHY AS A CLUSTERING STRUCTURE

variance contribution of the first split in Fig.6.68 (44.9 %) is much higher than that in
Fig.6.67 (37.3%)). The technical feature seems, at the first glance, really amazing. How
it could occur that the maximized contribution (in Fig.6.67) turned out less than the
contribution achieved when another (Chebyshev) criterion was optimized (Fig.6.68)? To
address the issue, let us consider decomposition of the variances of the variables by the
clusters as expressed in (6.155):

1 0.36 = 0.33+ 0.00+ 0.00 + ...
2 0.18 = 0.03+ 0.02+ 0.12 + ...
3 0.20 = 0.02+ 0.15+ 0.00 + ...
4 0.19 = 0.03+ 0.03+ 0.07 + ...

Again, only three major splits are represented in the decomposition. The variances

(and, thus, the contributions to the square data scatter) of the variables now are different

from the very beginning, which seems to determine the order they are involved in the

division process: the most contributing variable 1 turns out to be the principal base

of the first division; variable 3 having the second-place variance contributes mostly to

the second division; the less contributing variables 3 and 4 are serving at the following

divisions. Such a sequential involvement of the variables may generate a more complete

account of the variance in splitting, which is reflected in the higher level of the variance

extracted in the upper splits in Fig.6.68 as compared to those in Fig.6.67. This conclusion

is supported by the results of the Euclidean-norm-based divisive clustering applied to the

data standardized with Chebyshev norm (Fig.6.69). The variance contributions in the

upper splits there are even greater (since the criterion is proper, at this time); evidently,

it is the left four-element cluster in Fig.6.68 disappearing which makes that increasing of

the variances in Fig.6.69 possible. The contents of the clusters in the latter figure also

seem quite satisfactory.

In the present author’s opinion, there is a general regularity (manifested in
the example) that Chebyshev norming generates a difference in the variances of
the variables influencing the order of their involvement in splits (fusions) and thus
increasing the contributions of the upper splits. This principle might cause the
empirically observed regularity that norming by range (which is quite similar to
Chebyshev norming) made after centering by the average allows a best fit into
Monte-Carlo generated cluster structures (Milligan and Cooper 1986).

6.6.3 Approximation of Square Tables

Let us briefly touch the problem of representing the square data matrix via linear
combinations of the mutually orthogonal projection matrices Pw = φwφT

w based
on nest indicator functions φw of a binary hierarchy SW . The projection matrices
provide a basis only for the double-centered ultrasimilarity matrices related to
SW as defined in Section 6.1.4. This means that, in contrast to the case of the
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Figure 6.69: Binary hierarchy found with the square-error criterion for the Body data

normed by Chebyshev norm.

rectangular data, the square data matrix, in general, cannot be entirely decomposed
by the set of matrices Pw, w ∈ W , corresponding to a hierarchy SW . This leads us
to accept the following bilinear model decomposing a given square similarity matrix
b = (bij) into a linear combination of the projection matrices Pw and residuals to
be minimized.

bij =
N−1∑
w=1

λwφiwφjw + eij (6.160)

Matrix b = (bij) must be preliminarily double-centered (for instance, with the
transformation (1.5) in Section 1.2.2).

The standardizing principles and options devised in Section 1.1.2 can be easily
extended to this bilinear model. We consider here only the least-squares criterion.

Due to orthonormality of the set Pw, w ∈ W , for any binary hierarchy SW , the
square data scatter can be decomposed as follows:

∑
i,j∈I

b2
ij =

N−1∑
w=1

λ2
w +

∑
i,j∈I

e2
ij (6.161)

whenever there is orthogonality of the residual matrix E = (eij) to the rest, as it
is when b = (bij) has been projected in the subspace L({Pw : w ∈ SW }) in the
parallel or sequential manner. Moreover, it can be found from (6.160) that the least-
squares optimal coefficients are the scalar products (b, Pw) satisfying equations
λw =

∑
i,j∈I bijφiwφjw .



548 HIERARCHY AS A CLUSTERING STRUCTURE

Evidently, the entries of Pw are zeros outside Sw, and they are equal to −1/Nw

within Sw, with 1/Nw1 or 1/Nw2 added within its children, Sw1 or Sw2, respectively.
This implies that

λw = AL(Sw1) + AL(Sw2) − AL(Sw) (6.162)

where AL(S) =
∑

i,j∈S bij/|S| (see Section 3.2.2 for discussion of the function).
This gives an explicit combinatorial meaning to the least squares criterion as that
one which is equivalent to the criterion of maximizing

∑N−1
w=1 λ2

w due to (6.161).
We cannot maximize the criterion globally and suggest using the sequential fit-
ting approach (one-by-one extracting Pws starting from the larger clusters) which,
however, is slightly easier here.

Let us consider a divisive clustering algorithm, at each splitting step maximizing
the varying part of criterion (6.162),

g(Sw1, Sw2) =
∑

i,j∈Sw1
bij/Nw1 +

∑
i,j∈Sw2

bij/Nw2,

with regard to all biclass partitions {Sw1, Sw2} of Sw (w = 1, 2, ...). The criterion
extends a criterion formula, (3.50), of the least-squares principal clustering for the
entity-to-variable data to the arbitrary similarity data. That criterion is the semi-
averaged within similarity criterion (B), p. 445, applied to the row-by-row scalar
products.

Statement 6.31. The sequential fitting procedure for the model (6.160) is equiv-
alent to the algorithm of divisive clustering with criterion g(Sw1, Sw2).

Proof: Since g is the varying part of (6.162) within Sw, optimizing g is equivalent
to maximizing λ2

w. We need to prove only that applying the criterion to the residual
data is equivalent to applying it to the initial data. Indeed, extracting λwφiwφjw

from the data (after Sw has been found) means subtracting the same threshold
value from all the within cluster similarities. However, criterion g remains invariant
when a threshold, π, has been subtracted from all the similarities: g(Sw1, Sw2, π) =∑

i,j∈Sw1
(bij−π)/Nw1+

∑
i,j∈Sw2

(bij−π)/Nw2 = g(Sw1, Sw2)−Nwπ, which proves
the statement. �

Since the actual criterion maximized is g2, the option of minimizing g, leading
to anti-cluster rather than cluster splitting, should be considered as an available
option. The user may control that due to the local character of the one-by-one
splitting procedure.

When the model (6.160) is applied to the aggregable data, bij is assumed to
be the result, qij , of the RCP transformation of the data, and the fitting criterion
must be the weighted least squares (see Sections 1.2.3 and 3.5.4). In this case,
the maximized splitting criterion becomes equal to λ2

w = (qSw1Sw1 + qSw2Sw2 −
2qSw1Sw2)

2 (Lebart and Mirkin 1993).
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6.6.4 Discussion

Decomposition of the data and the variances of variables by hierarchically struc-
tured factors has been made in the statistical discipline of analysis of variance for
years. However, the analysis of variance addresses different issues, having nothing
to do with the linear-wise theory developed here for binary hierarchies, due to
particular nature of the orthonormal nest indicator functions having, in the binary
hierarchy case, their entries completely defined by the standardizing conditions.
Two features of the theory developed are:

1. Interpreting aids about the results of hierarchical clustering, whichever
method had been utilized to get it, regarding decompositions of the data
entries, correlation/covariation coefficients, and the variances by the clus-
ters. Only the variance decomposition has been utilized, so far.

2. The cluster analogues of the singular-/eigen-values, allowing to interpret the
square-error divisive clustering as an analogue of the sequential principal
component analysis strategy. However, the cluster-value-based clustering
strategies can be employed in many other partitioning problems. The “most-
to-the-first” strategy of divisive clustering can be changed for an oppositely
directed strategy, “least-to-the-last”, which is equivalent to agglomerative
clustering, or even for entirely different “least-to-the-first” or “all-equal”
strategies reaching for the increasing or equal cluster values, respectively.
The latter strategy aims at producing clusters, however nested, which have
their centers at equal distances from each other. This shows that the cluster
values are a flexible heuristic tool for formalizing different clustering goals.

The emphasis by the theory with the square-error criterion seems to be an expla-
nation of the empirically observed phenomenon regarding better clustering results
reached with the standardizing by range, not by deviation: perhaps, it is the
difference in the variable variances which is responsible for that. However, this
hypothesis needs further investigation.

However complete decomposition of the rectangular data is made, it does not
much affect the similarity data which, in general, never can be entirely decomposed
with a binary hierarchy: there are at least (N − 1)N/2 independent data entries
while only N − 1 basis elements. This makes us return to the sequential fitting
strategy.



550 Bibliography



Bibliography

[1] L.A. Abbott, F.A. Bisby, and D.J. Rogers (1985) Taxonomic Analysis in
Biology, New York: Columbia University Press.

[2] E.N. Adams III (1986) N-Trees as nestings: complexity, similarity and con-
sensus, Journal of Classification, 3, 299-317.

[3] R. Agarwala, V. Bafna, M. Farach, B. Narayanan, M. Paterson, and M.
Thorup (1995) On the approximability of numerical taxonomy, DIMACS
Technical Report 95-46, 9 p.

[4] A. Agresti (1984) Analysis of Ordinal Categorical Data, New York: J.Wiley
& Sons.

[5] D.W. Aha and R.L. Bankert (1995) A comparative evaluation of sequential
feature selection algorithms. In: D. Fisher and H.-J. Lenz (Eds.) Learning
from Data: AI and Statistics V., Springer-Verlag, 1-6.

[6] S.A. Aivazian, V.M. Buchshtaber, I.S. Eniukov, and L.D. Meshalkin (1989)
Applied Statistics: Classification and Reduction of Dimensionality, Moscow,
Finansy i Statistika (in Russian).

[7] H.C. Andrews (1972) Introduction to Mathematical Techniques in Pattern
Recognition, New York: Wiley-Interscience.

[8] M. Andrews (1993) Visual C++ Object-Oriented Programming, Indianapolis,
IN: Sams Publishing.

[9] K. Appel and W. Haken (1977) The solution of the four-color map problem,
Scientific Amer., 237, 108-121.

[10] Yu. Apresian (1966) An algorithm for finding clusters by a distance matrix,
Computer Translation and Applied Linguistics, 9, 72-79 (in Russian).

[11] P. Arabie, S.A. Boorman, and P.R. Levitt (1978) Constructing block models:
how and why, Journal of Mathematical Psychology, 17, 21-63.

551



552 BIBLIOGRAPHY

[12] P. Arabie and J.D. Carroll (1980) MAPCLUS: a mathematical programming
approach to fitting the ADCLUS model, Psychometrika, 45, 211-235.

[13] P. Arabie, J.D. Carroll, and W. De Sarbo (1987) Three-Way Scaling and
Clustering, Newbury Park, Ca.: Sage.

[14] P. Arabie and L. Hubert (1992) Combinatorial data analysis, Annu. Rev.
Psychol., 43, 169-203.

[15] P. Arabie, S. Schleutermann, J. Daws, and L.J. Hubert (1988) Marketing
applications of sequencing and partitioning of nonsymmetric and/or two-
mode matrices. In: W. Gaul, and M. Schader (Eds.) Data, Expert Knowledge
and Decisions, Berlin: Springer-Verlag, 215-224.

[16] A.G. Arkad’ev and E.M. Braverman (1967) Computers and Pattern Recogni-
tion, Washington: Thompson Book Co. (original Russian version published
in 1964; 2-nd edition, 1971).

[17] K. Arrow (1951) Collective Choice and Social Values, New York: J.Wiley &
Sons.

[18] M. Atkinson, D. Kilby, and I. Roca (1988) Foundations of General Linguis-
tics, London: Unwin Hyman Ltd.

[19] P.O. Aven, I.B. Muchnik, and A.A. Oslon (1988) Functional Multidimen-
sional Scaling, Moscow: Nauka (in Russian).

[20] S. Baase (1991) Computer Algorithms, Reading, Ma: Addison–Wesley.
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