The Semantic Object Model (SOM)
The Semantic Object Model (SOM) Method

- Modelling Method developed in the 1990s by FERSTL and SINZ, University of Bamberg

- „comprehensive, integrated and rigor modelling approach“

- Relevance
 - Strategic planning of a complete corporate system
 - Development of distinct information systems

- Paradigms
 - Object Orientation
 - Coordination with Transactions
 - Task model
 - System Theory
The corporation is seen as a system and therefore has structural and behavioral aspects.

External perspective:
Open, goal-oriented, social and technical system.

Internal perspective:
Distributed system, consisting of autonomous, loosely coupled objects cooperating to achieve a higher goal.
Enterprise Architecture

- To manage the complexity of the model corresponding to the object system (i.e. corporation and its environment comprising the modelling scope) it is divided in different layers.
- Each layer consists of a partial model of the object system.
- All partial models and its relationships form the Enterprise Architecture.

Procedure Model (Instructions)

- Describes the process of the model creation.
- Distinction of different phases.
- Each phase uses different model types.
1. Modelling Layer: Outer perspective of the corporate system

2. Modelling Layer: Inner perspective of the corporate system

3. Modelling Layer: Resource specification
1. Modelling Layer: Plan of the Corporation

- Partial Model from the *External Perspective of a Corporation*

- Specification of the global corporate task
- Distinction between *universe of discourse* and *universe of environment*
- Specification of the corporation’s substantive goals (what?) and objectives (how?)
- Specification of the corporate relationships between universe of discourse and universe of environment
- Specification of the resources needed

- Partial Model from the *Internal Perspective of a Corporation*

- Specification of a solution process to implement the Plan of the Corporation

- Idea of Business Processes: Self-coordination (through transactions) of corporate objects that form a corporate system in order to achieve a higher goal

- *Client-/Server-Paradigm*: Client-Process asks Server-Process to realize/produce a service/product/payment

- Stepwise refinement of business processes

- Modelling happens strictly on task-layer and not on task-performer-layer
3. Modelling Layer: Resource Model

- Partial model of the organizational structure, the information systems, and the facilities (machines, premises) of a corporation

- Specification of the organizational structure (e.g. organization chart)

- Specification of the information systems (Information systems as object oriented, distributed systems)

- Specification of facilities
The Enterprise Architecture comprises relationships between the three partial models.

Example:
- Modification of objective (1. Modelling layer): Reduction of cost prescriptions (e.g. for a business unit)
- Business Process Re-Design to lower costs (2. Modelling Layer)
- Lower resource consumption (3. Modelling Layer)
Different Views in the SOM Procedure Model (Instructions)

Structural Views
- Object System
- Interaction Scheme (IAS)
- Scheme of Conceptual Objects (SCO)

Behavioral Views
- System of Goals and Objectives
- Process Event Scheme (PES)
- Scheme of Process Objects (SPO)
1. Layer: Object System and System of Goals and Objectives

- **Structural View → Object System**
 - Discrimination in universe of discourse and universe of environment and their Corporate relationships
 - Textual description (informal model)

- **Behavioral View → System of goals and objectives**
 - Description of goals and objectives, strategies and framing conditions to their operationalization
 - Textual description (informal model)
1. Layer: Object System and System of Soals and Objectives – Example

Object system
- Accommodation with a given capacity of single and double rooms in different categories (e.g. economy, business, executive)
- Service: Provision of rooms and breakfast
- Guests book rooms directly at the tourist center
- For public security guest registration is obligatory

System of goals and objectives
- Goal: Accommodation of guests
- Objective: Combination of turnover and profit maximation
- Strategy: „Hotel Garni“
- Marketing Strategy: Combination of direct marketing and marketing with an intermediary
- Framing conditions: ruled by law

Information Modelling
Matthias Voigt
2. Layer: Business Process Model

- **Structural View**
 - **Products, payments and services view:** A business process creates/processes products and/or services and/or payments for a contracting business process, which themselves contract other business processes.

- **Control View:** Coordination of objects involved in service/product provision by the use of transactions
 - **Negotiation Principle** (non-hierarchical coordination)
 - **(Closed Loop) Control Principle (Cybernetics)** (hierarchical coordination)

- **Model type:** *Interaction Scheme (IAS)*
2. Layer: Business Process Model

- Behavioural View → Procedural View
 - *Event-driven* processing of tasks that are associated with the coorporative objects and executed in processes

- Model type: *Process Event Scheme (PES)*
2. Layer: Business Process Model - Example

- **Structural View (IAS)**

 - Legend
 - Environmental object
 - Discourse object
 - Transaction

- **Behavioural View (PES)**

 - Legend
 - Task
 - Create
 - Receive
 - Internal Event
 - Transaction

 - Accommodation System
 - E: Public Security
 - E: Accommodation

 - Guest
 - Police
 - E: Accommodation

 - E: Public Security

Information Modelling

Matthias Voigt
Excursion

Corporate objects in SOM
Transactions in SOM
Involves the concept of corporate task

Outside view

- Task object (changed while processing the task)
 - Consists of attributes of the internal object memory as well as incoming and outgoing transactions (products, services, payments), control
- Goal as well as one or more objectives
- Pre- and Post-Events

The execution of tasks transforms the task object´s pre-condition to a post-condition
The goal defines the desired post-conditions (WHAT has to be done)

Internal view
- Describes HOW and by which MEANS a task has to be performed
- Describes the solution procedure
- Relates to task performers
Corporate Object: Task cluster operating on the same task object (tight coupling) and pursuing the same goals and objectives

(Lose) coupling of two Corporate objects by means of *transactions*

- Communication channel between two objects
- For execution (product, service, payment) or control purposes
- Connection of internal object memories of the task objects
Transactions (Cont.)

- Transport product-/service-/payment-packages and control messages
- Product-/service-/payment-packages and control messages are bound to events
 - The event of a incoming package or message triggers, as a pre-event, the execution of a receiving object´s task
 - Task execution can result in post-events, again bound to packages, which in turn are send to other receiving objects
Coordination by means of Transactions in SOM

Refinement of transactions to reveal the coordination of corporate objects

Negotiation Principle:

Decomposition of transactions in:
- Initiating Transaction T_i
- Contracting Transaction T_{ca}
- Executing Transaction T_e

Closed Loop) Control Principle

- Object decomposition
 - Controller object
 - Controlled object
- Transaction decomposition
 - Control Transaction T_{cl}
 - Feedback Transaction T_f
Replacement Rules for Objects and Transactions

Replacement rules for object decomposition

1. \(O ::= \{ O', O'', T_d (O', O''), [T_f (O'', O')] \} \)
2. \(O ::= \{ O', O'', [T (O', O'')] \} \)
3. \(O ::= \{ \text{spec } O' \}^+ \)
4. \(O' | O'' ::= O \)

Replacement rules for transaction decomposition

5. \(T (O, O') ::= [[T_i (O, O') \text{ seq} T_{ca} (O', O) \text{ seq} T_e (O, O')] \)
6. \(T_x ::= T_x \{ \text{seq } T''_x \}^+ | T_x \{ \text{par } T''_x \}^+ \)
 (für \(x = i, ca, e, cl, f \))
7. \(T_x ::= \{ \text{spec } T'_x \}^+ \)
 (für \(x = i, ca, e, cl, f \))
8. \(T_i | T_{ca} | T_e ::= T \)
9. \(T_{cl} | T_f ::= T \)

Legend

::= Replacement
[] Optional
| Alternative
{} Set
{}* Recurrence (1,n)
{} Recurrence (0,n)
seq Enactment in sequence
par Enactment in parallel
spec Specialization

Information Modelling

Matthias Voigt
End of Excursion

Corporate objects in SOM
Transactions in SOM
2. Layer: Business Process Model – Example

Structural View (IAS)

Decomposition with rule (5)
2. Layer: Business Process Model – Example

Decomposition

Structural View (IAS)

Object decomposition with rule (2)
2. Layer: Business Process Model – Example

Decomposition

Structural View (IAS)

Transaction decomposition with rule (7)

Information Modelling

Matthias Voigt
2. Layer: Business Process Model – Example

Decomposition

Structural View (IAS)

Transaction decomposition with rule (7)

Transaction decomposition with rule (7)
2. Layer: Business Process Model – Example

Behavioural View (PES)

Decomposition analogous to IAS

Information Modelling

Matthias Voigt
2. Layer: Business Process Model – Example

“Second” Decomposition

Structural View (IAS)

Transaction decomposition with rule (5)

Information Modelling

Matthias Voigt
2. Layer: Business Process Model – Example

“Second” Decomposition

Structural View (IAS)

Transaction decomposition with rule (6) and (5)
2. Layer: Business Process Model – Example

"Second" Decomposition

Structural View (IAS)

Object decomposition with rule (1)
2. Layer: Do’s and Don’ts

- Transaction decomposition before Object decomposition
- Create flat closed loop control hierarchies
- Mind completeness of negotiation structure
- No transaction without a relation to a product/service/payment
- Separate task layer and task execution layer
 → No „instances“ of any kind in a business process model, i.e. they must not contain concrete documents, existing information systems or persons
 → Why? This creates degrees of freedom

Information Modelling

Matthias Voigt
3. Layer: Specification of Information Systems

- Identification of possible degree of automation of tasks and transactions (grey)
- Identification of effective degree of automation of tasks and transaction (black)
3. Layer: Specification of Information Systems

- Example: Tasks and transactions of the corporate object: “Reception”
- Potential for automation in some tasks and transactions
3. Layer: Specification of Information Systems

- The IAS and PES models on the Business Process layer are transformed into strictly object orientated software design models on the Information System layer.
- The Conceptual Object Model (COS) contains Conceptual Object Types (COTs) representing data objects (analogue to Entity Beans).
- The Process Object Scheme (POS) contains Process Object Types (POTs) controlling the interaction of COTs (analogue to Session Beans).
Some normative statements

- SOM has its strengths on the Business Process Model Layer providing a structural makro-view on business processes of a corporation.
- For the description of detailed, operational (low-level) processes modelling approaches like EPCs and BPMN have clear advantages (role association, readability, connectors, annotation of documents, etc.) to PES.
- SOM is an top-down approach adequate to create normative, ideal process models.
- The rigor character of SOM is a good „teacher“ for precise and proper business process model design and interpretation.
The Semantic Object Model (SOM)