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1 Introduction

Despite their respectable age, the power indices proposed by [24]
and [1], or [25], henceforth Bz and SSI, remain a popular choice in
empirical work. Both indices measure the distribution of a prio-
ri voting power that follows from the constitution and rules of a
voting body alone. However, voting situations, both hypothetical
and real, exist in which the two indices yield markedly different
results. Which index to use therefore becomes a question of practical
importance in the empirical work.

To answer this question, [27] derives probabilistic models con-
sistent with each of the two indices. He shows that, depending on
the distribution of the voting poll, the expected individual effect of
each member of a voting body on the outcome of voting numerically
coincides with either the SSI or Bz measure. Straffin’s prescription
for empirical work is as follows: “If we believe that voters in a cer-
tain body have such common standards, the Shapley-Shubik index
might be most appropriate; if we believe voters behave indepen-
dently, the Banzhaf index is the instrument of choice” [28, p. 1137].
The question explored in this paper is: What is the error of an
empirical researcher who, following Straffin’s prescription, applies
the Bz measure to a voting body in which Straffin’s Independence
Assumption is not met?

To answer this question, I compute the bias of the Bz absolute
measure of power in reflecting a voter’s probability of being decisive
when the votes are neither equiprobable nor independent. T use a
numerical scheme to construct a joint probability distribution on
the set of voting outcomes (coalitions) for given probabilities and
correlation coefficients, and compare the Bz measure for this distri-
bution to its equivalent in the case of equiprobable and independent
votes.! Section 2 argues that the pairwise correlation as a model of
stochastic dependence is sufficiently general for most empirical ap-

!The numerical scheme was introduced in [16] for modeling financial default
risk. In this paper I provide an analytical solution to a slightly less general



plications including voting by blocs. Section 3 discusses a numerical
scheme for computing the Bz swing probability when the votes are
not equally probable and correlated, and shows how to estimate the
probabilities and correlation coefficients from ballot data. Section 4
presents an analytical derivation of the exact magnitude of the bias
due to the common probability of a YES vote deviating from one
half and due to common correlation in unweighted simple-majority
games. Section 5 derives a modified Penrose’s square-root rule in
the case of correlated votes. The last section concludes.

2 Straffin’s probabilistic voting models

Let p; be the probability that member i votes YES. [27] introduces
two probabilistic assumptions: “Independence Assumption: The p;’s
are selected independently from the uniform distribution on [0, 1].
or: Homogeneity Assumption: A number p is selected from the uni-
form distribution on [0,1], and p; = p for all i” (p. 112). He then
proceeds to prove two well-known characterization theorems. Theo-
rem 1 states that under the Independence Assumption the probabil-
ity of the i-th member’s vote being decisive, or the i-th expected in-
dividual effect on the outcome of voting, coincides with the Banzhaf
measure of voting power for ¢

Bi = . M

Here 7); is the number of coalitions in which ¢ is decisive, and n
the total number of members. The Banzhaf index is obtained by
normalizing f;’s to add up to unity, which unfortunately destroys
its probabilistic meaning. Theorem 2 makes a similar statement for
the Homogeneity Assumption and the SSI.

The crucial assumption in both models is that each member
votes independently. This is evident from the proofs, both of which

version of the scheme. Pa6ora Gbuia nonoxena Ha MeXAYHAPOAHOM CEMUHAPE
10 MHEKCAM BAUAHUA U mpouenypam rojocosanusa B ['Y BIIID B gexabpe 2006 r.



rely on multilinear extensions of a game introduced by [22]. A mul-
tilinear extension of a game played by N = {1,2,...,n} members
is

fla.z) =Y [l= [] (0 —z)w(s),

SCN jeS  jeN\S
where 0 < z; <1 for all j. (2)

The characteristic function, w(S), takes the value of 1 if S is a
winning coalition and the value of 0 if it is not. It is completely
defined by the voting rule (quota) and the weights assigned to each
member. The increment in the multilinear extension incurred by
the addition of the i-th member’s vote to the voting poll gives the
effect of the i-th member on the outcome

Az‘f(xla---axn): Z H Zj H (1_$j)’ (3)

SCW; jesS\{i} jeEN\S

where W; is the set of winning coalitions in which member 7 is de-
cisive (critical).

Let x; be the probability that member ¢ votes YES. The as-
sumption of independent votes endows an increment in the multi-
linear extension with a unique probabilistic interpretation. Then
and only then does A;f(z1,...,z,) become the probability that the
i-th vote is decisive. Taking this fact as a point of departure, Straffin
shows that the Independence Assumption leads to the Bz measure,
whereas the Homogeneity Assumption leads to the SSI. In the gen-
eral case of possibly dependent votes this probability takes the form
P, = Z mg, where mg is the probability of the occurrence of coali-

SCw;
tion S. It is given by a joint probability distribution on the set of

all coalitions. While summation remains valid due to the coalitions
being mutually exclusive, the products in (2) and (3) only apply to
independent votes.



It is important to note that while assigning different weights to
different members of a voting body, or changing the quota, may
change the characteristic function of the game, stochastic properties
of the votes have no effect on the characteristic function. Coalitions
that have been winning under equally probable and independent
votes continue to do so when the votes lose either property — what
changes are the probabilities of their occurrence. Straffin’s Indepen-
dence Assumption implies that all voting outcomes have an equal
probability of occurrence. Computing the probabilities if one de-
parts from this assumption is the focus of the present paper.

For all empirical purposes Straffin’s Independence Assumption
is equivalent to the “equiprobability of each member voting either
way; and independence between members” [9, p. 37]. Note that
“equiprobability either way” means two things: First, all members
vote YES with equal probability and, second, this probability equals
one half. The Independence Assumption thus leads to a binomial
distribution with one half as the probability of success. The conse-
quences of relaxing the equiprobability assumption have been pre-
viously studied in [13], [7] and [14]. These studies show that the
probability of being decisive changes considerably when the votes
are not equiprobable.

As argued in [9], Straffin’s Independence Assumption can be
defended by the Principle of Insufficient Reason. As an assumption
it is rational in the absence of prior knowledge about the future
issues on the ballot and how divided over these issues the voting
body will be. It suits the intended purpose of measuring the a priori
distribution of voting power, the distribution that follows from the
constitution and rules of the voting body, provided that all coalitions
are equiprobable.

In Straffin’s Homogeneity Assumption, equal probability of ac-
ceptance may be interpreted as reflecting the fact that members of
a voting body have common standards when evaluating a proposal
on ballot. The Homogeneity Assumption thus seems to abandon the
a priori approach in favor of a more realistic model. The implied



individual voting behavior is nevertheless very rigid. In the words
of Felsenthal and Machover: “the model ...is appropriate if we as-
sume that all the voters are identical clones, with the same interests
and identical [probabilistic] propensities, formalized by the common
random variable P, which in each division produces the same proba-
bility p for all of them” (p. 201). To an external observer who does
not know the true value of a common p, decisions by voting bodies
with p close to zero or one would appear highly correlated, as near
unanimous outcomes would be frequent in either case.

One possibility is to combine the two models [30]. As [17] de-
fine it: “the voters are said to be ‘partially homogeneous’ when
they can be partitioned into groups within which voters are ho-
mogeneous, whereas the groups vote independently of each other”
(p. 430). However, partial homogeneity suffers from all the limita-
tions of both probabilistic models. In the next section I argue that
working directly with correlated votes is a more satisfactory way of
modeling truly heterogeneous voting bodies.

2.1 Correlated votes

The crucial assumption is that each member votes independently
of all other members is untenable in most voting situations. First,
as noted by many authors, including Straffin, members of a voting
body may follow common standards when evaluating a proposal on
ballot, to the effect that the votes in favor any one such proposal will
correlate positively. One example of a common standard is common
information. The more the members communicate with each other,
the less their votes are likely to be independent. Second, voting may
be strategic. Strategic voting is contingent on how other members
are expected to vote and is thus, by definition, not independent.
Third, and closely related, there may be tacit collusion between cer-
tain members of a voting body, so that an outsider to the group
will in effect be facing a voting bloc. The existence and behavior of
secret or tacit voting blocs may appear probabilistic to an outsider.



Fourth, members may have similar or different preferences, which
could lead to correlated voting patterns. All of the above factors
suggest that dependent voting must be the norm rather than the
exception, and that correlations may either be positive, reflecting
a degree of commonality or conformism, or negative, reflecting a
degree of rivalry. It is therefore only natural to expect a member’s
a priori power to differ from her actual ability to change the out-
come of the voting at any point after the constitutional stage. This
expectation is all the more applicable when one considers that the
former does not change as long as the rules stay the same, while
the latter may change from one issue to another. A realistic model
of a voting body should therefore be able to accommodate varying
probabilities and correlations between votes.

Correlation between votes provides a general way of taking vot-
ers’ preferences into account, and the need to do so has been repeat-
edly stressed in the literature.? It is common to represent voter’s
preferences as points in Euclidean space.> Whereas spatial repre-
sentations typically are deterministic, correlations suggest only a
probabilistic tendency of a member toward certain positions and
correlation coeflicients can easily be estimated from ballot data.

As a simple model of probabilistic dependence, I shall assume
that the votes of n — 1 (n > 3) members of a voting body are cor-
related, whereas the 7-th member votes independently of all others.
Member 7 is independent because she has already made her choice.
Her vote is assumed to be deterministic. I then compute the ¢-th
swing probability and the bias resulting from the application of the
Bz measure to i. Alternatively, one could compute the conditional
probability of ¢ being decisive, conditioned on her voting YES. Since

*For a recent debate, see [21] and a critique of Napel and Widgrén in [6], as
well as a reply and a rejoinder in the same issue of the Journal of Theoretical
Politics. For a critique of preference-free measures of voting power in the context
of the European Union, see [10].

3As in [26], [21], the veto player theory of [29], and in a general theory of
voting by [20], among others.



the two probabilities differ by the factor 1/p;, where p; is the prob-
ability of ¢ voting YES, I will compute the former probability.

The assumption of pairwise correlation implies the existence of
a degree of commonality (positive correlation) or a degree of rivalry
(negative correlation) between n — 1 members of a voting body, in-
cluding their mutual independence as a special case.* Note that
pairwise correlations cannot capture correlations between an indi-
vidual member and a bloc of members, but this entails no loss of
generality if voting blocs are deterministic, in the sense that each
insider votes in unison with all other insiders with a probability of
one. In this case, pairwise correlation between an outsider and a
bloc is equivalent to pairwise correlation between the outsider and a
hypothetical member holding the total weight of the bloc in votes.
The voting blocs typically discussed in the literature are determin-
istic e.g., [2, 18].

However, the above is not the only way to model probabilistic
dependence between votes. Several alternatives have been proposed
in the literature, including the urn model by [3] and the branching
process model by [12]. The urn approach has been most extensively
developed in the generalizations of Condorcet’s Jury Theorem in [5]
and [4]. The approach proposed in this paper has the advantage
of extending the probabilistic setting of Straffin’s theorem to corre-
lated votes without making explicit or implicit assumptions about
the dynamics of a voting procedure or the nature of probabilistic
dependence. In contrast, by virtue of an urn process the voting in
Berg’s model is sequential. This follows by construction of an urn
scheme, in which colored balls are drawn one at a time and are then
replaced by one or several balls of a given color. A model based
on an urn process implicitly assumes that the probability of being
correct changes every time a vote is cast. Such a model would im-
ply state-dependence in the process of reaching a decision, with the

“With some abuse of terminology, as zero correlation does not imply stochas-
tic independence in general.



possibility of a lock-in on an alternative [23]. [12] approach is based
on the Ising model from statistical mechanics. In this model corre-
lations are implicitly defined by a spatial proximity parameter, but
the votes are equiprobable.

I show that positive correlation between some members of a vot-
ing body is likely to reduce the voting power of an independent mem-
ber, while negative correlation due to contrarian strategies applied
by some members is likely to increase her power. By increasing the
probability of ties or near-ties, negative correlation increases proba-
bilities of those voting outcomes in which the independent member
is decisive, while positive correlation decreases these probabilities.

3 A numerical scheme for computing
the swing probability

Suppose that member i votes YES with probability p; € [0, 1], mem-
ber j votes YES with probability p; € [0, 1], and the two YES votes
are correlated with a coefficient of correlation ¢; ; € [—1,1]. De-
fine the probabilities of the four possible voting outcomes as: m =
P{v; = 1,v; = 1}, my = P{v; = 1,v; = 0}, m3 = P{v; = 0,v; = 1},
my = P{v; = 0,v; = 0}, where 1 and 0 indicate the YES and NO
vote. We have: m +my = p;, m1 + 73 = pj and m + o+ w3+ 74 = 1.
As the covariance cov[v;, v;] between the two Bernoulli random vari-
ables v; and v; is Elv,v;] — Elv;]Elv;] = m — pipj, the coeffi-
cient of correlation ¢; ; = covlv;,v;]/\/var]v;lvariv;] must satisfy
7 = pipj + ¢ij/pi(L — pi)pj(1 — p;). Two uncorrelated Bernoulli
random variables are independent. Plugging p;, p; and ¢;; into
the four equations recovers the distribution (7, w9, 73, 74), provided
m > 0. As we shall see below, an analogous system of equations in
the general case of more than three members may not have a unique
solution. Before proceeding to the general case, it is necessary to
introduce notation.

10



With m members, a voting outcome can be represented by bi-
nary vector s = (v1,v9,...,0y), whose i-th coordinate v; = 1 if
member ¢ votes YES, and v; = 0 otherwise. Define the following
sets: S the set of all voting outcomes; S(i) the set of voting out-
comes in which member i votes YES, that is the set of all binary
vectors s such that v; = 1; S(4,7) = S(7) N S(j) the set of voting
outcomes in which members ¢ and j both vote YES, that is the set
of all binary vectors s such that v; = v; = 1. Sets S, S(4) and S(i, j)
respectively contain 27, 2™~ and 2" 2 elements. For example,
for m = 3 there will be eight voting outcomes A:(1,1,1), B:(1,1,0),
C:(1,0,1), D:(1,0,0), E:(0,1,1), F:(0,1,0), G:(0,0,1), and H:(0,0,0).
The set S contains all eight vectors. The set S(2) contains vectors
A. B, E, and F, as only they have 1 in the second coordinate. The
set S(2,3) contains vectors A and E, as only they have 1 in the
second and third coordinates.

For m > 3, we have

s € [0,1] Vse€S; (4)

Z s = 1 (5)
seS

Z s = p; for1,2,...,m; (6)
s€S(7)

> ome o= pipj+ Ci,j\/pi(l —pi)p;(1—pj) (7)
s€S(i,5)

for1<i<j<m,

provided the correlation matrix constructed from c; ;’s is positive
semi-definite.

Given m probabilities and (g’) coefficients of correlation, the
above system comprises 1+m+ (7;) equations with 2™ unknowns and
hence may not have a unique solution for m > 3. For a particular so-
lution choose the one which is closest in the sense of least squares to
the probability distribution in the case of independent votes. This

11



solution can be obtained by solving the following quadratic opti-
mization problem

m 2
rrgn% Z s — Hp;”(l —p) )| forses, (8)
s i=1
subject to constraints (4)-(7).

The strict convexity of the objective function implies that a so-
lution, if one exists, is unique. Any probability vector of length 2™
can be used as a criterion for computing the smallest sum of squared
deviations. This vector is chosen because the resulting optimization
problem can be used to compute the bias in the vicinity of the prob-
ability vector corresponding to the Bz ideal case of equiprobable and
independent votes, as well as in the vicinity of the probability vec-
tor corresponding to the more general case of independent but not
equiprobable votes.

The formulation of the numerical scheme is essentially indepen-
dent of the assignment of probabilities in the sense that defining, for
example, p; as the probability of 7 voting YES and p; as the prob-
ability of j voting NO, leads to a similar system of equations. This
is clear with respect to constraints involving the probabilities, while
the following simple Lemma shows it also to be true with respect to
constraints involving the correlation coefficients.

Lemma 1. Let v; and vj be two Bernoulli random variables with
Ev; = p; and Ev; = pj. Further, let

P{v; =1,v; =1} = pip; + ci,j\/pi(l —pi)pi (1 —pj); (9)
P{v; =0,v; =1} = (1 —p;)p; + Ei,j\/pi(l —pi)p;(1 —pj;); (10)

P{v; =1,v; =0} = p;(1 —p;) + éi,j\/pi(l —pi)pi (1 —pj); (11)

+ 5i,j\/pz‘(1 — pi)p; (1 — pj).
Then, ¢;; = —C;j, ¢ij = —Cij, Cij = Cij-

12



Proof. To prove the first equality, substitute (9) and (10) into P{v; =
1,v; = 1} + P{v; = 0,v; = 1} = p;. The second equality is obtained
by substituting (9) and (11) into P{v; = 1,v; = 1} + P{v; = 1,v; =
0} = p;. Finally, the third equality is obtained by substituting (9)
and (12) into P{v; = 1,v; =1} — P{v; = 0,v; =0} = p; + p; — L.

O

Consequently, each of the four alternative assignments of prob-
abilities leads to systems of equations identical except, perhaps, for
the sign of the correlation coefficient. 1 will use this fact in estimat-
ing the probabilities and correlation coefficients from ballot data
(Section 3.1).

A numerical solution of the general problem is feasible but can
be computationally intensive for a large m. In Appendix A, I ana-
lytically solve a slightly less general problem, in which all the prob-
abilities are identical but the correlation coefficients may vary.

Proposition 1. Let p; = p € [0,1] for all i = 1,2,...,m be the
probability of i-th member voting YES and ¢; j € [-1,1], 1 <i < j <
m, the correlation coefficient between any two such votes. Setting
q = 1 — p, the probability of occurrence of a voting outcome is given

by

m—1 m
Ty = s Vg L 92 g NN " g -

=1 j—itl
m i—1 m m—1 m
3—m 4—m
—27"""pq E v E cji+ E cij | +27 "pg E E Ci,jUVj
i=1 j=1 j=it1 i=1 j=it1

(13)
provided 7 > 0.

13



m—1

When ¢;; = ¢, Y, > ¢ :c(m anch—l—Zc:
i=1 j=it+1 j=i+l

c¢(m — 1), so that

_pz, 1'Uzmz7, 1v1+22m m

m m—1 m
Z’U1+4Z Z 'ulvj) 14)
=1 i=1 j=i+1

The above optimization problem is completely general in that it
admits varying probabilities and correlation coefficients. If distribu-
tions that satisfy the probabilities and correlation coefficients exist,
it will find one such distribution. If all p’s are equal, the analytical
solution (13) will yield the same distribution, unless one or more of
the voting outcomes occurs with probability zero, or if the comple-
mentary slackness condition (4) is binding. The requirement 75 > 0
puts an upper bound on ¢; ;’s for given m and p, and constraint (5)
ensures my < 1. This restriction applies to the analytical solution
only, as in numerical optimization the full set of constraints (4)-(7)
is imposed.

3.1 Estimating the probabilities and
correlation coefficients

The proposed methodology allows calibrating an accurate model
of the voting body given one’s prior beliefs about the preferences of
the members and the degree of commonality or rivalry among them.
Expressed in terms of the probabilities and correlation coefficients,
these beliefs can be used to forecast the probabilities of different
voting outcomes. Alternatively, one can estimate probabilities and
correlation coefficients based on ballot data.

Since p; = Y, s, its estimate p; equals the frequency of YES
s€S(3)
votes in the total number of votes cast by 7. For two Bernoulli
random variables v; and v; with Ev; = p; and Ev; = p;

14



P{v; =1,v; =1} =pip; + Ci,j\/pi(l —pi)pj(1 —pj); (15)
P{v; =1,v; =0} =p;i(1 —p;) — Ci,j\/pi (1 —pi)p;(1 —pj); (16)

P{v; =0,v; =1} = (1 —p;)p c”\/p1 —pi)pi(1 —pj;); (17)
P{vizﬂaﬂj20}—(1—pz)(1—P1)+ (18)

+ Czy\/pz — DPi pj pj)'

Substituting the frequencies of the four arrangements of votes f1 ,
fad f3’3 , f27 for the probabilities on the left-hand side, and the
estimates p;, p; in the right-hand side equations yields a system of
four equation with one unknown ¢; ;. An estimate of ¢;; can be
obtained by minimizing the goodness of fit statistic

4
hk(cz ]))2
minGF(c; ;) = : , 19
Cij ] ; fkv.] ( )
where
hi(cij) = pipj + Cij\/ﬁz‘ (1= pi)p; (1 —pj); (20)
h2(ci,j) = 1 _p] 01,]\/102 — Di p] 1 _pj) (21)
hs(ci;) = (1 —pi)pj — Cz‘,j\/ﬁi(l — pi)pj(1 — pj); (22)
ha(cij) = (1 —pi)(1—p;)+ Ci,j\/ﬁi(l — pi)pi(1 — pj). (23)

The value that minimizes GF(c; ;) is Neyman and Pearson’s min-
imum y? estimator [15, ch. 1.2]. In a voting body of m members
there will be (’;) distinct pairs of members and hence that many
minimization problems to solve. The independence assumption can
be tested using Fisher’s exact test based on a hypogeometric distri-
bution [8, chs. 2.4 and 3.6.1].

15



3.2 Examples

With n > 3 members, the aim is to compute the i-th member swing
probability and the bias resulting from the application of the Bz
measure to 4, assuming that ¢ votes independently but the remain-
ing m = n — 1 votes correlate. The generalized Bz measure, i.e. the
probability of casting a decisive vote, for member 4 can be written
as Bz;(n,p,c), where p is the vector of m probabilities and ¢ the
vector of (g’) correlation coefficients. If p; = p and ¢;; = ¢, we
would write Bz;(n,p,c). This case will be studied analytically. In
the above notation, Bz;(n,0.5,0) = f; is the original Bz measure.
The following three examples illustrate the effect of the probabil-
ities and correlation coefficients on the Bz measure, assuming the
independent member votes YES.

Example 1 (Table 1): Consider an unweighted simple-majority
game with four members, or {3;1,1,1,1}. Let the first member be
independent. If all other members also vote independently, each
coalition among the remaining three members would occur with the
probability 0.5% = 0.125. The first member is decisive in 3 of the 8
coalitions; her Bz measure is equal to 3 - 0.5% = 0.375 (Case A).

Let any two of the remaining three votes correlate with ¢ = 0.2
(Case B). Positive correlation makes broad coalitions more proba-
ble, tight coalitions less probable. The opposite is true of negative
correlation (Case C). Increasing p shifts the probabilities toward
coalitions with a high percentage of 1’s (Case D). Introducing posi-
tive correlation negates some of this shift due to an increase in the
probability of occurrence of all broad coalitions, including those with
a high percentage of 0’s (Case E).

Case D suggests that a departure from equiprobability increases
the voting power of the independent member, but in the next section
I show that the opposite can also occur. Cases B and C show that
positive correlation between members of a voting body will reduce
the voting power of the independent member; negative correlation
will have the opposite effect. By increasing the probability of ties or

16



near-ties, negative correlation increases probabilities of those vot-
ing outcomes in which the independent member is decisive, while
positive correlation decreases these probabilities.

The above examples show that the distribution of voting power
in an unweighted simple majority game ceases to be trivial when
the votes are neither equiprobable nor independent, and that even
small departures from either assumption may generate a substantial
discrepancy between the Bz measure and the probability of casting
a decisive vote. Application of the Bz measure to these voting situa-
tions will result in substantial biases. The absolute and the relative
biases for 7 are computed as:

Bzi(na 05a 0) - Bzi(napa C)
Bz;i(n,0.5,0)

Bzi(n,0.5,0) — Bz;(n,p,c) and

(24)
The following example of a weighted voting game shows the versa-
tility of the numerical scheme.

Table 1. Game: {2.5;1,1,1,1}

Case A B C D E
Coalitions p=05p=05 p=05 p=0.75p=0.75
v1 V3 v3 V4|Winning Decisive| c=0 ¢=02¢c=-02 ¢c=0 ¢=0.2
1111 v - 0.125 0.200 0.050 0.422 0478
1110 Vv Vv 0.125 0.100 0.150 0.141  0.122
1101 Vv Vv 0.125 0.100 0.150 0.141  0.122
1100 - - 0.125 0.100 0.150 0.047  0.028
1011 Vv Vv 0.125 0.100 0.150 0.141  0.122
1010 - - 0.125 0.100 0.150 0.047  0.028
1001 - - 0.125 0.100 0.150 0.047  0.028
1000 - - 0.125 0.200 0.050 0.016  0.072
Bz (4,p,¢) 0.375 0.300 0.450 0.422  0.366
Absolute bias 0.000 0.075 -0.075 -0.047 0.009
Relative bias - 0.200 -0.200 -0.125 0.025

17



Example 2 (Table 2): Consider the weighted game {6;4,2,
2,1}. When all members vote independently, the Bz vector reads
(0.75,0.25,0.25,0.00).

Let C12=C3=Cl4= 01, 23 = 02, C24 = C34 = 0.5. Thisis a
situation in which small members are more likely to cooperate with
each other than with the large member. Now the Bz vector reads
(0.700,0.225,0.225,0.000), allocating respectively 6.7 and 10 percent
less power to the large member and medium members (whose powers
are equal). The smallest member is a dummy regardless of the
stochastic properties of the votes, as the characteristic function is
independent of them.

Example 3 (Figure 1): The final example illustrates the effect
of a change in p and ¢ on the Bz measure in an unweighted simple-
majority game with n =4 and n = 5. Figure 1 shows that the bias
incurred by p deviating from 0.5 is larger than that incurred by ¢
deviating from 0, which appears to vary linearly with the magnitude
of the correlation coefficient. This is established rigorously in the
next section.

Figure 1. The absolute Bz measure of voting power in unweighted
simple-majority games

4voters (n=4, m=3) 5 voters (n=5, m=4)

The probability of a YES vote p € [0,1] is identical for all voters and the coefficient
of correlation ¢ € [0,1] between two YES votes is identical for all pairs of voters. The
Bz measure is unbiased when p = 0.5 and ¢ = 0 (filled points). The probability bias
incurred by p deviating from 0.5 is polynomial, whereas the correlation bias incurred
by ¢ deviating from 0 is linear.
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Table 2. Game: {6;4,2,2,1}

Relative bias

Coalitions p=05,c=0 p=0.5c*

vy w2 w3z wvg | Winning Decisive VOTER 1

T 1 1 1 Vi Vi 0.125 0.275
1 1 1 0 v v 0.125 0.025
1 1 0 1 V4 Vi 0.125 0.100
1 1 0 0 v v 0.125 0.100
1 0 1 1 v v 0.125 0.100
1 0 1 0 v v 0.125 0.100
1 0 0 1 - - 0.125 0.025
1 0 0 0 - - 0.125 0.275
Bzi(4,p,c) 0.750 0.700
Absolute bias 0.000 -0.050
Relative bias - -0.067
V1 V9 V3 V4 Winning  Decisive VOTER 2

1 1 1 1 VA - 0.125 0.2125
1 1 1 0 V4 - 0.125 0.0625
1 1 0 1 V4 VA 0.125 0.0625
1 1 0 0 V4 Vi 0.125 0.1625
0 1 1 1 - - 0.125 0.1625
0 1 1 0 - - 0.125 0.0625
0 1 0 1 - - 0.125 0.0625
0 1 0 0 - - 0.125 0.2125
Bzy(4,p,¢) 0.250 0.225
Absolute bias 0.000 -0.025
Relative bias - -0.100
V1 V9 V3 V4 Winning  Decisive VOTER 4

1 1 1 1 VA - 0.125 0.175
1 1 0 1 V4 - 0.125 0.100
1 0 1 1 V4 - 0.125 0.100
1 0 0 1 - - 0.125 0.125
0 1 1 1 - - 0.125 0.125
0 1 0 1 - 0.125 0.100
0 0 1 1 - - 0.125 0.100
0 0 0 1 - - 0.125 0.175
Bz4(4,p,c) 0.000 0.000
Absolute bias

0.000 0.000

*c10=c1,3=c1,4=0.1,¢c23=0.2, ¢34 =c34=0.5

4 Assessing the bias of the Bz measure

The examples of the previous section show the Bz measure to be
biased when the votes are neither equiprobable nor independent.
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This section presents a proposition and a corollary on the magni-
tude of the probability and correlation biases in unweighted simple-
majority games. The model studied will be that of a homogeneous
voting body in which each vote has an equal probability of being
affirmative, and each pair of such votes is correlated with the same
coefficient of correlation.

In an unweighted simple majority voting game, the Bz swing
probability for the independent member 7, assuming ¢ votes YES, is
given by

Bzi(n,p,c) = Z 7s for s € S when n is even, m =n —1, (25)

2

o 1
sst. > v=mt
i=1

or

Bzi(n,p,c) = Zﬂ's fors € S when nisodd, m=n—1. (26)

m
sst. > vi="7
i=1

Proposition 2. In a simple-majority game with n members, in
which: (1) the probabilities of a YES vote equal p for all members,
qg=1—p, and (2) the correlation coefficients equal ¢ for any pair
of members, the Banzhaf absolute measure of voting power for an
independent member i is given by

m m+tl m—1 —m
Bzi(n,p,c) = <m+1> [p 2 q 2 —2! qu(m—l)] (27)
2

when n is even, m =n — 1;

m m —m
Batnpd = () [00)F ~ 2 "ogen (25)
2
when n is odd, m =n — 1.
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Proof. The expression for Bz;(n,p,c) is obtained by adding the
probabilities of the relevant voting outcomes given by (14), which
have equal probabilities of occurrence. When n is even (m is odd),
there are ( % ) voting outcomes in which 7 is decisive by voting

m (m—1) m—1 m m—1

YES, and Zw = =5, Z Z Vv = ( 2 ) Similarly, when
=1 =1 j=i+1

n is odd (m is even), there are (i) voting outcomes in which 4 is

m m—1 m m
decisive by voting YES, and }  v; =%, Y > wvjv; = (g) [
i=1 i=1 j=i+t1

Proposition 2 can be adapted to fit any weighted supermajority
game by replacing the above combinatorial analysis with a listing
of coalitions in which the independent member is decisive, such as
the one in Table 2. The number of such coalitions may differ from
( @ ) and (%) The following corollary furnishes the relative bias

due to p deviating from 0.5 when ¢ = 0, and due to ¢ deviating from
0 when p = 0.5.

Corollary 1. In a simple-majority game with n members, in which:
(1) the probabilities of a YES vote equal p for all members, and (2)
the votes are uncorrelated, the relative bias equals

Bzi(n,0.5,0) — Bz;(n, p,0) mtl m-1
= 1-9m 2
Bz(n,0.5,0) b (29)

when n is even, m =n — 1;
Bzi(na 05a 0) - Bzi(napa 0)
Bzi(n,0.5,0)

m
2

1-2"pq

(30)
when n is odd, m =n — 1.

In a simple-majority game with n members, in which: (1) the prob-
abilities of a YES vote equal p = 0.5 for all members, and (2) the
correlation coefficients equal ¢ for any pair of members, the relative
bias equals
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Bzi(n,0.5,0) — Bz(n,0.5,¢) c¢(m—1)

= — 31
Bzi(n,0.5,0) 2 (31)
when n is even, m =n — 1;
Bzi(n,0.5,0) — Bz;(n, 0.5, c) _m (32)
Bzi(n,0.5,0) 2

when n is odd, m =n — 1.

The sign of the probability bias depends on p and the parity

of n. When n is even (m is odd), the bias is polynomial. It can
have either sign, as QmmequTil can be smaller or larger than 1

for p # 0.5. For p € [0,1] and m = 2k, k = 1,2,..., the function
flp) = 2mme+1 (1—p) "3 attains a unique maximum at p* = ”2’—:;1
Since p* > 0.5, and p* — 0.5, f(p*) — 1 from above as m — oo, the
bias is positive for all p < 0.5 and negative for some p > 0.5.

The member is the more powerful, the more frequently her vote
is decisive. But this will depend on circumstances created by others
casting their votes so that she has opportunities to be decisive. The
asymmetry of the probability bias about the point p = 0.5 for an
even n owes to the criterion (25), in which Bz;(n, p,0) is the highest
m

when voting outcomes satisfying > v; = mTH are highly probable,
i=1

or when YES votes are slightly more probable than NO votes.

When n is odd (m is even), the inequality 2?p(1 — p) < 1 for
p € [0,1] implies 2™p2 ¢% < 1 for all p # 0.5. The probability bias
is polynomial and positive.

In any case, positive correlation will bias the Bz measure up-
wards, negative correlation will have the opposite effect. The ab-

solute and relative correlation biases increase linearly in c¢. The
relative bias increases linearly in m.
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5 A modified Penrose’s square-root rule

Let N be the number of constituencies, each having n; citizens. Let
1 and d; denote a citizen and the delegate of the i-th constituency.
The square-root rule (SRR) gives an approximate answer to the
following question: How should voting power be distributed in a
council of elected delegates so that each citizen — regardless of the
size of her constituency — has an equal a priori power in the sense
of Banzhaf? The following assumptions lead to a two-stage bino-
mial model: (i) each citizen has one vote, (ii) all citizens’ and all
delegates’ votes are equiprobable and independent, and (iii) the uni-
versal voting rule is simple majority. The probability of a citizen
being decisive in bringing about her preferred outcome in the coun-
cil equals the probability that the delegate is decisive in bringing
about this outcome, multiplied by the probability that the citizen
is decisive in electing the delegate. Formally, 8; = B, (N)Bi(n;),
where f3;(n;) is the voting power of the citizen 7 in her constituency,
Bd;(N) is the voting power of the delegate d; in the council, and B;
is the indirect voting power of the citizen i.

To find the ratio of delegate powers that will equilibrate the citi-
zens’ indirect powers, set BZ / Bj = 1 and apply Stirling’s approxima-
tion to f3;(n;) and B;j(n;). This leads to the well-known result that
the citizens’ indirect powers are approximately equal if the powers of
the delegates in the council are proportional to the square root of the
size of their constituencies, or B4, (N)/B4;(N) =~ /ni/n; = 1/vVh.
The last step assumes, without any loss of generality, that the con-
stituencies differ in size by the fraction A > 0 so that n; = hn;.

Suppose that in each constituency 7 the votes are equiprobable but
correlated, with the coefficient of correlation ¢;. A high positive ¢;
implies a more homogeneous constituency. The larger and the more
homogeneous a constituency is, the less power do its citizens have.
In contrast, differences of opinion with respect to the candidates
on the ballot should lead to closer outcomes, thus increasing the
efficacy of a vote.
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Proposition 2 can be used to construct the ratio of Bz measures
for citizens 7 and j of two different constituencies. Setting p; = p; =
0.5, nj = hn; and dropping the subscript on n; leads to

2-1-n (g) (2 —¢in)

2-1=1mm) () (2 — ¢;[hn])

2

(33)

where [1] denotes the integer part of 2.5 By Stirling’s approximation

b ~ 1 2-¢hn thn. (34)
Ba, Vh 2—cin

The above SRR takes into account both the homogeneity and the
size of constituencies.® All other things being equal, the more homo-
geneous the constituency is, the lower the voting power of its citizens
will be, and the higher the voting power of their delegate ought to
be if all citizens are to have equal powers. Setting ¢; = ¢; = 0 leads
to the original SRR in [24]. For 4, and 4, to remain probabilities,
cin and cjhn must be small.

[12] and [11] offer a critical discussion and an empirical test of
Penrose’s SRR in U.S. presidential elections. Their evidence refutes
the binomial model of voting and hence also the SRR as a rule of
fair representation. Equation (34) shows the magnitude of the bias
in the SRR due to correlation between votes.”

SProposition 2 allows relaxing both assumptions. The consequences of relax-
ing the equiprobability assumption have been discussed in the literature, so I
focus on correlation. Since the parity of n does not qualitatively alter the result,
the equation for an odd n is used.

6[2] derive a rule of fair representation and a voting rule that maximize the
sum of the utilities of citizens in all constituencies. In their model “a country’s
population can be partitioned into blocks: citizens within a block have perfectly
correlated preferences, whereas citizens across blocks have independent prefer-
ences” (p. 319). This model of heterogeneity reduces the problem to that of
blocks’ sizes alone.

"Other probabilistic voting models may well cause more serious distortions.
On an optimistic note, the simulation study by [19] shows Penrose’s SRR to be
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6 Summary and Conclusions

The crucial probabilistic assumption underlying the classical mea-
sures of voting power is that each member of the voting body votes
independently of all other members. In the case of the Banzhaf mea-
sure this assumption is supplemented by that of equal probabilities
of YES and NO votes for each member.

By means of a numerical scheme for computing the Banzhaf
swing probability when the votes are neither equiprobable nor in-
dependent, this paper studies the magnitude of numerical error or
bias in the Banzhaf absolute measure that occurs if neither assump-
tion is met. The numerical scheme admits varying probabilities and
correlation coefficients, which makes it suitable for empirical imple-
mentation, such as the calibration of an accurate model of a voting
body based on beliefs about the preferences of individual members
and the degree of commonality or rivalry between them, or the esti-
mation of such a model from ballot data. An analytical solution is
provided for a model in which probabilities are identical, but corre-
lation coefficients vary.

The analytical part derives the exact magnitude of the bias for
an unweighted simple-majority game in which the probability of an
affirmative vote is the same for all members and the correlation
coefficients are the same for any pair of members. The bias incurred
by the common probability deviating from one half can be positive
or negative depending on the probability and the size of the voting
body, although it is always positive when the number of members is
odd. The probability bias is more serious than that incurred by the
common coefficient of correlation deviating from zero. The former is
a polynomial function, whereas the latter is a linear function of the
deviation. Positive correlation between members of a voting body
will reduce the voting power of the independent member, negative

robust for a particular family of distributions. But they assume independent
votes.
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correlation will have the opposite effect. The magnitude of either
bias increases with the size of the voting body.

The magnitude of the bias in a weighted voting game cannot
be studied analytically due to the characteristic function of such
a game not being amenable to combinatorial methods, despite it
being independent of the stochastic properties of the votes. The
approach to general weighted voting games has to remain that of
listing all voting outcomes in which the independent voter is deci-
sive and summing their probabilities of occurrence. However, the
proposed method allows the bias in any weighted voting game to be
computed numerically.

As a further result I derive a modified square-root rule for the
representation in two-tier voting systems that takes into account the
sizes of the constituencies and the heterogeneity of their electorates.
Since in a homogeneous electorate the votes are positively correlated,
the larger and the more homogeneous the electorate, the less power
a vote has.

The main conclusion of this paper is that, despite the Banzhaf
measure being a valid measure of a priori voting power and thus
useful for evaluating the rules at the constitutional stage of a voting
body, it is a poor measure of the actual probability of being decisive
at any time past that stage. The Banzhaf measure cannot be used
to forecast how frequent a voter will be decisive.
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A Appendix: Solution to the optimization
problem

Write the Lagrangian £(x) as

D)+ A D> wy =L+ pi | Y, wve —p|+
seS =1 s€S(i)
m—1 m
+ Z Z Ki,j Z Ty(s) — (p* +pgeij) | (35)

=1 j=1+1 s€S(4,5)

where the objective function is given by

2() = 5 3 [ — PR g ]
s€S

Vector x is a probability vector of length 2™. The subscript

m
V(s) = 3. 2™7(1 —v;) + 1 indicates the coordinate of x that cor-
respond; tlo the probability of the voting outcome s, so that the
coordinates of x are indexed in the descending order of the decimals
represented by the corresponding binary vectors of voting outcomes,
starting from the vector of m ones. Indexing is necessary for taking
a derivative of £(x).

The first-order condition %&:‘) = 0 implies
m m—1 m
Ty(s) = pZi=1 viqu2i=1 Vi )\ — Z WiV — Z Z Ki4,jViVj. (36)
i=1 i=1 j=i+1
Substitution into the first constraint yields
m m—1 m
ANH2D it D> D ki =0 (37)
i=1 i=1 j=i+1
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When substituting (36) into the second set of constraints note that
the sum is now taken over the set of all vectors having 1 as their
i-th coordinate. We need to distinguish between coordinates to the
left and the right of the i-th coordinate. Upon the substitution of
(36) we have

AN+ ) +2 Z,u]—i—z,%], + Z Kij

J=i+1
1751
m—1 m
+ > ) k=0, (38)
k=1 l=k+1
k#i 1%

which in view of (37) simplifies to

2”1"‘2"?”"‘ Z"iz]—o (39)

Jj=i+1

Similarly, the sum in the third set of constraints is taken over the
set of all vectors having 1 as their i-th and j-th coordinates. Now
we need to distinguish between coordinates to the left of the i-th
coordinate, to the right of the j-th coordinate, and in between the
two. Thus,

247mpqcz-,j +AN+ i + Wi+ Ki ] Z Ui + Z Kik+
k=i+1
k#m k#j
DITED SIS S I o PR
I=j+1 k=1 l=k+1
l#l k#i,5 1745
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In view of (37) and (39) the above expression simplifies to

H* _ _247m

ij — pqci - (41)

Plugging (41) into (37) and (39) yields all other Lagrangian multi-
pliers and the solution m’{,(s)

i—1 m
pi=2"pg | Y et Y cig | (42)
=1 j=it1

m—1 m
A=—2pg > N (43)

i=1 j=i+1

(after some algebraic manipulations);

m—1 m
Tie) = P Vg R £ 22 g NN " -

i=1 j=i+1
m i—1 m m—1 m
3— 4—
—2°"Mpq E v; E cji+ E cij | +2"7""pgq E E Ci UiV}
i=1 j=1 j=i+1 i=1 j=1+1

forseSand 1 <i<j<m. (44)

The V(s)-th coordinate of m’{/(s) represents the probability of occur-
rence of voting outcome s.
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