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1. Introduction

Gerrymandering — the partisan manipulation of electoral district
boundaries — has plagued modern democracies since their early
times. Far from being defeated, it keeps displaying its perverse ef-
fects even at present [1]. It was only with the rise of the electronic
computer that researchers started thinking about neutral and ratio-
nal procedures for political districting. Its nature of multicriteria
decision problem was soon recognized. Suppose that the territory
is subdivided into elementary administrative units (counties, town-
ships, wards,..). The most commonly adopted districting criteria are
the following: Integrity (no unit may be split between two or more
districts); Contiguity (the units within the same district should be
geographically contiguous); Population Equality (the district popu-
lations should be equal or nearly equal, especially in majoritarian
systems); Compactness (each district should be compact, that is,
“closely and neatly packed together” (Oxford Dictionary)); Confor-
mity to Administrative Boundaries (the electoral district boundaries
should not cross other administrative boundaries, such as those of
regions, provinces, local or minority communities,..). Among these
criteria, Compactness stands as a powerful weapon against gerry-
mandering, since it bans indented or elongated districts: a sunfish-
shaped district is deemed to be compact, while an octopus-shaped
or an eel-shaped one is not.

The present paper deals with the following two basic problems:

1) How bad can gerrymandering be?

2) How effective is compactness in preventing gerrymandering?

We shall give both theoretical and experimental answers to these
two problems. Accordingly, our paper is divided into two parts. In
the first one, an idealized combinatorial model is investigated; in
the second part, a more realistic and flexible multicriteria graph-
theoretic model is adopted, and computational results are presented
for some medium-large real-life test problems.
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Figure 1. Example of Dixon and Plischke

2. A Combinatorial Gerrymandering Model

As a motivation for the present section we mention a striking arti-
ficial example of gerrymandering given by Dixon and Plischke [2].
Suppose that only two parties P and C compete under a first-past-
the-post system and that, as in Figure 1, the territory is divided into
elementary units having the same population and an homogeneous
electoral behavior. If the district map of Figure 1 (a) is adopted,
party C wins in 8 districts out of 9; however, if the alternative dis-
trict map of Figure 1 (b) is adopted, party C wins only in 2 districts
out of 9, so the outcome is drastically reversed.

A careful look at Figure 1 gives us a clue about an effective
strategy for maximizing the number of districts won by either party:
the districts should be designed so that every win should be close
and every loss should be sweeping.

In this section we shall consider an idealized graph-theoretic for-
mulation that captures the essence of the artificial example by Dixon
and Plischke. Given a territory composed by territorial units, define
the following integers:

e 7 is the number of territorial units;

e p is the number of districts;

e s is the common district size (number of territorial units in
each district).

Clearly, the three parameters n, p, s must satisfy the relation
n = ps.

We model the territory as an undirected graph G = (V, E) with
|V| = n, where the vertices represent territorial units and the edges
represent adjacency between territorial units.

A connected partition of G is a partition of its set of vertices
V' such that each component induces a connected subgraph of G.
We suppose that G is p-equipartitionable, that is, there exists a
connected partition of G into p components of the same size s.

A district design is a connected partition of the graph into p
components or districts of the same size. Notice that this definition
takes into account the criteria of integrity, contiguity and population
equality. A wote outcome is a bicoloring of the vertices that assigns
to each vertex either the color blue or the color red: this means that
all voters in the corresponding unit vote for the same party, blue or
red, respectively. A vote outcome is balanced if the number of blue
vertices is equal to the number of red ones.

A balanced vote outcome corresponds to a situation in which
the electoral population is perfectly split among two parties. In our
treatment, we shall consider only balanced vote outcomes.

From now on, except for the last section, we shall make the
following assumptions on the integers n, s, and p:

e n is even: this is a necessary condition for the existence of
balanced vote outcomes;

e 5 is odd and greater or equal to 3: this assumption forbids
trivial cases and ties between the two parties;

e pis even: this follows from the relation n = ps.

If in a district D the number of blue vertices is greater than
the number of red ones, we will say that D is a blue district. In
a similar way we can define a red district. We will denote II the



set of all district designs and €2 the set of all possible balanced vote
outcomes.

We define an electoral competition a pair (w, ) such that w €
and m € II. The functions b(w, ) and r(w, ), represent the number
of blue and red districts, respectively, resulting from the electoral
competition (w, ). Let

B(G) = maxweﬂ,wenb(wa 7T)'

B(G) is the maximum number of blue districts for all the elec-
toral competitions (w,7) € Q x II. In a similar way we can define
R(G).

Property 1. Since, for any bicoloring, it is possible to switch the
colors of the vertices so that the red vertices become the blue vertices
and viceversa, any property of the blue party that does not explicitly
depend on any given bicoloring must hold for the red party too. In

particular we have that B(G) = R(G).

By this property we can define the function

Moreover the results that we will provide for the blue party hold
also for the red one.

Given an electoral competition (w,7) € Q x II, for any district
k, k=1, ..p,let

e b; = number of blue vertices in district &,

e 7, = number of red vertices in district k.

Proposition 1. Given a p-equipartitionable graph G, for any
(w, ) € Q X II the following inequality holds:

b(w,m) < |n/(s+1)].

Proof. Given an electoral competition (w,7) € Q x II, for each
district k, let bx and 7 be defined as above. Since w is balanced ,

we may assume:
> (b —r) =0.

k=1,...,p
Hence:
0= (e =)= > (be—re)+ > (b —rs)
k=1,....p k:bp>rp k:bp<rp

> b(w, ) —s(p — blw, ) = (s+ 1)b(w, w) — sp
Since n = ps and b(w, ) is a natural number we obtain:
blw,m) < [n/(s+1)].
a
Corollary 1. If G is p-equipartitionable, then W(G) = |n/(s+1)].

Proof. Let m € II be any district design. It is possible to color
the vertices of the graph G in such a way that |n/(s + 1)| districts
have at least (s + 1)/2 blue vertices. In fact, in any balanced vote
outcome, the number of blue vertices is n/2 and:

s+1 n <ﬁ.
2 s+1|— 2

Since a district with (s+1)/2 blue vertices is blue, we obtain a vote
outcome with at least |n/(s+1)| blue districts. But, by Proposition
1., this is an upper bound for the number of blue districts, hence
W(G) = |n/(s+1)]. 0

Corollary 2. If G is p-equipartitionable, and p = q(s+ 1) + r with
1<r<s+1 then W(G) =qs +r—1..

'Notice that ¢ and r might not coincide with the quotient and the remainder,
respectively, of the division of p by s + 1.



Proof. From Corollary 1. one has:

W(G) = LLJ = gs + [SflJ.

rs T 1
= r — =7r—
s+1 s+1 ’

W(G)=qs+r—1.

Since r < s+1,

hence

a

Given a bicoloring w €  and a partition # € II, we say that
a district is (blue) edgy if it contains (s + 1)/2 blue vertices and
(s —1)/2 red vertices, while we will say that a district is (blue)
sweeping if all its vertices are blue. Moreover we say that 7 is (blue)
extremal if the number of blue districts b(w, ) is equal to its upper
bound |n/(s + 1)|. Similar concepts can be introduced for the red
party.

Remark 1. Ifp < s+1, each blue extremal partition has p—1 blue
districts and one red district.

We are especially interested in the following optimization prob-
lem:

GAP(G) = mazyco(mazzenb(w, ™) — mingenb(w, 7)).
For a given graph G the function GAP(G) is a measure of the
maximum bias of an electoral outcome (in terms of number of seats

in single member majority districts) due to gerrymandering.

Proposition 2. GAP(G) <2W(G) —p=2|-2]| —p.

Proof. Since b(w, ) + r(w, ) = p, then

GAP(G) = mafweﬂ(mamﬂ'eﬂb(wa 7r) + mamreﬂ'r(wa 7r)) —p<
< mazyecamazrenb(w, 7) + mazryeomazenr(w, ) —p =
=2W(G) —p. (1)

a

For a given p-equipartitionable graph G we are interested in
finding, if it exists, a bicoloring w* € Q such that there are a blue
extremal partition and a red extremal one, both w.r.t. w*. If such
a bicoloring exists, we will say that G is two-faced and there exist
two partitions 7y, w, € Il such that:

b(w*, m) =r(w*,m,) =W(G) = |n/(s+1)].
Corollary 3. We have
GAP(G)=2W(G) —p (2)
if and only if G is two-faced.
Proof. Follows from (1). O

Two-faced graphs are those for which gerrymandering exhibits
its worst case bias. There is an absolute threshold for the largest
number of seats that a party can obtain when the vote outcome is
balanced. In two-faced graphs, for a suitable balanced vote, both
parties can achieve this threshold by artful gerrymandering.

3. Theoretical Results on Grid Graphs

The main result of this section is that, under the above assumptions
on n, s, and p, any grid graph with an even number of vertices is
two-faced.

Let G be a grid graph with M rows and N columns, with n =
MN. Notice that a grid graph contains a hamiltonian path and so,



Figure 2. Hamiltonian cycle in a grid graph with an even number of rows

since n = sp, it is p-equipartitionable. Moreover, since we assume
that n is even, at least one between M or N must be even. In the
following we assume, without loss of generality, that M is even.

We start from the case p = s+1, where a blue extremal partition
has exactly s edgy districts and one sweeping district. In fact, by
Corollary 2. with ¢ = 0 and r = s + 1, the upper bound on the
number of blue districts is s. These districts must be edgy since
the number of blue vertices in G is s(s + 1)/2. It follows that the
remaining district is red sweeping. We will show how to construct
such an extremal partition on a hamiltonian cycle H of G. In fact,
since M is even, it is easy to show that G is hamiltonian (see Figure
2). We suppose that the vertices of H are consecutively numbered
from 1 to n along the cycle (traversed clockwise).

A boa is a path with (s + 1)(s —1)/2 vertices that can be parti-
tioned into (s + 1)/2 components having (s — 1)/2 consecutive blue
vertices and (s — 1)/2 consecutive red vertices each. Boas have the

following nice property: if one cuts the s-th, the 2s-th, ... . the
00000 00ee00
§=29

Figure 3. Examples of boas
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n=30,s=5p=6

Figure 4. Bicoloring for the case p=s+1

((s — 1)s/2)-th edge from left to right, one obtains (s — 1)/2 red
edgy districts and the remaining (s — 1)/2 nodes are blue; a sym-
metrical property holds when one interchanges the two colors ”red”
and ”blue”, as well as "right” and ”left”.

In Figure 3 the boas for s =5 and s = 7 are shown. Here, as in
all black and white figures in the sequel, blue vertices are displayed
as white and red vertices as black.

In Figure 4 we consider the case s = 5 and we show how to use
two boas in order to find a bicoloring of H for which there are both
a blue extremal partition and a red extremal one. One obtains such
bicoloring by splitting H into four consecutive subpaths that are
colored in the following way:

e the first subpath P; extends from vertex 1 to vertex (s+1)/2
and all its vertices are red;

e the second subpath P, is a boa starting from vertex (s+1)/2+
1, colored red, and ending at vertex s(s+ 1)/2;

e the third subpath P; extends from vertex s(s + 1)/2 + 1 to
vertex (s+ 1)(s + 1)/2 and all its vertices are blue;

e the fourth subpath P is a boa starting from vertex (s+1)(s+
1)/2 + 1, colored red, and ending at vertex s(s + 1).

11



It is easy to verify that the number of blue vertices is equal to the
number of red ones. Since H is a cycle, one can obtain an arbitrary
partition into p connected components by cutting p edges. In Figure
5 the two extremal partitions are shown for the case s = 5. If the
cut edges are (s,s 4+ 1),(2s,2s + 1),..., (s?,52 + 1), ((s + 1)s,1) the
district containing vertices from 1 to s is red sweeping and all the
other ones are blue edgy (Figure 5 (a)). Thus the partition is blue
extremal. By shifting each cut to its next edge (clockwise) (s+1)/2
times, we obtain a blue sweeping district from vertex s(s+1)/2+1
to vertex s(s+1)/2 + s and all the other districts are red edgy. So
the partition is red extremal (Figure 5 (b)).

Let us consider now the case p < s + 1. Since p is even and
positive we can suppose p = (s + 1) — 2k for a given k such that
1 <k < (s—1)/2. As shown in Figure 6 for the case s = 5 and
k =1, starting from the bicoloring of the case p = s + 1 we delete
from the subpath P, the last ks vertices and from the subpath P,
the first ks vertices. We obtain a cycle with s(s + 1) — 2ks vertices
where the number of blue vertices is equal to the number of red
ones. If one cuts the edges as above, starting from (s,s + 1), the
district containing vertices from 1 to s is red sweeping and all the
other ones are blue edgy except the one containing the subpath P;,
which is not edgy because it contains (s+ 1)/2+ k blue vertices and
(s —1)/2 — k red vertices. The obtained partition is blue extremal.
By shifting the cuts as for the case p = s+ 1, the resulting partition
is red extremal. In fact, in the district containing the subpath Pj,

(a) (b)

n=30,s=5p=6

Figure 5. Partitions for the case p=s+1
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(a) (b)
n=20,s=5p=4k=1

Figure 6. Bicoloring and Partitions for the case p < s+ 1

the blue party wins since there are s — k blue vertices and k red
vertices, while all the other districts are red edgy.
Finally suppose that p > s + 1.

Proposition 3. Under the above assumptions on G, M, N, p and
s, G can be decomposed into p grid subgraphs having s vertices each.

Proof. Since M N = ps there exist four natural numbers My, Mo,
N7 and N3 such that:

M = MMy, N = NiNy, M{Ny =3, MaNy = p.

As shown in Figure 7 (a), by partitioning the columns of G into
Ny components having Ny columns each and the rows of G into My
components having M; columns each, one can decompose G into p
grid subgraphs having M; rows and N; columns each. Notice that,
since s is odd, also My and Ny are odd; hence, since M is even, also
M5 is even. O

As in Corollary 2., we suppose that p = q(s+ 1) +r, with ¢ > 1
and 1 < r < s+ 1. Notice that, since s + 1 and p are even, also r
must be even.

We represent the decomposition given in Proposition 3. by a
grid graph G, with My rows and Ny columns, whose vertices Vj,
k =1,...,p, correspond to the grid subgraphs and there is an edge
connecting the vertices Vi and V; if some vertex of the grid corre-
sponding to Vi is adjacent to some vertex of the grid correspond-
ing to V; (see Figure 7 (b)). Let us consider the hamiltonian path

13
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Figure 7. Decomposition of G into p grid subgraphs

P = (Vy,Vs,...,V,) of G and partition it into ¢ subpaths having s+1
vertices each and one subpath having r vertices. Let P; be the j-th
subpath of P.

Lemma 1. For each j = 1,...,q + 1, and for each column ¢ of G,
the number of vertices of P; in column c is even.

Proof. The proof is based on the fact that the number of rows
of G, My, and the number of vertices in each subpath Pj, s + 1
or r, are even. Let c¢; be the smallest numbered column whose
intersection with some of the subpaths P; is odd. Then ¢; must
intersect in an odd number of nodes an even positive number of
subpaths P;. But then the smallest numbered such subpath, by
the minimality assumption on ¢;, would contain an odd number of
nodes, a contradiction.

O

As shown in Figure 8, the subpaths P;, j =1,...,¢ + 1, define in
G a decomposition into g + 1 connected subgraphs Hi, ..., Hyy1.
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Figure 8. Decomposition of G into p grid subgraph

Proposition 4. For each j =1,...,q + 1, Hj is hamiltonian.

Proof. As shown in Figure 8, each H; can be decomposed into
at most three grid subgraphs which, by Lemma 1., have an even
number of rows. Hence it is possible to find a hamiltonian cycle of
Hj as in the graph of Figure 9. O

Since Hj, j = 1,...,q+1 is hamiltonian, then, as shown before, it
is two-faced and so it is possible to find a bicoloring such that there
exist a blue extremal partition and a red extremal one. By using
the blue extremal partitions of the subgraphs H;, one can obtain a
partition of G having ¢s +r — 1 blue districts. In fact, by Corollary
2., in each of the ¢ subgraphs having s(s + 1) vertices, there are s
blue districts and in the subgraph having r vertices there are r — 1
blue districts. But, again by Corollary 2., gs + r — 1 is an upper
bound on W(G), hence the partition of G is blue extremal. The
same arguments can be used for obtaining a red extremal partition.
Then G is two-faced.

15



By the constructions shown for the cases p =s+1and p < s+1
and the decomposition found for the case p > s + 1, the following
theorem holds.

Theorem 1. Under the above assumptions on p and s, any grid
graph with ps vertices is two-faced.

Corollary 4. If G(s + 1,s) is a grid graph with s + 1 rows and s
columns, then

, GAP(G(s+1,s)
hmodd $—00 s+ 1 =

Proof. After Theorems 3. and 1., one has

GAP(G(s+1,5)) 2W(G)—s—1 25—s—1 s5—1

s+1 s+1 s+1  s+1

When s odd — oo, the thesis follows. O

Corollary 4. is stunning: it means that, for certain infinite families
of grids, as the number and size of the districts grow, vicious gerry-
mandering can make the percentages of blue districts and red ones
both arbitrarily close to 1 even under the assumptions that the vote
outcome is the same and that the blue party and the red one get
the same total number of votes.

Figure 9. Hamiltonian cycle in a H; subgraph of G
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In conclusion, we have shown that for all even grids one can
construct Dixon-Plischke-like examples where gerrymandering can
heavily reverse the electoral result in terms of Parliament seats.

Our final result shows that for some highly symmetric colorings,
on the one hand, there are blue and red extremal district designs;
on the other hand, the most compact design, namely, the partition
of the grid into square subgrids, yields the same number of blue and
red districts.

To address the question we introduce the notion of skew-sym-
metrical coloring.

Let ¢ be the mapping of the grid onto itself that maps node
(1,7) into (M +1—14, N +1—3). Notice that ¢ is the product of two
reflections, the first one around the y-axis, the second one around
the z-axis. Since M is even, ¢ fixes no point of G. A coloring w € {2
is skew-symmetrical if (i,7) and ¢(i, j) have opposite colors.

If a grid is skew-symmetrically colored, then ¢(G) is isomorphic
to G the colors of its vertices being interchanged (in fact ¢ is an
automorphism of the grid). In other words, up to the labels of the
vertices, the effect of ¢ on G reduces to switching the colors of its
vertices.

Theorem 2. Let G be an M x N grid having ps vertices with p <
s+ 1 and p even. One can always find a blue- and a red- extremal
partition with respect to some skew-symmetric bicoloring of G.

Proof. (Sketch). We can divide the grid into two equally sized
parts, say L and R, of & vertices each, in such a way that: (i)
(1,7) € L if and only if ¢(i,7) € R; (ii) both L and R induce
subgraphs containing hamiltonian paths.

Let us consider the subgraph G induced by R. We can define
a coloring of G and two connected partitions 7, and 7%, into p/2
components such that: 7', is a partition all whose districts are red
edgy, %, is a partition all whose districts but one are blue edgy, the
exceptional one being red (see Figure 10). Using ¢ we extend the
coloring of G to the entire grid. By construction this coloring is
skew-symmetrical. Moreover, if C' is any component of either 7%, or
%, ¢(C) is a connected component of Gy, (the graph induced by

17
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(b) (d)

Figure 10. (a) The most compact and equitable partition of a 6 x 12 skew-
symmetrically colored grid. (b) The hamiltonian cycle from which the two
extremal partitions in (c¢) and (d) are generated. Starting from the framed
blue (white) vertex, and cutting the 9th, 18th, 27th and 36th edges of the
cycle (clockwise) the right hand side of the partition in (c) is generated
(the left hand side of the partition in (d) can be obtained by symmetry).
Similarly, the right hand side of the partition in (d) (and, by symmetry,
the left hand side of the partition in (c)) is generated by starting from the
framed red (black) vertex. (c),(d) Red and blue extremal partitions

L), isomorphic to C' but with colors interchanged. It follows that if
n) and 7} are the partitions of G, corresponding via ¢ to 7% and
7, respectively, then 7%, U nY and 7, U} are extremal partitions
of G. O

However, skew-symmetric colorings give rise not only to maxi-
mally biased designs, but also to minimally biased compact designs
(see Figure 10).

Theorem 3. Let G be a skew-symmetrically colored M x N grid.
Suppose that G can be divided into squares of sides length \/s and let

18

7 be the s-partition formed by such squares. Then, in w, the number
of red district equals the number of blue districts .

Theorem 2. shows that even highly symmetrical vote outcomes
can be manipulated in a partisan way. Nevertheless, in view of The-
orem 3., compactness can be considered (at least within the frame of
our idealized model) as an effective remedy against gerrymandering.

4. Experimental Results on Real-life
Test Problems

In this section we provide a graph partitioning model for politi-
cal districting and we study combinatorial gerrymandering from an
experimental point of view on real-life data. The graph-theoretic
model of this section is different from the one introduced before:
here, we adopt a more general formulation in order to adhere to re-
ality as much as possible. Many restrictive assumptions introduced
in the previous section are now dropped, such as, for example, the
one imposing the same number of territorial units in each district.

As before, n denotes the total number of territorial units in the
territory, n = |V, and p, 1 < p < n, is a positive integer denoting
the number of districts. Let p;, Vi € V, be positive integral node-
weights, representing territorial unit populations and d;;, Vi, j € V,
be positive real distances defined for each unit pair (7,7). For each
territorial unit, the list of all those administrative areas (regions,
provinces,...) that contain the unit is known. Finally, with reference
to political elections in Italy, for each territorial unit we introduce
two positive integral node weights, vo; and vp;, Vi € V', representing
the number of votes obtained in unit 7 by the Olive Tree and by the
Pole of Liberties, respectively?. The general partitioning problem
can be formulated as follows:

2In this application we consider the Italian (majoritarian) vote distribution of
Political Elections of 1996. The Olive Tree and Pole of Liberties parties were the
center-right and center-left coalitions, respectively, which were in competition at
that time.

19



Given a graph G, partition its set of nodes into p subsets (dis-
tricts) such that the subgraph induced by each subset is connected
and a given function of the partition is minimized.

The objective function may measure different criteria. In the se-
quel, we use the term “district design” as a synonim of ”connected
partition into p components” (we are no longer imposing the further
restriction that the districts be equally sized).

Integrity and contiguity are automatically guaranteed by the
graph-theoretic model. The remaining criteria of population equal-
ity, compactness and conformity to administrative boundaries are
measured by proper indicators to be optimized. To this purpose,
we have chosen the same indicators as in [3]. Actually, these indi-
cators measure non-population equality, non-compactness and non-
administrative conformity, therefore they must be minimized.

In addition, we consider a fourth objective function given by a
convex combination of the other three. Moreover, in order to study
how far gerrymandering can be pushed, we also consider a parti-
san criterion. The idea is that both Pole and Olive would like to
Ywind the election. To this purpose, if they each had the opportu-
nity of designing their own political districts, they would try to find
the district design that make them win as many seats as possible
(gerrymandering). Given a political party, we compute a measure
of the utility of a district design for that party and use it as the
partisan objective function. This measure is obtained as the sum of
district-utilities computed over all the districts and is computed for
both the Pole and the Olive party. This provides our fifth and sixth
objective functions.

A natural choice for the district utility would be the step function

o, if p<1
o ={ 0 P51 3

where p is the ratio between the number of votes for the Pole and
those for the Olive. However, when applying local search techniques,
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Figure 11. District-utility logistic function for ¢ = 100 and b = 11,51

(3) is not sufficiently sensitive to the migration of a vertex from a
district to another. This explains why we chose to replace the step
function (3) by a smoother objective function. For a given party, say
the Pole, in each district we compute the following district-utility
logistic function for that party

" Tt eapb (1-p)

9(p)

where ¢ and b are suitably chosen in order to get the desired
shape of the utility function. The idea is that the district-utility
grows up rapidly when p is near 1 (see Figure 11).
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Table 1. Graphs of the Italian Regions

Region N. of | N. of | Density N. of
Nodes | Edges Districts
Piedmont 1208 3527 2.92 28
Latium 374 1006 2.69 19
Abruzzi 305 847 2.78 11

Table 2. Piedmont

District PE C AC MT | Pole | Olive
Design seats | seats
Min PE 0.075 | 0.911 | 0.577 | 0.426 10 18
Min C 0.771 | 0.531 | 0.347 | 0.614 11 17
Min AC 0.940 | 0.643 | 0.113 | 0.686 12 16
Min MT 0.094 | 0.762 | 0.288 | 0.334 11 17
Max Pole 1.052 | 0.777 | 0.454 | 0.850 21 7
Max Olive 1.364 | 0.593 | 0.263 | 0.913 3 25
Institutional | 0.105 | 0.859 | 0.143 | 0.339 11 17

In our experimental plan we used data of three Ttalian Regions,
namely, Piedmont, Latium and Abruzzi, divided into census tracts.
The weights p; associated to territorial units correspond to the Ital-
ian population from 1991 Census, and we considered the real road
distances between pairs of territorial units. In this application we
considered the Italian (majoritarian) vote distribution of Political
Elections of 1996. We used the Old Bachelor Acceptance meta-
heuristic [4] in order to find solutions that minimize the six different
objectives. This metaheuristic has shown to perform well when ap-
plied to territorial political districting problems. For details, see [5].

Table 1 shows the main characteristics of the graphs represent-
ing the territories of three Italian regions.
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Table 3. Latium

District PE C AC MT Pole | Olive
Design seats | seats
Min PE 0.046 | 0.778 | 0.523 | 0.361 13 6
Min C 1.226 | 0.166 | 0.143 | 0.692 12 7
Min AC 1.072 | 0.620 | 0.050 | 0.732 13 6
Min MT 0.050 | 0.502 | 0.270 | 0.230 10 9
Max Pole 1.512 | 0.321 | 0.061 | 0.864 19 0
Max Olive 1.299 | 0.277 | 0.131 | 0.759 3 16
Institutional | 0.060 | 0.683 | 0.202 | 0.275 10 9
Table 4. Abruzzi
District PE C AC MT Pole | Olive
Design seats | seats
Min PE 0.040 | 0.744 | 0.508 | 0.345 4 7
Min C 0.668 | 0.390 | 0.288 | 0.508 4 7
Min AC 0.894 | 0.539 | 0.056 | 0.620 4 7
Min MT 0.113 | 0.442 | 0.263 | 0.242 4 7
Max Pole 1.217 | 0.425 | 0.320 | 0.800 10 1
Max Olive 1.129 | 0.473 | 0.328 | 0.772 1 10
Institutional | 0.078 | 0.633 | 0.215 | 0.272 5 6

Tables 2—4 show our experimental results on the three different
graphs: in the tables PE means “Population Equality”, C means
“Compactness”, AC means “Administrative Conformity”, while MT
refers to the “Mixed Target” which is defined as the following convex
combination of PE, C and AC:

0.5PE +0.3C + 0.2AC.

The last row of Tables 2—4 refers to the values of the six objec-
tives computed for the Institutional district design adopted in Italy
for the Political Elections of 1996.
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On the basis of our experiments, we can state the following con-

clusions.

1. Given a vote distribution, gerrymandering is able to dramati-

cally reverse the electoral outcome.

The districting bias produced by gerrymandering algorithms
implies the deterioration of the values of all the traditional PD
criteria.

It turns out that there is a substantial stability of the number
of seats attributed to the Pole and to the Olive when the
criteria of Population Equality, Compactness, Administrative
Conformity and the Mixed one are optimized.

Compactness is a good shield against the practice of gerry-
mandering. On the other hand, in view of 3, and since gerry-
mandering deteriorates all the districting criteria, satisficing
the other criteria helps in preventing gerrymandering. This
is why the use of more than one traditional PD criteria is
generally recommended.
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