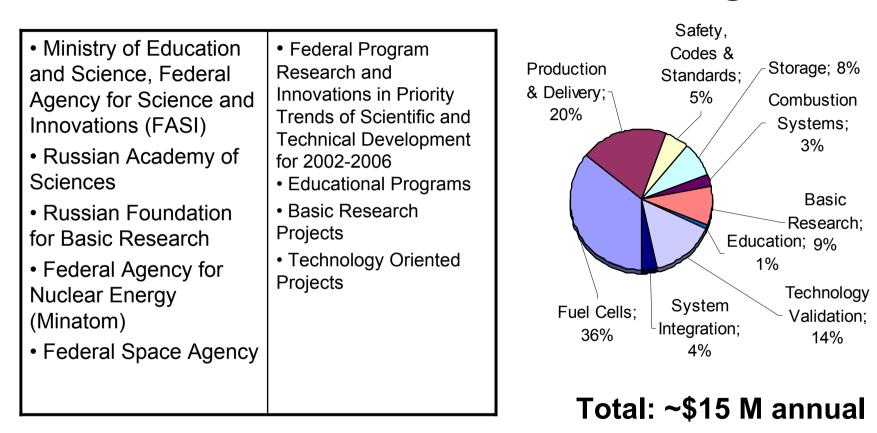
The Russian R&D in the field of Hydrogen Technologies

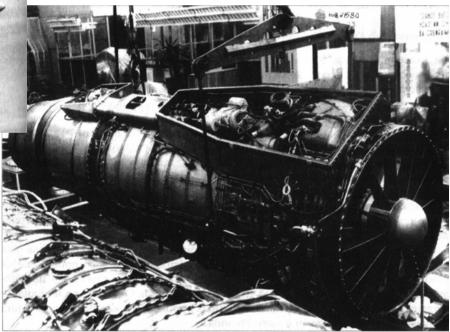

S.P. Malyshenko Laboratory for Hydrogen Energy Technologies Joint Institute for High Temperatures (IVTAN H2Lab)

Predicted hydrogen production and prices on Russian market

	2025	2035	2045	2055
	Production,	10 ⁶ toe		
European part	2-3	15-50	20-30	15-25
Ural and Western Siberia	14-17	15-40	20-25	15-20
Eastern Siberia and Far East	5-6	10-15	15-20	20-25
Total	21-26	40-105	55-75	50-70
	Prices, \$/	<mark>'toe</mark>		
European part	245-250	260-270	350-370	470-490
Ural and Western Siberia	215-220	245-250	295-310	470-490
Eastern Siberia and Far East	165-175	185-195	200-215	240-260

2006, Nekrasov A.S., Sinyak Yu.V. RAS

Russian Hydrogen Program: 2005-2006 Federal Budget


Additional funding: private companies (Norilskii Nickel, Gazprom, etc.), Moscow government

Aerospace Hydrogen Technologies Experience

1988. First hydrogen flight. Tu-155.

Hydrogen engine NK-88

Hydrogen for space program

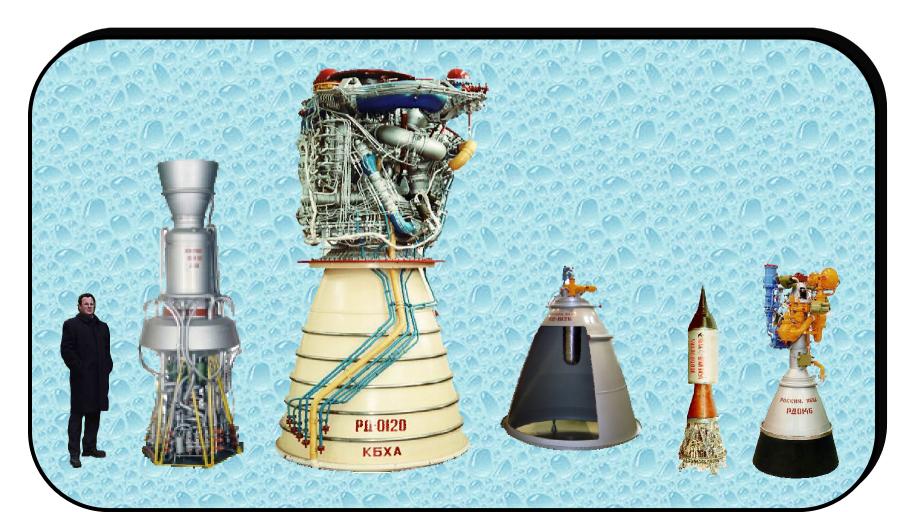
1972 Automatic flight to the Moon

- HYDROGEN 20 KG
- OXYGEN 200 KG FUEL CELL POWER UNIT

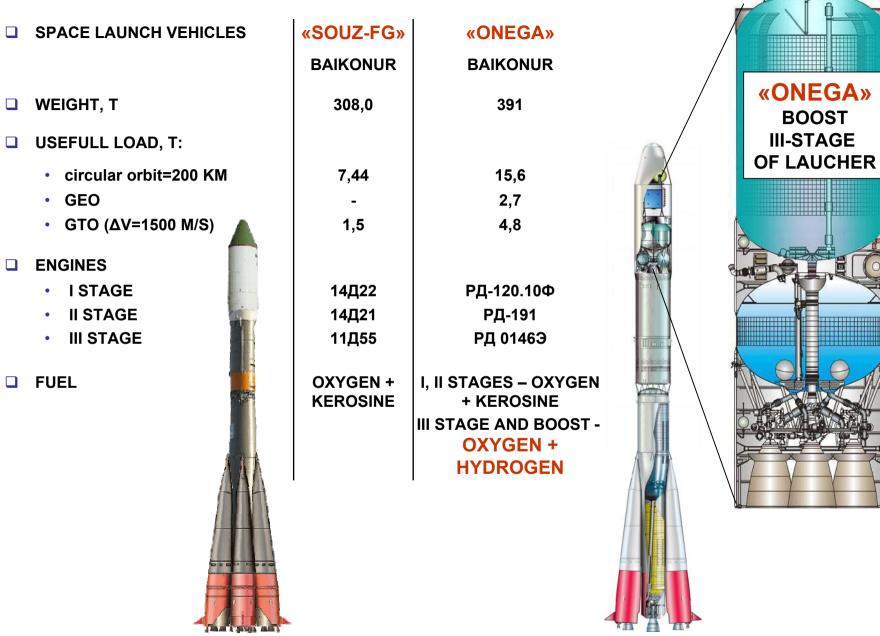
1987 Energia

HYDROGEN – 106 TONNS OXYGEN – 1540 TONNS ROCKET ENGINES

1988 Energia-Buran



HYDROGEN – 110 KG
OXYGEN – 900 KG
FUEL CELL POWER UNIT



Hydrogen engines

Chemical Automatics Design Bureau, Russian Space Agency

Modernization of space launch vehicles

Federal Agency for Science and Innovations

- Program: Research and Innovations in Priority Trends of Scientific and Technical Development for 2002-2006
- Priority direction: Energy and Energy Saving

Total: \$15 M for R&D in Hydrogen Technologies in 2005-2006

FASI Hydrogen Program 2005-2006 Projects

- Modular Power Units with 10 kW SPE FC
- Power Production System with 5 kW SO FC
- Portable and micro FC
- Portable FC Processors for Hydrogen Power Supply Systems with FC
- Reversible Solid State Hydrogen Storage and Purification Systems for FC
- Reversible Solid Oxide Electrochemical Devices (electrolyzer FC system)
- Non-Pt Catalysts for FC
- H₂/O₂ Steam Generators for Steam-Turbine Power Units
- Autonomous Power Supply Systems on the Base of Renewable Energy Sources with Hydrogen Energy Accumulation
- Safety and Standards for Hydrogen Energy
- Education

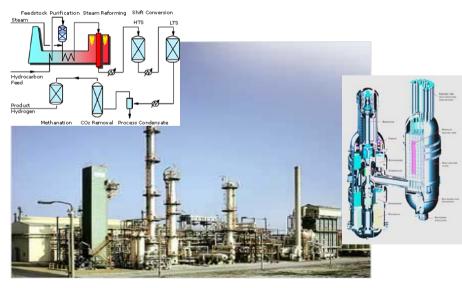
International Co-operation

IPHE Collaborative Projects

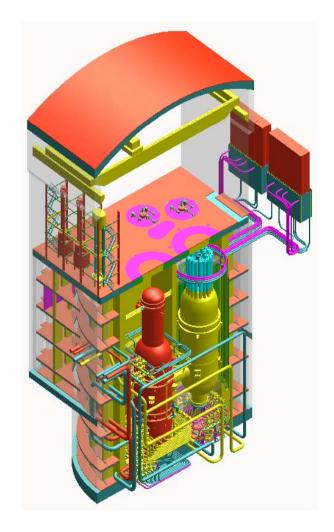
- The International Science and Technology Center (ISTC), ISTC Fuel Cell Initiative
- US Civilian Research and Development Foundation
- EU Framework Program (FP6)
- by-lateral cooperation

NEW HYDROGEN PRODUCTION TECHNOLOGIES

INNOVATIVE NATURAL GAS REFORMING FOR HYDROGEN PRODUCTION

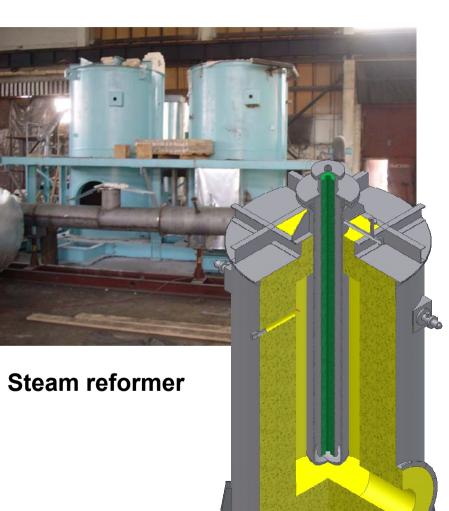

Hydrogen Energy & Plasma Technology Institute

Steam conversion of methane in MGR-T


RRC

"Kurchatov Institute"

• $CH_4 + 2H_2O + +heat (>800 \ ^0C) \Rightarrow CO_2 + 4 H_2$


• H₂ yield two times higher than for pyrolysis of methane

Hydrogen production

Mashprom

5

Productivity Purity Hydrogen pressure in receiver Energy consumption CO₂ production Dimensions, m: conversion block purification block PSA purification Weight, t: conversion block purification block **PSA** purification

250 s m³/h 99,98% *

0,5-1,0 MPa 60 kW h 150 kg/h

12 x 8 x 4,5 8,5 x 8 x 4,5 10 x 8 x 6

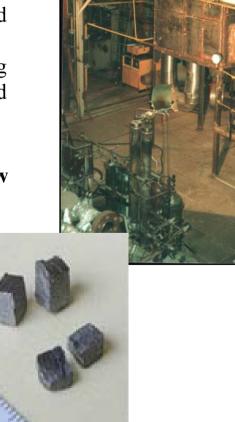
60

27

20

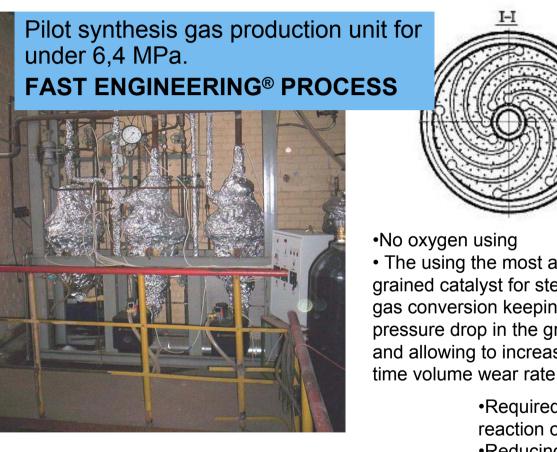
NATURAL GAS PROCESSING FOR PRODUCTION OF HYDROGEN AND PURE CARBON MATERIALS

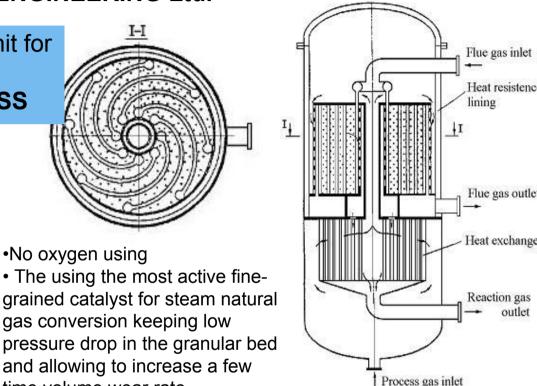
Institute for Hugh Temperatures RAS


On the basis of two-stage pyrolysis of natural gas the technology to produce hydrogen from natural gas simultaneously with pure carbon material for broad commercial applications has been developed.

As a porous carbon skeleton for pyrocarbon stuffing other carbon containing materials can be used (e.g. wood waste products, generally the vegetable origin waste).

Address: IVTAN, 125412, Izhorskaya 13/19, Moscow E-mail: zaitch@oivtran.iitp.ru




0.01	Moisture content,%	0.52
0.43	Volatile, %	1.12
0.04	Ash, %	1.54
0.02	Sulphite, %	0.30
99.56	C,%	97.38
0.25	Н, %	0.27
33.18	Calorific value, MJ/kg	32.57
1 ()	Densite a /am3	0 742

COMPACT HIGH EFFECTIVE HYDROGEN PRODUCTION BY STEAM NATURAL GAS CONVERSION

FAST ENGINEERING Ltd.



«FAST ENGINEERING», Moscow, 117218, RUSSIA Tel./Fax: +7 495 718-8196, astanovsky@fastmail.ru; http://www.fastmail.ru/~astanovsky •Required heat supply for carrying out endothermic reaction of steam conversion

- •Reducing of operation costs
- An opportunity to create steam conversion for required capacity
- Reducing pollution to environmental
- Compactness

Catalysts and reactors for partial oxidation of naturation aquivation of naturation of the second strates and the second second

Monolithic catalyst reactor

Monolithic catalysts

Tape catalyst reactor of the syngas capacity ca. 5 m³/hour

on an integrated reformer unit for steam reforming of natural gas in a 5 kW_e SOFC plant

Fuel processor

The fuel processor includes:

- A unit for desulfurization of natural gas
- An integrated reforming unit
- A system for feeding natural gas, water, air
- Control sensors for temperature, pressure, reagent consumption
- An automated control system for the fuel processor (monitoring of temperature, pressure, consumption, as well as control of reagent consumption, stop and switch valves, a starting device)

Test data for the fuel processor:

- Stable operation on varying the natural gas consumption from 0.1 to 0.9 m³/h
- Capacity up to 5 m³/h for synthesis gas
- Hydrogen content up to 75 vol % in synthesis gas

Microcatalytic hydrogen production systems and reactor for steam conversion of methanol

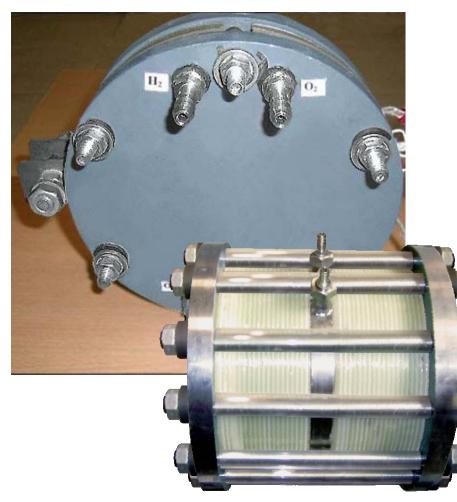
Boreskov Institute of Catalysis, Novosibirsk, Russia

icroreactor with external heating Microreactor with heat exchanger Sectioned

Sectioned high power reactor

	Dimensions	
Ø30 h=60mm	Ø40 h=35 mm	65×90×85 mm
	Microchannel plate	
Ø 28 δ =0,3 mm	Ø 35 δ =0,3 mm	30×40 mm
	Hydrogen output and heat power	
130 l/h; 300 W	32 l/h; 73 W	320 l/h; 750 W

ALKALI ELECTROLYSIS

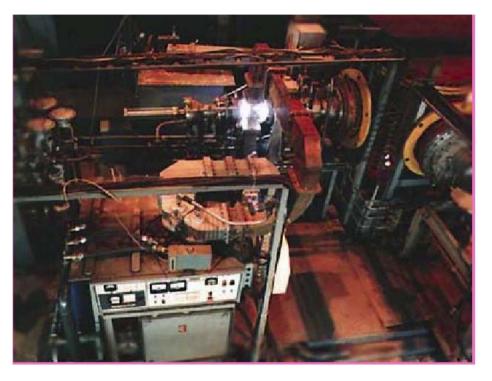

Moscow Power Engineering Institute (TU) Joint-Stock Company "UralChemMash"

New alkaline electrolysis cell

- High effective electrodes without precious metals content
- Power consumption 4,2 kW-hour/s M³
- under current density 3 kA/M2
- Purity of hydrogen at battery
- output up to 99,7 %
- Absence of asbestos diaphragm
- Compactness
- Possibility of hydrogen consumption regulation at wide range

New battery for alkali electrolysis

- Productivity 1 s M³ H₂/hour Power consumption 4,2 kW-hour/s M³ under current density 3 kA/M² Purity of hydrogen at battery output up to 99,7 % Compactness Possibility of hydrogen consumption
- regulation at wide range


PEM Electrolyzers for high purity hydrogen production

- present time the fields of applications of PEM-electrolyzers are: fuel cells, gas chromatography, ater-chemical regime correction systems of nuclear reactors, hydrogen welding, metallurgy, ectronic industry, analytical chemistry, etc.
- EM-electrolyzer and plants on its base with various productivity (from several ml to tens cubic eters per hour) and purposes have been developed
- echnical performances of PEM electrolyzers:
- Power consumption 3.9-4.1 kW hour/1m³ of H₂
- /oltage on the cell 1.67-1.72 V at current density 1 A/cm² and t=90°C
- Operating pressure up to 3,0 MPa
- lydrogen purity > 99.99%
- _ife time (average life) > 5000 hours

Undrease Energy 9 Discree Technology Institute

RRC "Kurchatov Institute's" Test Facility "POVOD" for Development and Scaling of Plasma Assisted Processes of Hydrogen and Syn-Gas Production

"POVOD" demonstration unit at RRC "Kurchatov Institute" was designed to investigate and demonstrate the whole set of gas-phase plasma chemical processes under effect of stationary microwave discharge with power range from 10kW to 1,000 kW at microwave frequency 915 MHz. Air, nitrogen, water vapor, carbon dioxide, methane, propane-butane, oxygen, argon with a flow rate up to 2,000 m³/h at pressure between 0.005 atm – 1.0 atm can be used to burn MW discharge.

Address: HEPTI RRC "Kurchatov Institute", 123182, Moscow, Russia Tel: (7-495)1969439; Fax: (7-495)1966278 E-mail: s.korobtsev@hepti.kiae.ru

Uvdragan Enargy 9 Diagma Tashnalagy Institute

RRC "Kurchatov Institute"

Microwave reformers of hydrogen raw material conversion into synthesis gas

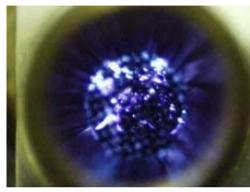
Two converter types have been developed: based on the impulse periodical microwave discharge, and on the stationary discharge.

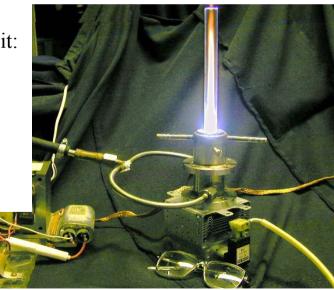
RRC "Kurchatov

Institute'

Stationary converter

Synthesis gas production: 20 nm³/hour; Converter size: below 350 x 500 x 500 mm,


Mass: 31.5 kg, converter volume: 0.1 m^3 .


Typical gas composition at reactor exit: $N_2 < 54.2\%$; Syngas > 40.0%; CO₂ < 2.5%; CH₄ + C₂H₄+ C₂H₂ <3.3% Electric power expenses for syngas production 0.15 kWh/m³ Conversion efficiency (with heat recuperation) is 94%.

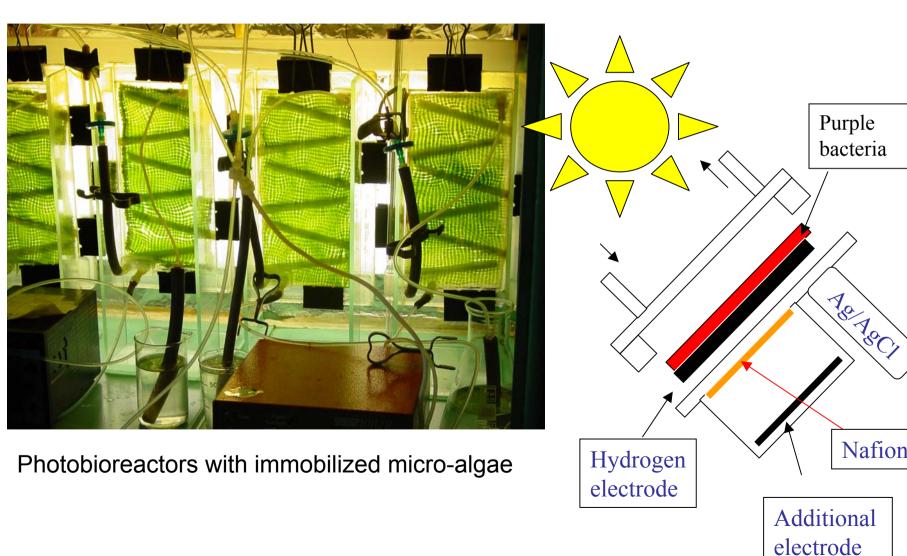
123182, Moscow, Russia

Tel: (7-495)1969439; Fax: (7-495)1966278 s.korobtsev@hepti.kiae.ru

Undreasen Energy 9 Diseme Technology Institute

HYDROGEN GENERATION FROM LOW-COST ALUMINUM

System for high temperature (up to 1000^o C) Hydrogen generation.


 $4 \text{ m}^{3}/\text{h of H}_{2}$ (0.363 kg/h) and

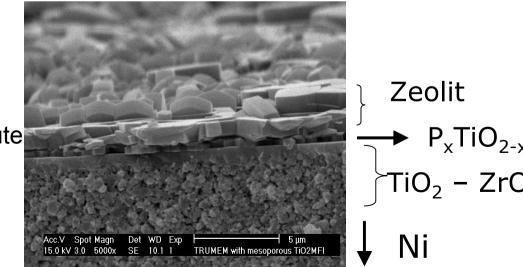
6 kg/h of nanocrystalline AI – hydroxide.

Science and Engineering Center for Energy Saving Processes and Equipment. Russian Academy of Science (SEC ESPE)

BIOCONVERTION OF REVERSIBLE ENERGY SOURCES

Institute of Fundamental Problems of Biology, RAS

FUEL CELLS


International Project on Fuel Cells Based on Nanoporous Structures

Association for Advanced Technologies `ASPECT`

- Institute of Physical Chemistry and Electro-Chemistry after Frumkin (IPCEC)
- Institute for High Temperature (IHT)
- Institute of Petrol-Chemical Synthesis after Topchiev (IPCS)
- Institute of Chemical Physics Research (ICPR)
- Institute of Problems of Microelectronics Technology and High Purity Materials (IPM)
- Moscow Power Engineering Institute (MEI)
- Academy for Fine Chemistry Technologies (MINCT)

- ✤ CMR Fuel Cells (UK)
- Lawrence Livermore National Laboratory (USA)
- National Physical Laboratory (UK)
- Fraunhofer Institute (Germany)
- Waterloo University (Canada)

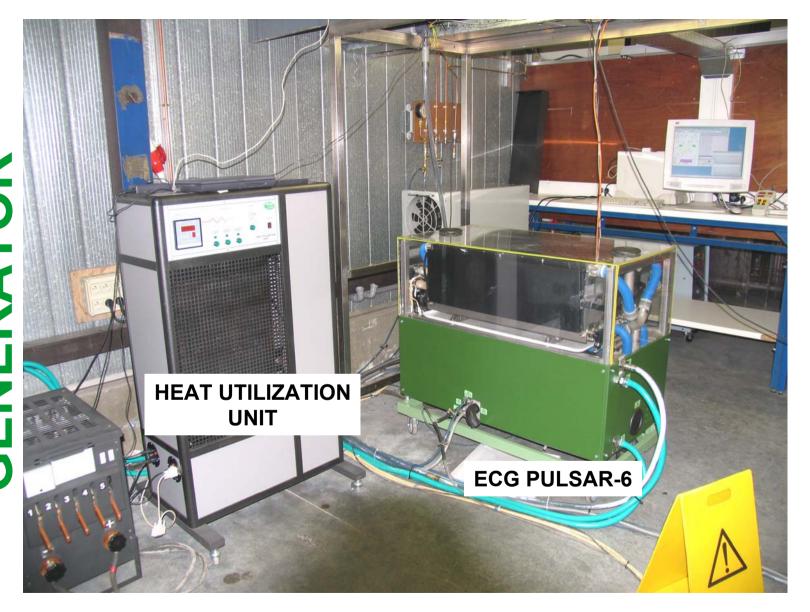
Electrochemical Generator "Cascade-IP"

Independent Power Technologies, Ltd.

The generator is based on advanced Alkaline Fuel Cell modules. One of the unique features of the generator is a patented zero-waste regenerative scrubber used for the removal of carbon dioxide from the incoming air. The scrubber reduces the operational cost and increases the overall serviceability of the generator.

Performance Maximum power: 6.0 kW; Voltage: 30.0 - 42.5 V Maximum current: 200 A; Fuel: Hydrogen H₂ consumption < 4.5 m³/h; Air consumption < 36 m³/h Pressure: Atmospheric

The scrubber


Operating
conditionsAmbient temperature: -20 to +40 °C
Relative humidity (max): 98% at 25 °CGeneralDimensions: 1250 x 582 x 863 mm; Gross weight: 240 kg
CO2 scrubber: built-in, regenerative
Start-up:
self-starting with built-in hydrogen
burner < 15 min at 20 °C</td>

Electrolyte: 6.6 M KOH (aqueous solution)

Independent Power Technologies Ltd

Address: 3-d Mytishchinskaya 16, bldg 60 129626, Moscow, Russia Tel: (7-095)2312109; Fax: (7-095)2312078; E-mail: karichev@ independentpower.biz

ENERATOR C

Russian Federal Nuclear Center – All-Russia Research Institute of Technical Physics (RFNC – VNIITF)

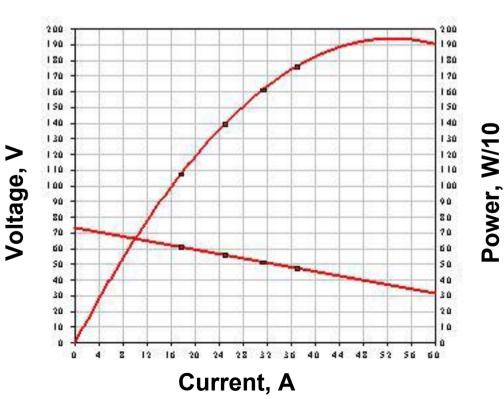
Solid Oxide Fuel Cell

P.O. 245, Snezhinsk, Chelyabinsk reg. 456770 Russian Federation +7(351-46)54367 fax: +7(351-46)55566 www.vniitf.ru Nominal Power 2,5 kW

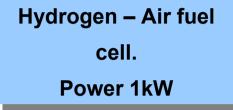
Voltage 43,2 V

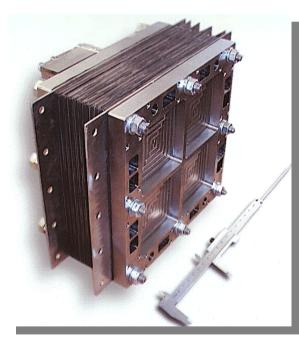
Reached Power 2 kW at 36 V

Russian Federal Nuclear Center – All-Russia Research Institute of Technical Physics (RFNC – VNIITF)

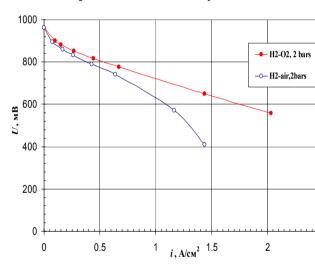


Solid Oxide Fuel Cell


Power unit

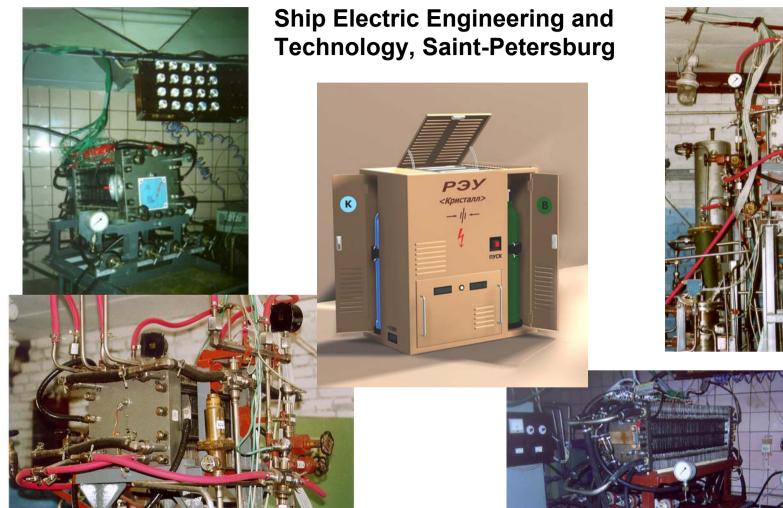


PEM hydrogen fuel cells



Hydrogen – Air fuel cell. Power 0.2 kW

Polarization curves for PEMFC (Typical MEA performance)



Hydrogen Energy & Plasma Technology Institute

PEM hydrogen fuel cells

Central Research Institute for

96128 Saint-Petersburg, Blagodatnaya 6 entmen ru

Hydrogen Storage

FASI Program in Hydrogen Storage

Program: Research and Innovations in Priority Trends of Scientific and Technical Development for 2002-2006

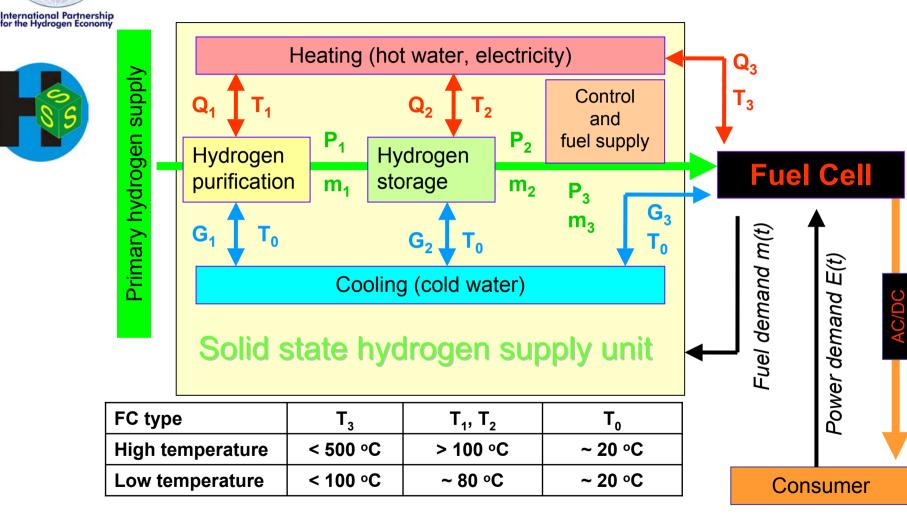
Priority direction: Energy and Energy Saving

Project: R&D of new technologies of safe solid-state hydrogen storage on the base of reversible metal hydrides and nanostructured composites

Participants:

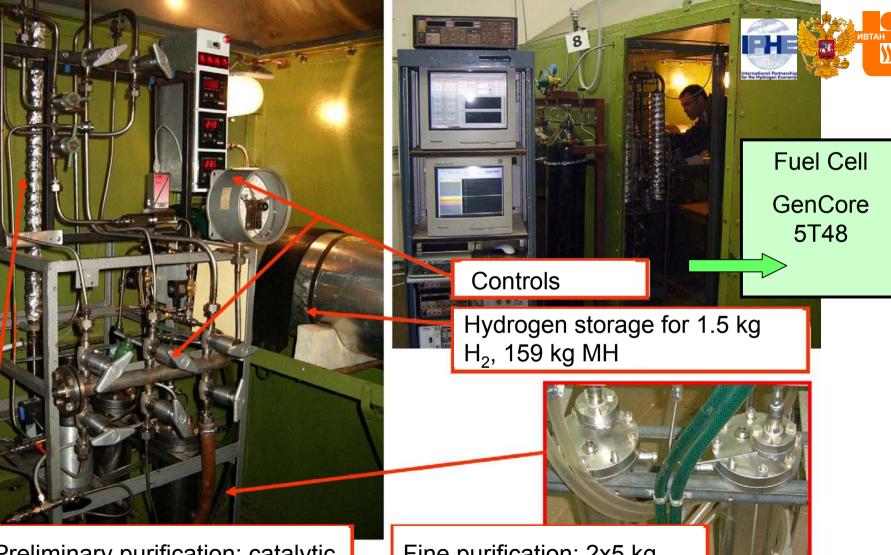
Joint Institute for High Temperatures RAS, Institute for Problems of Chemical Physics RAS, Ural Institute of Metal Physics RAS, Moscow State University, Moscow Power Engineering Institute.

Development of reversible solid state hydrogen storage system for fuel cell power supply system

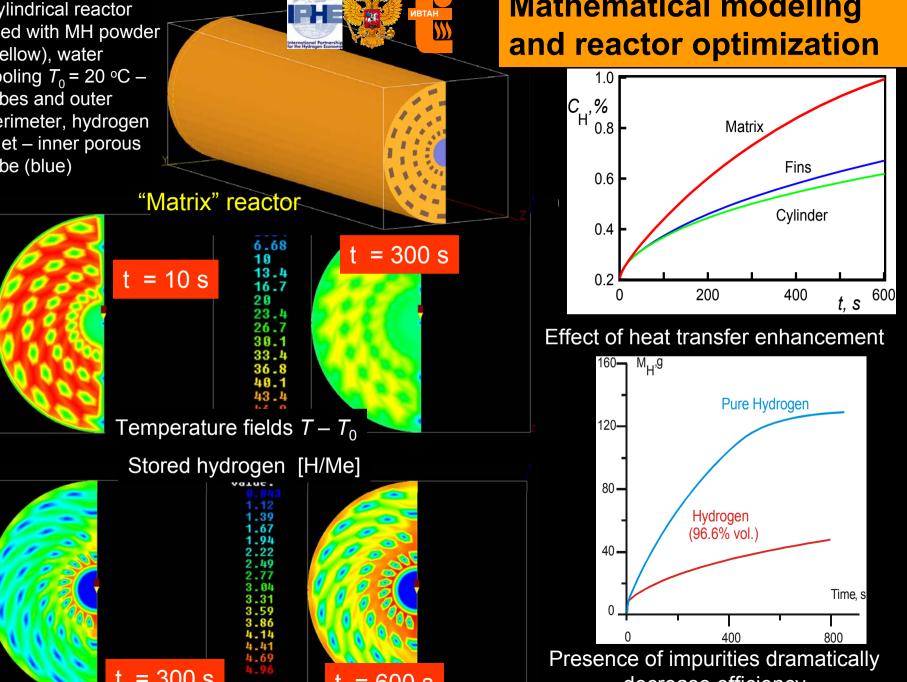

Joint Institute for High Temperatures RAS

IPHE Contact Person: Dr. Stanislav Malyshenko Project Coordinator: Vasily Borzenko, Joint Institute for High temperatures RAS (IVTAN) Krasnokazarmennaya 17a, Moscow, 111116 Russia litp@dataforce.net www.litp.ru

Dr. Dmitry Dunikov, Joint Institute for High Temperatures, RAS (Russia) Dr. Boris Tarasov, Institute for Problems of Chemical Physics RAS (Russia), Prof. Anatoly Yermakov, Ural Institute of Metal Physics RAS (Russia), Dr. Sergey Mitrokhin, Moscow State University (Russia), Dr. Georgy Yankov, Moscow Power Engineering Institute (Russia), Prof. John R. Lloyd, Michigan State University (US), Prof. James Wang, Sandia Nat'l Labs (US), Prof. Peixue Jiang, Tsinghua University (China), Prof. Volodymyr A. Yartys, Institute for Energy Technology (Norway), Prof. Thorsteinn I. Sigfusson, University Iceland (Iceland), Prof. Hirohisa Uchida, Tokai University (Japan), Prof. Allan Schroeder Pedersen, Risoe National Laboratory (Denmark), Prof. Kee Suk Nahm, Chonbuk National University (Rep. of Korea).

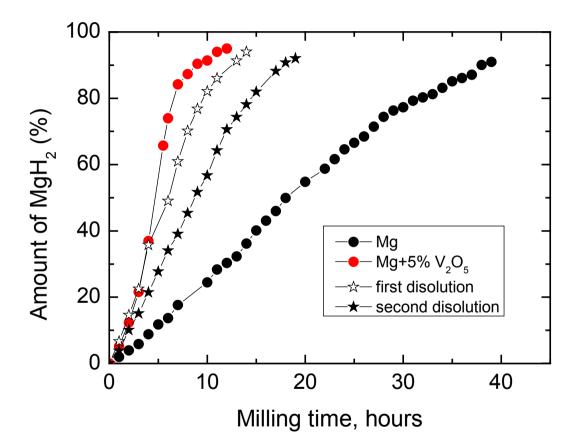

Development of reversible solid state hydrogen storage system for fuel cell power supply system

Concept of FC power supply unit with solid state hydrogen storage



/TAN H2Lab experimental facility for complex investigations of solidtate reversible hydrogen storage and purification systems

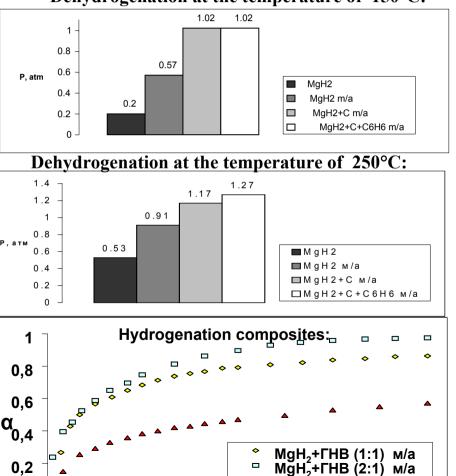
Preliminary purification: catalytic burner and dryers


Fine purification: 2x5 kg MH reactors

Hydrogen Storage Materials

Ural Institute of Metal Physics RAS

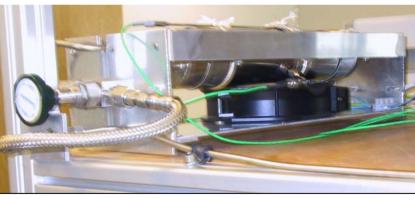
Hydrogen uptake at MA of pure Mg with different content of a catalyst under H₂ pressure 15 bar


Hydrogen Storage Materials

Institute for Problems of Chemical Physics RAS

Composites based on magnesium hydride and carbon

Dehydrogenation at the temperature of 150°C:



0

MqH₂

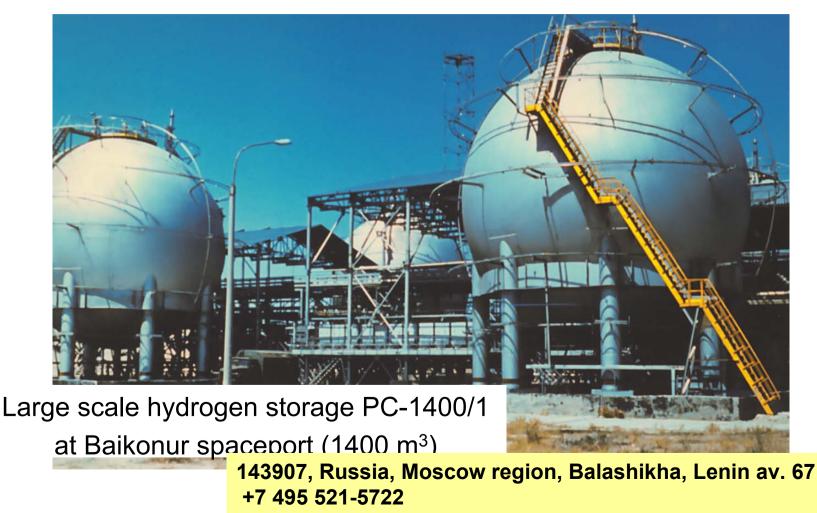
- Volume 600 cm³
- Loading density MH 60% (1.26 g/cm³)
- Weight MH 500 g
- Calculated hydrogen capacity 280

Characteristics of a hydrogen accumulator based on magnesium alloy

- Hydrogen soprtion 250 °C / 10 bar
- Hydrogen desorption 350 °C / 0-2 bar
- **>** Duration of 90% charge < 10 min.
- > Duration of 90% discharge 30 min.
- Reversible capacity 200 l
- Total capacity 280 l

lydrogen Storage

Central Research Institute for Ship Electric Engineering and Fechnology, Saint-Petersburg

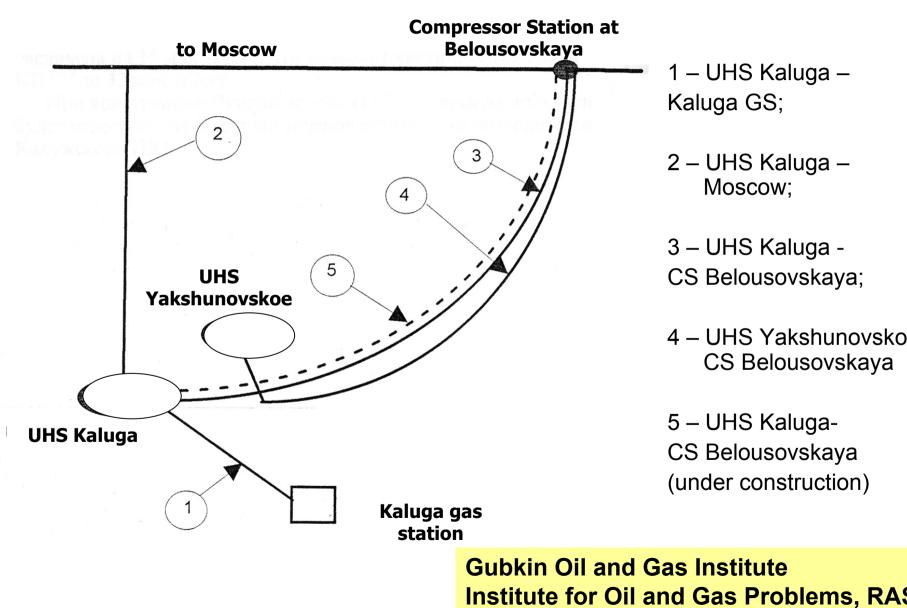

96128 Saint-Petersburg, Blagodatnaya 6

Hydrogen storage systems for more than 1,000 kg of intermetallic alloy

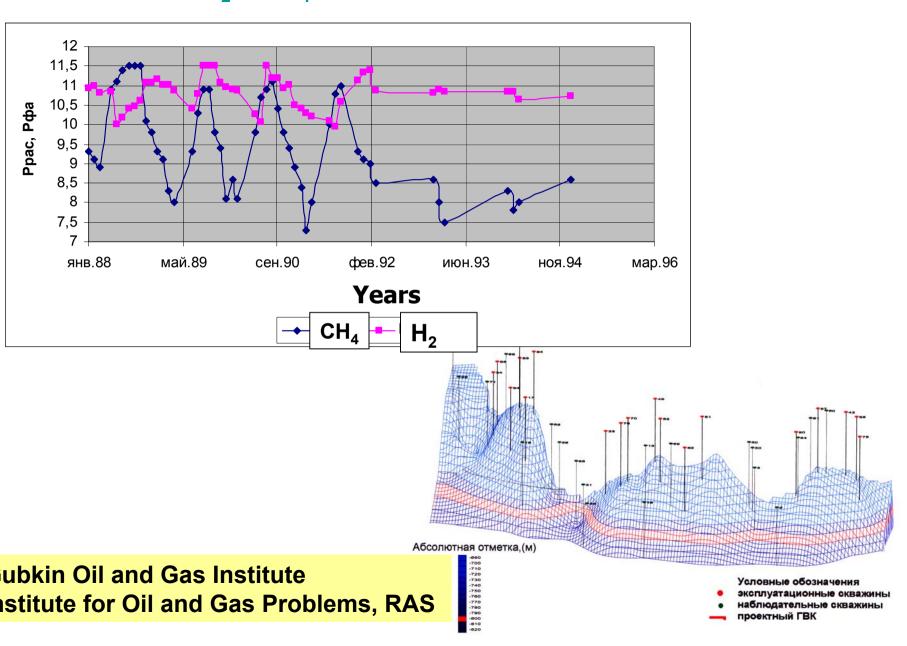
CRYOGENIC HYDROGEN STORAGE

JCR Cryogenmash

e-mail: root@cryogenmash.ru ww.cryogenmash.ru


Cryogenic hydrogen tanks characteristics JSC "Cryogenmash"

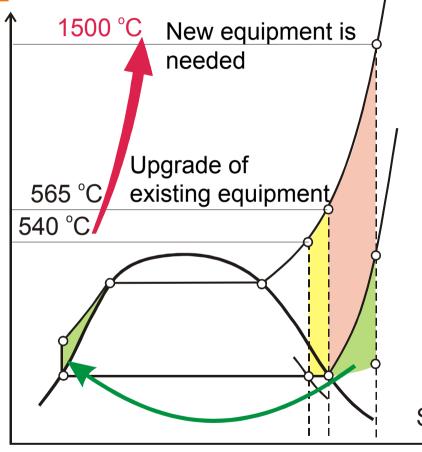
Parameter	РЦВ- 63/0.5	РЦГ- 250/1	РЦГ- 250/0.8	PCB- 1400/1	ЦТВ- 25/0.6 t	ЦТВ- 45/1.0 t
Capacity, m ³	66.3	246	246	1,437	25	45
Working pressure,MPa	0.5	1.0	0.85	1.05	0.7	1.0
Product mass,t	4.43	15.7	15.7	96.79	1.5	2.74
Evaporation loss daily, %	0.52	0.3	0.35	0.13	1.2	1.0
Dimensions, m						
length		36.35	36.35	-	14.35	15.7
width	3.68	3.7	37.4	-	2.75	2.5
height	12.65	3.92	3.92	20.1	3.92	3.7
Tank mass, t	22	72	72	360	19	21.76
		I	I			

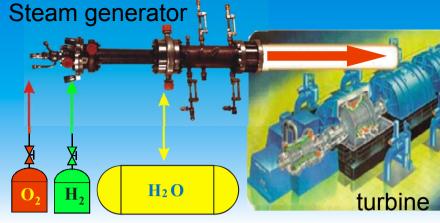

143907, Russia, Moscow region, Balashikha, Lenin av. 67 +7 495 521-5722

e-mail: root@cryogenmash.ru ww.cryogenmash.ru

in Kaluga Region

Load/Reload of H₂ и CH₄ on UHS "Yakshunovskoe"




Hydrogen Combustion Systems

lydrogen combustion systems S

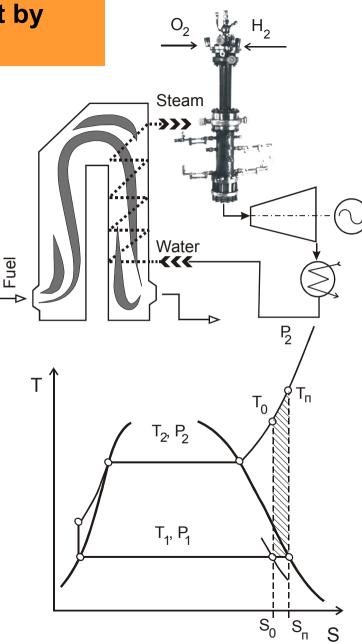
Institute for High Temperatures RAS

Upgrade of existing equipment with hydrogen-oxygen steam generators will he to increase of overall power plant efficienc with high efficiency of hydrogen utilization

Development of new high temperature steam turbines and heat regeneration systems will result in great increase of overall power plant efficiency with high S efficiency of hydrogen utilization

Key problem: to create high temperature and high pressure hydrogen-oxygen generators working on the stoichiometry component mixture

pgrade of K-200-130 steam turbine power unit by ydrogen superheating of steam


Power plant:

- Steam production 640 t/h, power 200 MW,
- P = 130 atm, T = 540 °C,
- Fuel consumption 275 g.c.e./kW h

Superheating from 540°C to 565°C

H_2/O_2 gas consumption, 10 ³ st.m ³ /h Additional power ΔW , MW Fuel consumption, g.c.e./kW h Overall efficiency without hydrogen superheating, %	11.5/5.82 20.1 262
Fuel consumption, g.c.e./kW h Overall efficiency without hydrogen superheating, %	
Overall efficiency without hydrogen superheating, %	262
superheating, %	
	40.3
Overall efficiency with hydrogen superheating, %	42.3
Efficiency of hydrogen utilization, %	57.5

Joint Institute for High Temperatures RAS

xperimental high-pressure H₂/O₂-steam generators

Parameters of experimental fire blocks

Model	Thermal power	Steam parameters		
		<i>Т</i> , К	<i>P</i> , MPa	
20 K	20-100 kW	1100	0,5	
100 K	100-150 kW	1000	4	
10 M	10-20 MW	1200	7	
25 M	25-30 MW	1200	10	

Small-scale high-pressure H₂/O₂-steam generators for use in stationary and mobile autonomous hydrogen zero emission power units (ZEPU) based on 30-150 kW mini-turbine. The main features of experimental device: working pressure, MPa: 1-4

steam temperature, K: 600-1000 thermal capacity, kW: 40-156 length, mm: 300 max diameter, mm: 90.

Joint Institute for High Temperatures RA Chemical Automatics Design Bureau

xperimental MW class steam generators

Joint Institute for High Temperatures RAS

Fire tests on Chemical Automatics Design Bureau site, Voronezh, 2006

> IVTAN, Krasnokazarmennaya 17a Moscow 111116 Russia

hemical Automatics Design Bureau, Russian Space Agency

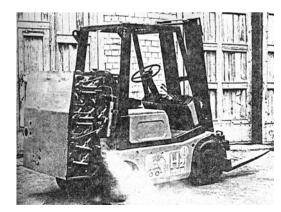
Liquid hydrogen Production facility. View of construction site.

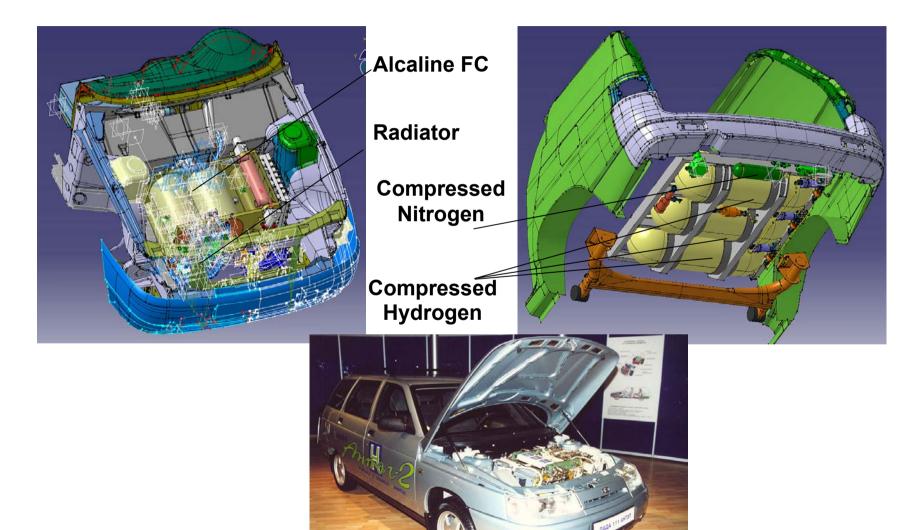
Firing tests of rocket engines at tilted test stand

Contact: Chemical Automatics Design Bureau, Russian Space Agency Address: Voroshilova st. 22, Voronezh, 394006 Russia Tel.: (7-0732) 333673 Fax: (7-0732) 334122 E-mail: cadb@comch.ru

Hydrogen for Vehicles

Internal Combustion vehicles



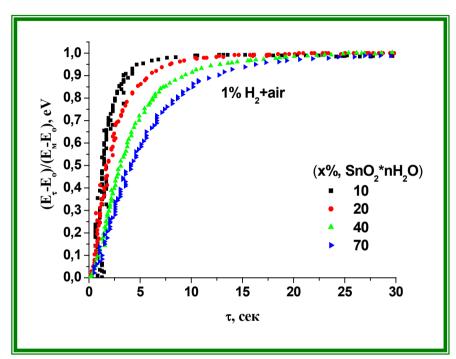


Fuel Cell Vehicles

RCC Energia, **UEChC**, **Autovaz**

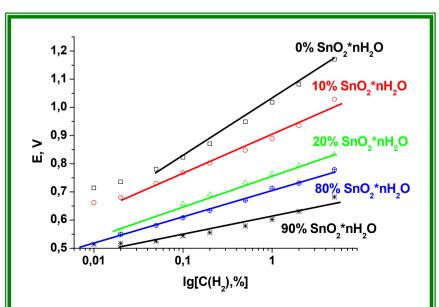
IAIN CHARACTERICTICS

	«ANTEL-1»	«ANTEL-2»
FUEL	HYDROGEN+ OXYGEN	HYDROGEN+ AIR
MECHANICAL POWER, kW	15	18
MAXIMUM POWER, kW	25	40
VOLTAGE, V	115-150	180-200
HYDROGEN PRESSURE, ATM	300	400
RANGE, KM	220	300



SAFETY AND STANDARDS

Electrochemical hydrogen sensors



Institute for Problems of Chemical Physics RAS

Hydrogen and Oxygen Gas Sensors

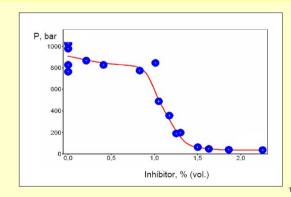
SSC "Institute for Physics & Power Engineering"

249033, Bondarenko sq. 1, Obninsk, Kaluga reg., Russia

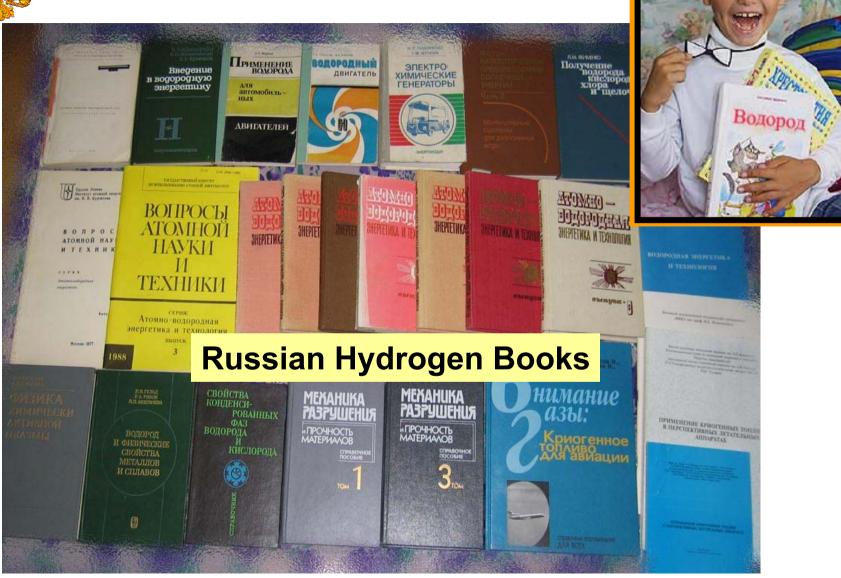
Combustion, detonation and explosion of hydrogen

Institute for High Energy Densities, Associated Institute for High Temperatures RAS 125412, Moscow, Russia, Izhorskaya 13/19

Explosive chamber


Experimental installations "Cone" and "Pyramic

Cigues -



Suppression of explosion by Inhibitor

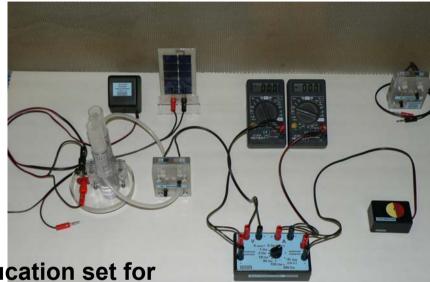
Inside diameter – 12 m; Wall thickness – 100 mm; Weight – 470 t. Chamber is designed for explosion up to 1000 kg TNT.

Education

Hydrogen education in high school

FASI Project "Education"

Moscow Power Engineering Institute Moscow Institute of Physics and Technology Moscow State University Saint-Petersburg State University Novosibirsk State University Ural Technical University (Ekaterinburg) Tomsk Technical University Moscow State Technical University "MAMI" Moscow Radiotechnics Electronics and Automatics Institute and many others...


Lectures Hydrogen Labs Young Scientists Conferences Students Hydrogen Clubs

Hydrogen education in elementary school

Hydrogen experimental and education set for elementary schools

Electrolyzer Photovoltaic cell Fuel Cell Diagnostics

Results of Russian R&D in 2005-2006 and new 2007-2012 Federal Program are the good basis for EU-Russia cooperation in Hydrogen Energy

Thanks for your attention!