Split-Ticket Voting: An Implicit Incentive Approach

Galina Zudenkova

Department of Economics
University Carlos III of Madrid

10th International Meeting
Society for Social Choice and Welfare
Moscow, July 2010
Motivation

Split-ticket voting – citizens vote for candidates from different parties in simultaneous elections.
Motivation

Split-ticket voting – citizens vote for candidates from different parties in simultaneous elections.
Motivation

Why do voters split tickets? What are the economic consequences of ticket splitting?
Motivation

Why do voters split tickets? What are the economic consequences of ticket splitting?

This paper offers a novel rationale for ticket splitting:

Ticket Splitting – outcome of optimal reward scheme voters use to motivate politicians’ performance.
Motivation

Why do voters split tickets? What are the economic consequences of ticket splitting?

This paper offers a novel rationale for ticket splitting:

Ticket Splitting – outcome of optimal reward scheme voters use to motivate politicians’ performance.

This paper studies ticket splitting in dynamic context.
Literature on Split-Ticket Voting

Literature on Split-Ticket Voting

- **Budgetary externality of concentrated government spending under uniform taxes** – voters prefer fiscally conservative President but fiscally liberal Congress (Chari, Jones and Marimon, *Amer Econ Rev* 1997).
Literature on Split-Ticket Voting

- **Budgetary externality of concentrated government spending under uniform taxes** – voters prefer fiscally conservative President but fiscally liberal Congress (Chari, Jones and Marimon, *Amer Econ Rev* 1997).

Literature on Split-Ticket Voting

- **Budgetary externality of concentrated government spending under uniform taxes** – voters prefer fiscally conservative President but fiscally liberal Congress (Chari, Jones and Marimon, *Amer Econ Rev* 1997).

- This paper complements the literature on split-ticket voting. This paper analyzes ticket splitting at lower levels of government.
Ticket Splitting in Spain
Simultaneous municipal and regional elections

- Patterns of ticket splitting:

 Reelections of politicians from the same party are positively correlated.
 Reelections of politicians from different parties are negatively correlated.
Patterns of ticket splitting:

Reelections of politicians from the same party are positively correlated.
Reelections of politicians from different parties are negatively correlated.

Voters tend to split tickets if in the previous period they also split tickets.
Patterns of ticket splitting:

Reelections of politicians from the same party are positively correlated.
Reelections of politicians from different parties are negatively correlated.

Voters tend to split tickets if in the previous period they also split tickets.

Ticket Splitting is more likely in small municipalities than in large ones.
Ticket Splitting in Spain
Simultaneous municipal and regional elections

- Patterns of ticket splitting:

 Reelections of politicians from the same party are positively correlated.
 Reelections of politicians from different parties are negatively correlated.

 Voters tend to split tickets if in the previous period they also split tickets.

 Ticket Splitting is more likely in small municipalities than in large ones.

- My results are consistent with these patterns of ticket splitting.
Model
Outline of the Game

- Sequential political agency game between politicians (mayor and governor) and voters.
Model
Outline of the Game

- Sequential political agency game between politicians (mayor and governor) and voters.

- Large city in region.
Model
Outline of the Game

- Sequential political agency game between politicians (mayor and governor) and voters.

- Large city in region.

- **Mayor** M (for city) and **Governor** G (for region) are elected in simultaneous elections.
Model
Outline of the Game

- Sequential political agency game between politicians (mayor and governor) and voters.

- Large city in region.

- **Mayor** M (for city) and **Governor** G (for region) are elected in simultaneous elections.

- 2 political parties.
Model
Outline of the Game

- Sequential political agency game between politicians (mayor and governor) and voters.

- Large city in region.

- **Mayor** \(M \) (for city) and **Governor** \(G \) (for region) are elected in simultaneous elections.

- 2 political parties.

- 2 candidates from opposite parties at each elections: incumbent and opponent.
In office, politician $i \in \{M, G\}$ implements a policy determined by her unobservable effort a_i.
Model

Politics

- In office, politician $i \in \{M, G\}$ implements a policy determined by her unobservable effort a_i.

- p_i (performance of politician i) is observed with independent and unobservable noise $\varepsilon_i \sim N(0, \sigma^2)$

$$p_i = a_i + \varepsilon_i$$
In office, politician \(i \in \{M, G\} \) implements a policy determined by her unobservable effort \(a_i \).

\(p_i \) (performance of politician \(i \)) is observed with independent and unobservable noise \(\varepsilon_i \sim N(0, \sigma^2) \)

\[
p_i = a_i + \varepsilon_i
\]

Politician \(i \in \{M, G\} \) chooses \(a_i \) to maximize

\[
\Pi_i(a_i) - \frac{a_i^2}{2}
\]
Office-motivated politician (M/G) prefers her counterpart (G/M) to be affiliated with the same political party.
Office-motivated politician \((M/G)\) prefers her counterpart \((G/M)\) to be affiliated with the same political party \(\Rightarrow\) politicians’ incentives are correlated
Model

Politicians

Office-motivated politician \((M/G)\) prefers her counterpart \((G/M)\) to be affiliated with the same political party \(\Rightarrow\) politicians’ incentives are correlated

\[
\Pi_i (a_i, a_j) = \begin{cases}
\Pr_i (a_i, a_j) + \lambda^S_i \Pr_j (a_i, a_j) & \text{if } S \\
\Pr_i (a_i, a_j) + \lambda^D_i (1 - \Pr_j (a_i, a_j)) & \text{if } D
\end{cases}
\]

where

- \(\Pr_i (\cdot)\) – Pr of being reelected for office \(i\),
- State \(S\) – \(M\) and \(G\) are affiliated with the same party,
 State \(D\) – \(M\) and \(G\) are affiliated with different parties,
- \(\lambda_i \in [0, 1]\) – strength of party alignment of politician \(i\),
- \(\lambda^S_i > \lambda^D_i\) – politicians prefer incumbents,
- \(\lambda^S_i < \lambda^D_i\) – politicians prefer newcomers.
Voters care about politicians’ performances

\[p_M + p_G \]
Voters care about politicians’ performances

\[p_M + p_G \]

Voters coordinate on retrospective reappointment rules to reelect mayor \(M \) and governor \(G \).
Voters care about politicians’ performances

\[p_M + p_G \]

Voters coordinate on retrospective reappointment rules to reelect mayor \(M \) and governor \(G \).

Joint Performance Evaluation: voters condition reelection of politician \(i \) on her own performance \(p_i \) and on \(j \)’s performance \(p_j \).
Voters care about politicians’ performances

\[p_M + p_G \]

Voters coordinate on retrospective reappointment rules to reelect mayor \(M \) and governor \(G \).

Joint Performance Evaluation: voters condition reelection of politician \(i \) on her own performance \(p_i \) and on \(j \)’s performance \(p_j \).

Functional space of performance evaluation rules – linear performance evaluation rules \((\beta_i, b_i) \) determined by slope \(\beta_i \) and intercept \(b_i \).
Model

Voters

\[p_M + \beta_M p_G = b_M \]

\[p_G + \beta_G p_M = b_G \]

- **G** is reelected
- **M** is not reelected
- **M** is reelected
- **G** is not reelected
- neither **M** nor **G** is reelected

Galina Zudenkova

Split-Ticket Voting: An Implicit Incentive Approach
Model
Timing of the Game

State S or D is realized
Model
Timing of the Game

Voters choose reappointment rules to use in the coming elections.

State S or D is realized.
Model
Timing of the Game

Voters choose reappointment rules to use in the coming elections

Politicians exert efforts a_M and a_G

State S or D is realized
Model
Timing of the Game

Voters choose reappointment rules to use in the coming elections

Politicians exert efforts a_M and a_G

State S or D is realized

p_M and p_G are observed
Model
Timing of the Game

Voters choose reappointment rules to use in the coming elections.

Politicians exert efforts a_M and a_G.

Elections: Voters use the chosen rules.

p_M and p_G are observed.

State S or D is realized.
Introduction Model Equilibrium Results Outline Politicians Voters Timing

Model
Equilibrium Concept

- Equilibrium concept – Subgame perfect equilibrium.
Model
Equilibrium Concept

- Equilibrium concept – Subgame perfect equilibrium.
- I solve game backwards.
Politicians’ Problem and Best Response Functions

Politicians are members of the same party, S

$$M's \ \text{problem} \ \max_{a_M} \ Pr_M (a_M, a_G) + \lambda^S_M \ Pr_G (a_M, a_G) - \frac{a^2_M}{2}$$

$$G's \ \text{problem} \ \max_{a_G} \ Pr_G (a_M, a_G) + \lambda^S_G \ Pr_M (a_M, a_G) - \frac{a^2_G}{2}$$

M’s and G’s reelectitions are independent: $\beta_M = 0, \beta_G = 0$.

$R_j(a_j)$

$R_j(a_i)$

Independent
Politicians are members of the same party, S

\[M\text{'s problem } \max_{a_M} \Pr_M (a_M, a_G) + \lambda^S_M \Pr_G (a_M, a_G) - \frac{a_M^2}{2} \]

\[G\text{'s problem } \max_{a_G} \Pr_G (a_M, a_G) + \lambda^S_G \Pr_M (a_M, a_G) - \frac{a_G^2}{2} \]

M’s and G’s reelections are negatively correlated: $\beta_M < 0$, $\beta_G < 0$.

Galina Zudenkova

Split-Ticket Voting: An Implicit Incentive Approach
Politicians’ Problem and Best Response Functions

Politicians are members of the same party, S

M’s problem $\max_{a_M} \Pr_M (a_M, a_G) + \lambda_M^S \Pr_G (a_M, a_G) - \frac{a_M^2}{2}$

G’s problem $\max_{a_G} \Pr_G (a_M, a_G) + \lambda_G^S \Pr_M (a_M, a_G) - \frac{a_G^2}{2}$

M’s and G’s reelections are positively correlated: $\beta_M > 0, \beta_G > 0$.

FOC
Politicians are members of different parties, D

M’s problem \[\max_{a_M} \Pr_M(a_M, a_G) + \lambda^D_M (1 - \Pr_G(a_M, a_G)) - \frac{a_M^2}{2} \]

G’s problem \[\max_{a_G} \Pr_G(a_M, a_G) + \lambda^D_G (1 - \Pr_M(a_M, a_G)) - \frac{a_G^2}{2} \]

M’s and G’s reelections are independent: $\beta_M = 0, \beta_G = 0$.

Galina Zudenkova

Split-Ticket Voting: An Implicit Incentive Approach
Equilibrium
Politicians’ Problem and Best Response Functions

Politicians are members of different parties, D

- M’s problem: $\max_{a_M} Pr_M (a_M, a_G) + \lambda^D_M (1 - Pr_G (a_M, a_G)) - \frac{a_M^2}{2}$
- G’s problem: $\max_{a_G} Pr_G (a_M, a_G) + \lambda^D_G (1 - Pr_M (a_M, a_G)) - \frac{a_G^2}{2}$

M’s and G’s reelections are positively correlated: $\beta_M > 0, \beta_G > 0$.
Equilibrium
Politicians’ Problem and Best Response Functions

Politicians are members of different parties, D.

M’s problem: $\max_{a_M} \Pr_M (a_M, a_G) + \lambda^D_M (1 - \Pr_G (a_M, a_G)) - \frac{a_M^2}{2}$

G’s problem: $\max_{a_G} \Pr_G (a_M, a_G) + \lambda^D_G (1 - \Pr_M (a_M, a_G)) - \frac{a_G^2}{2}$

M’s and G’s reelections are negatively correlated: $\beta_M < 0, \beta_G < 0$.

Galina Zudenkova

Split-Ticket Voting: An Implicit Incentive Approach
Theorem

There exists an equilibrium \((\beta_i^*, b_i^*)\) given by

\[
(\beta_i^*, b_i^*) = \begin{cases}
\left(\lambda_j^S, a_i^* + \lambda_j^S a_j^* \right) & \text{if } S \\
\left(-\lambda_j^D, a_i^* - \lambda_j^D a_j^* \right) & \text{if } D
\end{cases}
\]

where \(a_i^*\) is politician i’s equilibrium effort

\[
a_i^* = \begin{cases}
\frac{1}{\sqrt{2\pi}\sigma} \left(\frac{1}{\sqrt{1+\left(\frac{\lambda_j^S}{\sigma}\right)^2}} + \frac{(\lambda_i^S)^2}{\sqrt{1+(\lambda_i^S)^2}} \right) & \text{if } S \\
\frac{1}{\sqrt{2\pi}\sigma} \left(\frac{1}{\sqrt{1+\left(\frac{\lambda_j^D}{\sigma}\right)^2}} + \frac{(\lambda_i^D)^2}{\sqrt{1+(\lambda_i^D)^2}} \right) & \text{if } D
\end{cases}
\]
Dynamics

Transition Probabilities between states S and D

State S – voters **do not split tickets**
Dynamics

Transition Probabilities between states S and D

State S – voters **do not split tickets**
State D – voters **split tickets**
Dynamics
Transition Probabilities between states S and D

State S – voters **do not split tickets**
State D – voters **split tickets**

positively correlated reelections
Dynamics

Transition Probabilities between states S and D

State S – voters **do not split tickets**
- positively correlated reelections

State D – voters **split tickets**
- negatively correlated reelections
Dynamics
Transition Probabilities between states S and D

State S – voters do not split tickets
positively correlated reelections

State D – voters split tickets
negatively correlated reelections

\[G \text{ is reelected } \Rightarrow D \]
\[M, G \text{ are reelected } \Rightarrow S \]
\[\text{none is reelected } \Rightarrow S \]
\[M \text{ is reelected } \Rightarrow D \]

\[p_G + \lambda_M^S p_M = a_M^* + \lambda_M^S a_M \]
\[(a_M^*, a_G^*) \]

\[p_M + \lambda_G^S p_G = a_M^* + \lambda_G^S a_G \]

Galina Zudenkova

Split-Ticket Voting: An Implicit Incentive Approach
Dynamics
Transition Probabilities between states S and D

State S – voters **do not split tickets**

- positively correlated reelections

State D – voters **split tickets**

- negatively correlated reelections

\[p_g + \lambda_M^S p_M = a_G^* + \lambda_M^S a_M^* \]

\[(a_M^*, a_G^*) \]

\[p_M + \lambda_G^S p_G = a_M^* + \lambda_G^S a_G^* \]

\[\text{none is reelected} \Rightarrow S \]

\[\text{none is reelected} \Rightarrow D \]

\[M \text{ is reelected} \Rightarrow D \]

\[M, G \text{ are reelected} \Rightarrow S \]

\[p_G - \lambda_M^D p_M = a_G^* - \lambda_M^D a_M^* \]

\[(a_M^*, a_G^*) \]

\[p_M - \lambda_G^D p_G = a_M^* - \lambda_G^D a_G^* \]

\[G \text{ is reelected} \Rightarrow S \]

\[\text{none is reelected} \Rightarrow D \]

\[M \text{ is reelected} \Rightarrow S \]

Galina Zudenkova

Split-Ticket Voting: An Implicit Incentive Approach
Dynamics
Transition Probabilities between states S and D

State S – voters do not split tickets
positively correlated re-elections

State D – voters split tickets
negatively correlated re-elections

Independently of the current state, the next state is more likely to be state S.

Galina Zudenkova
Split-Ticket Voting: An Implicit Incentive Approach
Dynamics
Transition Probabilities between states S and D

Notation: P_{kl} – Pr that city in state k will next be in state l.
Dynamics

Transition Probabilities between states S and D

Notation: $P_{kl} – \Pr$ that city in state k will next be in state l.

Lemma

The matrix of the equilibrium transition probabilities P

$$
P = \begin{bmatrix}
P_{SS} & P_{SD} \\
P_{DS} & P_{DD}
\end{bmatrix} =
\begin{bmatrix}
\frac{1}{2} + \frac{1}{\pi} \arctan \frac{\lambda_M^S + \lambda_G^S}{1 - \lambda_M^S \lambda_G^S} & \frac{1}{2} - \frac{1}{\pi} \arctan \frac{\lambda_M^S + \lambda_G^S}{1 - \lambda_M^S \lambda_G^S} \\
\frac{1}{2} + \frac{1}{\pi} \arctan \frac{\lambda_M^D + \lambda_G^D}{1 - \lambda_M^D \lambda_G^D} & \frac{1}{2} - \frac{1}{\pi} \arctan \frac{\lambda_M^D + \lambda_G^D}{1 - \lambda_M^D \lambda_G^D}
\end{bmatrix}
$$
Dynamics

Transition Probabilities between states S and D

Notation: P_{kl} – Pr that city in state k will next be in state l.

Lemma

The matrix of the equilibrium transition probabilities P

$$
P \equiv \begin{bmatrix}
P_{SS} & P_{SD} \\
P_{DS} & P_{DD}
\end{bmatrix} =
\begin{bmatrix}
\frac{1}{2} + \frac{1}{\pi} \arctan \frac{\lambda^S_M + \lambda^S_G}{1 - \lambda^S_M \lambda^S_G} > \frac{1}{2} - \frac{1}{\pi} \arctan \frac{\lambda^S_M + \lambda^S_G}{1 - \lambda^S_M \lambda^S_G} \\
\frac{1}{2} + \frac{1}{\pi} \arctan \frac{\lambda^D_M + \lambda^D_G}{1 - \lambda^D_M \lambda^D_G} > \frac{1}{2} - \frac{1}{\pi} \arctan \frac{\lambda^D_M + \lambda^D_G}{1 - \lambda^D_M \lambda^D_G}
\end{bmatrix}
$$
Dynamics

Transition Probabilities between states S and D

How does the current state affect probability that the next state is state k, $k \in \{S, D\}$?
Dynamics

Transition Probabilities between states S and D

How does the current state affect probability that the next state is state k, $k \in \{S, D\}$?

- If politicians prefer **incumbents** ($\lambda^S_i > \lambda^D_i$, $i \in \{M, G\}$) then

 $$P_{SS} > P_{DS} \quad \text{and} \quad P_{DD} > P_{SD}$$
Dynamics
Transition Probabilities between states S and D

How does the current state affect probability that the next state is state k, $k \in \{S, D\}$?

- If politicians prefer incumbents ($\lambda^S_i > \lambda^D_i$, $i \in \{M, G\}$) then

\[P_{SS} > P_{DS} \quad \text{and} \quad P_{DD} > P_{SD} \]

\Rightarrow Voters are more likely to split tickets if in the previous period they split tickets.
Dynamics

Transition Probabilities between states S and D

How does the current state affect probability that the next state is state k, $k \in \{S, D\}$?

- If politicians prefer **incumbents** ($\lambda^S_i > \lambda^D_i$, $i \in \{M, G\}$) then

 $$P_{SS} > P_{DS} \quad \text{and} \quad P_{DD} > P_{SD}$$

 \Rightarrow Voters are more likely to **split tickets** if in the previous period they **split tickets**.

- If politicians prefer **newcomers** ($\lambda^S_i < \lambda^D_i$, $i \in \{M, G\}$) then

 $$P_{SS} < P_{DS} \quad \text{and} \quad P_{DD} < P_{SD}$$
Dynamics
Transition Probabilities between states S and D

How does the current state affect probability that the next state is state k, $k \in \{S, D\}$?

- If politicians prefer **incumbents** ($\lambda^S_i > \lambda^D_i$, $i \in \{M, G\}$) then
 \[
P_{SS} > P_{DS} \quad \text{and} \quad P_{DD} > P_{SD}
 \]
 \Rightarrow Voters are more likely to **split tickets** if in the previous period they **split tickets**.

- If politicians prefer **newcomers** ($\lambda^S_i < \lambda^D_i$, $i \in \{M, G\}$) then
 \[
P_{SS} < P_{DS} \quad \text{and} \quad P_{DD} < P_{SD}
 \]
 \Rightarrow Voters are more likely to **split tickets** if in the previous period they **did not split tickets**.
Region consists of n municipalities.
Ticket Splitting in Small Municipalities

- Region consists of \(n \) municipalities.

- Each municipality is pivotal in regional elections with probability proportional to its population share.
Ticket Splitting in Small Municipalities

- Region consists of n municipalities.
- Each municipality is pivotal in regional elections with probability proportional to its population share.
- Governor G cares less about party affiliation of small-town mayors.

Novel result:
Split-ticket voting is more likely in small municipalities than in large ones.

Intuition:
Governor G cares less about party affiliation of mayors in small municipalities \Rightarrow politicians' incentives are less correlated \Rightarrow voters adopt less correlated joint performance evaluation rules \Rightarrow this increases the probability of ticket splitting.

Galina Zudenkova
Split-Ticket Voting: An Implicit Incentive Approach
Ticket Splitting in Small Municipalities

- Region consists of n municipalities.

- Each municipality is pivotal in regional elections with probability proportional to its population share.

- Governor G cares less about party affiliation of small-town mayors.

- **Novel result**: Split-ticket voting is more likely in small municipalities than in large ones.
Ticket Splitting in Small Municipalities

- Region consists of n municipalities.

- Each municipality is pivotal in regional elections with probability proportional to its population share.

- Governor G cares less about party affiliation of small-town mayors.

- **Novel result**: Split-ticket voting is more likely in small municipalities than in large ones.

Intuition: governor cares less about party affiliation of mayors in small municipalities ⇒
Region consists of n municipalities.

Each municipality is pivotal in regional elections with probability proportional to its population share.

Governor G cares less about party affiliation of small-town mayors.

Novel result: Split-ticket voting is more likely in small municipalities than in large ones.

Intuition: governor cares less about party affiliation of mayors in small municipalities \Rightarrow

politicians’ incentives are less correlated \Rightarrow
Ticket Splitting in Small Municipalities

- Region consists of \(n \) municipalities.

- Each municipality is pivotal in regional elections with probability proportional to its population share.

- Governor \(G \) cares less about party affiliation of small-town mayors.

- **Novel result**: **Split-ticket voting is more likely in small municipalities** than in large ones.

 Intuition: governor cares less about party affiliation of mayors in small municipalities \(\implies \)

 politicians’ incentives are less correlated \(\implies \)

 voters adopt less correlated joint performance evaluation rules \(\implies \)
Ticket Splitting in Small Municipalities

- Region consists of n municipalities.
- Each municipality is pivotal in regional elections with probability proportional to its population share.
- Governor G cares less about party affiliation of small-town mayors.

Novel result: Split-ticket voting is more likely in small municipalities than in large ones.

Intuition: governor cares less about party affiliation of mayors in small municipalities \Rightarrow

politicians’ incentives are less correlated \Rightarrow

voters adopt less correlated joint performance evaluation rules \Rightarrow

this increases the probability of ticket splitting.
Summary and Results

Political Agency model of Split-Ticket Voting:
Summary and Results

Political Agency model of Split-Ticket Voting:

- Politicians’ incentives are correlated ⇒ voters use joint performance evaluation to reward politicians.
Political Agency model of Split-Ticket Voting:

- Politicians’ incentives are correlated \Rightarrow voters use joint performance evaluation to reward politicians.

- Reelections of politicians from the same party are positively correlated.
Political Agency model of Split-Ticket Voting:

- Politicians’ incentives are correlated \Rightarrow voters use joint performance evaluation to reward politicians.

- Reelections of politicians from the same party are positively correlated.

- Reelections of politicians from different parties are negatively correlated.
Summary and Results

Dynamics of Ticket Splitting:

Ticket Splitting is less likely than voting for candidates from the same party.

If politicians prefer incumbents, voters tend to split tickets if in the previous period they also split tickets.

If politicians prefer newcomers, voters tend to split tickets if in the previous period they didn't split tickets.

Ticket Splitting is more likely in small municipalities than in large ones.
Summary and Results

Dynamics of Ticket Splitting:

- Ticket Splitting is less likely than voting for candidates from the same party.
Summary and Results

Dynamics of Ticket Splitting:

- Ticket Splitting is less likely than voting for candidates from the same party.

- If politicians prefer incumbents, voters tend to split tickets if in the previous period they also split tickets.
Summary and Results

Dynamics of Ticket Splitting:

- Ticket Splitting is less likely than voting for candidates from the same party.

- If politicians prefer incumbents, voters tend to split tickets if in the previous period they also split tickets.

- If politicians prefer newcomers, voters tend to split tickets if in the previous period they didn’t split tickets.
Dynamics of Ticket Splitting:

- Ticket Splitting is less likely than voting for candidates from same party.

- If politicians prefer incumbents, voters tend to split tickets if in the previous period they also split tickets.

- If politicians prefer newcomers, voters tend to split tickets if in the previous period they didn’t split tickets.

- Ticket Splitting is more likely in small municipalities than in large ones.