The Benefits of Costly Voting

Surajeet Chakravarty1 Todd R. Kaplan Gareth Myles1

1Department of Economics, University of Exeter
2Department of Economics, University of Haifa

SCW 2010, July 21, 2010
"The object of our deliberations is to promote the good purposes for which elections have been instituted, and to prevent their inconveniences." (Edmund Burke, Irish Statesman 1729-1797)

The More the Merrier?

- Normally think that ensuring all participate in voting would improve the final outcome.
- Many countries (including Argentina, Australia, Belgium, and Greece) have compulsory voting to ensure inclusion.
- In social valuation, the strength of preference counts.
- While in voting, it is not possible to demonstrate intensity of preferences.
"The object of our deliberations is to promote the good purposes for which elections have been instituted, and to prevent their inconveniences." (Edmund Burke, Irish Statesman 1729-1797)

The More the Merrier?

- Normally think that ensuring all participate in voting would improve the final outcome.
- Many countries (including Argentina, Australia, Belgium, and Greece) have compulsory voting to ensure inclusion.
- In social valuation, the strength of preference counts.
- While in voting, it is not possible to demonstrate intensity of preferences.
"The object of our deliberations is to promote the good purposes for which elections have been instituted, and to prevent their inconveniences." (Edmund Burke, Irish Statesman 1729-1797)

The More the Merrier?

- Normally think that ensuring all participate in voting would improve the final outcome.
- Many countries (including Argentina, Australia, Belgium, and Greece) have compulsory voting to ensure inclusion.
- In social valuation, the strength of preference counts.
- While in voting, it is not possible to demonstrate intensity of preferences.
"The object of our deliberations is to promote the good purposes for which elections have been instituted, and to prevent their inconveniences." (Edmund Burke, Irish Statesman 1729-1797)

The More the Merrier?

- Normally think that ensuring all participate in voting would improve the final outcome.
- Many countries (including Argentina, Australia, Belgium, and Greece) have compulsory voting to ensure inclusion.
- In social valuation, the strength of preference counts.
- While in voting, it is not possible to demonstrate intensity of preferences.
"The object of our deliberations is to promote the good purposes for which elections have been instituted, and to prevent their inconveniences." (Edmund Burke, Irish Statesman 1729-1797)

The More the Merrier?

- Normally think that ensuring all participate in voting would improve the final outcome.
- Many countries (including Argentina, Australia, Belgium, and Greece) have compulsory voting to ensure inclusion.
- In social valuation, the strength of preference counts.
- While in voting, it is not possible to demonstrate intensity of preferences.
The More the Merrier?

- There may be gains by excluding voters with only mild feelings about the alternatives.
- If one’s vote counts for more than one’s strength of feeling then one may change the outcome in a detrimental way.
- In Australia where voting is mandatory, donkey votes, those that simply were cast by order of a ballot, give a 1% edge to those listed first (Orr, 2002, and King and Leigh, 2009).
- A cost to voting can deter participation by those with weak preferences (or not well informed).
- Literature: costly voting is detrimental since it deters voting (and is a cost to those that do vote) leading to a paradox of why people vote (see Dhillon and Peralta, EJ 2002).
The More the Merrier?

- There may be gains by excluding voters with only mild feelings about the alternatives.
- If one’s vote counts for more than one’s strength of feeling then one may change the outcome in a detrimental way.
- In Australia where voting is mandatory, donkey votes, those that simply were cast by order of a ballot, give a 1% edge to those listed first (Orr, 2002, and King and Leigh, 2009).
- A cost to voting can deter participation by those with weak preferences (or not well informed).
- Literature: costly voting is detrimental since it deters voting (and is a cost to those that do vote) leading to a paradox of why people vote (see Dhillon and Peralta, EJ 2002).
The More the Merrier?

- There may be gains by excluding voters with only mild feelings about the alternatives.
- If one’s vote counts for more than one’s strength of feeling then one may change the outcome in a detrimental way.
- In Australia where voting is mandatory, donkey votes, those that simply were cast by order of a ballot, give a 1% edge to those listed first (Orr, 2002, and King and Leigh, 2009).
- A cost to voting can deter participation by those with weak preferences (or not well informed).
- Literature: costly voting is detrimental since it deters voting (and is a cost to those that do vote) leading to a paradox of why people vote (see Dhillon and Peralta, EJ 2002).
The More the Merrier?

- There may be gains by excluding voters with only mild feelings about the alternatives.
- If one’s vote counts for more than one’s strength of feeling then one may change the outcome in a detrimental way.
- In Australia where voting is mandatory, donkey votes, those that simply were cast by order of a ballot, give a 1% edge to those listed first (Orr, 2002, and King and Leigh, 2009).
- A cost to voting can deter participation by those with weak preferences (or not well informed).
- Literature: costly voting is detrimental since it deters voting (and is a cost to those that do vote) leading to a paradox of why people vote (see Dhillon and Peralta, EJ 2002).
The More the Merrier?

- There may be gains by excluding voters with only mild feelings about the alternatives.
- If one’s vote counts for more than one’s strength of feeling then one may change the outcome in a detrimental way.
- In Australia where voting is mandatory, donkey votes, those that simply were cast by order of a ballot, give a 1% edge to those listed first (Orr, 2002, and King and Leigh, 2009).
- A cost to voting can deter participation by those with weak preferences (or not well informed).
- Literature: costly voting is detrimental since it deters voting (and is a cost to those that do vote) leading to a paradox of why people vote (see Dhillon and Peralta, EJ 2002).
The More the Merrier?

- There may be gains by excluding voters with only mild feelings about the alternatives.
- If one’s vote counts for more than one’s strength of feeling then one may change the outcome in a detrimental way.
- In Australia where voting is mandatory, donkey votes, those that simply were cast by order of a ballot, give a 1% edge to those listed first (Orr, 2002, and King and Leigh, 2009).
- A cost to voting can deter participation by those with weak preferences (or not well informed).
- Literature: costly voting is detrimental since it deters voting (and is a cost to those that do vote) leading to a paradox of why people vote (see Dhillon and Peralta, EJ 2002).
Two options, A and B, and two voters: one prefers A and the other prefers B.

- 1/2 chance that a voter has utility of 1 for preferred option (and -1 for other)
- 1/2 chance of 3 for preferred option (and -3 for other).

If cost of voting is 0, everyone votes and social surplus is 0.
If cost of voting is 2/3 & only those with a high value vote,
- Social surplus only when one voter has a higher value and the other the lower value.
- This yields a gain of 3-1=2 and occurs 1/2 the time.
- Net social benefits of voting is 1/3.

Is this an equilibrium?
- a vote improves one’s option’s chances by 1/2.
- If one has a value v, one votes if $v/2 > c$.
- Notice $3/2 > c = 2/3 > 1/2$.

if p is chance of low type, net social benefit > 0 if $(v_h - v_\ell)p > c$ (it is an equilibrium if $v_h/2 > c > v_\ell/2$).
Two options, A and B, and two voters: one prefers A and the other prefers B.

$1/2$ chance that a voter has utility of 1 for preferred option (and -1 for other)
$1/2$ chance of 3 for preferred option (and -3 for other).

If cost of voting is 0, everyone votes and social surplus is 0.

If cost of voting is $2/3$ & only those with a high value vote,

- Social surplus only when one voter has a higher value and the other the lower value.
- This yields a gain of $3-1=2$ and occurs $1/2$ the time.
- Net social benefits of voting is $1/3$.

Is this an equilibrium?

- a vote improves one’s option’s chances by $1/2$.
- If one has a value v, one votes if $v/2 > c$.
- Notice $3/2 > c = 2/3 > 1/2$.

- if p is chance of low type, net social benefit > 0 if $(v_h - v_\ell)p > c$ (it is an equilibrium if $v_h/2 > c > v_\ell/2$).
Two options, A and B, and two voters: one prefers A and the other prefers B.

1/2 chance that a voter has utility of 1 for preferred option (and -1 for other)
1/2 chance of 3 for preferred option (and -3 for other).

If cost of voting is 0, everyone votes and social surplus is 0.

If cost of voting is 2/3 & only those with a high value vote,
- Social surplus only when one voter has a higher value and the other the lower value.
- This yields a gain of 3-1=2 and occurs 1/2 the time.
- Net social benefits of voting is 1/3.

Is this an equilibrium?
- a vote improves one’s option’s chances by 1/2.
- If one has a value v, one votes if $v/2 > c$.
- Notice $3/2 > c = 2/3 > 1/2$.

If p is chance of low type, net social benefit > 0 if $(v_h - v_\ell)p > c$ (it is an equilibrium if $v_h/2 > c > v_\ell/2$).
Two options, A and B, and two voters: one prefers A and the other prefers B.

1/2 chance that a voter has utility of 1 for preferred option (and -1 for other)

1/2 chance of 3 for preferred option (and -3 for other).

If cost of voting is 0, everyone votes and social surplus is 0.

If cost of voting is 2/3 & only those with a high value vote,

- Social surplus only when one voter has a higher value and the other the lower value.
- This yields a gain of 3-1=2 and occurs 1/2 the time.
- Net social benefits of voting is 1/3.

Is this an equilibrium?

- a vote improves one’s option’s chances by 1/2.
- If one has a value v, one votes if $v/2 > c$.
- Notice $3/2 > c = 2/3 > 1/2$.

If p is chance of low type, net social benefit > 0 if $(v_h - v_\ell)p > c$ (it is an equilibrium if $v_h/2 > c > v_\ell/2$).
Two options, A and B, and two voters: one prefers A and the other prefers B.

1/2 chance that a voter has utility of 1 for preferred option (and -1 for other)
1/2 chance of 3 for preferred option (and -3 for other).

If cost of voting is 0, everyone votes and social surplus is 0.

If cost of voting is $2/3$ & only those with a high value vote,

- Social surplus only when one voter has a higher value and the other the lower value.
- This yields a gain of 3-1=2 and occurs 1/2 the time.
- Net social benefits of voting is $1/3$.

Is this an equilibrium?

- a vote improves one’s option’s chances by 1/2.
- If one has a value v, one votes if $v/2 > c$.
- Notice $3/2 > c = 2/3 > 1/2$.

If p is chance of low type, net social benefit > 0 if

$$(v_h - v_\ell)p > c \text{ (it is an equilibrium if } v_h/2 > c > v_\ell/2).$$
Two options, A and B, and two voters: one prefers A and the other prefers B.

1/2 chance that a voter has utility of 1 for preferred option (and -1 for other)
1/2 chance of 3 for preferred option (and -3 for other).

If cost of voting is 0, everyone votes and social surplus is 0.
If cost of voting is 2/3 & only those with a high value vote,
- Social surplus only when one voter has a higher value and the other the lower value.
- This yields a gain of 3-1=2 and occurs 1/2 the time.
- Net social benefits of voting is 1/3.

Is this an equilibrium?
- a vote improves one’s option’s chances by 1/2.
- If one has a value v, one votes if $v/2 > c$.
- Notice $3/2 > c = 2/3 > 1/2$.

If p is chance of low type, net social benefit > 0 if $(v_h - v_\ell)p > c$ (it is an equilibrium if $v_h/2 > c > v_\ell/2$).
Two options, A and B, and two voters: one prefers A and the other prefers B.

1/2 chance that a voter has utility of 1 for preferred option (and -1 for other)
1/2 chance of 3 for preferred option (and -3 for other).

If cost of voting is 0, everyone votes and social surplus is 0.
If cost of voting is 2/3 & only those with a high value vote,
 Social surplus only when one voter has a higher value and the other the lower value.
 This yields a gain of 3-1=2 and occurs 1/2 the time.
 Net social benefits of voting is 1/3.

Is this an equilibrium?
 a vote improves one's option's chances by 1/2.
 If one has a value v, one votes if $v/2 > c$.
 Notice $3/2 > c = 2/3 > 1/2$.

if p is chance of low type, net social benefit > 0 if
 $(v_h - v_\ell)p > c$ (it is an equilibrium if $v_h/2 > c > v_\ell/2$).
Two options, A and B, and two voters: one prefers A and the other prefers B.

1/2 chance that a voter has utility of 1 for preferred option (and -1 for other)
1/2 chance of 3 for preferred option (and -3 for other).

If cost of voting is 0, everyone votes and social surplus is 0.
If cost of voting is 2/3 & only those with a high value vote,
 Social surplus only when one voter has a higher value and the other the lower value.
 This yields a gain of 3-1=2 and occurs 1/2 the time.
 Net social benefits of voting is 1/3.

Is this an equilibrium?
 a vote improves one’s option’s chances by 1/2.
 If one has a value v, one votes if $v/2 > c$.
 Notice $3/2 > c = 2/3 > 1/2$.

if p is chance of low type, net social benefit > 0 if
 $(v_h - v_\ell)p > c$ (it is an equilibrium if $v_h/2 > c > v_\ell/2$).
Two options, A and B, and two voters: one prefers A and the other prefers B.

1/2 chance that a voter has utility of 1 for preferred option (and -1 for other)
1/2 chance of 3 for preferred option (and -3 for other).

If cost of voting is 0, everyone votes and social surplus is 0.

If cost of voting is 2/3 & only those with a high value vote,
- Social surplus only when one voter has a higher value and the other the lower value.
- This yields a gain of 3-1=2 and occurs 1/2 the time.
- Net social benefits of voting is 1/3.

Is this an equilibrium?
- a vote improves one’s option’s chances by 1/2.
- If one has a value v, one votes if v/2 > c.
- Notice 3/2 > c = 2/3 > 1/2.

if p is chance of low type, net social benefit > 0 if
(v_h - v_ℓ)p > c (it is an equilibrium if v_h/2 > c > v_ℓ/2).
Two options, A and B, and two voters: one prefers A and the other prefers B.

$1/2$ chance that a voter has utility of 1 for preferred option (and -1 for other)
$1/2$ chance of 3 for preferred option (and -3 for other).

If cost of voting is 0, everyone votes and social surplus is 0.
If cost of voting is $2/3$ & only those with a high value vote,

- Social surplus only when one voter has a higher value and the other the lower value.
- This yields a gain of $3-1=2$ and occurs $1/2$ the time.
- Net social benefits of voting is $1/3$.

Is this an equilibrium?
- a vote improves one’s option’s chances by $1/2$.
- If one has a value v, one votes if $v/2 > c$.
 - Notice $3/2 > c = 2/3 > 1/2$.

If p is chance of low type, net social benefit > 0 if $(v_h - v_\ell)p > c$ (it is an equilibrium if $v_h/2 > c > v_\ell/2$).
Two options, A and B, and two voters: one prefers A and the other prefers B.

1/2 chance that a voter has utility of 1 for preferred option (and -1 for other)
1/2 chance of 3 for preferred option (and -3 for other).
If cost of voting is 0, everyone votes and social surplus is 0.
If cost of voting is 2/3 & only those with a high value vote,
 Social surplus only when one voter has a higher value and the other the lower value.
 This yields a gain of 3-1=2 and occurs 1/2 the time.
 Net social benefits of voting is 1/3.

Is this an equilibrium?
 a vote improves one's option's chances by 1/2.
 If one has a value v, one votes if $v/2 > c$.
 Notice $3/2 > c = 2/3 > 1/2$.

if p is chance of low type, net social benefit > 0 if $(v_h - v_\ell)p > c$ (it is an equilibrium if $v_h/2 > c > v_\ell/2$).
Two options, A and B, and two voters: one prefers A and the other prefers B.

1/2 chance that a voter has utility of 1 for preferred option (and -1 for other)
1/2 chance of 3 for preferred option (and -3 for other).

If cost of voting is 0, everyone votes and social surplus is 0.
If cost of voting is 2/3 & only those with a high value vote,
 Social surplus only when one voter has a higher value and the other the lower value.
 This yields a gain of 3-1=2 and occurs 1/2 the time.
 Net social benefits of voting is 1/3.

Is this an equilibrium?
 a vote improves one’s option’s chances by 1/2.
 If one has a value v, one votes if $v/2 > c$.
 Notice $3/2 > c = 2/3 > 1/2$.

if p is chance of low type, net social benefit > 0 if $(v_h - v_\ell)p > c$ (it is an equilibrium if $v_h/2 > c > v_\ell/2$).
Related Literature

- Bulkley et al. (2001) and Osborne et al. (AER, 2000). With costly voting, only voters from the extremes will participate.
- Borgers (AER, 2004) shows with costly voting, voluntary voting is superior to mandatory voting (still with voting costs) and random selection of a winner (with no voting).
 - No difference in intensity of preference.
- Krasa and Polborn (Games, 2009) vary the Borgers model by allowing for ex-ante asymmetry of preferences. For a large number of voters, optimal to move toward mandatory voting.
Bulkley et al. (2001) and Osborne et al. (AER, 2000). With costly voting, only voters from the extremes will participate.

Borgers (AER, 2004) shows with costly voting, voluntary voting is superior to mandatory voting (still with voting costs) and random selection of a winner (with no voting).

No difference in intensity of preference.

Krasa and Polborn (Games, 2009) vary the Borgers model by allowing for ex-ante asymmetry of preferences. For a large number of voters, optimal to move toward mandatory voting.
Related Literature

- Bulkley et al. (2001) and Osborne et al. (AER, 2000). With costly voting, only voters from the extremes will participate.
- Borgers (AER, 2004) shows with costly voting, voluntary voting is superior to mandatory voting (still with voting costs) and random selection of a winner (with no voting).
 - No difference in intensity of preference.
- Krasa and Polborn (Games, 2009) vary the Borgers model by allowing for ex-ante asymmetry of preferences. For a large number of voters, optimal to move toward mandatory voting.
Related Literature

- Bulkley et al. (2001) and Osborne et al. (AER, 2000). With costly voting, only voters from the extremes will participate.
- Borgers (AER, 2004) shows with costly voting, voluntary voting is superior to mandatory voting (still with voting costs) and random selection of a winner (with no voting).
 - No difference in intensity of preference.
- Krasa and Polborn (Games, 2009) vary the Borgers model by allowing for ex-ante asymmetry of preferences. For a large number of voters, optimal to move toward mandatory voting.
Related Literature

- Bulkley et al. (2001) and Osborne et al. (AER, 2000). With costly voting, only voters from the extremes will participate.

- Borgers (AER, 2004) shows with costly voting, voluntary voting is superior to mandatory voting (still with voting costs) and random selection of a winner (with no voting).
 - No difference in intensity of preference.

- Krasa and Polborn (Games, 2009) vary the Borgers model by allowing for ex-ante asymmetry of preferences. For a large number of voters, optimal to move toward mandatory voting.
Our work

- We wish to find when with voluntary voting, costly voting is superior.
- Under the Borgers framework, there is no intensity to preference, so best to not have voting costs.
- Say a department wishes to vote on whether or not to hire a job candidate.
 1. The department can make it mandatory to show up to a meeting.
 2. The department can buy nice cookies for the meeting.
 3. The department can allow for electronic voting.
 4. The department can schedule the meeting late at night.
- Our analysis adds 3 and 4 as possibilities.
Our work

- We wish to find when with voluntary voting, costly voting is superior.
- Under the Borgers framework, there is no intensity to preference, so best to not have voting costs.
- Say a department wishes to vote on whether or not to hire a job candidate.
 1. The department can make it mandatory to show up to a meeting.
 2. The department can buy nice cookies for the meeting.
 3. The department can allow for electronic voting.
 4. The department can schedule the meeting late at night.
- Our analysis adds 3 and 4 as possibilities.
Our work

- We wish to find when with voluntary voting, costly voting is superior.
- Under the Borgers framework, there is no intensity to preference, so best to not have voting costs.
- Say a department wishes to vote on whether or not to hire a job candidate.
 - The department can make it mandatory to show up to a meeting.
 - The department can buy nice cookies for the meeting.
 - The department can allow for electronic voting.
 - The department can schedule the meeting late at night.
- Our analysis adds 3 and 4 as possibilities.
Our work

- We wish to find when with voluntary voting, costly voting is superior.
- Under the Borgers framework, there is no intensity to preference, so best to not have voting costs.
- Say a department wishes to vote on whether or not to hire a job candidate.
 1. The department can make it mandatory to show up to a meeting.
 2. The department can buy nice cookies for the meeting.
 3. The department can allow for electronic voting.
 4. The department can schedule the meeting late at night.
- Our analysis adds 3 and 4 as possibilities.
Our work

- We wish to find when with voluntary voting, costly voting is superior.
- Under the Borgers framework, there is no intensity to preference, so best to not have voting costs.
- Say a department wishes to vote on whether or not to hire a job candidate.
 1. The department can make it mandatory to show up to a meeting.
 2. The department can buy nice cookies for the meeting.
 3. The department can allow for electronic voting.
 4. The department can schedule the meeting late at night.
- Our analysis adds 3 and 4 as possibilities.
Our work

- We wish to find when with voluntary voting, costly voting is superior.
- Under the Borgers framework, there is no intensity to preference, so best to not have voting costs.
- Say a department wishes to vote on whether or not to hire a job candidate.
 1. The department can make it mandatory to show up to a meeting.
 2. The department can buy nice cookies for the meeting.
 3. The department can allow for electronic voting.
 4. The department can schedule the meeting late at night.
- Our analysis adds 3 and 4 as possibilities.
Our work

- We wish to find when with voluntary voting, costly voting is superior.
- Under the Borgers framework, there is no intensity to preference, so best to not have voting costs.
- Say a department wishes to vote on whether or not to hire a job candidate.
 1. The department can make it mandatory to show up to a meeting.
 2. The department can buy nice cookies for the meeting.
 3. The department can allow for electronic voting.
 4. The department can schedule the meeting late at night.
- Our analysis adds 3 and 4 as possibilities.
Our work

- We wish to find when with voluntary voting, costly voting is superior.
- Under the Borgers framework, there is no intensity to preference, so best to not have voting costs.
- Say a department wishes to vote on whether or not to hire a job candidate.
 1. The department can make it mandatory to show up to a meeting.
 2. The department can buy nice cookies for the meeting.
 3. The department can allow for electronic voting.
 4. The department can schedule the meeting late at night.
- Our analysis adds 3 and 4 as possibilities.
Our work

- We wish to find when with voluntary voting, costly voting is superior.
- Under the Borgers framework, there is no intensity to preference, so best to not have voting costs.
- Say a department wishes to vote on whether or not to hire a job candidate.
 1. The department can make it mandatory to show up to a meeting.
 2. The department can buy nice cookies for the meeting.
 3. The department can allow for electronic voting.
 4. The department can schedule the meeting late at night.
- Our analysis adds 3 and 4 as possibilities.
Continuous Model

- Two types of voters
- n voters of each type (overall $2n$ voters).
- Each voter i has value $v_i \geq 0$ is drawn from F.
- If $1 \leq i \leq n$, voter i is a type A voter who values a win by A at v_i and a win by B at 0.
- If $n + 1 \leq i \leq 2n$, voter i is a type B voter who values a win by B at v_i and a win by A at 0.
- All voters have the same cost c.
Continuous Model

- **Two types of voters**
 - n voters of each type (overall $2n$ voters).
 - Each voter i has value $v_i \geq 0$ is drawn from F.
 - If $1 \leq i \leq n$, voter i is a type A voter who values a win by A at v_i and a win by B at 0.
 - If $n + 1 \leq i \leq 2n$, voter i is a type B voter who values a win by B at v_i and a win by A at 0.
 - All voters have the same cost c.
Continuous Model

- Two types of voters
- n voters of each type (overall $2n$ voters).
 - Each voter i has value $v_i \geq 0$ is drawn from F.
 - If $1 \leq i \leq n$, voter i is a type A voter who values a win by A at v_i and a win by B at 0.
 - If $n + 1 \leq i \leq 2n$, voter i is a type B voter who values a win by B at v_i and a win by A at 0.
- All voters have the same cost c.
Continuous Model

- Two types of voters
- \(n \) voters of each type (overall \(2n \) voters).
- Each voter \(i \) has value \(v_i \geq 0 \) is drawn from \(F \).
 - If \(1 \leq i \leq n \), voter \(i \) is a type A voter who values a win by \(A \) at \(v_i \) and a win by \(B \) at 0.
 - If \(n + 1 \leq i \leq 2n \), voter \(i \) is a type B voter who values a win by \(B \) at \(v_i \) and a win by \(A \) at 0.
- All voters have the same cost \(c \).
Continuous Model

- Two types of voters
- n voters of each type (overall $2n$ voters).
- Each voter i has value $v_i \geq 0$ is drawn from F.
- If $1 \leq i \leq n$, voter i is a type A voter who values a win by A at v_i and a win by B at 0.
- If $n + 1 \leq i \leq 2n$, voter i is a type B voter who values a win by B at v_i and a win by A at 0.
- All voters have the same cost c.
Continuous Model

- Two types of voters
- n voters of each type (overall $2n$ voters).
- Each voter i has value $v_i \geq 0$ is drawn from F.
- If $1 \leq i \leq n$, voter i is a type A voter who values a win by A at v_i and a win by B at 0.
- If $n + 1 \leq i \leq 2n$, voter i is a type B voter who values a win by B at v_i and a win by A at 0.
- All voters have the same cost c.
Continuous Model

- Two types of voters
- n voters of each type (overall $2n$ voters).
- Each voter i has value $v_i \geq 0$ is drawn from F.
- If $1 \leq i \leq n$, voter i is a type A voter who values a win by A at v_i and a win by B at 0.
- If $n + 1 \leq i \leq 2n$, voter i is a type B voter who values a win by B at v_i and a win by A at 0.
- All voters have the same cost c.
The social surplus to voting is then the expected value of the winner minus the costs of voting:

$$SSV(c) = \sum_{a=0}^{n} \sum_{b=0}^{n} \binom{n}{a} \binom{n}{b} F(v^*(c))^{2n-a-b} (1 - F(v^*(c)))^{a+b}. $$

$$\left[(n - \max\{a, b\}) E[V_i | V_i < v^*(c)] + \max\{a, b\} E[V_i | V_i > v^*(c)] \right]$$

$$- 2(1 - F(v^*(c)))n \cdot c.$$
Proposition

If $\lim_{v \to 0} F'(v) v = 0$, $\lim_{v \to 0} F'(v) F(v) = 0$ and $E[v] \cdot F'(0) > 1$, then it is optimal to have $c > 0$.

Proof

Was by taking the derivative w.r.t. c and taking the limit as $c \to 0$.

Remarks

- $E[v] \cdot F'(0) > 1$ is equivalent to $\lim_{v^* \to 0} \frac{dE[V|V>v^*]}{dv^*} > 1$
- Mean-residual-lifetime function (MRL) is strictly increasing at zero. Satisfied by all strictly log-convex distributions (Heckman and Honore, 1990).
- This condition does not depend upon n.
Proposition

If \(\lim_{v \to 0} F'(v)v = 0 \), \(\lim_{v \to 0} F'(v)F(v) = 0 \) and \(E[v] \cdot F'(0) > 1 \), then it is optimal to have \(c > 0 \).

Proof

Was by taking the derivative w.r.t. \(c \) and taking the limit as \(c \to 0 \).

Remarks

- \(E[v] \cdot F'(0) > 1 \) is equivalent to \(\lim_{v^* \to 0} \frac{dE[V|V>v^*]}{dv^*} > 1 \)
- Mean-residual-lifetime function (MRL) is strictly increasing at zero. Satisfied by all strictly log-convex distributions (Heckman and Honore, 1990).
- This condition does not depend upon \(n \).
Proposition

If \(\lim_{v \to 0} F'(v)v = 0 \), \(\lim_{v \to 0} F'(v)F(v) = 0 \) and \(E[v] \cdot F'(0) > 1 \), then it is optimal to have \(c > 0 \).

Proof

Was by taking the derivative w.r.t. \(c \) and taking the limit as \(c \to 0 \).

Remarks

- \(E[v] \cdot F'(0) > 1 \) is equivalent to \(\lim_{v^* \to 0} \frac{dE[V|V>v^*]}{dv^*} > 1 \)
- mean-residual-lifetime function (MRL) is strictly increasing at zero. Satisfied by all strictly log-convex distributions (Heckman and Honore, 1990).
- This condition does not depend upon \(n \).
Proposition

If \(\lim_{v \to 0} F'(v)v = 0 \), \(\lim_{v \to 0} F'(v)F(v) = 0 \) and \(E[v] \cdot F'(0) > 1 \), then it is optimal to have \(c > 0 \).

Proof

Was by taking the derivative w.r.t. \(c \) and taking the limit as \(c \to 0 \).

Remarks

- \(E[v] \cdot F'(0) > 1 \) is equivalent to \(\lim_{v^* \to 0} \frac{dE[V|V>v^*]}{dv^*} > 1 \)
- mean-residual-lifetime function (MRL) is strictly increasing at zero. Satisfied by all strictly log-convex distributions (Heckman and Honore, 1990).
- This condition does not depend upon \(n \).
Proposition

If \(\lim_{v \to 0} F'(v)v = 0 \), \(\lim_{v \to 0} F'(v)F(v) = 0 \) and \(E[v] \cdot F'(0) > 1 \), then it is optimal to have \(c > 0 \).

Proof

Was by taking the derivative w.r.t. \(c \) and taking the limit as \(c \to 0 \).

Remarks

- \(E[v] \cdot F'(0) > 1 \) is equivalent to \(\lim_{v^* \to 0} \frac{dE[V|V>v^*]}{dv^*} > 1 \)
- mean-residual-lifetime function (MRL) is strictly increasing at zero. Satisfied by all strictly log-convex distributions (Heckman and Honore, 1990).
- This condition does not depend upon \(n \).
Proposition

If \(\lim_{v \to 0} F'(v)v = 0 \), \(\lim_{v \to 0} F'(v)F(v) = 0 \) and \(E[v] \cdot F'(0) > 1 \), then it is optimal to have \(c > 0 \).

Proof

Was by taking the derivative w.r.t. \(c \) and taking the limit as \(c \to 0 \).

Remarks

- \(E[v] \cdot F'(0) > 1 \) is equivalent to \(\lim_{v^* \to 0} \frac{dE[V|V>v^*]}{dv^*} > 1 \)

- mean-residual-lifetime function (MRL) is strictly increasing at zero. Satisfied by all strictly log-convex distributions (Heckman and Honore, 1990).

- This condition does not depend upon \(n \).
\[F(v) = v^\alpha \text{ on } [0, 1], \ c < 1/2, \ n = 1. \]

- When \(0 < \alpha < 1\), surplus improves by increasing the cost.
- When \(\alpha \geq 1\), the surplus is at the highest when \(c = 0\).
- When \(\alpha = 1/2\),
\[F(v) = v^\alpha \] on \([0, 1]\), \(c < 1/2\), \(n = 1\).

- When \(0 < \alpha < 1\), surplus improves by increasing the cost.
- When \(\alpha \geq 1\), the surplus is at the highest when \(c = 0\).
- When \(\alpha = 1/2\),
$F(v) = v^{\alpha}$ on $[0, 1]$, $c < 1/2$, $n = 1$.

- When $0 < \alpha < 1$, surplus improves by increasing the cost.
- When $\alpha \geq 1$, the surplus is at the highest when $c = 0$.
- When $\alpha = 1/2$,

![Graph of net surplus and density over c and v](image-url)
\[F(v) = v^\alpha \text{ on } [0, 1], \; c < 1/2, \; n = 1. \]

- When \(0 < \alpha < 1 \), surplus improves by increasing the cost.
- When \(\alpha \geq 1 \), the surplus is at the highest when \(c = 0 \).
- When \(\alpha = 1/2 \),
What is the optimal level of voting? (Given voting costs are fixed)

Proposition

If there are n voters of each type with symmetric distributions of values, then (i) there is overvoting (ii) there should be no fines to encourage voting (no mandatory voting) (iii) there should be a poll tax to discourage voting.

Intuition

- There is a externality imposed on other voters.
- Positive for on voters of your type and negative on voters of the other type.
- Overall, this is negative because there are more of the other type and when you are pivotal they are worth more.
What is the optimal level of voting?
(Given voting costs are fixed)

Proposition

If there are n voters of each type with symmetric distributions of values, then (i) there is overvoting (ii) there should be no fines to encourage voting (no mandatory voting) (iii) there should be a poll tax to discourage voting.

Intuition

- There is a externality imposed on other voters.
- Positive for on voters of your type and negative on voters of the other type.
- Overall, this is negative because there are more of the other type and when you are pivotal they are worth more.
What is the optimal level of voting?
(Given voting costs are fixed)

Proposition
If there are n voters of each type with symmetric distributions of values, then (i) there is overvoting (ii) there should be no fines to encourage voting (no mandatory voting) (iii) there should be a poll tax to discourage voting.

Intuition
- There is a externality imposed on other voters.
- Positive for on voters of your type and negative on voters of the other type.
- Overall, this is negative because there are more of the other type and when you are pivotal they are worth more.
What is the optimal level of voting?
(Given voting costs are fixed)

Proposition
If there are n voters of each type with symmetric distributions of values, then (i) there is overvoting (ii) there should be no fines to encourage voting (no mandatory voting) (iii) there should be a poll tax to discourage voting.

Intuition
- There is an externality imposed on other voters.
- Positive for on voters of your type and negative on voters of the other type.
- Overall, this is negative because there are more of the other type and when you are pivotal they are worth more.
What is the optimal level of voting? (Given voting costs are fixed)

Proposition

If there are n voters of each type with symmetric distributions of values, then (i) there is overvoting (ii) there should be no fines to encourage voting (no mandatory voting) (iii) there should be a poll tax to discourage voting.

Intuition

- There is an externality imposed on other voters.
- Positive for on voters of your type and negative on voters of the other type.
- Overall, this is negative because there are more of the other type and when you are pivotal they are worth more.
Aggregate Supporter Uncertainty (ASU)

- We have thus far studied where there is an even type supporting each alternative.
- What happens if this can vary?
- Each voter has an equal but random chance of supporting either candidate.

Proposition

Under ASU, if \(n \) is even, \(\lim_{v \to 0} F'(v)v = 0 \), \(\lim_{v \to 0} F'(v)F(v) = 0 \) and \(E[v] \cdot F'(0) > 1/2 \), then it is optimal to have \(c > 0 \).
Aggregate Supporter Uncertainty (ASU)

- We have thus far studied where there is an even type supporting each alternative.
- What happens if this can vary?
- Each voter has an equal but random chance of supporting either candidate.

Proposition

Under ASU, if n is even, $\lim_{v \to 0} F'(v)v = 0$, $\lim_{v \to 0} F'(v)F(v) = 0$ and $E[v] \cdot F'(0) > 1/2$, then it is optimal to have $c > 0$.
Aggregate Supporter Uncertainty (ASU)

- We have thus far studied where there is an even type supporting each alternative.
- What happens if this can vary?
- Each voter has an equal but random chance of supporting either candidate.

Proposition

Under ASU, if n is even, $\lim_{v \to 0} F'(v)v = 0$, $\lim_{v \to 0} F'(v)F(v) = 0$ and $E[v] \cdot F'(0) > 1/2$, then it is optimal to have $c > 0$.
Aggregate Supporter Uncertainty (ASU)

- We have thus far studied where there is an even type supporting each alternative.
- What happens if this can vary?
- Each voter has an equal but random chance of supporting either candidate.

Proposition

Under ASU, if \(n \) is even, \(\lim_{v \to 0} F'(v)v = 0 \), \(\lim_{v \to 0} F'(v)F(v) = 0 \) and \(E[v] \cdot F'(0) > 1/2 \), then it is optimal to have \(c > 0 \).
Since the nineteenth century, political scientists have been in agreement that increasing the franchise will be beneficial to the society (Lakeman and Lambert, 1959, page 19).

Over the last century in democracies, move toward universal suffrage.

Social Scientists have asked whether or not it makes sense to require people to vote.

We show that increasing the (wasteful) cost of voting may paradoxically be beneficial to society.

Note increasing a wasteful cost of voting may be politically more viable than imposing a poll tax (or more efficient if there are financial constraints).
Introduction

Continuous Model

Optimal Level of Voting

Conclusion

Since the nineteenth century, political scientists have been in agreement that increasing the franchise will be beneficial to the society (Lakeman and Lambert, 1959, page 19).

Over the last century in democracies, move toward universal suffrage.

Social Scientists have asked whether or not it makes sense to require people to vote.

We show that increasing the (wasteful) cost of voting may paradoxically be beneficial to society.

Note increasing a wasteful cost of voting may be politically more viable than imposing a poll tax (or more efficient if there are financial constraints).
Conclusion

- Since the nineteenth century, political scientists have been in agreement that increasing the franchise will be beneficial to the society (Lakeman and Lambert, 1959, page 19).
- Over the last century in democracies, move toward universal suffrage.
- Social Scientists have asked whether or not it makes sense to require people to vote.
- We show that increasing the (wasteful) cost of voting may paradoxically be beneficial to society.
- Note increasing a wasteful cost of voting may be politically more viable than imposing a poll tax (or more efficient if there are financial constraints).
Since the nineteenth century, political scientists have been in agreement that increasing the franchise will be beneficial to the society (Lakeman and Lambert, 1959, page 19).

Over the last century in democracies, move toward universal suffrage.

Social Scientists have asked whether or not it makes sense to require people to vote.

We show that increasing the (wasteful) cost of voting may paradoxically be beneficial to society.

Note increasing a wasteful cost of voting may be politically more viable than imposing a poll tax (or more efficient if there are financial constraints).
Since the nineteenth century, political scientists have been in agreement that increasing the franchise will be beneficial to the society (Lakeman and Lambert, 1959, page 19).

Over the last century in democracies, move toward universal suffrage.

Social Scientists have asked whether or not it makes sense to require people to vote.

We show that increasing the (wasteful) cost of voting may paradoxically be beneficial to society.

Note increasing a wasteful cost of voting may be politically more viable than imposing a poll tax (or more efficient if there are financial constraints).
Conclusion

- Since the nineteenth century, political scientists have been in agreement that increasing the franchise will be beneficial to the society (Lakeman and Lambert, 1959, page 19).
- Over the last century in democracies, move toward universal suffrage.
- Social Scientists have asked whether or not it makes sense to require people to vote.
- We show that increasing the (wasteful) cost of voting may paradoxically be beneficial to society.
- Note increasing a wasteful cost of voting may be politically more viable than imposing a poll tax (or more efficient if there are financial constraints).