Credit Markets, Board Size, and Board Composition

Jack Stecher1 Gorm Grønnevet2

1Carnegie Mellon University, Tepper School of Business

2Norges Handelshøyskole

22 July 2010
We’re interested in corporate governance, in particular in who benefits from having boards vote to approve or reject projects.

We abstract from monitoring or hiring/firing CEOs, and focus on boards as providing expertise. This matches the survey literature:

- Mace (1971)—provide “advice and counsel.”
- Demb and Neubauer (1992)—80% of directors say “setting strategy;” 75% say choosing the company’s overall direction.
- By contrast, 45% mention monitoring as a chief priority, and only 26% mention CEO turnover.

Our focus is on board structure. In particular, insiders and outsiders differ in their expertise:

- Insiders have beliefs about a project’s NPV distribution, but are aware that they are unaware of some states.
- Outsiders do not conjecture a distribution, but imagine a similar case. So they see a draw from the true distribution.

We also investigate the role of board size.
Boards help address asset substitution (Fama/Miller 1972, Jensen/Meckling 1976, Myers 1977).

- Information asymmetries cause outsiders on the board to act as if they represent creditors.
 - Outsider-dominated boards approve projects based on default probabilities, not ENPV.
 - Value-maximizing managers foresee this, and choose projects conservatively when outsiders dominate a board.

The board composition implements the Nash bargaining solution between creditors and shareholders.

- Larger boards also favor creditors’ interests over shareholders’.
- Synopsis: the cost of borrowing falls in outsider control and in board size, but so do expected profits.
Larger board sizes favor creditors over shareholders:
- Coles/Naveen/Naveen (2008): more debt finance \Rightarrow larger boards.

Credit markets like outsider control:

Shareholders worse off with outsider control:
- Perry/Shivdasani (2005): more destruction of positive ENPV projects, deeper staff cuts, more frequent staff cuts.
Timing in the Model

- **Period 1**
 - Stage 0: The firm’s management researches a set of projects Θ, and for each $\theta \in \Theta$ obtains a cost c_θ of external financing.
 - Stage 1: A risk-neutral manager proposes a project with stochastic outcome $\theta \in \Theta$.
 - Stage 2: Each board member independently evaluates the project.
 - Stage 3: The board votes simultaneously on the project.
 - Stage 4: If the board approves θ, the firm borrows c_θ at rate r. Otherwise, the firm's profit is normalized to 0.

- **Period 2**
 - The project outcome θ is realized.
 - If $\theta < (1 + r)c_\theta$, the project defaults and the creditors get $\max\{0, \theta\}$.
 - I’ll focus on the case where $\theta \notin (0, (1 + r)c_\theta)$. The reasons will become clear as the talk progresses.
This is a non-Bayesian model, in particular a model with unawareness.

Everyone is risk-neutral, and the manager and board members are just out to maximize shareholder wealth.

The manager conjectures a project-specific distribution F_θ. He knows that F_θ may differ from the true distribution G_θ).

Board insiders have the same information as the manager.

Board outsiders do not know F_θ or G_θ, but each observes a single draw $\theta_i \sim G_\theta$.

E.g., if Bill Gates agrees to serve on the board of Jack’s Software Inc., he doesn’t actually research Jack’s projects. He opens the memo, glances at the project, imagines a case, and submits his vote online.

The creditors have the same information as outsiders.
Suppose each outsider reports a signal, and the board approves θ if and only if the average outsider report is at least $(1 + r)c_\theta$.

Proposition

Truthful reporting is a Nash equilibrium.

Unfortunately, there are uncountably many other Nash equilibria. We in fact have the following:

Proposition

Suppose there are minimum and maximum admissible reports $\{\theta^h, \theta^l\}$. For convenience, make these equidistant from the threshold $(1 + r)c_\theta$. Then it is a Nash equilibrium to report one of the two extremes; in this equilibrium, everyone plays a weakly dominant strategy.

Similar results hold if the decision rule is a median report. In that setting, truthful reporting also has everyone play a weakly dominant strategy.
Outsider i wants to support θ iff it has positive ENPV. Since he only knows $\langle \theta_i, c_\theta, r \rangle$, he votes Yes iff $\theta_i \geq (1 + r)c_\theta$. Ergo,

$$P(i \text{ votes Yes on } \theta) = 1 - G_{\theta}((1 + r)c_\theta).$$

Proposition (Outsiders)

If k outsiders' votes are needed to approve θ and all n board members are outsiders, then the project is approved with probability

$$\sum_{j=k}^{n} \binom{n}{j} [1 - G_{\theta}((1 + r)c_\theta)]^j [G_{\theta}((1 + r)c_\theta)]^{n-j}$$

*Hence, the board approves θ based on its probability of recovering its costs, not on $E[\theta]$.***
Outsider i wants to support θ iff it has positive ENPV. Since he only knows $\langle \theta_i, c_\theta, r \rangle$, he votes Yes iff $\theta_i \geq (1 + r)c_\theta$. Ergo,

$$P(i \text{ votes Yes on } \theta) = 1 - G_\theta((1 + r)c_\theta).$$

Example

Consider two projects, x and y, with earnings distributed as follow:

$$x = \begin{cases}
-11 \ & \text{with probability } \frac{1}{4} \\
4 \ & \text{with probability } \frac{3}{4}
\end{cases}$$

$$y = \begin{cases}
-3 \ & \text{with probability } \frac{3}{4} \\
13 \ & \text{with probability } \frac{1}{4}
\end{cases}$$
The Outsiders

- Outsider \(i \) wants to support \(\theta \) iff it has positive ENPV. Since he only knows \(\langle \theta_i, c_{\theta}, r \rangle \), he votes Yes iff \(\theta_i \geq (1 + r)c_{\theta} \). Ergo,

\[
P(i \text{ votes Yes on } \theta) = 1 - G_{\theta}((1 + r)c_{\theta}).
\]

Example

Consider two projects, \(x \) and \(y \), with earnings distributed as follow:

\[
x = \begin{cases}
-11 & \text{with probability } \frac{1}{4} \\
4 & \text{with probability } \frac{3}{4}
\end{cases}
\]

\[
y = \begin{cases}
-3 & \text{with probability } \frac{3}{4} \\
13 & \text{with probability } \frac{1}{4}
\end{cases}
\]

Note \(E[x] = 1/4 \) and \(E[y] = 1 \), so if \(c_x = c_y \), risk-neutral shareholders prefer \(y \) to \(x \). But \(P(x \text{ defaults}) = 1/4 \), while \(P(y \text{ defaults}) = 3/4 \).
Outsider i wants to support θ iff it has positive ENPV. Since he only knows $\langle \theta_i, c_\theta, r \rangle$, he votes Yes iff $\theta_i \geq (1 + r)c_\theta$. Ergo,

$$P(i \text{ votes Yes on } \theta) = 1 - G_\theta((1 + r)c_\theta).$$

Example

Consider two projects, x and y, with earnings distributed as follows:

$$x = \begin{cases} -11 & \text{with probability } \frac{1}{4} \\ 4 & \text{with probability } \frac{3}{4} \end{cases} \quad y = \begin{cases} -3 & \text{with probability } \frac{3}{4} \\ 13 & \text{with probability } \frac{1}{4} \end{cases}$$

If the board consists of 3 outsiders and uses majority rule, then

$$P(x \text{ approved}) = \binom{3}{2} \left(\frac{3}{4} \right)^2 \left(\frac{1}{4} \right) + \binom{3}{3} \left(\frac{3}{4} \right)^3 = \frac{27}{64} + \frac{27}{64} = \frac{27}{32} \ldots$$
Outsider i wants to support θ iff it has positive ENPV. Since he only knows $\langle \theta_i, c_\theta, r \rangle$, he votes Yes iff $\theta_i \geq (1 + r)c_\theta$. Ergo,

$$P(i \text{ votes Yes on } \theta) = 1 - G_\theta((1 + r)c_\theta).$$

Example

Consider two projects, x and y, with earnings distributed as follow:

$$x = \begin{cases}
-11 & \text{with probability } \frac{1}{4} \\
4 & \text{with probability } \frac{3}{4}
\end{cases} \quad y = \begin{cases}
-3 & \text{with probability } \frac{3}{4} \\
13 & \text{with probability } \frac{1}{4}
\end{cases}$$

However,

$$P(y \text{ approved}) = \binom{3}{2} \left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right) + \binom{3}{3} \left(\frac{1}{4}\right)^3 = \frac{9}{64} + \frac{1}{64} = \frac{5}{32}.$$
Figure: Dashed line: probability a board of 11 members approves x. Solid line: probability a board of 11 members approves y. Size of 11: median in Lehn/Patro/Zhao covering data from 1935–2000.
Suppose the fraction k/n of outsiders' votes needed to approve a project is fixed. As $n \to \infty$, then

1. if $1 - G_\theta((1 + r)c_\theta) > k/n$, then $P(\theta \text{ approved}) \to 1$;
2. if $1 - G_\theta((1 + r)c_\theta) < k/n$, then $P(\theta \text{ approved}) \to 0$;
3. if $1 - G_\theta((1 + r)c_\theta) = k/n$, then $P(\theta \text{ approved}) \to \frac{1}{2}$.

At the opposite extreme, suppose $k = n = 1$. Then

$P(\theta \text{ approved}) = 1 - G_\theta((1 + r)c_\theta)$.

In the previous example, if the board size increases from 3 to 11, the probability that y is approved drops from $\approx 16\%$ to $\approx 3\%$.

Stecher and Grønnevet (CMU and NHH)
Instead of fixing board composition and varying size, we now fix the board size and vary composition. This gives the following:

Proposition (Board Composition)

For given board size n, let $k > 0$ be the number of outsiders’ votes needed to approve a project. Then the larger k is, the more heavily the board weights creditors’ interests. In particular, the manager’s incentive to maximize shareholder wealth is greatest when $k = 1$.
The manager must now re-evaluate a project’s ENPV, to incorporate the approval probability. His objective becomes

$$\max_{\theta \in \Theta} P(\theta \text{ approved}) \cdot (E[\theta] - (1 - F_\theta((1 + r)c_\theta))(1 + r)c_\theta).$$

Theorem

Suppose k outsiders’ votes are needed to approve a project. As n increases, the manager optimally implements the Nash bargaining solution between a creditor with utility

$$u^c(\theta) = \begin{cases}
1 & \text{if } P(\theta \geq (1 + r)c_\theta) \geq \frac{k}{n} \\
0 & \text{otherwise}
\end{cases}$$

and a risk-neutral shareholder with utility

$$E[\theta] - P(\theta \geq (1 + r)c_\theta) \cdot (1 + r)c_\theta.$$
Figure: Expected gross value to manager of proposing project x (dashed) and project y (solid) from earlier example, as a function of the number of outsider votes needed for approval, when $n = 11$.
Figure: Expected gross value to manager of proposing project x (dashed) and project y (solid) from earlier example, as a function of the number of outsider votes needed for approval, when $n = 1000$.
Since the credit markets do not know F_θ or G_θ, they face ambiguity. We treat them as following maximin strategies. Generalizations are straightforward.

We have the following results on interest rates:

Proposition

For a large board and a maximin credit market, as k/n increases, r^ decreases. The firm’s profitability may initially increase in the degree of outsider control, but it eventually decreases unless $G_\theta = 0$ a.e.*

Essentially, credit markets are guaranteed that projects pass with probability at least k/n, even though they don’t know anything about any specific project.

This determines the equilibrium interest rate (uniquely, by the maximin assumption).
Truthful reporting

- In the voting equilibrium where everyone reports truthfully, everyone votes for the project iff
 \[E[\theta|\theta_1, \theta_2, \ldots] \geq (1 + r)c_\theta. \]

So board composition is less interesting in this setting. Each informative draw comes from an outsider, but it is the number \(k \) and not the ratio \(k/n \) that matters.

- If the \(\theta_i \) are mutually independent and \(G_{\theta} \) has finite mean and variance, then the central limit theorem gives
 \[
P(\theta \text{ rejected}) = \Phi \left(\frac{(1 + r)c_\theta - E[\theta]}{\sqrt{\frac{\text{Var}[\theta]}{k}}} \right).
 \]
Even though the board gets better information as k increases, the board acts variance-averse.

If the manager were accidentally to propose a project with negative ENPV, the board would act variance seeking.

Both of these tendencies increase in k.
Variance-Aversion

- Even though the board gets better information as k increases, the board acts variance-averse.
- If the manager were accidentally to propose a project with negative ENPV, the board would act variance seeking.
- Both of these tendencies increase in k.

Example

Let $\xi, \zeta \in \Theta$ with $\mu = E[\xi] = E[\zeta]$, $c = c_\xi = c_\zeta$, and $\sigma^2_\xi > \sigma^2_\zeta$. Suppose $\mu < (1 + r)c_\xi$. The likelihood ratio of accepting ξ relative to ζ is

$$LR(\xi, \zeta) := \frac{P(\xi \text{ approved})}{P(\zeta \text{ approved})} = \frac{1 - \Phi \left(\frac{(1+r)c-\mu}{\sigma_\xi \sqrt{k}} \right)}{1 - \Phi \left(\frac{(1+r)c-\mu}{\sigma_\zeta \sqrt{k}} \right)}.$$

The numerator approaches $1/2$ from below faster than the denominator. So as k increases, this ratio increases.
• Even though the board gets better information as k increases, the board acts variance-averse.
• If the manager were accidentally to propose a project with negative ENPV, the board would act variance seeking.
• Both of these tendencies increase in k.

Figure: The solid curve shows the likelihood of approving a project with variance $2\sigma^2$ relative to a project with variance σ^2, as a function of $E[\theta] - (1 + r)c_\theta$ over the standard deviation in the vote. The dashed curve shows the same ratio when the riskier project’s variance is $4\sigma^2$. Here the board size $k = 4$.
Variance-Aversion

- Even though the board gets better information as k increases, the board acts variance-averse.
- If the manager were accidentally to propose a project with negative ENPV, the board would act variance seeking.
- Both of these tendencies increase in k.

Figure: Likelihood ratios when k increases to 21. The variance-seeking behavior when the project has an expected loss is more dramatic, as the portion of the graph to the left of the y-axis is steeper.
Potential creditors will not loan $100,000,000 to a firm in which the entrepreneur has an investment of $10,000. With that financial structure, the owner-manager will have a strong incentive to engage in activities (investments) which promise very high profits if successful even if they have a very low probability of success. If they turn out well, he captures most of the gains, if they turn out badly, the creditors bear most of the costs.

(Jensen/Meckling 1976)

Our view: outsiders (and to some extent large boards) help firms commit to avoiding this asset substitution problem.

⇒ We should see size and outsider control increase in a firm’s reliance on debt finance.