Copula-based orderings of multivariate positive dependence

Koen Decancq

Department of Economics, KULeuven
CORE, UCLouvain

July 2010 - SCW, Moscow
Why an ordering of positive dependence?

- Vague notion of positive dependence: The extent to which “high” and “low” realizations in the different dimensions of a multivariate distribution occur together.
Why an ordering of positive dependence?

- Vague notion of positive dependence: The extent to which “high” and “low” realizations in the different dimensions of a multivariate distribution occur together
- Applications in Welfare Economics
Why an ordering of positive dependence?

- Vague notion of positive dependence: The extent to which “high” and “low” realizations in the different dimensions of a multivariate distribution occur together

- Applications in Welfare Economics
 - Measurement of reranking through taxation
 Dardanoni and Lambert (2001)
Why an ordering of positive dependence?

- Vague notion of positive dependence: The extent to which “high” and “low” realizations in the different dimensions of a multivariate distribution occur together

- Applications in Welfare Economics
 - Measurement of reranking through taxation
 Dardanoni and Lambert (2001)
 - Measurement of dependence between dimensions of well-being
Why an ordering of positive dependence?

- Vague notion of positive dependence: The extent to which “high” and “low” realizations in the different dimensions of a multivariate distribution occur together.

- Applications in Welfare Economics
 - Measurement of reranking through taxation
 Dardanoni and Lambert (2001)
 - Measurement of dependence between dimensions of well-being

- Applications in Risk and Actuarial analysis
Why an ordering of positive dependence?

- Vague notion of positive dependence: The extent to which “high” and “low” realizations in the different dimensions of a multivariate distribution occur together.

- Applications in Welfare Economics
 - Measurement of reranking through taxation
 Dardanoni and Lambert (2001)
 - Measurement of dependence between dimensions of well-being

- Applications in Risk and Actuarial analysis
 - Measurement of risk in a portfolio of insurances or stocks
 Denuit, Dhaene, Goovaerts and Kaas (2005)
Why an ordering of positive dependence?

- Vague notion of positive dependence: The extent to which “high” and “low” realizations in the different dimensions of a multivariate distribution occur together.
- Applications in Welfare Economics
 - Measurement of reranking through taxation
 Dardanoni and Lambert (2001)
 - Measurement of dependence between dimensions of well-being
- Applications in Risk and Actuarial analysis
 - Measurement of risk in a portfolio of insurances or stocks
 Denuit, Dhaene, Goovaerts and Kaas (2005)
- Other applications
Why an ordering of positive dependence?

- Vague notion of positive dependence: The extent to which “high” and “low” realizations in the different dimensions of a multivariate distribution occur together

- Applications in Welfare Economics
 - Measurement of reranking through taxation
 Dardanoni and Lambert (2001)
 - Measurement of dependence between dimensions of well-being

- Applications in Risk and Actuarial analysis
 - Measurement of risk in a portfolio of insurances or stocks
 Denuit, Dhaene, Goovaerts and Kaas (2005)

- Other applications
 - Measurement of agreement between judges;
 - Measurement of assortativeness of (multidimensional) matching; ...
What do these applications have in common?

Main ingredients of the applications

1. Measurement of dependence between *many* dimensions
What do these applications have in common?

Main ingredients of the applications

1. Measurement of dependence between many dimensions

2. The *marginal* distributions of multivariate distribution can *change*
Let $X = (X_1, \ldots, X_m)$ and $Y = (Y_1, \ldots, Y_m)$ be two different m-dimensional discrete random vectors with $m \geq 2$ and the finite set S as support.
Let $X = (X_1, \ldots, X_m)$ and $Y = (Y_1, \ldots, Y_m)$ be two different m-dimensional discrete random vectors with $m \geq 2$ and the finite set S as support.

The set of these random vectors is denoted \mathcal{X}.
Let $X = (X_1, \ldots, X_m)$ and $Y = (Y_1, \ldots, Y_m)$ be two different m-dimensional discrete random vectors with $m \geq 2$ and the finite set S as support.

The set of these random vectors is denoted \mathcal{X}.

We look at \succ, an asymmetric and transitive binary relation (weak ordering) that can be interpreted as "is more dependent".
Let $X = (X_1, \ldots, X_m)$ and $Y = (Y_1, \ldots, Y_m)$ be two different m-dimensional discrete random vectors with $m \geq 2$ and the finite set S as support.

The set of these random vectors is denoted \mathcal{X}.

We look at \succ, an asymmetric and transitive binary relation (weak ordering) that can be interpreted as "is more dependent".

$F_X(x_1, \ldots, x_m) = \Pr [X_1 \leq x_1 \text{ and } \ldots \text{ and } X_m \leq x_m]$
Let $X = (X_1, \ldots, X_m)$ and $Y = (Y_1, \ldots, Y_m)$ be two different m-dimensional discrete random vectors with $m \geq 2$ and the finite set S as support.

The set of these random vectors is denoted \mathcal{X}.

We look at \succ, an asymmetric and transitive binary relation (weak ordering) that can be interpreted as "is more dependent".

$F_X(x_1, \ldots, x_m) = \Pr [X_1 \leq x_1 \text{ and } \ldots \text{ and } X_m \leq x_m]$

$\overline{F}_X(x_1, \ldots, x_m) = \Pr [X_1 > x_1 \text{ and } \ldots \text{ and } X_m > x_m]$.
Let \(X = (X_1, \ldots, X_m) \) and \(Y = (Y_1, \ldots, Y_m) \) be two different \(m \)-dimensional discrete random vectors with \(m \geq 2 \) and the finite set \(S \) as support.

The set of these random vectors is denoted \(\mathcal{X} \).

We look at \(\succ \), an asymmetric and transitive binary relation (weak ordering) that can be interpreted as "is more dependent".

\[
F_X(x_1, \ldots, x_m) = \Pr[X_1 \leq x_1 \text{ and } \ldots \text{ and } X_m \leq x_m]
\]

\[
\overline{F}_X(x_1, \ldots, x_m) = \Pr[X_1 > x_1 \text{ and } \ldots \text{ and } X_m > x_m].
\]

The univariate marginal distribution functions of \(F_X \) are denoted by \(F_1, \ldots, F_m \).
Let $X = (X_1, \ldots, X_m)$ and $Y = (Y_1, \ldots, Y_m)$ be two different m-dimensional discrete random vectors with $m \geq 2$ and the finite set S as support.

The set of these random vectors is denoted \mathcal{X}.

We look at \succ, an asymmetric and transitive binary relation (weak ordering) that can be interpreted as "is more dependent".

F_{X}(x_1, \ldots, x_m) = \Pr [X_1 \leq x_1 \text{ and } \ldots \text{ and } X_m \leq x_m]

\overline{F}_{X}(x_1, \ldots, x_m) = \Pr [X_1 > x_1 \text{ and } \ldots \text{ and } X_m > x_m].

The univariate marginal distribution functions of F_X are denoted by F_1, \ldots, F_m.

The set of random vectors with corresponding marginal distribution functions F_1, \ldots, F_m is referred to as the Fréchet set $\mathcal{F} (F_1, \ldots, F_m)$ or shortly \mathcal{F}.
For an arbitrary function U its first difference operator of dimension j be defined by

$$\Delta_j^\delta U(x_1, \ldots, x_m) = U(x_1, \ldots, x_j + \delta, \ldots, x_m) - U(x_1, \ldots, x_j, \ldots, x_m).$$
For an arbitrary function U its first difference operator of dimension j be defined by

$$\Delta_{j}^{\delta_{j}} U(x_1, \ldots, x_m) = U(x_1, \ldots, x_j + \delta, \ldots, x_m) - U(x_1, \ldots, x_j, \ldots, x_m).$$

For notational convenience: Let $x_{j} = x_{j}$ and $x\bar{j} = x_{j} + \delta_{j}$ with $\delta_{j} > 0$ for $j = 1, \ldots, m$.

Definition (k-increasing)

A function $U : \mathbb{R}^m \to \mathbb{R}$ is said to be k-increasing if it holds that

$$\Delta_{\delta_{1}}^{\delta_{j_{1}}} \ldots \Delta_{\delta_{k}}^{\delta_{j_{k}}} U(x_1, \ldots, x_m) > 0,$$

for all $(x_1, \ldots, x_m) \in \mathbb{R}^m$, $\delta_{1}, \ldots, \delta_{k} > 0$ and $1 \leq j_{1}, \ldots, j_{k} \leq m$.

Example: a function U is 2-increasing if it holds that:

$$U(x_1, \ldots, x_j, \ldots, x_m) + U(x_1, \ldots, x_{j}, \ldots, x_m) > U(x_1, \ldots, x_{j}, \ldots, x_m) + U(x_1, \ldots, x_j, \ldots, x_m).$$

(also known as a supermodular or superadditive function). If it is sufficiently differentiable:

$$\frac{\partial^2 U(x)}{\partial x_j \partial x_{j'}} > 0.$$
For an arbitrary function U its first difference operator of dimension j be defined by
\[
\Delta_j^\delta U(x_1, \ldots, x_m) = U(x_1, \ldots, x_j + \delta, \ldots x_m) - U(x_1, \ldots, x_j, \ldots x_m).
\]
For notational convenience: Let $x_j = x_j$ and $\bar{x}_j = x_j + \delta_j$ with $\delta_j > 0$ for $j = 1, \ldots, m$.

Definition (k-increasing)

A function $U : \mathbb{R}^m \to \mathbb{R}$ is said to be k-increasing if it holds that
\[
\Delta_{j_1}^{\delta_1} \ldots \Delta_{j_k}^{\delta_k} U(x_1, \ldots, x_m) > 0, \text{ for all } (x_1, \ldots, x_m) \in \mathbb{R}^m, \delta_1, \ldots, \delta_k > 0 \text{ and } 1 \leq j_1, \ldots, j_k \leq m.
\]
For an arbitrary function U its first difference operator of dimension j be defined by
\[\Delta_j U(x_1, \ldots, x_m) = U(x_1, \ldots, x_j + \delta, \ldots x_m) - U(x_1, \ldots, x_j, \ldots x_m). \]
For notational convenience: Let $x_j = x_j$ and $x_j = x_j + \delta_j$ with $\delta_j > 0$ for $j = 1, \ldots, m$.

Definition (k-increasing)

A function $U : \mathbb{R}^m \to \mathbb{R}$ is said to be k-increasing if it holds that
\[\Delta_{j_1}^{\delta_1} \ldots \Delta_{j_k}^{\delta_k} U(x_1, \ldots, x_m) > 0, \text{ for all } (x_1, \ldots, x_m) \in \mathbb{R}^m, \delta_1, \ldots, \delta_k > 0 \text{ and } 1 \leq j_1, \ldots, j_k \leq m. \]

Example: a function U is 2-increasing if it holds that:
\[
\begin{align*}
U(x_1, \ldots, x_{j_1}, x_{j_2}, \ldots, x_m) + U(x_1, \ldots, x_{j_1}, x_{j_2}, \ldots, x_m) > \\
U(x_1, \ldots, \bar{x}_{j_1}, \bar{x}_{j_2}, \ldots, x_m) + U(x_1, \ldots, \bar{x}_{j_1}, \bar{x}_{j_2}, \ldots, x_m).
\end{align*}
\]
Existing literature:

Notation

- For an arbitrary function U its first difference operator of dimension j be defined by
 \[
 \Delta_j U(x_1, \ldots, x_m) = U(x_1, \ldots, x_j + \delta, \ldots x_m) - U(x_1, \ldots, x_j, \ldots x_m).
 \]
- For notational convenience: Let $x_j = x_j$ and $\overline{x}_j = x_j + \delta_j$ with $\delta_j > 0$ for $j = 1, \ldots, m$

Definition (k-increasing)

A function $U : \mathbb{R}^m \rightarrow \mathbb{R}$ is said to be k-increasing if it holds that
\[
\Delta_{j_1}^{\delta_1} \ldots \Delta_{j_k}^{\delta_k} U(x_1, \ldots, x_m) > 0, \text{ for all } (x_1, \ldots, x_m) \in \mathbb{R}^m, \delta_1, \ldots, \delta_k > 0 \text{ and } 1 \leq j_1, \ldots, j_k \leq m.
\]

- Example: a function U is 2-increasing if it holds that:
 \[
 U(x_1, \ldots, \overline{x}_{j_1}, \overline{x}_{j_2}, \ldots, x_m) + U(x_1, \ldots, \overline{x}_{j_1}, \overline{x}_{j_2}, \ldots, x_m) > \\
 U(x_1, \ldots, \overline{x}_{j_1}, \overline{x}_{j_2}, \ldots, x_m) + U(x_1, \ldots, \overline{x}_{j_1}, \overline{x}_{j_2}, \ldots, x_m).
 \]
 (also known as a supermodular or superadditive function).
Existing literature:

Notation

- For an arbitrary function U its first difference operator of dimension j be defined by

$$\Delta^\delta_j U(x_1, \ldots, x_m) = U(x_1, \ldots, x_j + \delta, \ldots, x_m) - U(x_1, \ldots, x_j, \ldots, x_m).$$

- For notational convenience: Let $x_j = x_j$ and $\bar{x}_j = x_j + \delta_j$ with $\delta_j > 0$ for $j = 1, \ldots, m$.

Definition (k-increasing)

A function $U : \mathbb{R}^m \to \mathbb{R}$ is said to be k-increasing if it holds that

$$\Delta^\delta_{j_1} \ldots \Delta^\delta_{j_k} U(x_1, \ldots, x_m) > 0,$$

for all $(x_1, \ldots, x_m) \in \mathbb{R}^m$, $\delta_1, \ldots, \delta_k > 0$ and $1 \leq j_1, \ldots, j_k \leq m$.

- Example: a function U is 2-increasing if it holds that:

$$U(x_1, \ldots, \bar{x}_{j_1}, \bar{x}_{j_2}, \ldots, x_m) + U(x_1, \ldots, x_{j_1}, x_{j_2}, \ldots, x_m) > U(x_1, \ldots, x_{j_1}, \bar{x}_{j_2}, \ldots, x_m) + U(x_1, \ldots, \bar{x}_{j_1}, x_{j_2}, \ldots, x_m).$$

(also known as a supermodular or superadditive function).

- If it is sufficiently differentiable: $\frac{\partial^2 U(x)}{\partial x_{j_1} \partial x_{j_2}} > 0$.

Existing literature:
The intuition

Dimension 2

1

\(\overline{x}_2\)

\(x_2\)

Dimension 1

0

\(x_1\)

\(\overline{x}_1\)

1

\[+\varepsilon\]

\([-\varepsilon]\)

\(\left(\overline{x}_j_1, \overline{x}_j_2\right)\)

\(\left(x_j_1, x_j_2\right)\)

\(\left(\overline{x}_j_1, x_j_2\right)\)

\(\left(x_j_1, \overline{x}_j_2\right)\)

[Goes back to Hamada (1974)]
Existing literature:
Formally

Definition (2-rearrangement)

Let X and Y be in \mathcal{X}. Consider a rectangle $B_2 = [\underline{x}_{j_1}, \overline{x}_{j_1}] \times [\underline{x}_{j_2}, \overline{x}_{j_2}]$ whose vertices are in S, with $\underline{x}_j < \overline{x}_j$ for all $j \in \{j_1, j_2\}$. If Y can be obtained from X by adding a positive probability mass ε to all vertices of the rectangle B_2 with an even number of components $x_j = \underline{x}_j$ and subtracting ε from all vertices of the rectangle B_2 with an odd number of components $x_j = \overline{x}_j$, then Y is obtained from X by a positive 2-rearrangement.
Definition (2-rearrangement)

Let X and Y be in \mathcal{X}. Consider a rectangle $B_2 = [x_{j_1}, \bar{x}_{j_1}] \times [x_{j_2}, \bar{x}_{j_2}]$ whose vertices are in S, with $x_j < \bar{x}_j$ for all $j \in \{j_1, j_2\}$. If Y can be obtained from X by adding a positive probability mass ε to all vertices of the rectangle B_2 with an even number of components $x_j = x_{\bar{j}}$ and subtracting ε from all vertices of the rectangle B_2 with an odd number of components $x_j = x_{\bar{j}}$, then Y is obtained from X by a positive 2-rearrangement.

Axiom (2-dependence principle (2-DEP))

Let X and Y be in \mathcal{X}. If Y can be obtained from X by a finite sequence of positive 2-rearrangements, then $X \prec Y$.
Existing literature:

An important result

Proposition (Epstein and Tanny (1980))

Let X and Y be in \mathcal{F} with support S and suppose $m = 2$. The dependence ordering \prec on \mathcal{F} satisfies 2DEP if and only if $X \prec Y$ is equivalent to:

1. $\int U(x_1, \ldots, x_m) dF_X(x_1, \ldots, x_m) \leq \int U(x_1, \ldots, x_m) dF_Y(x_1, \ldots, x_m)$ for all 2-increasing utility functions U,
2. $F_X(x_1, \ldots, x_m) \leq F_Y(x_1, \ldots, x_m)$ for all (x_1, \ldots, x_m) in $J(S)$,
3. $\bar{F}_X(x_1, \ldots, x_m) \leq \bar{F}_Y(x_1, \ldots, x_m)$ for all (x_1, \ldots, x_m) in $M(S)$.

Strong and useful result (it combines three perspectives)
Existing literature:

An important result

Proposition (Epstein and Tanny (1980))

Let \(X \) and \(Y \) be in \(\mathcal{F} \) with support \(S \) and suppose \(m = 2 \). The dependence ordering \(\prec \) on \(\mathcal{F} \) satisfies 2DEP if and only if \(X \prec Y \) is equivalent to:

1. \[\int U(x_1, \ldots, x_m) \, dF_X(x_1, \ldots, x_m) \leq \int U(x_1, \ldots, x_m) \, dF_Y(x_1, \ldots, x_m) \] for all 2-increasing utility functions \(U \),
2. \[F_X(x_1, \ldots, x_m) \leq F_Y(x_1, \ldots, x_m) \] for all \((x_1, \ldots, x_m) \) in \(J(S) \),
3. \[F_X(x_1, \ldots, x_m) \leq F_Y(x_1, \ldots, x_m) \] for all \((x_1, \ldots, x_m) \) in \(M(S) \).

- Strong and useful result (it combines three perspectives)
- However, there are also two “inconveniences”:
Existing literature:
An important result

Proposition (Epstein and Tanny (1980))

Let X and Y be in \mathcal{F} with support S and suppose $m = 2$. The dependence ordering \prec on \mathcal{F} satisfies 2DEP if and only if $X \prec Y$ is equivalent to:

1. $\int U(x_1, \ldots, x_m) \, dF_X(x_1, \ldots, x_m) \leq \int U(x_1, \ldots, x_m) \, dF_Y(x_1, \ldots, x_m)$ for all 2-increasing utility functions U,
2. $F_X(x_1, \ldots, x_m) \leq F_Y(x_1, \ldots, x_m)$ for all (x_1, \ldots, x_m) in $J(S)$,
3. $\bar{F}_X(x_1, \ldots, x_m) \leq \bar{F}_Y(x_1, \ldots, x_m)$ for all (x_1, \ldots, x_m) in $M(S)$.

- Strong and useful result (it combines three perspectives)
- However, there are also two “inconveniences”:
 - Only bivariate random vectors
Existing literature:

An important result

Proposition (Epstein and Tanny (1980))

Let X and Y be in \mathcal{F} with support S and suppose $m = 2$. The dependence ordering \prec on \mathcal{F} satisfies 2DEP if and only if $X \prec Y$ is equivalent to:

1. $\int U(x_1, \ldots, x_m) dF_X(x_1, \ldots, x_m) \leq \int U(x_1, \ldots, x_m) dF_Y(x_1, \ldots, x_m)$ for all 2-increasing utility functions U,

2. $F_X(x_1, \ldots, x_m) \leq F_Y(x_1, \ldots, x_m)$ for all (x_1, \ldots, x_m) in $J(S)$,

3. $\overline{F}_X(x_1, \ldots, x_m) \leq \overline{F}_Y(x_1, \ldots, x_m)$ for all (x_1, \ldots, x_m) in $M(S)$.

- Strong and useful result (it combines three perspectives)
- However, there are also two “inconveniences”:
 - Only bivariate random vectors
 - Only random vectors with the same marginal distributions
Structure of the talk

<table>
<thead>
<tr>
<th>Same Margins</th>
<th>Different Margins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bivariate</td>
<td>Epstein and Tanny (1980)</td>
</tr>
<tr>
<td>Multivariate</td>
<td>Step 1.</td>
</tr>
</tbody>
</table>

1. Existing Literature: Epstein and Tanny (1980)
Structure of the talk

<table>
<thead>
<tr>
<th></th>
<th>Same Margins</th>
<th>Different Margins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bivariate</td>
<td>Epstein and Tanny (1980)</td>
<td></td>
</tr>
<tr>
<td>Multivariate</td>
<td>Step 1.</td>
<td>Step 2.</td>
</tr>
</tbody>
</table>

1. Existing Literature: Epstein and Tanny (1980)
2. Step 1: Beyond the bivariate case
Structure of the talk

<table>
<thead>
<tr>
<th></th>
<th>Same Margins</th>
<th>Different Margins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bivariate</td>
<td>Epstein and Tanny (1980)</td>
<td></td>
</tr>
<tr>
<td>Multivariate</td>
<td>Step 1.</td>
<td>Step 2.</td>
</tr>
</tbody>
</table>

1. **Existing Literature**: Epstein and Tanny (1980)
2. **Step 1**: Beyond the bivariate case
3. **Step 2**: Different marginal distributions
Structure of the talk

<table>
<thead>
<tr>
<th></th>
<th>Same Margins</th>
<th>Different Margins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bivariate</td>
<td>Epstein and Tanny (1980)</td>
<td></td>
</tr>
<tr>
<td>Multivariate</td>
<td>Step 1.</td>
<td>Step 2.</td>
</tr>
</tbody>
</table>

1. Existing Literature: Epstein and Tanny (1980)
2. Step 1: Beyond the bivariate case
3. Step 2: Different marginal distributions
4. Conclusion
Structure of the talk

<table>
<thead>
<tr>
<th></th>
<th>Same Margins</th>
<th>Different Margins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bivariate</td>
<td>Epstein and Tanny (1980)</td>
<td></td>
</tr>
<tr>
<td>Multivariate</td>
<td>Step 1.</td>
<td>Step 2.</td>
</tr>
</tbody>
</table>

1. Existing Literature: Epstein and Tanny (1980)
2. **Step 1: Beyond the bivariate case**
3. Step 2: Different marginal distributions
4. Conclusion
Step 1. Beyond the bivariate case:
The supermodular ordering

- Natural approach: relax the premise

Proposition (supermodular dependence ordering)

Let X and Y be in \(\mathcal{F} \) with support S and suppose \(m \geq 2 \). The dependence ordering \(\prec \) on \(\mathcal{F} \) satisfies 2DEP if and only if \(X \prec Y \) is equivalent to

\[
\int U(x_1, \ldots, x_m) dF_X(x_1, \ldots, x_m) \leq \int U(x_1, \ldots, x_m) dF_Y(x_1, \ldots, x_m) \text{ for all } 2-\text{increasing utility functions } U.
\]
Step 1. Beyond the bivariate case:
The supermodular ordering

An example of a rearrangement that leads to $F_X(x_1, \ldots, x_m) \leq F_Y(x_1, \ldots, x_m)$, but can never be reached by positive 2-rearrangements:

$$
\begin{array}{c|c|c}
+\varepsilon & -\varepsilon \\
\hline
(x_{j1}, x_{j2}, x_{j3}) & (x_{j1}, x_{j2}, \bar{x}_{j3}) \\
(x_{j1}, \bar{x}_{j2}, \bar{x}_{j3}) & (x_{j1}, \bar{x}_{j2}, x_{j3}) \\
(\bar{x}_{j1}, x_{j2}, \bar{x}_{j3}) & (\bar{x}_{j1}, x_{j2}, x_{j3}) \\
(\bar{x}_{j1}, \bar{x}_{j2}, x_{j3}) & (\bar{x}_{j1}, \bar{x}_{j2}, \bar{x}_{j3})
\end{array}
$$
Step 1. Beyond the bivariate case:
The supermodular ordering

- Natural approach: relax the premise

Proposition (supermodular dependence ordering)

Let X and Y be in \mathcal{F} and suppose $m \geq 2$. The dependence preorder \prec on \mathcal{F} satisfies 2DEP if and only if $X \prec Y$ is equivalent to

$$
\int U(x_1, \ldots, x_m) dF_X(x_1, \ldots, x_m) \leq \int U(x_1, \ldots, x_m) dF_Y(x_1, \ldots, x_m) \quad \text{for all} \quad 2-\text{increasing utility functions } U.
$$

- Two problems:

How to test this? (See Athey, 2000)

Why only confining attention to rearrangements involving 2 dimensions?
Step 1. Beyond the bivariate case:
The supermodular ordering

- Natural approach: relax the premise

Proposition (supermodular dependence ordering)

Let X and Y be in \mathcal{F} and suppose $m \geq 2$. The dependence preorder \prec on \mathcal{F} satisfies 2DEP if and only if $X \prec Y$ is equivalent to

$$\int U(x_1, \ldots, x_m) dF_X(x_1, \ldots, x_m) \leq \int U(x_1, \ldots, x_m) dF_Y(x_1, \ldots, x_m)$$

for all 2-increasing utility functions U.

- Two problems:
 - How to test this? (See Athey, 2000)
Step 1. Beyond the bivariate case:
The supermodular ordering

- Natural approach: relax the premise

Proposition (supermodular dependence ordering)

Let X and Y be in \mathcal{F} and suppose $m \geq 2$. The dependence preorder \prec on \mathcal{F} satisfies 2DEP if and only if $X \prec Y$ is equivalent to

$$
\int U(x_1, \ldots, x_m) dF_X(x_1, \ldots, x_m) \leq \int U(x_1, \ldots, x_m) dF_Y(x_1, \ldots, x_m) \quad \text{for all increasing utility functions } U.
$$

- Two problems:
 - How to test this? (See Athey, 2000)
 - Why only confining attention to rearrangements involving 2 dimensions?
Step 1. Beyond the bivariate case
A more general type of rearrangements

Definition (positive k-rearrangement.)

Let X and Y be in \mathcal{X} and suppose $m \geq k \geq 2$. Consider a hyperbox $B_k = [x_{j_1}, \bar{x}_{j_1}] \times \cdots \times [x_{j_k}, \bar{x}_{j_k}]$ whose vertices are in S, with $x_j < \bar{x}_j$ for all $j \in \{j_1, \ldots, j_k\}$. If Y can be obtained from X by adding positive probability mass ε to all vertices of the rectangle B_k with an even number of components $x_j = x_j$ and subtracting ε from all vertices of the rectangle B_k with an odd number of components $x_j = \bar{x}_j$, then Y is obtained from X by a positive k-rearrangement.

- Notational convention:
 - when k is even (odd), we refer to an even (odd) rearrangement
Step 1. Beyond the bivariate case
A more general type of rearrangements

Definition (positive k-rearrangement.)

Let X and Y be in \mathcal{X} and suppose $m \geq k \geq 2$. Consider a hyperbox $B_k = [x_{j_1}, \bar{x}_{j_1}] \times \cdots \times [x_{j_k}, \bar{x}_{j_k}]$ whose vertices are in S, with $x_j < \bar{x}_j$ for all $j \in \{j_1, \ldots, j_k\}$. If Y can be obtained from X by adding positive probability mass ε to all vertices of the rectangle B_k with an even number of components $x_j = x_j$ and subtracting ε from all vertices of the rectangle B_k with an odd number of components $x_j = \bar{x}_j$, then Y is obtained from X by a positive k-rearrangement.

- Notational convention:
 - when k is even (odd), we refer to an even (odd) rearrangement
 - when ε is positive (negative), we refer to a positive (negative) rearrangement.
Step 1. Beyond the bivariate case
A more general type of rearrangements

- An example of a positive 4 rearrangement:

<table>
<thead>
<tr>
<th>+ε</th>
<th>-ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_1, X_2, X_3, X_4)</td>
<td>(X_1, X_2, X_3, X_4)</td>
</tr>
<tr>
<td>(X_1, X_2, X_3, X_4)</td>
<td>(X_1, X_2, X_3, X_4)</td>
</tr>
<tr>
<td>(X_1, X_2, X_3, X_4)</td>
<td>(X_1, X_2, X_3, X_4)</td>
</tr>
<tr>
<td>(X_1, X_2, X_3, X_4)</td>
<td>(X_1, X_2, X_3, X_4)</td>
</tr>
<tr>
<td>(X_1, X_2, X_3, X_4)</td>
<td>(X_1, X_2, X_3, X_4)</td>
</tr>
<tr>
<td>(X_1, X_2, X_3, X_4)</td>
<td>(X_1, X_2, X_3, X_4)</td>
</tr>
</tbody>
</table>

- Vague notion of positive dependence: The extent to which “high” and “low” realizations in the different dimensions of a multivariate distribution occur together
Step 1. Beyond the bivariate case
A more general type of rearrangements

- An example of a positive 4 rearrangement:

<table>
<thead>
<tr>
<th></th>
<th>$+\varepsilon$</th>
<th>$-\varepsilon$</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_j1, X_j2, X_j3, X_j4</td>
<td>X_j1, X_j2, X_j3, X_j4</td>
<td>X_j1, X_j2, X_j3, X_j4</td>
</tr>
<tr>
<td>X_j1, X_j2, X_j3, X_j4</td>
<td>X_j1, X_j2, X_j3, X_j4</td>
<td>X_j1, X_j2, X_j3, X_j4</td>
</tr>
<tr>
<td>X_j1, X_j2, X_j3, X_j4</td>
<td>X_j1, X_j2, X_j3, X_j4</td>
<td>X_j1, X_j2, X_j3, X_j4</td>
</tr>
<tr>
<td>X_j1, X_j2, X_j3, X_j4</td>
<td>X_j1, X_j2, X_j3, X_j4</td>
<td>X_j1, X_j2, X_j3, X_j4</td>
</tr>
<tr>
<td>X_j1, X_j2, X_j3, X_j4</td>
<td>X_j1, X_j2, X_j3, X_j4</td>
<td>X_j1, X_j2, X_j3, X_j4</td>
</tr>
<tr>
<td>X_j1, X_j2, X_j3, X_j4</td>
<td>X_j1, X_j2, X_j3, X_j4</td>
<td>X_j1, X_j2, X_j3, X_j4</td>
</tr>
</tbody>
</table>

- Vague notion of positive dependence: The extent to which “high” and “low” realizations in the different dimensions of a multivariate distribution occur together.
- Positive 4 (even) rearrangements lead to more dependence.
Step 1. Beyond the bivariate case
A more general type of rearrangements

- An example of a positive 3 rearrangement:

<table>
<thead>
<tr>
<th></th>
<th>$+\epsilon$</th>
<th>$-\epsilon$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_{j1}, x_{j2}, \bar{x}_{j3}$</td>
<td>(x_{j1}, x_{j2}, x_{j3})</td>
<td>(x_{j1}, x_{j2}, x_{j3})</td>
</tr>
<tr>
<td>$x_{j1}, \bar{x}{j2}, x{j3}$</td>
<td>$(x_{j1}, \bar{x}{j2}, x{j3})$</td>
<td>$(x_{j1}, \bar{x}{j2}, x{j3})$</td>
</tr>
<tr>
<td>$\bar{x}{j1}, x{j2}, x_{j3}$</td>
<td>$(\bar{x}{j1}, x{j2}, x_{j3})$</td>
<td>$(\bar{x}{j1}, x{j2}, x_{j3})$</td>
</tr>
<tr>
<td>$x_{j1}, \bar{x}{j2}, \bar{x}{j3}$</td>
<td>$(x_{j1}, \bar{x}{j2}, \bar{x}{j3})$</td>
<td>$(x_{j1}, \bar{x}{j2}, \bar{x}{j3})$</td>
</tr>
<tr>
<td>$\bar{x}{j1}, \bar{x}{j2}, \bar{x}_{j3}$</td>
<td>$(\bar{x}{j1}, \bar{x}{j2}, \bar{x}_{j3})$</td>
<td>$(\bar{x}{j1}, \bar{x}{j2}, \bar{x}_{j3})$</td>
</tr>
</tbody>
</table>
Step 1. Beyond the bivariate case
A more general type of rearrangements

- An example of a positive 3 rearrangement:

<table>
<thead>
<tr>
<th></th>
<th>$+\varepsilon$</th>
<th>$-\varepsilon$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(x_{j1}, x_{j2}, \bar{x}_{j3})$</td>
<td>(x_{j1}, x_{j2}, x_{j3})</td>
<td>(x_{j1}, x_{j2}, x_{j3})</td>
</tr>
<tr>
<td>$(\bar{x}{j1}, x{j2}, x_{j3})$</td>
<td>$(\bar{x}{j1}, x{j2}, x_{j3})$</td>
<td>$(\bar{x}{j1}, x{j2}, x_{j3})$</td>
</tr>
<tr>
<td>$(\bar{x}{j1}, x{j2}, \bar{x}_{j3})$</td>
<td>$(\bar{x}{j1}, x{j2}, \bar{x}_{j3})$</td>
<td>$(\bar{x}{j1}, \bar{x}{j2}, x_{j3})$</td>
</tr>
</tbody>
</table>

- On the other hand: It is not obvious that positive 3 (odd) rearrangements lead to more dependence.
Step 1. Beyond the bivariate case
A more general type of rearrangements

Axiom (k-dependence principle (k-DEP))

Let X and Y be in \mathcal{X} and suppose $m \geq k \geq 2$. If Y can be obtained from X by a finite sequence of positive k-rearrangements, then $X \preceq Y$.
Step 1. Beyond the bivariate case
A more general type of rearrangements

Axiom (k-dependence principle (k-DEP))
Let X and Y be in \mathcal{X} and suppose $m \geq k \geq 2$. If Y can be obtained from X by a finite sequence of positive k-rearrangements, then $X \prec Y$.

Axiom (k-dependence principle* (kDEP*))
Let X and Y be in \mathcal{X} and suppose $m \geq k \geq 2$. If Y can be obtained from X by a finite sequence of positive even-rearrangement or negative odd-rearrangements, then $X \prec Y$.
Step 1. Beyond the bivariate case:
Orthant dependence orderings

Proposition (orthant dependence orderings)

Let X and Y be in \mathcal{F} with support S and suppose $m \geq 2$.
The upper orthant dependence ordering \prec_{UO} on \mathcal{F} satisfies kDEP if and only if $X \prec_{UO} Y$ is equivalent to:

1. $\int U(x_1, \ldots, x_m) dF_X(x_1, \ldots, x_m) \leq \int U(x_1, \ldots, x_m) dF_Y(x_1, \ldots, x_m)$, for all k-increasing utility functions U,

2. $F_X(x_1, \ldots, x_m) \leq F_Y(x_1, \ldots, x_m)$ for all (x_1, \ldots, x_m) in $M(S)$.

The lower orthant dependence ordering \prec_{LO} on \mathcal{F} satisfies kDEP* if and only if $X \prec_{LO} Y$ is equivalent to:

1. $\int U(x_1, \ldots, x_m) dF_X(x_1, \ldots, x_m) \leq \int U(x_1, \ldots, x_m) dF_Y(x_1, \ldots, x_m)$, for all even-increasing and odd-decreasing utility functions U,

2. $F_X(x_1, \ldots, x_m) \leq F_Y(x_1, \ldots, x_m)$ for all (x_1, \ldots, x_m) in $J(S)$.
Step 1. Beyond the bivariate case: Concordance dependence ordering

Proposition (concordance dependence ordering)

Let X and Y be in \mathcal{F} and suppose $m \geq 2$. The concordance dependence ordering \prec_C on \mathcal{F} satisfies $kDEP$ and $kDEP^*$ if and only if $X \prec_C Y$ is equivalent to:

1. $\int U(x_1, \ldots, x_m) dF_X(x_1, \ldots, x_m) \leq \int U(x_1, \ldots, x_m) dF_Y(x_1, \ldots, x_m)$, for all even-increasing and odd-increasing or odd-decreasing utility functions U,

2. $F_X(x_1, \ldots, x_m) \leq F_Y(x_1, \ldots, x_m)$ and $\bar{F}_X(x_1, \ldots, x_m) \leq \bar{F}_Y(x_1, \ldots, x_m)$ for all (x_1, \ldots, x_m) in $M(S) \cup J(S)$.

Koen Decancq (KUL and CORE)
Structure of the talk

<table>
<thead>
<tr>
<th></th>
<th>Same Margins</th>
<th>Different Margins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bivariate</td>
<td>Epstein and Tanny (1980)</td>
<td></td>
</tr>
<tr>
<td>Multivariate</td>
<td>Step 1.</td>
<td>Step 2.</td>
</tr>
</tbody>
</table>

1. Existing Literature: Epstein and Tanny (1980)
2. Step 1: Beyond the bivariate case
3. **Step 2: Different marginal distributions**
4. Conclusion
Step 2. Different Margins:
The copula as a useful tool

- Extend ordering by an invariance principle (that defines equivalence classes):
Step 2. DifferentMargins:
The copula as a useful tool

- Extend ordering by an invariance principle (that defines equivalence classes):

Axiom (Scale Invariance principle (INV))

Let X and Y be in \mathcal{X} and let T_1, \ldots, T_m be strictly increasing transformation functions. If $Y = (T_1(X_1), \ldots, T_m(X_m))$, then $X \sim Y$.

Schweizer and Walde (1981): "...it is precisely the copula which captures those properties of the joint distribution which are invariant under strictly increasing transformations".
Step 2. Different Margins:
The copula as a useful tool

- Extend ordering by an invariance principle (that defines equivalence classes):

Axiom (Scale Invariance principle (INV))

Let X and Y be in \mathcal{X} and let T_1, \ldots, T_m be strictly increasing transformation functions. If $Y = (T_1(X_1), \ldots, T_m(X_m))$, then $X \sim Y$.

- Schweizer and Wolff (1981): “... it is precisely the copula which captures those properties of the joint distribution which are invariant under strictly increasing transformations”
Step 2. Different Margins:
The copula as a useful tool

- Extend ordering by an invariance principle (that defines equivalence classes):

Axiom (Scale Invariance principle (INV))

Let X and Y be in \mathcal{X} and let T_1, \ldots, T_m be strictly increasing transformation functions. If $Y = (T_1(X_1), \ldots, T_m(X_m))$, then $X \sim Y$.

- Schweizer and Wolff (1981): “... it is precisely the *copula* which captures those properties of the joint distribution which are invariant under strictly increasing transformations”

Definition (copula function)

An m-dimensional copula function C is an m-dimensional distribution function whose one-dimensional marginal distribution functions follow a standard uniform distribution function.
Step 2. Different Margins:
The copula as a useful tool

- Extend ordering by an invariance principle (that defines equivalence classes):

Axiom (Scale Invariance principle (INV))

Let X and Y be in \mathcal{X} and let T_1, \ldots, T_m be strictly increasing transformation functions. If $Y = (T_1(X_1), \ldots, T_m(X_m))$, then $X \sim Y$.

- Schweizer and Wolff (1981): “... it is precisely the copula which captures those properties of the joint distribution which are invariant under strictly increasing transformations”

Definition (copula function)

An m-dimensional copula function C is an m-dimensional distribution function whose one-dimensional marginal distribution functions follow a standard uniform distribution function.

- Similarly we define \overline{C}
Step 2. Different Margins:
Why is the copula a useful and popular tool?

Theorem (Sklar, 1959)
Let X be in \mathcal{X} with joint distribution function F_X and marginal distribution functions F_1, \ldots, F_m. Then there exists a copula function C_X such that for all x in \mathbb{R}^m:

$$F_X(x_1, \ldots, x_m) = C_X(F_1(x_1), \ldots, F_m(x_m)).$$ \hspace{1cm} (1)

Moreover, C_X is uniquely determined on $\text{Range}(F_1) \times \cdots \times \text{Range}(F_m)$.

Examples
the independence copula:
$C_\Phi(p_1, \ldots, p_m) = p_1 \cdots p_m$
the comonotonic copula:
$C_\tau(p_1, \ldots, p_m) = \min(p_1, \ldots, p_m)$
Step 2. Different Margins:
Why is the copula a useful and popular tool?

Theorem (Sklar, 1959)

Let X be in \mathcal{X} with joint distribution function F_X and marginal distribution functions F_1, \ldots, F_m. Then there exists a copula function C_X such that for all x in \mathbb{R}^m:

$$F_X(x_1, \ldots, x_m) = C_X(F_1(x_1), \ldots, F_m(x_m)).$$

(1)

Moreover, C_X is uniquely determined on $\text{Range}(F_1) \times \cdots \times \text{Range}(F_m)$.

Examples

- the independence copula: $C_\perp(p_1, \ldots, p_m) = p_1 \times \cdots \times p_m$
Step 2. Different Margins:
Why is the copula a useful and popular tool?

Theorem (Sklar, 1959)

Let X be in \mathcal{X} with joint distribution function F_X and marginal distribution functions F_1, \ldots, F_m. Then there exists a copula function C_X such that for all x in \mathbb{R}^m:

$$F_X(x_1, \ldots, x_m) = C_X(F_1(x_1), \ldots, F_m(x_m)).$$

(1)

Moreover, C_X is uniquely determined on $\text{Range}(F_1) \times \cdots \times \text{Range}(F_m)$.

Examples

- the independence copula: $C_\perp(p_1, \ldots, p_m) = p_1 \times \cdots \times p_m$
- the comonotonic copula: $C_+(p_1, \ldots, p_m) = \min \{p_1, \ldots, p_m\}$
Step 2. Different Margins:
Copula-based concordance dependence ordering

Proposition (concordance dependence ordering)

Let X and Y be in \mathcal{F} with support S and suppose $m \geq 2$. The concordance dependence ordering \prec_C on \mathcal{F} satisfies INV, $k\text{DEP}$ and $k\text{DEP}^*$ if and only if $X \prec_C Y$ is equivalent to:

1. $\int U(x_1, \ldots, x_m) dC_X(x_1, \ldots, x_m) \leq \int U(x_1, \ldots, x_m) dC_Y(x_1, \ldots, x_m)$, for all even-increasing utility functions U,

2. $C_X(x_1, \ldots, x_m) \leq C_Y(x_1, \ldots, x_m)$ and $\overline{C}_X(x_1, \ldots, x_m) \leq \overline{C}_Y(x_1, \ldots, x_m)$ for all (x_1, \ldots, x_m) in $M(S) \cup J(S)$.

Koen Decancq (KUL and CORE)
Structure of the talk

1. Existing Literature: Epstein and Tanny (1980)
2. Step 1: Beyond the bivariate case
3. Step 2: Different marginal distributions
4. Conclusion
Conclusion:
What did we do with the ingredients?
Conclusion:
What did we do with the ingredients?

1. Measurement of dependence between many dimensions:
Conclusion:
What did we do with the ingredients?

1 Measurement of dependence between many dimensions:
\[\Rightarrow \text{Multivariate dependence increasing rearrangements} \]
Conclusion:
What did we do with the ingredients?

1. Measurement of dependence between many dimensions:
 \[\Rightarrow \textit{Multivariate dependence increasing rearrangements} \]

2. The marginal distributions of multivariate distribution can change
Conclusion:
What did we do with the ingredients?

1. Measurement of dependence between many dimensions:
 ⇒ *Multivariate dependence increasing rearrangements*

2. The marginal distributions of multivariate distribution can change
 ⇒ *The copula as a useful tool*
Conclusion:
What can be done/has to be done with the ingredients?

1. Measurement of dependence between many dimensions:
Conclusion:
What can be done/has to be done with the ingredients?

1. Measurement of dependence between many dimensions:
 \[\Rightarrow \text{Rearrangements behind other dependence orderings?} \]
Conclusion:
What can be done/has to be done with the ingredients?

1. Measurement of dependence between many dimensions:
 ⇒*Rearrangements behind other dependence orderings?*

2. The marginal distributions of multivariate distribution can change
Conclusion:
What can be done/has to be done with the ingredients?

1. Measurement of dependence between many dimensions:
 ⇒ Rearrangements behind other dependence orderings?

2. The marginal distributions of multivariate distribution can change
 ⇒ Is the invariance principle not too strong?
 ⇒ What if we impose a linear invariance principle?
Conclusion:
What can be done/has to be done with the ingredients?

1. Measurement of dependence between many dimensions:
 ⇒ *Rearrangements behind other dependence orderings?*

2. The marginal distributions of multivariate distribution can change
 ⇒ *Is the invariance principle not too strong?*
 ⇒ *What if we impose a linear invariance principle?*

Applications!