2. Homomorphisms.

Def 2.1 Let G and H be groups. Homomorphism is a mapping f : G — H such that Va,b € G
fla-b) = f(a)- f(b).

The kernel of the homomorphism f is Ker f = {¢ € G such that f(g) =¢} C G.

The image of the homomorphism f is Im f = {h € H such that h = f(g) for some g € G} C H.

¢ 2.1 Let f: G — H be a homomorphism. Prove that
a) fe)=¢ b)Vae G fla')=f(a)™!; ¢)VaeG ord(f(a))|ord(a).

¢ 2.2 Let f: G — H be a homomorphism. Prove that

a) Ker f is a subgroup in G; b) Im f is a subgroup in H;

¢) Can any given subgroup of G' be a kernel of some homomorphism?
d) Can any given subgroup of H be an image of some homomorphism?

¢ 2.3 Let f: G — H be a homomorphism. Prove that
a) f is injective < Ker f = {¢}; b) f is surjective < Im f = H;
c¢) f is isomorphism < Ker f = {¢} and Im f = H.

¢ 2.4 Verify that the following mappings are homomorphisms. Find Ker f and Im f.

a) f: R* — R* where f(z) = 2% b) f:R* — R* where f(x) = 23

¢) f:R* — R* where f(x) = |x|; d) f: C* — R* where f(x) = |z|;

e) f: R — C* where f(x) = cosx + isin z; f) f: C — C* where f(x) = €”;
)

g) f:Z— C*where f(x) = (1+14)%  h) f:Z— C* where f(z) = (22)".

© 2.5 Let G be an abelian group, m € N. Then the mapping f : G — G, f(z) = 2™ is a homomorphism. Is
the same statement true for non-abelian G?

¢ 2.6 Classify homomorphisms: a) f : Z — Z,; b) f:Z, — Z; c) fiZy — Lp; d) f:Zy — Zy.

© 2.7 a) Let G be a group. We know that S(G) = { bijections ¢ : G — G} forms a group under composition.
Prove the Cayley’s theorem: the mapping f : G — S(G) defined by the formula f(a)(z) = az is an injective
homomorphism.

b) Prove that the image of the Cayley homomorphism for G = Zy X Z, is the Klein 4-group in S,.

¢ 2.8 a) Consider a regular hexagon. Let us enumerate it’s vertices. Then any isomerty from Dg defines a
permutation in Sg. Prove that this construction defines a homomorphism f : Dy — Sg. Find Ker f and Im f.
b) Let us now enumerate three major diagonals of the hexagon. Prove that we get a homomorphism f : Dg — S3
and find Ker f and Im f.
c¢) Next let us enumerate four major diagonals of the octagon. Prove that we get a homomorphism f : Dg — Sy
and find Ker f and Im f.

Def 2.2 An isomorphism f : G — G is called an automorphism of the group G.

© 2.9 Prove that the set of all automorphisms of a given group G is a subgroup of S(G). This subgroup is
denoted by Aut G.

© 2.10 a)-i) Find AutZ, forn=2,3,...,9,10. j) Prove that | Aut Z,| = ¢(n).
*k) Prove that for prime p the group AutZ, is cyclic.

¢ 2.11 Prove that Aut(Zg X ZQ) = 83.

¢ 2.12 Consider a regular polytope in the Euclidean 3-space (tetrahedron, cube, octahedron, dodecahedron
or icosahedron). For each of them consider the group G of all orientation preserving isometries of the 3-space
preserving the given polytope. Find |G| and the orders of all elements of G. Enumerating vertices, edges or
faces of the polytope construct homomorphisms from G to permutation groups. For each polytope suggest the
best version of enumeration to determine the structure of G.



3. The Lagrange theorem.

Def 3.3 Let H be a subgroup of G, g € G. Left coset is the set gH = {gh, h € H}; right coset is the set
Hg={hg, heH}.

¢ 3.13 Let H be a subgroup of G, a,b € G. Then either ah = bH, or aH NbH = ().

¢ 3.14 Prove the Lagrange theorem: If G is finite group and H is a subgroup of GG then the order of H is the
divisor of the order of G.

¢ 3.15 a) If |G| < o0, a € G, then ord(a) is the divisor of the order of G.
b) al®l =e.

© 3.16 a) Prove that if a,p € Z, p— prime, (a,p) = 1, then "' =1 (mod p) (The "Little” Fermat theorem,).
b) Prove that if a,n € Z, (a,n) = 1, then a*™ =1 (mod p),
where ¢(n) = |Z;| = {k€Z, 0<k<n, (kn)=1} — the Euler function.

¢ 3.17 Prove that if |G| = p and p is prime then G = Z,,.
¢ 3.18 Classify groups of order 4 (up to an isomorphism).

¢ 3.19 Find all non-cyclic subgroups of
a) Dy; b) Qs; ¢) De; *d) S;.

Def 3.4 Left quotient set = { the set of all left cosets } = G/H.

Right quotient set = { the set of all right cosets } = H\G.
(So for |G| < 00 |G/H| = |H\G| = 14l )

|H][*

Def 3.5 If the quotient set G/H is finite, the integer |G/H]| is called the index of the subgroup H (and H is
called a finite index subgroup).

¢ 3.20 Prove the relative version of the Lagrange theorem: if G D H D K — subgroups of finite index, then
|G/K| = |G/H]-[H/K]|.

¢ 3.21 Give an example of a group G and it’s subgroup H such that gH # Hg for some g € G.

Def 3.6 A subgroup H of a group G is called normal subgroup if if gH = Hg Vg € G. (This is usually denoted
as H < G).

¢ 3.22 Prove that H <G & Vge G Vhe H ghg™! € H.
© 3.23 Prove that (G: H) =2 = H <QG.
¢ 3.24 Prove that a kernel of a homomorphism is normal subgroup.

© 3.25 Center of a group G is the set Z(G) = { a € G such that ag=ga V g € G }.
a) Prove that Z(G) is a normal subgroup in G.
b) Find Z(Qs). b) Find Z(S3). ¢) Find Z(S8;). d) Find Z(D,,). (The answer depends on n.)

¢ 3.26 Find all normal subgroups of
a) Qs; b) Dy; b) Dg; ¢) Ss; d) Ss.

¢ 3.27 a) Fix an element a € G. Prove that the mapping ¢, : G — G defined by ¢,(g9) = a 'ga is an
automorphism of the group G. Such ¢, is called an internal automorphism of G.
b) Prove that the set of all internal automorphisms Int G of the group G is a normal subgroup of AutG.

¢ 3.28 Find Int G and Aut G for
a) G = Ss; b) ) G = Dy; *¢) G = Qs.



