Правительство Российской Федерации

Государственное образовательное бюджетное учреждение высшего профессионального образования

Государственный университет – Высшая школа экономики

Факультет БИЗНЕС-ИНФОРМАТИКИ

Программа дисциплины

Дискретная математика

для направления 010500.68 «Прикладная математика и информатика» подготовки магистров

Автор - Большакова Е.И. (eibolshakova@hse.ru)

Рекомендована секцией УМС «Прикладная математика и информатика»	Одобрена на заседании кафедры Анализа данных и искусственного интеллекта		
Председатель Кузнецов С.О. «» 20 г.	Зав. кафедрой Кузнецов С.О. «» 20 г.		
Утверждена УС факультета бизнес-информатики			
Ученый секретарь Фомичев В.А. «»20 г.			

Москва

I. Пояснительная записка

Автор программы

кандидат физико-математических наук, доцент Е.И. Большакова.

Требования к студентам

Специфические требования отсутствуют. Студенты должны быть готовы к восприятию сжатого систематизирующего блока, построенного на основе дисциплины «Дискретная математика» направления 010500.62 «Прикладная математика и информатика».

Аннотация

Адаптационный курс «Дискретная математика» предназначен для поддержки магистров первого года обучения по направлению 010500.68 «Прикладная математика и информатика», недостаточно знающих те разделы дискретной математики, которые являются базовыми для освоения дисциплин магистерской программы «Математическое моделирование».

В курсе излагаются базовые понятия теории множеств, алгебры логики и логических исчислений, теории графов и комбинаторики. Рассматриваются также отдельные вопросы сложности вычислений. Теоретический материал подкрепляется семинарскими занятиями по указанным темам.

Учебные задачи курса

Данный курс призван систематизировать знания по базовым разделам дискретной математики.

II. Тематический план курса «Дискретная математика»

№	Название темы	Всего часов по дисциплине	Аудиторные часы		Самосто-
			Лекции	Сем. и практика	ятельная работа
1	Множества, отношения, функции	11	3	4	4
2	Булевы функции и алгебра логики	8	2	2	4
3	Комбинаторика	8	2	2	4
4	Логические исчисления	17	5	4	8
5	Графы и деревья	8	2	2	4
6	Сложность вычислений	8	2	2	4
	Итого	60	16	16	28

III. Источники информации

Основная литература

- 1. Кузнецов О.П. Дискретная математика для инженера. 6-е изд. СПб: Издательство «Лань», 2009.
- 2. Кук В., Бейз Г. Компьютерная математика. М: Наука, 1990.
- 3. Новиков Ф.А. Дискретная математика для программистов: Учебник для вузов. 3-е изд. СПб: Питер, 2009.
- 4. Успенский В.А., Верещагин Н.К., Плиско В.Е. Вводный курс матиематической логики. 2-е изд. М.: ФИЗМАТЛИТ, 2004.
- 5. Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982.

Дополнительная литература

- 6. Абрамов С.А. Лекции о сложности алгоритмов. М.: Изд-во МЦНМО, 2009.
- 7. Виленкин Н.Я. Популярная комбинаторика М.: Наука, 1975.
- 8. Галушкина Ю.И.. Марьямов А.Н. Конспект лекций по дискретной математике. 2-е изд., испр. М.: Айрис-пресс, 2008.
- 9. Громкович Ю. Теоретическая информатика. Введение в теорию автоматов, теорию вычислимости, теорию сложности, теорию алгоритмов, рандомизацию, теорию связи и криптографию: пер. с нем. / Под ред. Б.Ф.Мельникова. СПб.: БХВ-Петербург, 2010.
- 10. Зыков А.А. Основы теории графов. М.: Вузовская книга, 2004. 664 с.

- 11. Набебин А.А., Кораблин Ю.П. Математическая логика и теория алгоритмов. Научный мир, 2008. 343 с.
- 12. Липский В. Комбинаторика для программистов. М.: Мир, 1988. 213 с.
- 13. Спирина М.С., Спирин П.А. Дискретная математика М.: Академия, 2009.

IV. Формы контроля и структура итоговой оценки

Текущий контроль – письменная контрольная работа (80 мин.).

Итоговый контроль – устный зачёт (в конце первого модуля);

Итоговая оценка складывается из следующих элементов:

- работа на семинарских занятиях 20%;
- письменная контрольная работа -60%;
- устный зачет 20%;

Таблица соответствия оценок по десятибалльной и системе зачет/незачет

Оценка по 10-балльной шкале	Оценка по 5-балльной шкале
1	
2	незачет
3	
4	
5	
6	
7	зачет
8	
9	
10	

Таблица соответствия оценок по десятибалльной и пятибалльной системе

По десятибалльной шкале	По пятибалльной системе	
1 – неудовлетворительно		
2 – очень плохо	неудовлетворительно – 2	
3 – плохо		
4 – удовлетворительно	VII OD TOTTO OD VITO VI VI 2	
5 – весьма удовлетворительно	удовлетворительно – 3	
6 – хорошо		
7 – очень хорошо	хорошо – 4	
8 – почти отлично		
9 – отлично	отлично – 5	
10 – блестяще		

V. Программа курса «Дискретная математика»

Тема 1. Множества, отношения, функции

- 1. Элементы и множества, задание множеств. Сравнение множеств, мощность множества. Операции над множествами, свойства операций. Алгебра множеств. Булеан. Разбиения и покрытия. Множества и кортежи. Декартово произведение множеств.
- 2. Бинарные и многоместные отношения. Обратное отношение, композиция отношений, степень отношения. Свойства отношений: рефлексивность, симметричность, антисимметричность, транзитивность, линейность. Отношение эквивалентности, классы эквивалентности, фактор-множество. Отношение порядка. Замыкание отношений.
- 3. Функциональные отношения. Свойства функций: инъективность, сюръективность, биективность. Монотонные функции. Обратная функция, суперпозиция функций.

Основная литература

- 1. Кузнецов О.П. Дискретная математика для инженера. 6-е изд. СПб: Издательство «Лань», 2009.
- 2. Кук В., Бейз Г., Компьютерная математика М: Наука, 1990.
- 3. Новиков Ф.А. Дискретная математика для программистов: Учебник для вузов. 3-е изд. СПб: Питер, 2009.

Дополнительная литература

- 4. Спирина М.С., Спирин П.А. Дискретная математика М.: Академия, 2009.
- 5. Успенский В.А., Верещагин Н.К., Плиско В.Е. Вводный курс матиематической логики. 2-е изд. М.: ФИЗМАТЛИТ, 2004

Тема 2. Булевы функции и алгебра логики

- 1. Таблицы истинности булевых функций. Существенные и несущественные переменные. Элементарные функции алгебры логики. Законы алгебры логики.
- 2. Реализация функций формулами, равносильные формулы. Равносильные преобразования формул, алгебра булевых функций. Замыкание множества булевых функций, замкнутые и полные классы.
- 3. Дизъюнктивная и конъюнктивная нормальные формы. Разложение булевых функций по переменным. Совершенные нормальные формы.

Основная литература

- 1. Кузнецов О.П. Дискретная математика для инженера. 6-е изд. СПб: Издательство «Лань», 2009.
- 2. Новиков Ф.А. Дискретная математика для программистов: Учебник для вузов. 3-е изд. СПб: Питер, 2009.

Дополнительная литература

- 3. Галушкина Ю.И.. Марьямов А.Н. Конспект лекций по дискретной математике. 2-е изд., испр. М.: Айрис-пресс, 2008.
- 4. Кук В., Бейз Г., Компьютерная математика M: Hayka, 1990.
- 5. Набебин А.А., Кораблин Ю.П. Математическая логика и теория алгоритмов. Научный мир, 2008. – 343 с.
- 6. Спирина М.С., Спирин П.А. Дискретная математика М.: Академия, 2009.

Тема 3. Комбинаторика

- 1. Комбинаторика множеств, кортежей, мультимножеств. Правило суммы и правило произведения для количества комбинаторных конфигураций. Формула включений и исключений.
- 2. Перестановки, перестановки с повторениями. Размещения с повторениями и без повторений. Сочетания, сочетания с повторениями, рекуррентные соотношения. Треугольник Паскаля. Биномиальные коэффициенты.
 - 3. Разбиения, числа Стирлинга первого и второго рода. Число Белла. Числа Фибоначчи.

Основная литература

1. Новиков Ф.А. Дискретная математика для программистов: Учебник для вузов. 3-е изд. – СПб: Питер, 2009.

Дополнительная литература

- 2. Виленкин Н.Я. Популярная комбинаторика М.: Наука, 1975.
- 3. Липский В. Комбинаторика для программистов. М.: Мир, 1988. 213 с.
- 4. Спирина М.С., Спирин П.А. Дискретная математика М.: Академия, 2009.

Тема 4. Логические исчисления

- 1. Формализация утверждений и рассуждений, аксиоматизация математических теорий. Понятие формальной теории: алфавит, правила построения формул, аксиомы, правила вывода. Выводимость формул, теоремы. Интерпретация формальной теории. Выполнимые и общезначимые формулы. Логическое следствие, логическая эквивалентность. Свойства теории: непротиворечивость, полнота, разрешимость.
- 2. Исчисление высказываний (ИВ): пропозициональные переменные, логические связки, формулы. Аксиомы и правила вывода классического исчисления высказываний. Теоремы ИВ и производные правила вывода. Свойства ИВ.
- 3. Исчисление предикатов первого порядка (ИП): функциональные и предикатные символы, предметные константы, логические связки и кванторы. Термы и формулы ИП. Свободные и связанные переменные. Аксиомы и правила вывода узкого ИП. Интерпретация ИП, свойства ИП. Логические законы. Предваренная нормальная форма. Формальная арифметика, теорема Геделя о неполноте.
- 4. Правила логического вывода и математические доказательства. Прямая, обратная теорема и теорема, противоположная обратной. Принцип математической индукции. Простая и строгая индукция для натуральных чисел. Обобщенная индукция для вполне упорядоченных множеств.

Основная литература

- 1. Кузнецов О.П. Дискретная математика для инженера. 6-е изд. СПб: Издательство «Лань», 2009.
- 2. Новиков Ф.А. Дискретная математика для программистов: Учебник для вузов. 3-е изд. СПб: Питер, 2009.
- 3. Успенский В.А., Верещагин Н.К., Плиско В.Е. Вводный курс матиематической логики. 2-е изд. М.: ФИЗМАТЛИТ, 2004

Дополнительная литература

4. Набебин А.А., Кораблин Ю.П. Математическая логика и теория алгоритмов. – Научный мир, 2008. – 343 с.

- 5. Галушкина Ю.И.. Марьямов А.Н. Конспект лекций по дискретной математике. 2-е изд., испр. М.: Айрис-пресс, 2008.
- 6. Спирина М.С., Спирин П.А. Дискретная математика М.: Академия, 2009.

Тема 5. Графы и деревья

- 1. Вершины и ребра графа, смежность и инцидентность. Изоморфизм графов. Маршруты, цепи, циклы. Подграфы и остовный подграф. Связность графа, компоненты связности. Полные, ациклические и двудольные графы. Эйлеровы и Гамильтоновы циклы. Планарность графа, формула Эйлера.
 - 2. Графы и бинарные отношения. Матрица смежности и матрица связности.
- 3. Деревья, их основные свойства. Свободные, ориентированные и упорядоченные деревья. Поддеревья. Бинарные деревья. Схемы обхода деревьев.

Основная литература

- 1. Кузнецов О.П. Дискретная математика для инженера. 6-е изд. СПб: Издательство «Лань», 2009.
- 2. Новиков Ф.А. Дискретная математика для программистов: Учебник для вузов. 3-е изд. СПб: Питер, 2009.

Дополнительная литература

- 3. Галушкина Ю.И.. Марьямов А.Н. Конспект лекций по дискретной математике. 2-е изд., испр. М.: Айрис-пресс, 2008.
- 4. Зыков А.А. Основы теории графов. М.: Вузовская книга, 2004. 664 с.
- 5. Спирина М.С., Спирин П.А. Дискретная математика М.: Академия, 2009.

Тема 6. Сложность вычислений

- 1. Временная сложность алгоритмов и сложность по памяти. Сложность вычислений в худшем случае, понятие о сложности в среднем. Асимптотические оценки сложности. Задачи распознавания языков.
- 2. Линейная и полиномиальная сводимость задач. Классы P и NP, их соотношение. NP-полнота, примеры NP-полных задач.

Основная литература

- 1. Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982.
- 2. Кузнецов О.П. Дискретная математика для инженера. 6-е изд. СПб: Издательство «Лань», 2009.

Дополнительная литература

- 3. Абрамов С.А. Лекции о сложности алгоритмов. М.: Изд-во МЦНМО, 2009.
- 4. Громкович Ю. Теоретическая информатика. Введение в теорию автоматов, теорию вычислимости, теорию сложности, теорию алгоритмов, рандомизацию, теорию связи и криптографию: пер. с нем. / Под ред. Б.Ф.Мельникова. СПб.: БХВ-Петербург, 2010.
- 5. Липский В. Комбинаторика для программистов. М.: Мир, 1988. 213 с.

VI. Тематика заданий по формам текущего контроля

Примеры задач, предлагаемых на контрольной работе

- 1. Определить свойства (рефлективность, симметричность, антисимметричность, транзитивность) отношения R: $R = \{(x, y): x, y \text{натуральные числа}, x = y^2\};$
- 2. Пусть R множество вещественных чисел, и Q отношение на $R \times R$, определенное следующим образом: (x,y) Q (v,w) тогда и только тогда, когда x < v и y < w. Является ли Q отношением порядка? Если да, то является ли этот порядок полным?
- 3. Для булевой функции, заданной формулой $z \wedge (x \to \neg y)$, построить таблицу истинности, а также эквивалентную совершенную дизъюнктивную нормальную форму.
- 4. Найти количество булевых функций от n переменных, среди которых k фиктивных.
- 5. Последовательность высказываний $\{A_n\}$, $n \ge 1$ определена рекуррентным соотношением:
 - $A_n = A_{n-1} \wedge (A_{n-2} \vee A_{n-3})$ при n > 3; высказывания A_1 и A_3 истинны, а A_2 ложно. Истинно или ложно высказывание A_n ? Выразить A_n через A_1 , A_2 и A_3 , доказать эту формулу математической индукцией, указав применяемую версию индукции.
- 6. При каких условиях запись $\exists c \ (P(S(c,R(y,q),q)) \to \forall f \ W(z,f))$ является формулой исчисления предикатов первого порядка (ИП)?
- 7. Последовательность $\{x_n\}$ называется ограниченной, если существует такое число C, что $|x_n| < C$ для всех n. Дайте определение неограниченной последовательности.
- 8. Отношение R из задачи 1 определено на множестве чисел $\{2, 3, 4, 6, 7, 8, 9\}$. Построить соответствующий граф отношения.
- 9. Сколько существует различных графов с *п* вершинами?
- 10. Приведите пример двух неизоморфных свободных деревьев с 5 узлами и двух неизоморфных ориентированных (корневых) деревьев с 7 узлами.
- 11. Сколько различных цепочек (последовательностей букв) можно составить из букв слова метаматематика? (Достаточно указать формулу подсчета).
- 12. 70 студентов курса изучают английский язык, 50 немецкий, 40 французский. Известно, что 30 студентов изучают английский и немецкий языки, 20 студентов английский и французский, 15 немецкий и французский, а 10 студентов изучают все три языка. Определить число студентов, изучающих хотя бы один из указанных языков.

VII. Вопросы для оценки качества освоения дисциплины

Тема 1.

- 1. Что такое множество? Какими способами можно задать множество?
- 2. Укажите основные свойства операций над множествами.
- 3. Что такое разбиение множества?
- 4. Чем кортеж отличается от множества?
- 5. Что такое отношение? Степень отношения?
- 6. Чем асимметричность отличается от антисимметричности?
- 7. Какими свойствами обладает отношение эквивалентности?
- 8. Какими свойствами обладает отношение линейного порядка?
- 9. Что такое инъективная функция? Сюръективная функция? Биективная функция?

Тема 2.

- 10. Какие функции называют булевыми?
- 11. Укажите основные законы алгебры логики.
- 12. Какие формулы алгебры логики называются равносильными? Какие равносильные преобразования вы знаете?

- 13. Что такое дизъюнктивная и конъюнктивная нормальная форма?
- 14. Как привести формулу к совершенной нормальной форме?
- 15. Что такое замкнутый класс функций, полный класс? Приведите примеры.

Тема 3.

- 16. В чем состоит правило суммы и произведения в комбинаторике?
- 17. Приведите формулу включения/исключения. Объясните смысл применения.
- 18. Чему равно число различных перестановок из n элементов?
- 19. Как подсчитывается число различных перестановок с повторениями?
- 20. Укажите формулы для подсчета размещений без повторений и с повторениями.
- 21. Как подсчитывается число различных сочетаний с повторениями?
- 22. Что иллюстрирует треугольник Паскаля?
- 23. Как вычисляются биномиальные коэффициенты?
- 24. В чём смысл чисел Стирлинга?
- 25. Что такое число Белла?

Тема 4.

- 26. Как задается формальная теория (система)?
- 27. Что такое правильно построенная формула?
- 28. Чем аксиомы отличаются от правил вывода?
- 29. Укажите основные свойства формальных теорий.
- 30. Опишите язык исчисления высказываний.
- 31. Что такое выполнимая формула? тавтология?
- 32. Укажите основные свойства ИВ.
- 33. Сформулируйте правило modus ponens.
- 34. Опишите язык исчисления предикатов первого порядка.
- 35. Укажите основные свойства ИП.
- 36. Какие нормальные формы формул ИП вы знаете?
- 37. Что такое интерпретация ИВ? Интерпретация ИП?
- 38. В чем смысл теоремы Геделя о неполноте.
- 39. Что такое обобщенная математическая индукция?
- 40. Приведите пример прямой и обратной теорем.

Тема 5.

- 41. Что такое отношение смежности и инцидентности?
- 42. Какие графы называют изоморфными?
- 43. Является ли отношение изоморфности графов отношением эквивалентности?
- 44. Приведите примеры полного графа.
- 45. Определите понятие связности графа.
- 46. Что такое компонента связности графа?
- 47. Какие способы представления графов вы знаете?
- 48. Что такое остовный подграф?
- 49. Определите понятие маршрута в графе.
- 50. Приведите пример Эйлерова цикла.
- 51. Что такое двудольный граф?
- 52. Приведите пример непланарного графа.
- 53. Что такое лес и дерево?
- 54. Какие виды деревьев вы знаете?
- 55. Приведите пример ориентированного дерева и ориентированного графа.
- 56. Опишите различные способы обхода деревьев.

Тема 6.

- 57. Что такое массовая задача?
- 58. Какие виды вычислительной сложности вы знаете?
- 59. Что такое задача распознавания языков (свойств)?

- 60. Что такое полиномиальная сводимость?
- 61. Объясните определение класса NP.
- 62. Какие задачи называются *NP*-полными?
- 63. Приведите примеры *NP*-полных задач..
- 64. Как доказать, что задача является *NP*-полной?
- 65. В чем состоит главная проблема теории вычислительной сложности?

Автор программы:	/ Большакова Е.И.