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Abstract

The paper studies the impact of homophily on the optimal strategies of a monopo-

list, whose marketing campaign of new product relies on a word of mouth communica-

tion. Homophily is a tendency of people to interact more with those who are similar to

them. In the model there are two types of consumers embedded into a social network,

which differ in friendship preferences and desirable design of product. Consumers can

learn about the product directly from an advertisement or from their neighbors. The

monopolist chooses the product design and price to influence a pattern of communi-

cation among consumers. We find a number of results: (i) for low levels of homophily

the product attractive to both types of consumers is preferred to specialized products;

(ii) the price elasticity is increasing in homophily; (iii) an increase in the homophily

benefits both the monopolist and consumers; and (iv) the product attractive to both

types may be optimal even if the monopolist obtains profits only from sales to one

type of consumers.
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1 Introduction

In the last decade word of mouth (WOM hereafter) and viral marketing have received a

considerable amount of attention from mass-media and the scientific community as efficient
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marketing tools (see for instance Campbell, 2009, Goyal and Galeotti, 2007, Leskovec et al.

2007, and Iribarren and Moro, 2007). The idea that a company can recruit consumers to

advertise its products for free is really exciting. The WOM marketing takes an advantage

of the natural human’s inclination to spread information. A recent study by Reichheld

(2003) shows that willingness of consumers to recommend a company to their friends not

just augments sales, but by far is the best predictor of a company’s growth.

Apart from being efficient when it works, performance of a WOM campaign is quite

uncertain. A report by Riley and Wigder (2007) from Jupiter Research reveals that only

15% of viral campaigns are considered to be successful, moreover 55% of companies planned

to reduce the use of this tactics next year. This raises the question why companies that

face the same network of consumers show so different performance in terms of success

of WOM campaigns? In the paper we argue that volatile behavior of WOM marketing

campaigns at least partially can be explained by a phenomenon known as “homophily”.

Homophily is a tendency of people to interact more with those who are similar to them,

which has been documented at least since Aristotle’s time.1,2

Our paper contributes to the WOM literature in two dimensions. First and most

importantly, the paper introduces homophily into the network upon which WOM spreads

and studies its impact on the optimal strategy of the monopolist. The notion of homophily

enriches network structure by specifying a probability of friendship relationships among

groups of consumers. Second, the paper extends the monopolist’s problem by including

product design that affects further WOM communication. To the author’s best knowledge

product design has not been the subject of academic research in WOM framework.

The description of the model is following. There is a monopolist that introduces a

new product to an initially uninformed population of heterogeneous consumers of two

types. Consumers are embedded into a social network, which is represented by a random

graph with an arbitrary degree distribution. Across types, consumers differ in friendship

preferences and desirable design of the product. Within types, consumers differ in a

willingness to pay for the product. We model consumers friendship preferences by a linking

bias towards types, which represents homophily of the society. Consumers communicate

with their friends and learn about the existence of the product from neighbors who already

have acquired it. The monopolist knows the degree distribution and homophily level of

the society and strategically chooses the price and design of the product. To induce sales

the monopolist advertises the product directly to an infinitesimal part of the population

and the rest of the population is expected to find out about the product through WOM

communication.

1In Aristotles Rhetoric and Nichomachean Ethics, he noted that people “love those who are like

themselves” (Aristotle 1934, p. 1371).
2The term homophily appeared in the sociological literature for the first time in Lazarsfeld and Mertons

(1954) who also quoted the proverbial expression - “birds of a feather flock together,” which has summarized

homophily ever since.
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Our analysis begins by examining a necessary conditions on a network structure such

that WOM can spread over a significant proportion of the population3. This was a case

of such remarkable examples of WOM campaigns as diffusion of Hotmail accounts4 and

the advertising campaign of tiny budget movie “The Blair Witch Project”5. We find that

in the case of sparse networks a sufficiently high level of homophily is a necessary for a

successful WOM campaign. High levels of homophily imply that preferences of connected

consumers are correlated, which allows the monopolist to develop the product attractive

for longer chains of connected consumers.

Next, we turn to the optimal design of the product. The commonly employed assump-

tion in the diffusion literature is that a message to be spread in a network is given, and

main focus is upon the effect of network structure on its propagation (for a survey see

Geroski, 2000). In contrast, we assume an active role of the monopolist. In the model the

monopolist designs a message to the network by choosing the price and characteristic of

the product. In our base-line model we find that for sufficiently high levels of homophily,

when people mostly interact with those who are similar to them, specialized products

designed to target needs of one type of consumers are optimal. However, for sufficiently

low levels of homophily, the product attractive for both types of consumers is preferred to

specialized design even if there is no cost of producing more than one product. The latter

happens, since the majority of links connect consumers of different types and to insure

spreading the product should be attractive to both types.

The sociological literature on homophily adopts a view that diversity of individual’s

contacts is a socially desirable property per se (e.g. Moody, 2001). Although this assertion

could be supported by evidence, no rigorous analysis has been made. Perhaps surprisingly,

in our model social welfare is increasing in the level of homophily. The result comes from

informational and monetary benefits for consumers generated by an increase in the level

of homophily. Informational benefits consist in a higher awareness of consumers about the

product. Monetary benefits come from a lower price charged by the monopolist, which

converts a higher awareness of the product into a higher volume of sales.

There is a popular idea in business and academic literature that focusing advertisement

efforts on a group of consumers is the efficient strategy. We show that it is indeed true -

an advertisement strategy of targeting consumers of one group is optimal. However, the

same does not always hold for the product design even when advertisement is targeted to

one group. In the case when the society exhibits low levels of homophily the optimality

of product specialization depends on the density of a social network. If the density is

low then the expected demand triggered per advertisement is small and the monopolist

specializes on a group of consumers targeted by the advertisement. If the network density

3In the network literature this phenomenon is known as a global cascade
4Hotmail spent a mere 50,000 dollars on traditional marketing and still grew from zero to 12 million

users in 18 months.
5A movie released in 1999 with principal photography budget ranging from $20,000 to $25,000.
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is sufficiently high then it is optimal for the monopolist to choose compromise design. This

strategy sacrifices some initial adopters from the targeted group, but insures that initial

acquisition leads to higher level of WOM communication.

A term “freakonomics” has firmly entered to vocabularies of many economists. The

popular book of the same name6 with over 3 million copies sold worldwide gained popular-

ity not only among a general public, but became well known in the academic community

(e.g. DiNardo, 2006, DiNardo 2007, Rubinstein, 2006). The case of “Freakonomics” is

not unique. One can recall such examples as “Linked: The New Science of Networks” on

networks by Barabási, “The Selfish Gene” on evolution by Richard Dawkins etc. All these

books provoked numerous discussions in the academic circles, while the primary audience

was the general public. Influenced by this phenomenon, we consider the monopolist that

is interested only in one type of consumer (for instance the academic community). We

show that designing a product attractive to both types of consumers may be the optimal

strategy, even though monopolist benefits only from one type.

1.1 Related Literature

In this section we relate our paper to two streams of the networks literature. The first

one studies strategic diffusion of information in networks with underlying assumption that

nodes are matched randomly (see, for instance, Campbell, 2009, Goyal and Galeotti, 2007,

Galeotti and Mattozzi, 2008). The second stream of the literature studies the impact of

homophily on various processes unfolding on networks (for instance Golub and Jackson,

2009, Van der Leij et al., 2009, Buhai and Van der Leij, 2008 and Valat, 2009). Our paper

bridges these two streams in a simple model, which studies the impact of social structure,

given by the homophily, on the diffusion of information. The model allows us to yield a

number of insights into how homophily shapes optimal strategies of the monopolist and

influences a social welfare.

The two recent papers studying strategic diffusion of information that are most re-

lated to our research are Campbell (2009) and Goyal and Galeotti (2007). Campbell

(2009) studies the optimal pricing and advertisement strategies of a monopolist when con-

sumers are engaged in WOM communication. Goyal and Galeotti (2007) study general

model of the strategic diffusion, where they distinguish between level of interaction and

content of interaction. In their paper, the level of interaction is characterized by a de-

gree distribution, while content of interaction is a way in which actions of others affect

individual incentives. There are two key differences between these papers and our paper.

First, we extend existing models by relaxing the random matching assumption and study

how such intrinsic property of a network as who is connected to whom affects strategic

diffusion of information. Second, to our best knowledge, we are the first to consider the

6The full title of the book: “Freakonomics: A Rogue Economist Explores the Hidden Side of Every-

thing”.
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optimal design of the product in the presence of WOM communication.

The recent paper from the second stream of literature Golub and Jackson (2009) studies

how different mechanisms of communication operating through a network are affected by

homophily of the society. The principal difference of our paper is that in our setup the

monopolist (the sender of a message) takes an active role and influences WOM spreading

by choosing the design of the product.

Within a broader literature that considers epidemic diffusion (Newman, 2002; Sander

et al., 2002) our paper contributes to the analysis of multi-type networks with homophily

by extending the Newman’s generating functions approach. In particular, we consider the

case when node is operational (is able to transmit information further in the network)

with some probability, which depends on a type of the node.

The rest of the paper is organized as follows. Section 2 presents a stylized model of

the strategic diffusion. In section 3 we derive the expected size of cascade of sales per

advertisement. Section 4 presents the main results on the optimal price and design of the

product and considers welfare implications of homophily. Section 5 examines the optimal

product design and advertisement strategy when the monopolist can target advertisement

by types of consumers. Section 6 considers robustness of the obtained results to a variation

in the shape of preference frontier. Section 7 studies the optimal strategy of the monopolist

that is interested only in one group of consumers. Section 8 considers the case of a global

cascade of sales. Finally, Section 9 outlines avenues for future research and concludes.

2 Model

In this section we formally present the model, which consists of three main blocks: network

structure, consumer preferences and monopolist problem.

2.1 Network Structure

There is a continuum of consumers of two types A and B, which are embedded into

undirected social network. Consumers of type A constitute measure γ of the population

and the rest are consumers of type B. We focus on the case with consumers of two types

because it provides basic intuitions and insights, while keeping an analysis transparent7.

The network is represented by a random graph characterized by a degree distribution

p(k) and probabilities of ties among types of consumers (ρA, ρB). The parameter ρi is the

probability that a randomly chosen link of a consumer of type i leads to a consumer of

the same type and with complementary probability to consumer of another type. Thus

links of a consumer can be partitioned into two sets: links to consumers of the same type

7For example, the case of consumers of three types with the third type that is not interested in the

product is the same as the case of two types with a corrected degree.
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and links to consumers of another type. The probability that a consumer of type i with k

links has j ≤ k links to consumers of the same type is given by the binomial expression:

Pr
(
J = j|k, ρi

)
=

k!

j!(k − j)!
(ρi)j(1− ρi)k−j (1)

The expected number of links connecting a type i consumer to consumers of the same

type is given by:

E
(
J |k, ρi

)
=

k∑
j=0

[
j × Pr

(
J = j|k, ρi

)]
= kρi

A randomly selected consumer of type A with probability p(k) has k links, k(1− ρA)

of which connect her to consumers of type B. Taking the expectation we find that on

average consumer of type A has z1(1 − ρA) links to consumers of type B, where z1 is

expected number of first neighbors. Multiplying obtained expression by the measure of

consumers of type A in the population we obtain total number of links of type AB, which

is γz1(1 − ρA). By analogy a number of links of type BA is equal to (1 − γ)z1(1 − ρB).

Using the fact that the graph is undirected and number of links of type AB should be equal

to the number of links of type BA we arrive to the equality γ(1− ρA) = (1− γ)(1− ρB).

Solving for ρB we obtain:

ρB = 1− γ

1− γ
(1− ρA) (2)

Therefore, without loss of generality, in the case of two types of consumers we have

just one parameter ρ = ρA that characterizes linking preferences of all consumers. The

parameter ρ represents a level of homophily of the society, since it specifies the probability

of friendship relationships among consumers of the same type, for both types.

It is important to underline that friendship relationships among consumers are formed

on the basis of many parameters such as geographical proximity, common interests and

so on. A network formation process itself is beyond a scope of this paper. In the analysis

we assume that the network of social contacts is exogenously given, and is the same for

all products in question. The spreading of WOM in the network for different types of

products varies due to differences in homophily level that the society exhibits towards

these products.

Figure 1 illustrates 3 different networks with the same degree distribution where all

nodes preserve the same connectivity. The only parameter that changes is the level of ho-

mophily of the society. As one can observe, depending on ρ networks range from perfectly

mixed to two separated graphs, where consumers of type A are completely disjoint from

consumers of type B.

To avoid an ambiguity we introduce some key definitions concerning a measurement

of homophily level. A benchmark case that we will use extensively is the case when links
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(a) (b) (c)

Figure 1: All three graphs have nodes with the same number of neighbors, however they

differ in the homophily level. In (a) consumers are linked only to consumers of another

type, ρ = 0; in (b) we have random mixing of consumers, ρ = 0.5; in (c) consumers exhibit

extreme homophily, ρ = 1.

among consumers are formed with the uniform probability independently of a type.

Definition 1. The friendship ties in the society are randomly matched if ρ = γ.

We can think about a network of detergent consumers as an example of a network with

random matching. A plausible assumption would be that preference towards a liquid or

powdered detergent is not important itself for forming ties among consumers and thus we

may think that consumers of detergent are matched randomly.

In the sociological literature, a tendency of friendship to be biased towards own type

beyond the relative proportion in the population is referred to as “inbreeding homophily”

(see, for example Coleman, 1958, Marsden, 1987 and McPherson et al., 2001). In this

case the proportion of links going to consumers of the same type is higher than otherwise

would be implied by random matching.

Definition 2. The society exhibits the inbreeding homophily if ρ > γ

There are also networks in which a situation can be reversed and social ties are biased

towards different-type relationships (e.g. network of sexual contacts).

Definition 3. The society exhibits a heterophily if ρ < γ

To illustrate ideas let us consider examples of random matching and network which

exhibits homophily. If consumers are matched randomly with a uniform probability then

consumer of type A has on average the proportion ρ = γ of neighbors of the same type.

At the same time the expression (2) implies that the average proportion of neighbors of

consumer of type B of the same type is ρB = (1 − γ), which equals to proportion of

consumers of type B in the population. In the case when consumers of type A are linked

more often among themselves as compared to the case of random matching, ρ > γ, by

expression (2) the same applies to the consumers of type B, since ρB > (1− γ).
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2.2 Consumer Preferences

Consumers, in addition of having linking preferences, differ in two other respects. First,

across types consumers differ in preferences towards a product design. Consumers of type

A prefer one characteristic of the product, while consumers of type B are interested in the

opposite features. Second, within types consumers differ in a reservation price P̄j they are

willing to pay for the product and the minimal level of desirable characteristic w̄j , which

induces them to buy the product.

More formally, in the model two variables affect the decision of consumers: the price

P ∈ [0, 1] and characteristic of product w ∈ [0, 1]. For concreteness, a consumer j of type

A buys the product if characteristic is higher than the threshold level w ≥ w̄j and the

price is lower than the reservation price P ≤ P̄j . In contrast, a consumer l of type B buys

the product if w ≤ w̄l and P ≤ P̄l.
We assume that within a type the reservation price and characteristic threshold are

distributed according to f i(w̄, P̄ ) probability density function. Hence, a randomly chosen

consumer j of type A, which is aware of the product with a characteristic w and price P

buys it with the probability:

qA = Pr(w ≥ w̄j ∩ P ≤ P̄j) =

∫ w

0

∫ 1

P
fA(w̄, P̄ )dw̄dP̄

And similarly a randomly selected consumer l of type B, which knows about the

product buys it with the probability:

qB = Pr(w ≤ w̄l ∩ P ≤ P̄l) =

∫ 1

w

∫ 1

P
fB(w̄, P̄ )dw̄dP̄

To simplify the analysis for the major part of it we assume that the threshold char-

acteristic and threshold price distributed independently and identically according to the

uniform distribution U [0, 1] for both types. This implies that fA(w̄, P̄ ) = fB(w̄, P̄ ) = 1

and probabilities to buy the product are given by the following expressions:{
qA = (1− P )w

qB = (1− P )(1− w)

For given price the system describes a preference frontier, depicted in Figure 2, which

encompasses all admissible pairs of probabilities for two types of consumers to buy the

product. By choosing the product design the monopolist identifies a probability pair

(qA, qB) and fixes network of potential buyers. The network of potential buyers consists of

all consumers that would buy the product if they know about it. An increase in P shifts

frontier inwards, simultaneously decreasing probabilities to buy the product for two types.

In the paper we will encounter two special types of the product design.
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Figure 2: On the left hand side preferences frontier with characteristic of the product

being marked by circle. On the right hand side implied social network, with probability

to buy the product shown by intensity of the color.

Definition 4. The design is called symmetric if the product characteristic w is such that

two types of consumers acquire the product with identical probabilities, qA = qB.

In the case described above, the symmetric design is represented by w = 1
2 .

Definition 5. The design is called specialized if the product characteristic w ∈ {0, 1},
which implies that only one type of consumers acquires the product.

These two types of design represent different marketing strategies. A symmetric design

intends to satisfy needs of both types of consumers, without giving preference to any of

them, while the specialized one focuses on one type and neglects the other.

2.3 Monopoly Problem

The monopolist develops new product and introduces it to consumers who are engaged in

WOM communication. In the model the monopolist chooses design of the product w and

price P to maximize profits. To induce sales the monopolist advertises the product directly

to an infinitesimal part of the population. The rest of the population is expected to find

out about the product from neighbors who have acquired the product. The diffusion of

information stops when there are no new acquisitions of the product.

The network literature usually distinguish two possible scenarios of information spread-

ing. In the first an information propagates to some finite number of consumers and than

stops, while in the second an information continues to propagate unboundedly. Let us

give the precise definition of the latter case:

Definition 6. We say that the global cascade of sales arises if ultimately some non-

infinitesimal proportion of the population buys the product.
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Depending wether the global cascade of sales arises or not there are two techniques

available to study information diffusion. The main results of the paper are developed for

the case of finite sales, while in Section 8 we study the case of global cascade.

3 Cascade of Sales

In this section we derive the expression for the expected size of cascade of sales generated

by one advertisement and study its properties. In the derivation of the expression we rely

on the generating functions approach for multi-type nodes based on Newman (2003). The

main focus of Newman’s paper is heterogeneity of types in terms of degree distribution.

Our paper adopts different perspective. While two types of consumers enjoy the same

degree distribution, they differ in their willingness to purchase the product. This implies

that a further propagation of information depends on the way in which different types are

linked.

3.1 Generating Functions Approach

In the field of complex networks, generating functions were introduced by Newman et

al. (2001) and since then have been widely used. A generating function encapsulates

all the information about degree distribution, and thus completely characterizes a random

network. The generating functions allow us to calculate various local and global properties,

such as average degree, average size of component, etc.

In the case of nodes of two types we need to define generating functions associated with

degree distribution and homophily level of each type of consumer. Recall that probability

of having j links to consumers of the same type for a randomly selected consumer of type

i with k links is given by Pr(J = j|k, ρi), which is described in (1). The probability

pseudo-generating function F i0(x, y), where i ∈ {A,B}, is given by:

F i0(x, y) =

∞∑
k=0

p(k)qi
k∑
j=0

Pr(J = j|k, ρi)xjyk−j (3)

This is a polynomial expression in x and y where the coefficient on xjyk−j is the

probability that a randomly chosen consumer of type i buys the product, given that she

has j links to consumers of the same type and k − j links to consumers of another type.

These functions are known as pseudo-generating due to the fact that for x = y = 1

they do not sum to 1. This happens since not all consumers buy the product. Actually,

F i0(1, 1) = qi, which is the probability that a randomly chosen consumer of type i buys

the product given that she is aware of it.

Using the binomial identity we can perform summation over j and the expression

reduces to the following:
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F i0(x, y) =

∞∑
k=0

p(k)qi[ρix+ (1− ρi)y]k

Note, when x = y, we obtain the same generating function as in the case when there

is only one type:

F i0(x, x) =
∞∑
k=0

p(k)qixk

This inheritance allows us to calculate a number of useful properties applying the same

techniques as in the case of nodes of one type. Taking the k-th derivative and normalizing

by the factor k!F i0(1, 1) one can recover degree distribution of consumers:

1

k!F i0(1, 1)

[(
∂

∂x

)k
F i0(x, x)

]
x=0

= p(k)

A moment of the degree distribution of order m can be calculated by deriving the

generating function m times and multiplying each time by x:

1

F i0(1, 1)

[(
x
∂

∂x

)m
F i0(x, x)

]
x=1

=
∑
k

kmp(k)

For example the average degree of consumer of type i is equal to 1
qi
∂F i0(1,1)

∂x .

Apart of the characteristics intrinsic to all random graphs we also can calculate proper-

ties tailored to a type of consumer. For example, a degree distribution of links connecting

the same type nodes for node of type i is given by:

1

k!F i0(1, 1)

[(
∂

∂x

)k
F i0(x, 1)

]
x=0

= Pr(J = j|k, ρi)× p(k)

A degree distribution of a neighbor of a randomly chosen consumer plays the important

role in the analysis to come. Note it is not the same as the degree distribution of a randomly

selected consumer, since the more links a consumer has the more often she is selected as

a neighbor. A consumer with k links is found k-times more often through friends than

a consumer with one link. Therefore, the probability to have a neighbor with k links is

proportional to kp(k). After normalization we obtain that the degree distribution of a

neighboring consumer ξ(k) is given by:

ξ(k) =
kp(k)∑∞
j=1 jp(j)

=
kp(k)

z1

Using the degree distribution of neighboring consumer we can write a generating func-

tion characterizing degree distribution of a neighboring node of consumer of type i:
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F i1(x, y) =
∞∑
k=0

ξ(k)qi[ρix+ (1− ρi)y]k =
1

z1
[ρix+ (1− ρi)y]

(
∂F i0(x, y)

∂x
+
∂F i0(x, y)

∂y

)
The important characteristic that affects the process of information diffusion or spread-

ing of a disease in the network is the excess degree of a neighboring node. That is to say

we want to find generating functions that characterize the probability that a neighboring

consumer of type i has k links apart of the link which led us to this consumer. The excess

degree distribution is given by:

ξ̂(k) = ξ(k + 1) =
(k + 1)p(k + 1)

z1
And the associated generating functions are:

F̂ i1(x, y) =

∞∑
k=0

ξ̂(k)qi[ρix+ (1− ρi)y]k

=
∞∑
k=1

ξ(k)qi[ρix+ (1− ρi)y]k−1

=
1

z1

(
∂F i0(x, y)

∂x
+
∂F i0(x, y)

∂y

)
The generating function characterizing the degree distribution of second neighbors who

buy the product is given by:

∞∑
k=0

p(k)qi[ρiF̂ i1(x, y) + (1− ρi)F̂∼i
1 (x, y)]k = F i0(F̂ i1(x, y), F̂∼i

1 (x, y)),

where ∼ i denotes the type of consumer different from type i.

Using this expression we can calculate z2, the expected number of second neighbors of

a randomly selected node. Since we are interested in the expected number of neighbors

regardless of type we put y = x. To account for all neighbors in the following calculation

we assume the probability to buy product for two types qA and qB equal to 1. This implies

that F̂ i1(x, y) = F̂∼i
1 (x, y), since now there is no difference between consumers of two types.

Applying the method described above we arrive to the expression8:

z2 =
[

1
F i0(1,1)

× x ∂
∂xF

i
0(F̂ i1(x, x))

]
x=1,qi=1

=
∞∑
k=0

kp(k)[F̂ i1(1, 1)]k−1 × ∂F̂ i1(1,1)
∂x

=
∞∑
k=0

kp(k)
∞∑
n=1

ξ(n)(n− 1)

=
∞∑
n=1

n(n− 1)p(n)

8In the case when qi = 1 for i ∈ {A,B} all generating functions evaluated at 1 are equal to 1.
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In the following analysis we assume that the underlying conditions are such that no

giant component of consumers who buy the product arises. The case of giant cascade

of sales is considered in Section 8. Let us denote by H i
1(x, y) generating functions char-

acterizing probability distribution of size of finite components of buyers, induced by an

information flow through a randomly chosen link to a consumer of type i. If the consumer

of type i does not buy the product component is empty (since the information does not

spread any further). This happens with the probability:

1−
∞∑
k=1

ξ(k)qi = 1− F̂ i1[1, 1], i ∈ {A,B}

However, with complementary probability a consumer with k contacts buys the prod-

uct and relays the information to neighbors. The further spread of information is subject to

analogous considerations for k−1 additional links and is described by F̂ i1[H i
1(x, y), H∼i

1 (x, y)].

This leads us to the following system of self-consistency conditions for H i
1(x, y):{

HA
1 (x, y) = 1− F̂A1 [1, 1] + xF̂A1 [HA

1 (x, y), HB
1 (x, y)]

HB
1 (x, y) = 1− F̂B1 [1, 1] + yF̂B1 [HA

1 (x, y), HB
1 (x, y)]

where the leading factor x and y account for the fact that the first visited consumer

buys the product.

On the basis of H i
1(x, y) we can define H i

0(x, y) generating functions of size of buyers

components generated by advertisement to a randomly chosen consumer of type i. Since

a randomly chosen consumer of type i does not buy the product with the probability

1− F i0(1, 1) we have:{
HA

0 (x, y) = 1− FA0 (1, 1) + xFA0 [HA
1 (x, y), HB

1 (x, y)]

HB
0 (x, y) = 1− FB0 (1, 1) + yFB0 [HA

1 (x, y), HB
1 (x, y)]

As we have shown before the derivative of the generating function evaluated at the point

(1, 1) gives us the first moment of a distribution. That is why the number of consumers

who eventually buy the product if we advertise it to a randomly chosen consumer of type

i is the sum H i
0x +H i

0y evaluated at the point (1, 1). Recall that in the population there

is proportion γ of consumers of type A and 1 − γ of type B. Thus if we advertise the

product to a randomly chosen consumer the expected number of purchases in vector form

is given by the expression:

s(qA, qB, ρ, γ, z1, z2) = (γ 1− γ)

(
HA

0x +HA
0y

HB
0x +HB

0y

)
Omitting further derivations to the appendix, the resulting expression is given by the

following lemma:
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Lemma 1. The expected number of consumers who buy the product if the monopolist

advertises it to a randomly chosen consumer is given by an expression:

s(qA, qB, ρ, γ, z1, z2) = (γ 1− γ)
[
I + F′0(I− F̂′1)−1

](qA
qB

)
,

where z1 and z2 are expected numbers of first and second neighbors correspondingly,

ρA = ρ, ρB = 1− γ
1−γ (1− ρ), F̂′0 =

z21
z2

F̂′1 and

F̂′1 =
z2
z1

(
qAρA qA(1− ρA)

qB(1− ρB) qBρB

)

Proof See appendix �

The first term of the expression (γ 1 − γ)I
(qA
qB

)
is the probability that a randomly

chosen consumer buys the product and transmits information further. The second term

consists of two parts. The first part (γ 1− γ)F′0 is a vector with components showing the

number of the first neighbors of type A and type B who buy the product. The second

part is the vector (I − F̂′1)−1
(qA
qB

)
with components that represent number of purchases

generated by the flow of information through a randomly chosen link to a consumer of

type A and B.

Note that as in the epidemic diffusion literature only first two moments of degree dis-

tribution z1 and z2 are relevant for the propagation of cascade of sales. This substantially

reduces the amount of information about network structure that monopolist needs to know

to make the optimal decision.

In a special case when consumers of both types have the same preferences towards the

product and buy it with the same probability q the expression of cascade of sales reduces

to well known expression of the average size of component of operational nodes9:

s(qA, qB, ρ, γ, z1, z2)|qA=qB=q = q +
q2z1

1− q(z2/z1)
In this case size of sales cascade is independent of such network characteristics as

population composition γ and homophily level ρ. This points out that for homophily to

have the impact on diffusion there should be a heterogeneity of types in terms of preferences

towards both the product and friendship relationships.

4 Main Results

We begin our analysis by establishing a condition under which the global cascade of sales

arises. With this condition in mind, we turn to the problem of the monopolist considering

9See Callaway et al. (2000)
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the case when sales are finite. We derive the optimal price and product design solving the

maximization problem in two steps. In the first step we fix the price and solve the problem

for the optimal design of the product. In the second step we allow the monopolist to re-

optimize with respect to the price. We complete our analysis by studying the implications

of homophily level for price elasticity of demand and social welfare.

4.1 Arise of the Global Cascade of Sales

A WOM marketing campaign is regarded as successful if it induces multiple sales per

advertisement. However, there are some exceptional cases when an information propa-

gates to a significant part of the population. These were the case of movie advertisement

“The Blair Witch Project” and diffusion of Hotmail accounts. In this section we identify

the condition under which the monopolist acting optimally can sell the product to non-

infinitesimal part of the population. We consider two cases, when the price is endogenous

and forms part of the decision process of the monopolist and when price is exogenous.

From Lemma 1 we know that number of buyers of the product explodes when the

denominator det(I−F̂′1) goes to 0. Thus the condition of appearance of the global cascade

of sales is:

1− qAqB
(
z2
z1

)2

(1− ρA − ρB)− z2
z1

(qAρA + qBρB) ≤ 0

In order not to favor any group of consumers in the following analysis we assume

that consumers are partitioned into two groups of equal sizes, thus consumers of type

A and B constitute half of the population. In this case the expression (2) implies that

ρA = ρB = ρ. Substituting expressions for qA and qB and incorporating assumptions we

obtain the following quadratic inequality:

w2(1− P )2
(
z2
z1

)2

(1− 2ρ)− w(1− P )2
(
z2
z1

)2

(1− 2ρ) + 1− (1− P )
z2
z1
ρ ≤ 0

In the expression, degree distribution is summarized by the ratio of expected number

of second neighbors to expected number of first neighbors. This ratio tells us how efficient

is a network in information diffusion. In particular, it shows how many second neighbors

on average become aware of the product if a consumer shares the information with one of

her first neighbor.

The following proposition summarizes the result:

Proposition 1. For endogenous price P , if z2/z1 ≥ min
{

2, ρ−1
}

there exists non empty

set E(z2/z1, ρ) such that for any (w,P ) ∈ E(z2/z1, ρ) a global cascade of sales arises.

Proof See appendix �
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In the framework of one-type nodes a paper by Molloy and Reed (1995) for the first

time derives the condition for appearance of the giant component of connected nodes,

which is z2/z1 > 1. In our case it is a necessary condition for a global cascade of sales to

occur. One can easily check that z2/z1 < 1 does not satisfy condition in Proposition 1,

since ρ ∈ [0, 1]. Intuitively, for the information to spread unboundedly, there should exist

a giant component of connected consumers upon which spreading may take place.

The condition in Proposition 1 is stronger than z2/z1 > 1 since not all consumers

buy the product and consequently relay WOM further. One can separate the condition

into two parts: z2/z1 ≥ 2 and z2/z1 ≥ ρ−1. The first part of the condition tells us that

independently of homophily level ρ, if z2/z1 is higher than 2 then a global cascade of sales

occurs. This part of the condition comes from the case when maximal spread of WOM is

attained for symmetric characteristic
(
w = 1

2

)
, which mitigates differences between nodes

and makes ρ irrelevant. Moreover, it resembles a condition from Callaway et al. (2000)

for the appearance of a giant component of operational nodes, z2/z1 ≥ 1
p , where p is a

probability that a node is operational. In our model in the case of the symmetric design

p = w = 1
2 , since all consumers buy the product with the same probability.

The second part of the condition comes from the case when ρ > 1
2 and the maximal

spread of WOM is attained when the monopolist chooses a specialized design (w ∈ {0, 1}).
In this case information propagates only via consumers of one type. To fix ideas assume

that the monopolist chooses w = 1 and thus only consumers of type A buy the product.

The expected number of first neighbors of type A is ρz1 and the expected number of

second neighbors of type A, which can be attained through type A consumers is ρ2z2.

Substituting these numbers into the condition from Molloy and Reed (1995) we obtain

z2/z1 > ρ−1, which is exactly the same as the second part of the condition in Proposition

1.

In the analysis to come we also consider a case when the price is exogenously given

and the monopolist only chooses characteristic of the product w. The following lemma

establishes condition for the global cascade of sales to occur for exogenously given price:

Lemma 2. For an exogenously given price P , if z2/z1 ≥ 1
1−P min

{
2, ρ−1

}
there exists

non-empty interval [w,w], such that for any w ∈ [w,w] a global cascade of sales arises.

Proof See appendix �

Not surprisingly, in the case of exogenous price the condition of appearance of giant

cascade of sales in the Lemma 2 is more strict, since not all consumers are willing to pay

the price P for the product.

4.2 Optimal Design

In this section we consider the problem of the monopolist who takes the price as given and

chooses the design of product to maximize profits. Without loss of generality we assume
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that a production cost of the product is zero. Thus profits are given by the product of the

price and size of sales cascade. In the case of an exogenously given price Lemma 2 implies

that there is no global cascade if z2/z1 ≤ 1
1−P min

{
2, ρ−1

}
. Thus the monopolist profits

maximization problem subject to preferences frontier is the following:

max
w

P × s(qA, qB, ρ, 1

2
, z1, z2)

s.t.: qA = (1− P )w

qB = (1− P )(1− w)

Before going to the results we develop some intuition. We already have seen the

importance of homophily level in the Lemma 2 . In the following exercise let us assume

that the society exhibits heterophily, which implies that nodes of type A are more often

connected to nodes of type B. Assume further that a consumer of type A has bought

the product. Since majority of her neighbors are of type B, a necessary condition for

further spread of the information is attractiveness of the product to consumers of type

B. However, once they buy the product, most of their neighbors are of type A and the

process reiterates. Thus we can conclude that for a sufficiently low homophily level the

optimal product design should be appealing to both groups of consumers. Assume now

that homophily is sufficiently high and consumers of both types have majority of their

links to the consumers of the same type. Would it be optimal to focus on consumers of

one type, and forget about others? The question is non-trivial, since there are components

of consumers of both types and if the monopolist focuses on one type all components of

another type will be out of reach.

The following proposition summarizes the results:

Proposition 2. For any exogenously given price P following holds:

(a) if ρ = 1
2 the function s(·) is horizontal line and all w ∈ [0, 1] are solutions to the

maximization problem.

(b) if ρ < 1
2 the function s(·) is quasi-concave and has its unique maximum at the point

w = 1
2 .

(c) if ρ > 1
2 the function s(·) is quasi-convex and its unique minimum is at the point

w = 1
2 and maxima are situated at points w ∈ {0, 1}

Proof See appendix �

The first result states that for two groups of consumers of equal sizes if ρ = 1
2 (which

for γ = 1
2 implies random mixing) the size of sales cascade is not affected by the product

characteristic w. That is why heterogeneity of consumers preferences towards the product

and towards linking both constitute key ingredients of the model.
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The Proposition 2 confirms our intuition for the case of low homophily levels and most

importantly states that the maximization problem has a threshold solution. More pre-

cisely, independently of a degree distribution and price, if ρ becomes higher than 1
2 , the op-

timal product design abruptly changes from symmetric w∗ = 1
2 to specialized w∗ ∈ {0, 1}.

The explanation is the following: when ρ is higher than 1
2 the majority of consumer’s

neighbors are of the same type as the consumer. That is why the design most attractive

for a randomly selected consumer is the one that induces the highest sales of the product

among her neighbors. The situation reiterates for every consumer that buys the product,

reinforcing the optimality of the specialized design.

The obtained result does not depend on a degree distribution or price, which makes it

easy to apply. The monopolist just needs to know whether homophily level of the society

is higher or lower than 1
2 to choose the optimal design of the product.

4.3 Demand

Incorporating the optimal design of the product into the expression for cascade of sales

from Lemma 1 we obtain the following demand function:

Q(P, ρ, z1, z2) =


1−P
2

(
1 + z1(1−P )

2−z2/z1(1−P )

)
, ρ ≤ 1

2

1−P
2

(
1 + z1(1−P )

1
ρ
−z2/z1(1−P )

)
, ρ > 1

2

Note that for ρ ≤ 1
2 the demand is independent of homophily level ρ, since in this

case the optimal design is given by the symmetric characteristic w∗ = 1
2 . The symmetric

design implies that both types of consumers buy the product with the same probability and

mixing pattern does not matter. The following proposition summarizes main properties

of the demand function:

Proposition 3. The demand is given by the function Q(P, ρ, z1, z2), which has following

properties:

(i) Q(P, ρ, z1, z2) is continuous in ρ and for ρ > 1
2 is increasing and convex in ρ.

(ii) Q(P, ρ, z1, z2) is decreasing and convex in P .

(iii) A price elasticity of demand is increasing in ρ, for ρ > 1
2 .

Proof See appendix �

The first result states that for homophily level ρ > 1
2 a classical demand (the demand

with the incorporated optimal design) increases in ρ. In Proposition 2 we have seen that

for ρ > 1
2 the optimal design is specialized with characteristic w∗ belonging to the set

{0, 1}. In this case a randomly chosen consumer has the majority of neighbors of the same

type and a further increase of homophily increases this subset. To fix ideas assume that
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w∗ = 1 and P = 0. Thus if a consumer of type A gets the information about the product

she and all her neighbors of type A acquire the product. Thus an increase in homophily

level leads to a higher number of acquisitions in the neighborhood of a type A consumer.

The obtained result differs from intuitions of McPherson (2001), which argues that

for higher homophily levels, information flows are localized and status quo of individuals

tend to be maintained. We show that when further transmission of information depends

on the adoption decision, an increase in homophily may actually produce higher spread

of information. Higher levels of homophily induce a higher correlation of consumers’

preferences making it easier for the monopolist to design a product information of which

can penetrate further in the network.

The convexity part of the result (i) comes from the fact that an increase of homophily

expands a subset of neighbors of the same type in a neighborhood of consumer. Moreover,

each consequent increase of homophily operates upon the neighborhood of a higher number

of consumers, which acquire the product. This gives rise to increasing returns in terms of

number of buyers in homophily level.

The result (ii) has a similar nature as the result of convexity of demand in ρ. A

price increase affects the decision of all consumers to acquire the product regardless of

their position in a chain of buyers. Let us consider an example when a consumer who is

situated earlier in a chain of buyers stops to acquire the product due to a price increase. In

this case the whole branch of consumers that has received information about the product

through this consumer stops to acquire the product. A further price increase has smaller

impact on the demand, since chains of buyers become shorter.

Having two previous results at hand we are equipped to understand the third one. The

result (i) implies that when ρ > 1
2 an increase in ρ leads to higher sales and awareness

of consumers about the product. Hence, a price increase affects decision of an increased

number of consumers, which translates into an increased price elasticity of demand.

4.4 Optimal Price

We have seen the solution of maximization problem with respect to the optimal design

of the product. In this subsection we relax the assumption of exogenous price and allow

the monopolist to re-optimize with respect to a price. The optimal product design is

independent of the price chosen by the monopolist, thus all results derived in the previous

sections hold for the optimal price as well. The monopolist maximizes profits and solves

the following problem with respect to price:

max
0≤P≤1

P × 1− P
2

(
1 +

z1(1− P )
1
ρ −

z2
z1

(1− P )

)
In a price setting the monopolist faces usual trade-off: an increase in the price aug-

ments profits from each unit sold, but simultaneously decreases demand for the product.
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However, in the presence of WOM communication there is an additional informational

component of the trade-off. Since a consumer spreads information about the product only

if she acquires it, a price increase lowers product awareness of consumers. The properties

of the optimal pricing strategy are summarized in the following proposition:

Proposition 4. The optimal price P ∗ for ρ ≥ 1
2 is decreasing in the homophily level,

while for ρ < 1
2 , P ∗ is independent of the homophily level. The optimal price P ∗ is always

lower than 1
2 .

Proof See appendix �

The result is a direct consequence of the fact that the price elasticity of demand is

increasing in homophily level. As we have seen in Proposition 3 for ρ > 1
2 an increase

in homophily implies that more consumers become aware about the product, and sales

increase. The monopolist by reducing the price capture a higher fraction of informed

consumers. Proposition 4 implies that the informational component outweighs an increase

of profits per purchase generated by a higher price.

4.5 Social Welfare

Our model allows to address welfare implications of the homophily in explicit manner.

A majority of the literature on homophily adopts a view that diversity of contacts is a

socially desirable property per se (e.g. Moody, 2001). Although this assertion could be

supported by evidence, no rigorous analysis has been made. A recent paper by Currarini et

al. (2009) shows that welfare implications of homophily crucially depend on the structure

of consumers preferences. In the following analysis we consider welfare implications of

homophily in the framework of our model.

A consumer surplus is given by the following expression:

CS(P ∗(ρ), ρ, z1, z2) =

∫ 1

P ∗(ρ)
Q(P, ρ, z1, z2)dP

We already have seen that for ρ ≥ 1
2 , demand is increasing in homophily, and thus

increase in ρ shifts the demand curve upwards. This happens, since more consumers

become aware about the product. At the same time an increase in the homophily level by

Proposition 4 leads to lower price. As a consequence more consumers buy the product for

lower price and thus both effects lead to an increase in consumer surplus.

A producer surplus is the area below the price of the product and marginal cost curve

(MC) of producer. In our case MC = 0, which leads to the following expression for the

producer surplus:

PS(P ∗(ρ), ρ, z1, z2) = P ∗(ρ)×Q(P ∗(ρ), ρ, z1, z2)
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Proposition 5. Both consumer surplus and monopolistic profits are increasing in the level

of homophily.

The Proposition 5 states that if information retransmission is subject to an adoption

decision then society is better-off when homophily level is high. There are two driv-

ing forces of the result. First, the optimally constructed message propagates better in

homogenous groups, which leads to an increase in awareness of consumers about the prod-

uct. Second, the price reduction is more effective in facilitating diffusion of WOM in the

case of higher homophily levels. These two effects are beneficial for both consumers and

the monopolist.

4.6 Example of Classical Random Graph

In further analysis we will often refer to a special case of network structure known as

a classical random graph. The notion of a random graph has been introduced by Paul

Erdõs and Alfréd Rényi and since then it is the most studied model of graphs. Nodes

connectivity in a random graph follows Poisson degree distribution and arises in infinite

networks, where each node creates a link to any other node in the network with a uniform

probability.

In our case probability that a randomly selected link connects two consumers of the

same type is different from the probability that it connects consumers of different types.

One can think about a network of N consumers of two types, where each consumer creates

a link to any other consumer of the same type with probability ρz1
N and to a consumer

of another type with the probability (1−ρ)z1
N . When N goes to infinity we obtain infinite

network that is characterized by two Poisson degree distributions. One for links among

consumers of the same type with the mean ρz1 and another for links among consumers of

different types with the mean (1−ρ)z1. Recall, that the sum of two Poisson variables also

follows Poisson distribution with the mean equal to the sum of means. That is why overall

connectivity of a randomly chosen node follows Poisson distribution and the network is

classical random graph with average connectivity given by z1.

In the case of Poisson degree distribution the average connectivity z1 is a sufficient

characteristic of the network, and z2 = z21 . This property allows us to study the effect of

network density on the propagation of WOM and the optimal strategies of the monopolist.

As we already have seen the optimal design of the product does not depend on a

degree distribution and is given by the expression in Proposition 2. Incorporating relation

between the expected number of first and second neighbors into the demand function we

obtain:

Q(P, ρ, z1, z2) =


1−P
2

(
1 + z1(1−P )

2−z1(1−P )

)
, ρ ≤ 1

2

1−P
2

(
1 + z1(1−P )

1
ρ
−z1(1−P )

)
, ρ > 1

2
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Note that demand is continuous and does not depend on ρ when ρ ≤ 1
2 . In the

derivation we use the demand function for the case of ρ > 1
2 . In order to get results for

the case of ρ ≤ 1
2 one needs to substitute ρ = 1

2 . Taking derivative with respect to z1 of

the demand function one can show that the denser is the network the higher is demand:

∂

∂z1
Q(P, ρ, z1, z2) =

(1− P )2ρ

2(1− (1− P )z1ρ)2
> 0

Solving maximization problem we obtain the expression for the optimal price,10,11

which is given by:

P ∗ =

 1− 2−
√
4−2z1
z1

, ρ ≤ 1
2

1− 1−
√
1−z1ρ
z1ρ

, ρ > 1
2

The derivative of the optimal price with respect to homophily level ρ is negative, the

thus optimal price is decreasing with homophily of the society:

∂P ∗

∂ρ
= −2− z1ρ− 2

√
1− z1ρ

2z1ρ2
√

1− z1ρ
< 0

To study an effect of the network density on the optimal price we derive the expression

(4.6) with respect to z1:

∂P ∗

∂z1
= −2− z1ρ− 2

√
1− z1ρ

2z21ρ
√

1− z1ρ
< 0

The derivative is negative, which implies that the optimal price P ∗ is decreasing in

both average connectivity and homophily parameter ρ.

Turning to welfare implications of homophily and using the same line of arguments as

we have outlined before one can show that an increase in z1 leads to a higher consumer

surplus. This happens since a denser network implies higher awareness of consumers about

the product. An increase in the network density also augments benefits for the monopolist

of price reduction. These both effects benefit consumers.

5 Targeted Advertisement

In the previous section we have considered the problem of the monopolist, which cannot

distinguish consumers by type. The monopolist, restricted by the anonymity assumption,

was advertising the product to a randomly chosen subset of the population. This for-

mulation is relevant for an advertisement through the mass media, when the monopolist

10In the case of Poisson degree distribution the first order condition for the optimal price when ρ > 1
2

reduces to z1ρP
2 + 2P (1− z1ρ) + z1ρ− 1 = 0.

11Condition of absence of a global cascade of sales in the case of the Poisson distribution is z1 <

min{2, ρ−1}.
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cannot control who is watching or hearing an advertisement. However, in the case of a

direct advertisement there is a possibility to target chosen group of consumers. For ex-

ample, monopolist that is interested in students’ community, can advertise a product in a

university campus, etc.

In this section we are going to relax anonymity assumption and allow the monopolist

to observe types of consumers. More precisely, we assume that the monopolist chooses a

design of the product w and proportion α of consumers of type A in the subset that is

selected for advertisement. Note, before proportion of consumers of type A which were

receiving advertisement was fixed exogenously at the level γ, which is proportion of nodes

of type A in the society. In the analytical part, for tractability of the problem, we assume

that the price P is exogenously given. Thus the maximization problem of the monopolist

becomes:

max
w,α

P × s(qA, qB, ρ, α, z1, z2)

s.t.: qA = (1− P )w

qB = (1− P )(1− w)

The expression for sales cascade s(qA, qB, ρ, α, z1, z2) can be rewritten as a linear com-

bination of number of purchases resulted from an advertisement to consumer of type A

and of type B: α × sA(qA, qB, ρ, z1, z2) + (1 − α) × sB(qA, qB, ρ, z1, z2). Given the linear

structure of the problem in terms of α it is easy to see that if qA 6= qB the optimal tar-

geting proportion has a corner solution. Namely, the solution depends whether a cascade

of sales induced by an advertisement is higher if we advertise to a consumer of type A or

of type B. In the case when qA = qB both types of consumers buy the product with the

same probability and thus all values of α on the interval [0, 1] are optimal.

Proposition 6. Targeting one type of consumers for advertisement is always the optimal

strategy for the monopolist.

Since preference frontier is symmetric, without loss of generality we assume that the

monopolist targets consumers of type A and hence α∗ = 1. Moreover, by symmetric nature

of the problem if α∗ = 1 and some w∗ is the solution then α∗ = 0 and 1−w∗ is a solution

too. For the following analysis we assume that α∗ = 1.

The maximization problem with targeted advertisement for an arbitrary degree distri-

bution quickly becomes intractable. In the following analysis we focus on the commonly

employed structure of a network given by the classical random graph.

The intuition tells us that possibility of targeting of consumers for advertisement would

unavoidably brings bias towards characteristics of the product favorable for consumers of

targeted type. The bias itself can be of two forms. The first form is that a threshold level

of homophily, which separates specialized design (w ∈ {0, 1}) and symmetric (w = 1
2)
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moves to a level lower than 1
2 . The second form is that for ρ lower than new threshold

level the optimal design belongs to the interval
(
1
2 , 1
)

instead of being symmetric. The

following proposition shows that the both types of bias are present in the case of targeted

advertisement:

Proposition 7. In the case of the Poisson degree distribution and exogenously given

price, there is a threshold level ρ̂T (z1, P ) = 3
4 +

1−
√

9−2z1(1−P )+(1−P )2z21
4(1−P )z1

, such that for

ρ ≥ ρ̂T (z1, P ) the monopolist will advertise and specialize only on one type of consumers

(α∗ = 1 and w∗ = 1). For ρ < ρ̂T (z1, P ) the optimal advertisement strategy is still α∗ = 1,

but the optimal characteristic is given by the following expression:

w∗ = ρ−
1− 2ρ−

√
(1− ρ)(1− 2ρ)(1− (1− P )z1ρ)[2 + (1− P )z1(1− 2ρ)]

(1− P )z1(1− 2ρ)
>

1

2

Proof See appendix �

The success of WOM campaign to a high extend depends on the effectiveness of the

direct advertisement in inducing initial acquisitions of the product. In order to convert

consumers of type A, who receive direct advertisement, into initial adopters the monopolist

designs the product more attractive to them. The bias in the product design persists even

when the society exhibits heterophily (ρ < 1
2).

In the case of the Poisson distribution the rise in z1 implies a higher diffusion of WOM

in the network, since there are more channels for information to spread on. In the case

when we approach the global cascade phase (z1 goes to 2(1 − P )−1) the threshold level

ρ̂T (z1, P ) goes to 1
2 and the optimal characteristic for ρ < 1

2 is w∗ = 1
2 . Thus the optimal

design becomes exactly the same as in the case of non-targeted advertisement. In this

case the monopolist optimally sacrifices some initial adopters, and design the product in

a way that WOM can penetrate further in the network.

The result implies that when we approach the global cascade phase the option to target

advertisement to some group of consumers does not influence neither the optimal design

of the product nor the demand. We regard this result as indication of robustness of the

optimal design strategy that we obtained in our base-line model.

6 Non-Linear Shape of the Preference Frontier

The previous analysis develops results for the case of a linear preference frontier. However,

one can think about many examples where a relationship between acquisition probabilities

for two groups of consumer is not linear. These situations occur when attractiveness of the

product for two types of consumers varies non-linearly in a characteristic. For example,

longer guarantee on the product is attractive for both types, while red color of the product
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may be very welcome by one group of consumers and be unattractive for an another. In

this situations the shape of the frontier can vary from concave to convex depending on a

product in question.

In this section we want to address the robustness of obtained results to a change in

curvature of the preference frontier that the monopolist faces. We consider CES functional

form of the preference frontier, which allows to model variety of shapes. Thus probabilities

to buy the product for two types of consumers are related in the following manner:

(
qA
)r

+
(
qB
)r

= (1− P )r

By varying the parameter r we can obtain shapes of the preferences frontier that

include a bend inward circle (r = 0.562), a linear function (r = 1), a bend outward circle

(r = 2) and everything in between.

6.1 Arise of the Global Cascade of Sales

Similarly to analysis in the case of a linear frontier it is important to establish conditions

under which a global cascade of sales occurs. An essential parameter for appearance of

the global cascade of sales is r, the degree of curvature. For example, if r goes to ∞, as

we know from properties of CES function, the frontier becomes a step function and the

best design of the product is w = 1 which implies qA = qB = 1 − P . In this case two

types of consumers are fully satisfied with a product design and thus effectively there is

only one type of consumers. The condition for appearance of global cascade in this case

is well known from the networks literature, namely z2
z1
≥ 1

1−P .

For arbitrary values of r the condition of existence of a global cascade is given by the

following inequality:

1− (1− P )2w(1− wr)
1
r

(
z2
z1

)2

(1− 2ρ)− (1− P )
(
w + (1− wr)

1
r

) z2
z1
ρ ≤ 0

Due to an arbitrary power of the polynomial equation it is impossible to solve it

analytically, however we can identify a broad set of parameters such that a global cascade

of sales occurs. The results are summarized in the following proposition:

Proposition 8. In the case of CES preference frontier with a curvature parameter r,

global cascade of sales arises if z2/z1 > 2
1
r or ρ > ρ̂NL(z2/z1, r, P ), where

ρ̂NL(z2/z1, r, P ) = min
0≤w≤1

1−w(z2/z1)2(1−P )2(1−wr)
1
r

(1−P )(z2/z1)
(
w+(1−wr)

1
r (1−2w(z2/z1)(1−P ))

) .

Proof See appendix �
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6.2 Problem of the Monopolist

The subsection consists of two parts: analytical and numerical. In the analytical part we

focus on the case of an exogenous price and Poisson degree distribution and find conditions

such that symmetric and specialized designs are solutions to the maximization problem.

In the second part we endogenize a price and solve monopolist problem numerically for

an arbitrary degree distribution.

Similarly to the analysis in Section 5 we assume that the degree distribution is Poisson

and price is given exogenously. The monopolist faces a non-linear preferences frontier and

chooses design of the product to maximize profits. The monopolist solves the following

maximization problem:

max
w

P × s(qA, qB, ρ, 1

2
, z1, z2)

s.t.: qA = (1− P )w

qB = (1− P )(1− wr)
1
r

We identify homophily level such that symmetric and specialized designs are solutions.

The results are summarized by the following proposition:

Proposition 9. For an exogenous price and Poisson degree distribution following holds:

(a) For r ≤ 1 there is ρ̂NL(r, P, z1) = 1
2 −

2
1
r−2

2z1(1−P ) such that the optimal design is sym-

metric w∗ =
(
1
2

) 1
r if ρ < ρ̂NL(r, P, z1) and otherwise the optimal design is specialized

w∗ ∈ {0, 1}.

(b) For r > 1 the optimal design is symmetric w∗ =
(
1
2

) 1
r if ρ < ρ̂NL(r, P, z1) otherwise

the optimal design belongs to the interval
((

1
2

) 1
r , 1

)
.

Proof See appendix �

The Proposition 9 states that the optimal design has similar structure as in the case

of linear preferences frontier. More precisely, for bend inwards frontier (r ≤ 1) only

symmetric and specialized designs are optimal. They are separated by new threshold

value ρ̂NL(r, P, z1). For bend outwards frontier (r > 1) and sufficiently low levels of ρ,

symmetric design is optimal. However for high levels of ρ the solution gradually changes

from the symmetric to specialized.

In the case of bend outward shape of the frontier (r > 1) the optimal design is biased

towards the symmetric design. The explanation is following: while the corner solutions

are still as attractive as they were in the problem with r = 1 (endpoints are fixed), the

symmetric solution becomes more appealing. This happens since in the case of r > 1

by moving to the center of symmetry from qA = 1 we are gaining more of qB, while
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Figure 3: Diagram depicts a solution for the case of scale free distribution with pdf

Ck−3.34, where C is normalizing constant. In this case z1 = 1.23 and z2 = 1.77. Areas

represent: symmetric solution (blue), asymmetric (light yellow), specialized (yellow) and

area where a global cascade arises (red).

sacrificing the same amount of qA as compared to the linear case. For the case when r < 1

the situation is reversed.

The threshold level of homophily ρ̂NL(r, P, z1) is increasing in z1. Thus the denser

is a network the more appealing becomes the symmetric design. The intuition is the

same as for the case of targeted advertisement. Dense network implies higher diffusion of

information and to penetrate further the product should be appealing for both types.

To check robustness of the obtained result we consider a numerical solution of the

problem for the case of a scale free distribution. Figure 3 shows a diagram of the structure

of the solution. One can see from the diagram that for r < 1 we have similar results as

in a linear case. Namely, there is the threshold level of ρ̂NL(r, z1, z2, P ) such that for ρ <

ρ̂NL(r, z1, z2, P ) the optimal solution is symmetric and for values of ρ > ρ̂NL(r, z1, z2, P )

the solution is specialized. In the case of r > 1 a structure stays the same but after

ρ = ρ̂NL(r, z1, z2, P ) the solution gradually changes from symmetric to some intermediate

value, which lies in the interval
((

1
2

) 1
r , 1

)
.

7 Targeting One Type of Consumers

In this section we address the problem of monopolist who has an interest only in one type

of consumers, for concreteness lets assume that this is type B. This situation could arise

if the monopolist believes that consumers differ in their post purchasing behavior. For

example, once a consumer of type B buys the product she becomes a customer loyal to

the brand and continue to make purchases of the same brand, while consumers of type
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Figure 4: The optimal design when z1 = 1.7, z2 = 2. Figure (a) for the case of γ = 1
2 ,

figure (b) for the case of γ = 0.8

A may be accidental buyers. For the sake of simplicity we assume that the monopolist

completely ignores consumers of type A. Assume further that the monopolist maximizes

awareness of the brand and chooses price equal to 0. The main question is than: what is

the optimal product design such that maximizes a number of purchases by consumers of

type B?

The first guess could be that the monopolist should completely forget about consumers

of type A and design a product as attractive as possible to consumers of type B. The first

guess, however, turns out to be wrong for broad set of parameters. Assume for example

that homophily level of the society is low, which implies that consumers of type B are

mostly connected to consumers of type A. Hence, to spread, the information should be

able to pass through consumers of type A. A Figure 4a illustrates the optimal product

design for the case of groups of consumers of equal size (γ = 1
2) and z1 = 1.7 and z2 = 2.

Note that for ρ ∈ [0, 0.39] the optimal design is such that there is a non zero probability

for consumers of type A to buy the product. The result requires low levels of homophily

and actually implies heterophily of the society. We already have seen similar answer in

the case when the monopolist profits from both types of consumers.

Probably, the more surprising result is that although society exhibits homophily it may

be optimal to make a product attractive for consumers of type A. The only requirement

is that the proportion of consumers of type A in the society should be sufficiently high.

A Figure 4b illustrates the optimal product design for the case when consumers of type

A constitute 80% of the population (γ = 0.8) and the expected number of neighbors are

as before z1 = 1.7 and z2 = 2. Note that ρ ∈ [0.8, 1] implies that the society exhibits ho-

mophily and there is a range of ρ ∈ [0.8, 0.81] such that the optimal product characteristic

w is not zero. Another surprising feature of the result is that for a sufficiently small ρ it

is optimal to construct the product more attractive to consumers of type A than B.
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8 Global Cascade Phase

In previous sections we have seen what happens when WOM marketing campaign does

not trigger a global cascade of sales. This is the case for a majority of WOM campaigns.

However, WOM campaigns such as diffusion of Hotmail accounts and “The Blair Witch

Project” (tiny budget movie) were so successful that a considerable fraction of the popu-

lation became aware of the product. In this cases we can no longer apply techniques from

the previous analysis.

So let us assume that conditions are such that a global cascade of sales arises, by

Lemma 2 this happens when z2
z1

> 1
1−P min{2, ρ−1}. To determine the fraction of the

population that buys the product we turn back to generating functions. However instead

of looking on the distribution of sizes of cascades we would like to estimate a fractional

size of a global cascade. Assume that by following randomly chosen link we arrive to a

consumer of type i. Lets denote by ui the probability that this consumer does not buy

the product. This happens if a consumer does not like the product or price, which occurs

with the probability 1− qi or if she likes it, but has not heard about it. We can write the

system of self-consistency conditions for ui as the following:

uA = 1− qA + qA
∞∑
k=1

ξ(k)
[
ρAuA + (1− ρA)uB

]k−1
uB = 1− qB + qB

∞∑
k=1

ξ(k)
[
ρBuB + (1− ρB)uA

]k−1
In terms of generating functions system is:

uA = 1− F̂A1 (1, 1) + F̂A1 (uA, uB)

uB = 1− F̂B1 (1, 1) + F̂B1 (uA, uB)

Having at hand uA and uB we can find probabilities that a randomly chosen consumer

of type i does not form a part of a global cascade. These probabilities are different from uA

and uB, due to the difference of degree distributions of a randomly selected and neighboring

node. Note that the probability that a randomly chosen consumer does not have links to

a giant component of buyers is equal to F i0(uA, uB). Thus a randomly selected consumer

does not buy the product with the probabilities:

vA = 1− FA0 (1, 1) + FA0 (uA, uB)

vB = 1− FB0 (1, 1) + FB0 (uA, uB)

Calculating the linear combination with weights equal to proportions of consumer of

type A and B in the society and subtracting from 1 we obtain the probability that a

randomly selected consumer belongs to a giant component:

s = 1−γvA−(1−γ)vB = γFA0 (1, 1)+(1−γ)FB0 (1, 1)−γFA0 (uA, uB)−(1−γ)FB0 (uA, uB),
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where

uA = 1− F̂A1 (1, 1) + F̂A1 (uA, uB)

uB = 1− F̂B1 (1, 1) + F̂B1 (uA, uB)

γ(1− ρA) = (1− γ)(1− ρB)

Note that the last expression insures that a number of links going from consumers of

type A to consumers of type B equals to the number of links going from consumers of

type B to consumers of type A. Since we choose γ, ρA and ρB exogenously we can assume

that the condition holds.

As in the previous analysis we assume that there are equal proportions of consumers

of type A and type B in the population (γ = 1
2). This in turn implies that ρA = ρB = ρ

and the maximization problem of monopolist is summarized by the following lemma:

Lemma 3. For two groups of equal sizes the maximization problem of monopolist becomes:

max
qA,qB

1

2

(
qA[1−G0(x)] + qB[1−G0(y)]

)
s.t.: x = 1− ρqA[1− Ĝ1(x)]− (1− ρ)qB[1− Ĝ1(y)]

y = 1− (1− ρ)qA[1− Ĝ1(x)]− ρqB[1− Ĝ1(y)]

0 ≤ qA, qB, x, y ≤ 1

where x = ρAuA + (1 − ρA)uB is the probability that a randomly chosen link of a

consumer of type A leads to a giant component of buyers and y = ρBuB + (1 − ρB)uA

is the same for consumers of type B. In addition G0(x) =
∑∞

k=0 p(k)xk and Ĝ1(x) =∑∞
k=0 ξ(k)xk−1. Proof See appendix �

Assuming a linear preferences frontier, qA = (1 − P )w and qB = (1 − P )(1 − w) the

maximization problem becomes:

max
w

1− P
2

[1− wG0(x)− (1− w)G0(y)]

s.t.: x = 1− (1− P )
(
ρw[1− Ĝ1(x)] + (1− ρ)(1− w)[1− Ĝ1(y)]

)
y = 1− (1− P )

(
(1− ρ)w[1− Ĝ1(x)] + ρ(1− w)[1− Ĝ1(y)]

)
0 ≤ w, x, y ≤ 1

A solution to the maximization problem is characterized by the following proposition:

Proposition 10. In the case when population is divided into two equally sized groups,

γ = 1
2 , for any degree distribution following hold:
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• For ρ < 1
2 , w = 1

2 is a local maximum, which gives higher profits than w ∈ {0, 1}.

• For ρ > 1
2 , w = {0, 1} are local maxima, which give higher profits than w = 1

2 .

• For ρ = 1
2 , the interval [0, 1] is the solution to the problem.

The Proposition 10 indicates that the optimal design of the product has the same

structural form as in the case where there is no global cascade of sales.

9 Conclusion

The importance of a word of mouth communication for a company’s performance is well

documented by a growing number of research. However, success of a WOM marketing

campaign varies enormously between product categories and within. We show that a high

variation in the performance of WOM campaigns can be explained by different homophily

levels of a consumer network towards different products.

A key innovation of our paper is two-fold. First, we enrich a network structure by

incorporating notion of homophily and study its impact on the optimal strategies of the

monopolist. Second, the monopolist is allowed to construct a message to the network

by choosing the design of product. We found a number of results: (i) for low levels

of homophily the product, designed to attract both types of consumers is preferred to

specialized products, even if there is no cost of producing more than one product; (ii) a

price elasticity of demand is higher for products towards, which consumer network exhibits

higher levels of homophily; (iii) a social welfare is increasing in homophily level; and (iv) a

product designed to attract two types of consumers may be optimal even if the monopolist

benefits only from one type.

Flexibility of the model allows us to outline several avenues for future research. The

first one consists in introduction of influencers, consumers whose opinion affect opinion of

many others. In the extension we want to match two observations: influencers on average

enjoy higher average degree and their proportion in the population is small. The extension

aimed to study the impact of homophily on information spreading in a network of “hub-

and-spoke” type and the effect of presence of hubs on the optimal design of the product

and price. In the case when society exhibits homophily influencers will be linked among

themselves and will constitute core with access to a large share of consumers.

In the second extension we want to consider the optimal strategy for an entrant who

faces presence of an incumbent firm on a market. We assume that a product is durable

and consumer buys it only once. Hence, the optimal strategies for the monopolist that we

have studied in the paper are optimal for incumbent firm as well. We want to study how

homophily affects the optimal product design for the entrant and its effect on a variety of

products that are produced. Finally, we plan to compare predictions of the model with

observations from real markets.
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10 APPENDIX

Proof of Lemma 1

Let us find first what is the number of consumers of type A that buy the product if

we advertise it to consumer of type A. The answer is:

∂

∂x
HA

0 (x, y)

∣∣∣∣
x=1,y=1

= HA
0x(1, 1)

With abuse of notation we assume that all function are being evaluated at point (1, 1):

HA
0x = FA0 + FA0xH

A
1x + FA0yH

B
1x

We can find H i
1x by solving linear system of self-consistency conditions:{

HA
1x = F̂A1 + F̂A1xH

A
1x + F̂A1yH

B
1x

HB
1x = F̂B1xH

A
1x + F̂B1yH

B
1x

In vector form: (
1− F̂A1x −F̂A1y
−F̂B1x 1− F̂B1y

)(
HA

1x

HB
1x

)
=

(
F̂A1
0

)
or in more compact way

(
I− F̂′1

)(HA
1x

HB
1x

)
=

(
F̂A1
0

)
,

where F̂ i1 =
∞∑
k=1

ξ(k)qik and

F̂′1 =

(
F̂A1x F̂A1y
F̂B1x F̂B1y

)
=

∞∑
k=1

ξ(k)(k − 1)

(
qAk ρ

A qAk (1− ρA)

qBk (1− ρB) qBk ρ
B

)
The number of consumers of type A who buy the product if consumer of type i finds

out about the product from one of her friends H i
1x goes to infinity when determinant of

the matrix I− F̂′1 goes to zero:

∆ = det

(
1− F̂A1x −F̂A1y
−F̂B1x 1− F̂B1y

)
The system has following solution:(

HA
1x

HB
1x

)
= (I− F̂′1)−1

(
F̂A1
0

)
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Thus we can find the number of consumers of type A who buy the product if consumer

of type A receives direct advertisement:

HA
0x = FA0 + (FA0x F

A
0y)

(
HA

1x

HB
1x

)
= FA0 + (FA0x F

A
0y)(I− F̂′1)−1

(
F̂A1
0

)
By doing analogous calculations we can get:

HB
0x = (FB0x F

B
0y)

(
HA

1x

HB
1x

)
= (FB0x F

B
0y)(I− F̂′1)−1

(
F̂A1
0

)

HA
0y = (FA0x F

A
0y)

(
HA

1y

HB
1y

)
= (FA0x F

A
0y)(I− F̂′1)−1

(
0

F̂B1

)

HB
0y = FB0 + (FB0x F

B
0y)

(
HA

1y

HB
1y

)
= FB0 + (FB0x F

B
0y)(I− F̂′1)−1

(
0

F̂B1

)
The total number of purchases resulted from direct advertisement to a consumer of

type A is following:

HA
0x +HA

0y = FA0 + (FA0x F
A
0y)(I− F̂′1)−1

(
F̂A1
0

)
+ (FA0x F

A
0y)(I− F̂′1)−1

(
0

F̂B1

)
=

= FA0 + (FA0x F
A
0y)(I− F̂′1)−1

(
F̂A1
F̂B1

)
If the monopolist advertises the product to consumer of type B:

HB
0x +HB

0y = FB0 + (FB0x F
B
0y)(I− F̂′1)−1

(
F̂A1
F̂B1

)
Let us define:

F ′0 =

(
FA0x FA0y
FB0x FB0y

)
=

∞∑
k=1

kp(k)

(
qAk ρ

A qAk (1− ρA)

qBk (1− ρB) qBk ρ
B

)
The resulting number of purchases resulting from advertisement to consumers of type

A and B in vector form is:

s =

(
HA

0x +HA
0y

HB
0x +HB

0y

)
=

(
FA0
FB0

)
+ F′0(I− F̂′1)−1

(
F̂A1
F̂B1

)
Thus the number of purchases resulting from advertisement to a randomly drawn

consumer is:
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s = (γ 1− γ)s = (γ 1− γ)

[(
FA0
FB0

)
+ F′0(I− F̂′1)−1

(
F̂A1
F̂B1

)]
Assuming that the probability to purchase the product does not depend on the number

of neighbors that consumer has, namely qAk = qA and qBk = qB we obtain:

s = (γ 1− γ)s = (γ 1− γ)
[
I + F′0(I− F̂′1)−1

](qA
qB

)
Note that expression depends on the linear combination of probability to infect initial

node (γ 1− γ)
(qA
qB

)
and (γ 1− γ)

(
I− F̂′1

)−1 (qA
qB

)
which is number of infected nodes if we

follow randomly chosen link, with weight given buy
z21
z2

.

Proof of Proposition 1

The global cascade of sales arises when inequality holds:

w2(1− P )2
(
z2
z1

)2

(1− 2ρ)− w(1− P )2
(
z2
z1

)2

(1− 2ρ) + 1− (1− P )
z2
z1
ρ ≤ 0

We want to identify a condition such that there exists characteristic of the product w

which satisfies the inequality and hence the global cascade of sales may arise. To this end

we find the minimum of the expression and check when it is less than zero. A derivative

of the expression with respect to w is −(1 − P )2(z2/z1)
2(1 − 2ρ)(1 − 2w). Note that if

ρ < 1
2 coefficient of the term w2 is positive and thus we have upward sloping parabola.

In this case function has its minimum at the point w = 1
2 . Substituting to the expression

and taking positive root we obtain a condition z2/z1 > 2(1 − P )−1. On the other hand,

if ρ > 1
2 we have downward parabola with maximum at w = 1

2 and minima on the ends

of the interval [0, 1], which implies that we have cascade if ρ > z1
z2(1−P ) . Combining both

parts we arrive to the following condition: z2
z1
> 1

(1−P ) min{2, ρ−1}.
Note that the condition on network structure becomes less restrictive when price de-

creases. Thus if price is a part of decision process the monopolist can achieve highest

diffusion when P = 0 and condition becomes z2
z1
> min{2, ρ−1}.

Proof of Proposition 2

Substituting constraints to the objective function and deriving with respect to w we

find:

(1− P )2
z41(1− 2w)(1− 2ρ)(2z1 + z2(1− P )(1− 2ρ))

2(z21 − z1z2ρ(1− P )− wz22(1− P )2(1− w)(1− 2ρ))2
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A denominator of the condition is always positive and thus sign depends on the nu-

merator. Recall that we assume that we are in sub-critical phase with z2
z1
< 2(1 − P )−1

and thus term 2z1 + z2(1 − P )(1 − 2ρ) is always positive. The sign of the condition de-

pends exclusively on values of ρ and w. Namely if ρ < 1
2 derivative is positive for w < 1

2

and negative afterwards. Thus, we can conclude that for ρ < 1
2 objective function has

unique maximum at the point w = 1
2 . In the case when ρ > 1

2 results are reversed and the

objective function has its minimum at a point w = 1
2 and maxima lie on the boundaries,

namely w∗ ∈ {0, 1}. If ρ = 1
2 all interval [0, 1] satisfies first order condition.

Proof of Proposition 3

We analyze the second part of the functional form of demand. Results for the first

part can be obtained by substituting ρ = 1
2 . The demand is decreasing and convex in P :

∂

∂P
Q(P, ρ, z1, z2) = −1

2

(
1 +

(1− P )z21ρ(2z1 − z2(1− P )ρ)

(z1 − (1− P )z2ρ)2

)
< 0

The second derivative:

∂2

∂P 2
Q(P, ρ, z1, z2) =

z41ρ

(z1 − (1− P )z2ρ)3
> 0

It is positive since by condition of no global cascade from Lemma 2 we know that

z1 > (1 − P )z2ρ. Moreover cross derivative of Q(P, ρ, z1, z2) with respect to P and ρ is

− (1−P )z41
(z1−(1−P )z2ρ)3

, which is negative.

Lets turn to the elasticity of demand:

Ed =
∂P logQ(P, ρ, z1, z2)

∂P logP

= − P

1− P

(
1 + z1

(
1

z1 − (1− P )z2ρ
− 1

z1 + (1− P )(z12 − z2)ρ

))
Taking derivative of |Ed| with respect to ρ we obtain:

∂

∂ρ
|Ed| =

z31z2P (1− P )2(z12 − z2)ρ2 + z51P

(z1− (1− P )z2ρ)2(z1 − (1− P )z2ρ+ z21ρ(1− P ))2
> 0

Which implies that elasticity of demand is increasing in ρ.

∂

∂ρ
s∗(P, ρ, z1, z2) =

(1− P )2z31
2(z1 − (1− P )z2ρ)2

> 0

Thus for ρ > 1
2 function is increasing in ρ.
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Proof of Proposition 4

Price is decreasing in the homophily level

The first order condition for P is:

(1− 2P )z21 − (1− P )z1[(1− P )z2 + (1− 3P )(z2 − z21)]ρ

2(z1 − (1− P )z2ρ)2
−

−(1− P )2(1− 2P )(z21 − z2)z2ρ2

2(z1 − (1− P )z2ρ)2
= 0

Let us fix expected number of friends z1 and z2 and call the expression on the left hand

side F (P, ρ). The second derivative of F (P, ρ) with respect to P is:

F ′′P (P, ρ) =
3z41ρ(z1 − z2ρ)

(z1 − (1− P )z2ρ)4
> 0

It is positive since by conditions of no giant component we have z1 > z2ρ. Thus function

is convex. Evaluating function on the ends of the interval we have F (0, ρ) =
z1+z21ρ−z2ρ
2(z1−z2ρ) > 0

and F (1, ρ) = −1
2 . The first derivative with respect to P is negative at 0:

F ′P (0, ρ) = −1− z21ρ(2z1 − z2ρ)

(z1 − z2ρ)2
< 0

If F (P, ρ) is convex in P , positive at 0 and negative at 1, we can conclude that function

should intersect x-axis from above on the interval [0, 1]. Hence, the derivative of the F (P, ρ)

evaluated for the optimal price P = P ∗ is negative, ∂
∂P F (P ∗, ρ) < 0.

Moreover F (12 , ρ) =
z31ρ

2(2z1−z2ρ)2 > 0, which implies that the optimal price is always less

than 1
2 . The derivative with respect to ρ is:

F ′ρ(P, ρ) = −
(1− P )z31

[
(1− P )2z2ρ− (1− 3P )z1

]
2(z1 − (1− P )z2ρ)3

The sign of the derivative depends on the sign of the term in square brackets. Thus

taking into account that P > 0 the derivative is negative if P > P̄ = 1− 3z1
2z2ρ

+

√
9z21−8z1z2ρ

2z2ρ
.

One can check that F (P̄ , ρ) > 0. The fact that F (P, ρ) intersects x-axes from above,

implies that P ∗ > P̄ and thus the derivative is negative.

By implicit function theorem we know:

∂P ∗

∂ρ
= −

∂
∂ρF (P, ρ)

∂
∂P F (P, ρ)

∣∣∣∣∣
P=P ∗

Taking into account that F ′P (P ∗, ρ) < 0 and F ′ρ(P
∗, ρ) < 0 we can conclude that ∂P ∗

∂ρ

is negative and consequently the optimal price P ∗ is decreasing in ρ.
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Profits are increasing in the level of homophily

Lets take two levels of homophily ρ2 > ρ1. By the Proposition 3 we know that for any

fixed price P following holds Q(P, ρ2, z1, z2) > Q(P, ρ1, z1, z2). Thus for any given price P

the same is true for profits, namely PQ(P, ρ2, z1, z2) > PQ(P, ρ1, z1, z2). Assume further

that P ∗1 is optimal price for ρ1. The previous result states that π(ρ2, P
∗
1 ) > π(ρ1, P

∗
1 ) and

thus by optimality we know that π(ρ2, P
∗
2 ) > π(ρ2, P

∗
1 ) > π(ρ1, P

∗
1 ), where P ∗2 is optimal

price for ρ2.

Proof of Proposition 7

A derivative of sales function with respect to product characteristic is given by:

s′(w) = (1− P )×

×1 + z1(1− P )(1− 3ρ− (1− 2ρ)[w2(1− P )z1 + 2w(1− ρ(1− P )z1) + ρ(1− P )z1])

(1− wz21(1− P )2(1− 2ρ)(1− w)− z1ρ(1− P ))2

Note that the denominator is always positive. It is easy to verify that for ρ > 1
2 all

terms in the numerator involving w are positive too. Thus if we prove that s′(0) > 0 then

the derivative of sales function with respect to w is positive on the whole interval [0, 1] and

we can conclude that the optimal design is w∗ = 1. Substituting w = 0 into the derivative

and taking into account that z1 <
1

ρ(1−P ) we have:

s′(0) =
1 + (1− P )z1(1− 2ρ)

1− (1− P )z1ρ
= 1 +

(1− P )z1(1− ρ)

1− (1− P )z1ρ
> 0

Thus for ρ > 1
2 characteristic w∗ = 1 is the solution to the problem.

When ρ < 1
2 then all terms involving w are negative and numerator is decreasing

function in w. Thus numerator has its minimum at w = 1 and condition for s′(w) > 0 on

the interval w ∈ [0, 1] is simply s′(1) > 0. This in turn implies that if w∗ = 1 is maximum

it is also the global maximum. The derivative at 1 is greater than zero if:

−2(1− P )2z21ρ
2 + z1(1− P + 3(1− P )2z1)ρ+ 1− (1− P )z1 − (1− P )2z21 > 0

An expression on the left describes downward sloping parabola. The solution is:

ρ1 =
3

4
+

1−
√

9− 2z1(1− P ) + (1− P )2z12

4(1− P )z1

ρ2 =
3

4
+

1 +
√

9− 2z1(1− P ) + (1− P )2z12

4(1− P )z1
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It can be shown that ρ2 > 1 and thus condition reduces to:

3

4
+

1−
√

9− 2z1(1− P ) + (1− P )2z12

4(1− P )z1
< ρ <

1

2

Combining the previous condition with the case of ρ > 1
2 , we know that w∗ = 1 is

solution if:

ρ > ρ̂T (z1, P ) =
3

4
+

1−
√

9− 2z1(1− P ) + (1− P )2z12

4(1− P )z1

On the other hand for ρ < ρ̂T (z1, P ) there is an interior solution which is given by:

w∗ = ρ−
1− 2ρ−

√
(1− ρ)(1− 2ρ)(1− (1− P )z1ρ)[2 + (1− P )z1(1− 2ρ)]

(1− P )z1(1− 2ρ)

It is interesting to note that w = 1
2 is never solution for ρ < 1

2 since s′(12) =
4(1−P )

(2−(1−P )z1)(2+(1−P )z1(1−2ρ)) > 0, which implies that w∗ > 1
2 .

Proof of Proposition 8

Lets denote by θ = z2
z1

and by λ(w) the following polynom:

λ(w) = 1− (1− P )2w(1− wr)
1
r θ2(1− 2ρ)− (1− P )

(
w + (1− wr)

1
r

)
θρ

The global cascade of sales occurs if there is w̄ such that λ(w̄) ≤ 0. One can readily

obtain condition for ρ. We just need to take the derivative with respect to ρ and to show

that it is negative. Thus there is the global cascade of sales if ρ > ρ̂(θ, r), where

ρ̂(θ, r) = min
0≤w≤1

1− wθ2(1− P )2(1− wr)
1
r

(1− P )θ
(
w + (1− wr)

1
r (1− 2wθ(1− P ))

)
From the previous analysis we know that candidates for maxima are extreme values

and such that qA = qB, which in our case is
(
1
2

) 1
r . Evaluating polynomial at 0 we have

λ(0) = 1− (1− P )θρ and at the point
(
1
2

) 1
r we have:

λ
(

2−
1
r

)
= 4−

1
r (2

1
r − (1− P )θ)

[
2

1
r + (1− P )θ(1− 2ρ)

]
From the first condition we can conclude that if ρ > 1

θ then there is global cascade.

From the second we see that if θ > 2
1
r (1 − P )−1 and ρ < ρ̂ = 1

2 + 2
1
r

2θ(1−P ) then global

cascade of sales arises. Lets consider a case when θ > 2
1
r (1− P )−1, but ρ < 1

2 + 2
1
r

2θ(1−P ) .
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From the first condition we know that there is global cascade if ρ > 1
θ(1−P ) thus to insure

existence of the global cascade we should prove that 1
2 + 2

1
r

2θ(1−P ) >
1

θ(1−P ) .

1

2
(1− P ) + 2

1−r
r θ−1 > θ−1

1

2
(1− P ) > θ−1

(
1− 2

1−r
r

)
θ > (1− P )−1

(
2− 2

1
r

)
θ > 2

1
r (1− P )−1

(
2
r−1
r − 1

)
There is the global cascade if the former condition holds. However, we have assumed

that θ > 2
1
r (1 − P )−1, which implies that former condition holds, since

(
2
r−1
r − 1

)
< 1.

Thus we have shown that if θ > 2
1
r there is global cascade independently of the homophily

level ρ.

Proof of Proposition 9

For the case of Poisson degree distribution size of sales cascade is given by:

s(w,P, r, z1) =
(1− P )(w + (1− wr)

1
r (1 + 2wz1(1− P )(1− 2ρ)))

2(1− (1− P )z1(wρ+ (1− wr)
1
r (ρ+ wz1(1− P )(1− 2ρ))))

The product characteristic w∗ = 0 is global maximum if for any w, s(0) ≥ s(w):

1− P
2(1− z1ρ(1− P ))

≥ (1− P )(w + (1− wr)
1
r (1 + 2wz1(1− P )(1− 2ρ)))

2(1− (1− P )z1(wρ+ (1− wr)
1
r (ρ+ wz1(1− P )(1− 2ρ))))

since 1− P ≥ 0 by definition, we have

1

2(1− z1ρ(1− P ))
− (w + (1− wr)

1
r (1 + 2wz1(1− P )(1− 2ρ)))

2(1− (1− P )z1(wρ+ (1− wr)
1
r (ρ+ wz1(1− P )(1− 2ρ))))

≥ 0

Note further that denominators of two fractions are positive due to condition of no

global cascade, thus the sign of the expression depends on the numerator of combined

terms, which is:
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−4(1− P )2w(1− wr)
1
r z21ρ

2 + 4(1− P )w(1− wr)
1
r z1(1 + (1− P )z1)ρ+

+1− w − (1− wr)
1
r (1 + (1− P )wz1(2 + (1− P )z1)) ≥ 0

Note that expression describes downward sloping parabola and thus our condition will

be in the form ρ1 ≤ ρ ≤ ρ2, where ρ1 and ρ2 are solutions to the quadratic equation:

ρ1 =
1

2
+

1

2

 1

z1(1− P )
− 1

z1(1− P )

√√√√(1− w)(1− (1− wr)
1
r )

w(1− wr)
1
r



ρ2 =
1

2
+

1

2

 1

z1(1− P )
+

1

z1(1− P )

√√√√(1− w)(1− (1− wr)
1
r )

w(1− wr)
1
r


The condition should hold for all w and thus we should find the maximum of ρ1 and

the minimum of ρ2. In order to do this we should identify maximum and minimum of the

term with w. Taking derivative of this term with respect to w we have:

−
(1− wr)−

1+r
r

[
(1− 2wr) +

(
wr+1 − (1− wr)

1+r
r

)]
w2

Independently of r one can see that first derivative is zero at the point w =
(
1
2

) 1
r . It

can be proved that for r < 1, − (1− 2wr)−
(
wr+1 − (1− wr)

1+r
r

)
is negative for w <

(
1
2

) 1
r

and positive afterwards, which implies that minimum is at w =
(
1
2

) 1
r and maxima lay at

borders.

Substituting back values of w into condition for ρ we obtain:

1

2
− 2

1
r − 2

2z1(1− P )
< ρ <

1

2
+

2
1
r

2z1(1− P )

Since z1 ≤ 2
1
r the minimum of last term is 1. Taking it into account we can rewrite

the condition as:

1

2
− 2

1
r − 2

2z1(1− P )
< ρ < 1

On the other hand for r > 1, one can show that w∗ = 0 is never a solution. Lets

evaluate derivative of sales at w = 0 for the case when r > 1 we have:

∂s

∂w

∣∣∣∣
w=0

=
(1− P )(1 + (1− P )z1(1− 2ρ))2

2(1− (1− P )z1ρ])2
> 0

42



It is always positive which implies that w∗ = 0 is never solution for r > 1.

The symmetric design w =
(
1
2

) 1
r is global maximum if for any w, s

((
1
2

) 1
r

)
≥ s(w):

1− P
2

1
r − (1− P )z1

≥ (1− P )(w + (1− wr)
1
r (1 + 2wz1(1− P )(1− 2ρ)))

2(1− (1− P )z1(wρ+ (1− wr)
1
r (ρ+ wz1(1− P )(1− 2ρ))))

The denominators are positive due to no global cascade condition and thus sign of the

expression depends on the numerator of combined fraction, which is:

−2(1− P )(w + (1− 2
1+r
r w)(1− wr)

1
r )z1ρ+ 2− (2− 2wr)

1
r+

+(1− P )(1− 2
1+r
r w)(1− wr)

1
r z1 − w(2

1
r − (1− P )z1) ≥ 0

Note that the line is downwards sloping if for any w, (w+ (1− 2
r+1
r w)(1−wr)

1
r ) > 0.

Thus to prove that it has downward slope we should prove that the minimum of the term

w + (1− 2
r+1
r w)(1− wr)

1
r is greater or equal to 0. The first derivative is:

1− 2
1+r
r (1− 2wr)(1− wr)

1−r
r −

(
(1− wr)

1
r

w

)1−r

(4)

It is zero at point w =
(
1
2

) 1
r . For r < 1 the expression is negative for w <

(
1
2

) 1
r , since

term 2
1+r
r (1 − 2wr)(1 − wr)

1−r
r > 0 and term w−(1−r)(1 − wr)

1−r
r > 1 (by properties of

frontier). The expression is positive for w >
(
1
2

) 1
r , because term 2

1+r
r (1−2wr)(1−wr)

1−r
r <

0 and term w−(1−r)(1−wr)
1−r
r < 1. This implies that minimum lies at the point w =

(
1
2

) 1
r

where the expression equals to zero. Thus the line has negative slope. And condition

becomes:

ρ < ρ̂1 = min
w

{
1

2

(
1− 2

1
r (w + (1− wr)

1
r )− 2

z1(1− P )(w + (1− 2
r+1
r w)(1− wr)

1
r )

)}
we can show that for r < 1 the expression with w has its maxima on the borders and

thus, evaluating at w = 0 we have:

ρ <
1

2
− 2

1
r − 2

2z1(1− P )

The case when r > 1

Lets rewrite the expression (4):

1− (2
1+r
r (1− 2wr) + wr−1)(1− wr)

1−r
r
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It is zero at point w =
(
1
2

) 1
r . For r > 1 and w ≤

(
1
2

) 1
r , min{(1 − wr)

1−r
r } = 2

r−1
r

and min{(2
1+r
r (1 − 2wr) + wr−1)} = 2

1−r
r . Thus minimum of the product of two terms

is equal to 1 and this implies that for w ≤
(
1
2

) 1
r expression is negative. For w >

(
1
2

) 1
r ,

max{(1 − wr)
1−r
r } = 2

r−1
r and max{(2

1+r
r (1 − 2wr) + wr−1)} = 2

1−r
r , which implies that

expression is positive. Thus minimum of the expression is at the point w =
(
1
2

) 1
r line has

negative slope.

This leads us again to the condition:

ρ < ρ̂2 = min
w

{
1

2

(
1− 2

1
r (w + (1− wr)

1
r )− 2

z1(1− P )(w + (1− 2
r+1
r w)(1− wr)

1
r )

)}
Thus we can establish that there is ρ̂2 such that if ρ < ρ̂2 than the optimal characteristic

is w =
(
1
2

) 1
r . Note that condition ρ̂1 6= ρ̂2 since we optimize for different values of r. If

ρ > ρ̂2 then solution belongs to (
(
1
2

) 1
r , 1), since as we have seen w = 1 is always not

optimal for the case of r > 1.

Proof of Lemma 3

Let us denote by x = ρuA+ (1−ρ)uB and by y = ρuB + (1−ρ)uA than we can rewrite

system of equations as following:

s = γqA + (1− γ)qB − γqAG0[x]− (1− γ)qBG0[y]

uA = 1− qA + qAĜ1[x]

uB = 1− qB + qBĜ1[y]

Or equivalently:

s = γqA + (1− γ)qB − γqAG0[x]− (1− γ)qBG0[y]

x = ρ[(1− qA) + qAĜ1(x)] + (1− ρ)[(1− qB) + qBĜ1(y)]

y = ρ[(1− qB) + qBĜ1(y)] + (1− ρ)[(1− qA) + qAĜ1(x)]

Substituting γ = 1
2 we obtain following maximization problem of the monopolist:

max
qA,qB

1

2

[
qA + qB − qAG0(x)− qBG0(y)

]
s.t.
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x = 1− ρqA − (1− ρ)qB + ρqAĜ1(x) + (1− ρ)qBĜ1(y)

y = 1− (1− ρ)qA − ρqB + (1− ρ)qAĜ1(x) + ρqBĜ1(y)

Proof of Proposition 10

The FOC of the monopolist problem is:

−G0(x)− wG′0(x)
∂x

∂w
+G0(y)− (1− w)G′0(y)

∂y

∂w
= 0

The derivatives of constraints with respect to w are following:

∂x

∂w
= 1− 2ρ+ ρĜ1(x) + ρwĜ′1(x)

∂x

∂w
− (1− ρ)Ĝ1(y) + (1− ρ)(1− w)Ĝ′1(y)

∂y

∂w

∂y

∂w
= −1 + 2ρ+ (1− ρ)Ĝ1(x) + (1− ρ)wĜ′1(x)

∂x

∂w
− ρĜ1(y) + ρ(1− w)Ĝ′1(y)

∂y

∂w

The case when firm’s action has no effect.

Interesting case arises when ρ = 1
2 . It seems that w has no effect on the size of global

cascade of sales . Substituting ρ = 1
2 we can rewrite the problem as following:

max
w

1− wG0(x)− (1− w)G0(y)

s.t.

x = 1
2 + 1

2wĜ1(x) + 1
2(1− w)Ĝ1(y)

y = 1
2 + 1

2wĜ1(x) + 1
2(1− w)Ĝ1(y)

0 ≤ w ≤ 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

Note that in this case x = y for any w. This implies that maximization problem of the

monopolist in the case of ρ = 1
2 does not depend on w:

max
w

1−G0(x)

s.t.

x = 1
2 + 1

2Ĝ1(x)

0 ≤ x ≤ 1
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Thus eventual outbreak is the same for all values of w and moreover it’s size is equal

to the giant component of connected consumers.

The case when specialized design is optimal.

We want to check when it is optimal to focus on the first group or equivalently when

w = 1 is the solution. Note that w = 1 is corner solution that is why it is enough to show

that derivative of ∂s
∂w

∣∣
w=1

is non-negative:

−G0(x)−G′0(x)
∂x

∂w
+G0(y) > 0

s.t.

x = 1− ρ+ ρĜ1(x)

y = ρ+ (1− ρ)Ĝ1(x)

The derivative of first constraint with respect to w is:

∂x

∂w
= 1− 2ρ+ ρĜ1(x) + ρĜ′1(x)

∂x

∂w
− (1− ρ)Ĝ1(y)

Thus we have

∂x

∂w
=

1− 2ρ+ ρĜ1(x)− (1− ρ)Ĝ1(y)

1− ρĜ′1(x)

Substituting it to the maximization problem we obtain:

G0(y)−G0(x)−G′0(x)
1− 2ρ+ ρĜ1(x)− (1− ρ)Ĝ1(y)

1− ρĜ′1(x)
> 0

s.t.

x = 1− ρ+ ρĜ1(x)

y = ρ+ (1− ρ)Ĝ1(x)

Let us rewrite the first equation as:

[G0(y)−G0(x)] +G′0(x)
ρ(1− Ĝ1(x))− (1− ρ)[1− Ĝ1(y)]

1− ρĜ′1(x)
≥ 0

The first term is non-negative when y ≥ x and the condition is following:

ρ+ (1− ρ)Ĝ1(x) ≥ 1− ρ+ ρĜ1(x)

(2ρ− 1)[1− Ĝ1(x)] ≥ 0

since Ĝ1(x) ≤ 1 for all x ∈ [0, 1] the condition is ρ ≥ 1
2 .
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The same happens with the second term when ρ > 1
2 . Note that ρ > 1

2 implies that

Ĝ1[x] < Ĝ1[y] consequently 1− Ĝ1[x] > 1− Ĝ1[y]. Multiplying both sides by ρ and taking

into account that ρ ≥ 1− ρ for ρ ≥ 1
2 we have:

ρ[1− Ĝ1(x)] ≥ ρ[1− Ĝ1(y)] ≥ (1− ρ)[1− Ĝ1(y)]

Thus we have proved that w = 1 is locally optimal if ρ > 1
2 independently of degree

distribution.

The case when symmetric design is optimal

The symmetric design w = 1
2 is optimal if following holds:

−G0(x)− 1

2
G′0(x)

∂x

∂w
+G0(y)− 1

2
G′0(y)

∂y

∂w
= 0

s.t.

x =
1

2
+

1

2
ρĜ1(x) +

1

2
(1− ρ)Ĝ1(y)

y =
1

2
+

1

2
(1− ρ)Ĝ1(x) +

1

2
ρĜ1(y)

and

∂x

∂w
= 1− 2ρ+ ρĜ1(x) + ρwĜ′1(x)

∂x

∂w
− (1− ρ)Ĝ1(y) + (1− ρ)(1− w)Ĝ′1(y)

∂y

∂w

∂y

∂w
= −1 + 2ρ+ (1− ρ)Ĝ1(x) + (1− ρ)wĜ′1(x)

∂x

∂w
− ρĜ1(y) + ρ(1− w)Ĝ′1(y)

∂y

∂w

It is easy to check that x = y satisfies our conditions on x and y, thus we have:

x =
1

2
+

1

2
Ĝ1(x)

Moreover it is possible to show (it should be) that system of equations for x and y has

only two solution. The first one is x = y = 1. Thus we have:

G′0(x)

[
∂x

∂w
+
∂y

∂w

]
= 0

s.t.

x =
1

2
+

1

2
Ĝ1(x)

The first solution to the FOC equation is G′0(x) = 0 which implies x = 0. This

obviously does not satisfy second equation, thus the only possibility left is ∂x
∂w = 0
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∂x

∂w
= 1− 2ρ+ ρĜ1(x) + ρwĜ′1(x)

∂x

∂w
− (1− ρ)Ĝ1(y) + (1− ρ)(1− w)Ĝ′1(y)

∂y

∂w

∂y

∂w
= −1 + 2ρ+ (1− ρ)Ĝ1(x) + (1− ρ)wĜ′1(x)

∂x

∂w
− ρĜ1(y) + ρ(1− w)Ĝ′1(y)

∂y

∂w

Solving previous system and substituting y = x we have:

∂x

∂w
= −

1− 2ρ− Ĝ1(x) + 2ρĜ1(x)− ρĜ1(x)Ĝ′1(x) + ρĜ′1(x) + 1
2Ĝ1(x)Ĝ′1(x)− Ĝ′1(x)

2

−1
2ρ[Ĝ′1(x)]2 + 1

4 [Ĝ′1(x)]2 + ρĜ′1(x)− 1

∂y

∂w
=

1− 2ρ− Ĝ1(x) + 2ρĜ1(x)− ρĜ1(x)Ĝ′1(x) + ρĜ′1(x) + 1
2Ĝ1(x)Ĝ′1(x)− Ĝ′1(x)

2

−1
2ρ[Ĝ′1(x)]2 + 1

4 [Ĝ′1(x)]2 + ρĜ′1(x)− 1

Note that ∂x
∂w = − ∂y

∂w and thus we have that:

G′0(x)

[
∂x

∂w
+
∂y

∂w

]
= 0

This implies that w = 1
2 is always the critical point. What is left to proof is that it is

maximum when ρ < 1
2 .

SOC of the problem

−2G′0(x)
∂x

∂w
−wG′′0(x)

(
∂x

∂w

)2

−wG′0(x)
∂2x

∂w2
+2G′0(y)

∂y

∂w
−(1−w)G′′0(y)

(
∂y

∂w

)2

−(1−w)G′0(y)
∂2y

∂w2

SOC when w = 1
2

− 4z(1− 2ρ)(1− Ĝ1(x))(
2− Ĝ′1(x)

)(
2 + (1− 2ρ)Ĝ′1(x)− 2

)2×
×
(

(1− 2ρ)
(
Ĝ′1(x)2 + 2Ĝ′1(x) + Ĝ′′1(x)(1− Ĝ1(x))

)
Ĝ1(x) + 8Ĝ1(x) + (1− 2ρ)

(
2− Ĝ′1(x)

)
Ĝ′1(x)

)
Thus we can conclude that w = 1

2 is local maximum for ρ < 1
2 if:

2− Ĝ′1(x) > 0

s.t.
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x =
1

2
+

1

2
Ĝ1(x)

Let us denote by F (x) = 1
2 + 1

2Ĝ1(x) then solution to equation x∗ is such that F (x)

crosses 45 degree line in x∗ from above since F (0) = 1
2 Thus we can conclude that F ′(x∗) <

1. Thus 1
2Ĝ
′
1(x) < 1 and consequently Ĝ′1(x) < 2, which in turn implies that our condition

always holds.

When w = 1
2 should be preferred to w = 1?

Recall that in the case when w = 1
2 the size of the giant component is given by:

S(
1

2
) =

1

2
− 1

2
G0(x

∗
m)

x∗m =
1

2
+

1

2
Ĝ1(x

∗
m)

On the other hand if w = 1 we have:

S(1) =
1

2
− 1

2
G0(x

∗
b)

x∗b = 1− ρ+ ρĜ1(x
∗
b)

Due to the monotonicity of the G0(x) we know that S(12) > S(1) whenever x∗m < x∗b .

So basically we should see how ρ affects solution to fixed point problem, since first equation

is just particular case of the second. Using IFT we have:

∂x

∂ρ
= −1 + Ĝ1(x) + ρĜ′1(x)

∂x

∂ρ

∂x

∂ρ
= − 1− Ĝ1(x)

1− ρĜ′1(x)

Note that x is solution to fixed point of 1 − ρ + ρĜ1(x) at x∗ it should cross the 45

degree line and this in turn implies that ρĜ′1(x) < 1 thus we have shown that ∂x
∂ρ < 0.

Thus in turn implies that if ρ < 1
2 x
∗
b > x∗m and thus S(12) > S(1) on the other hand if

ρ > 1
2 thus S(12) < S(1)
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