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The behavior on a stock exchange can be represented as a reaction to the flow of events of two 
types entering the financial market – “regular” events and “crises”. Broker’s wealth depends on 
how successfully she identifies which event – crisis or not – occurs at the moment. It was shown 
in [1] that successful identification of the ‘regular’ events a little more than in half of the cases al�
lows the player to have a nonnegative average gain.

We expand the model in [1] by introducing the possibility of a player to learn on her behav�
ior and to receive the award for the “correct” behavior. It turns out that the ability to analyze ac�
tions and learn from them sometimes allows the player successfully identify regular events even 
less than in half of the cases to obtain a nonnegative expected payoff.
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сто) и «кризисных» (случающихся намного реже). От того, насколько успешно брокер 
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благосостояние. В работе [1] было показано, что успешная идентификация частых «ре�
гулярных» событий чуть более, чем в половине случаев, позволяет игроку иметь положи�
тельный средний выигрыш.

Цель данной работы – расширение использованной в [1] модели введением возмож�
ности игрока обучаться на своих действиях и получать награду за «правильное» пове�
дение. Оказывается, что возможность анализировать свои действия и обучаться на них 
позволяет игроку для получения неотрицательного ожидаемого выигрыша успешно рас�
познавать регулярные события иногда даже меньше, чем в половине случаев. 
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1. Introduction 

 

In [1] stock exchange work was presented as a flow of coming events of 

two types – “regular” events (happen very often) and “crisis” (happen rare). 

What event came at a particular moment is not known beforehand and the 

player has to identify an unknown event. His wealth depends on how 

successfully he can recognize events. It was shown that successful 

identification of frequent “regular” events in a little more than half of the cases 

allows the player to have a positive average gain, and hence errors in the 

recognition of “crisis” events are not fatal. The basic model contains some 

important assumptions about the kind of processes. It is known that the actual 

flows of stock exchange events are not simplest. It can be better described as a 

piecewise stationary stochastic processes with unknown switch points. 

Stationarity of real data for S&P500 has been tested in [1] and periods of crisis 

and periods of absence of shocks show stationary time series indeed. However, 

we can not speak of stationary series in the long time. Aware of these 

shortcomings of our model, we consider it as a first step to the study of real 

stock exchange and the basis for constructing more sophisticated models. 

In this work we extend mathematical model from [1] allowing player to 

learn on her own behavior and to receive an award for the “correct” behavior. 

Each of the proposed new models allows the player to have more freedom in 

her decisions and make mistakes in regular events more often. 

The structure of the paper is as follows. In Section 2 we remind the problem 

and its solution from [1], Section 3 studies a model with stimulation for correct 

recognition, and Section 4 studies a model with learning. Section 5 contains 

data analysis for our model, Section 6 concludes. All proofs and derivations of 

the formulas are given in the Appendix. 
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2. Basic model 

We remind the problem statement in [1] and its solution. The flow of events 

of two types – type � (quiet) and type � (rare) – enters the device. Each of 

them is the simplest, i.e. stationary, ordinary and has no aftereffects [3]. The 

intensity of the flow of �-events is equal to �, the intensity of the flow of �-

events is equal to �, where � ≫ � (�-events are far more frequent).  

The device should recognize coming event �. If an event � occurs and 

device identified it correctly, then it gets a small reward �, if the error occurred, 

and the event � is recognized as the event �, then the device is “fined” by an 

amount �. The probabilities of such outcomes are known and equal 	� and 
�, 

respectively. Similarly for R-events – correct identification of event � will give 

the value of �, where � ≫ �, and incorrect one will give loss −�, � ≫ �. After 

each coming event received values of “win” / “loss” are added to the previous 

amount (Fig. 1). 

How large on average will be the amount received for the time 
?  
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Fig. 1. The general scheme of identification of a random event � 

 

One possible implementation of a random process �(
), which is equal to 

the sum of all values of a random variable � received at the time 
, is given on 

Fig. 2. 

 

 

 

Fig. 2. One possible implementation of a random process �(�) 
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Theorem 1. The expected value of � is equal to 

���� = ��(	�� − 
��) + �(	�� − 
��)�
. 

The proofs of this and next statements are given in Appendix. 

We used this model to estimate the stock exchange behavior [1]. The event � can be interpreted as a signal received by a broker about the changes of the 

economy that helps him to decide whether the economy is in “a normal mode” 

or in a crisis. The values �, �, �,� also have some meaning in such 

interpretation. If the event � occurs (which means that the economy is stable), 

and broker correctly recognizes it, then he can get a small income (value �). If 

the event � will be taken instead of �, he will loose the amount of −�. If the �-

event occurred (crisis) and it was not recognized correctly, the broker will lose 

more (value −�). If he could forecast a crisis, he can earn a good deal of money 

on this – correct identification of the event of type � gives the broker the  

value �. 

Such outcomes correspond to the opening of the long and short positions in 

a period of growth and recession in the work of the trader. A long position 

means that the broker buys assets to sale some time later at a higher price.  

A short position means that the broker sells assets with the hope of further 

buying at a lower price. 

A long position will bring a small income � and a significant loss of −� to 

the trader, when the market is growing (“regular” event) and falls (“crisis”), 

respectively. It will be the opposite with the short positions: trader will lose 

some value −� in case of economic growth, but he can earn a considerable 

amount of � in the case of strong fall in the crisis. 

In [1] we evaluated parameters of this model using stock index S&P500 [5] 

and showed that flows’ intensities are � = 246, � = 4, and values of 
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parameters are � = 0.6%, � = 0.6%, � = 2.8%,� = 2.9% (values are 

measured in a percentage of the value of the index).  

 

3. The model with stimulation 

Let us extend the basic model from [1] adding new conditions.  

Since the intensity of regular events � is much higher than the intensity of 

rare events �, regular events often happen one by one and form a sequence of 

these “peaceful” events. So, we can suggest that the device can “learn” on such 

sequences and turn them to its advantage raising the winnings from regular 

events.  

It means that if the event � has been correctly detected by the device 

consecutively � times, then it gets a higher award � + � (not � as in the basic 

model) for the recognition of the �-events.  

Definition. The experience function �� on step � is a random variable equal 

to the number of consequently correctly recognized �-events (we designate an 

event of correct recognition of �-type event as �) that occurred by this step �� = 0, 

�� = � ���� + 1, if А occured,                                 

0, if А�  occured�Аohas not occured�.             
� 

The model is graphically depicted on Fig. 3. 
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Fig. 3. Scheme of model with stimulation 

 

The experience function ��(
) for implementation of random process ��
� 
from Fig. 2 is shown on Fig. 4. 
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Fig. 4. One possible implementation of �(�) and its experience function �	(�) 

 

Theorem 2. The expectation of total gain in the model with stimulation is  

 

���� = � �
��! ∙ "���
∙
Γ � − 1, ���

!
Γ�� − 1� + �� − 1� ∙ #1 −

Γ �, ���
!

Γ��� $% + 

+� �
��! ∙ "���
∙ #1 −

Γ(� − 1, ���
)

Γ(� − 1)
$ + (1 − �) ∙ #1 −

Γ(�, ���
)

Γ(�)
$% ,      (3.1) 

 

where ���
= �� + ��
 is the intensity of flow of unknown events (both � and �), ��(�) and ��(�) are the random variables for the total gain in case � < � and  � ≥ �, respectively. Their distributions can be obtained by selection of relevant 

cases from the distribution of general variable �� 
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Pr&�� = '( =

)**
*+
***
, 	�
�, if ' = −�,                                                  	�
�, if ' = −�,                                                  	�	�, if ' = � and � < �,                                       	�	� -1 −  	�	�!
. , if ' = � and � ≥ �,     

0, if ' = � + � and � < �,                                   	�	�!
��, if ' = � + � and � ≥ �,                        	�	�, if ' = �.                                                     

� 

 

So, the distribution law of ��(�) (� < �) is 

Pr/��(�) = '0 = )+
,	�
�, if ' = −�,	�
�, if ' = −�,	�	�, if ' = �,	�	�, if ' = �.

� 
 

and for ��(�) (� ≥ �) the distribution law is 

Pr/��(�) = '0 =

)**
+*
*, 	�
�, if ' = −�,	�
�, if ' = −�,	�	� -1 −  	�	�!
. , if ' = �, 	�	�!
��, if ' = � + �,	�	�, if ' = �.

� 
 

4. The model with learning 

Now we consider more complicated model where our device will also learn 

on its actions: if �-event was successfully recognized � times consequently (it 

means that � times the device received an award �), then it will further 

recognize an event of � correctly with greater probability 	�∗ = 	� + 1 > 	�. 

Denote �� as an experience function on step �, it is a random variable of the 

number of consequently correctly recognized �-events. This experience 

function is defined almost like an experience function in the previous Section, 
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but this function is changed if an event �� = � occurs, i.e. our device 

successfully detected coming event � �� = 0, 

�� = � ���� + 1, if � occurred,                                       

0, if �2 occurred �� has not occurred�.               
� 

The graph for the model is given on Fig. 5. 

 

 

Fig. 5. The graph for model with learning 

 

The question is still about the expected value of the total gain, but now we 

have to know the probabilities 3&�� < �( and 3&�� ≥ �(, because the random 

variable of single winning �� takes values –�, −�, �, � with probabilities 

 

Pr&�� = '( = )+
,	�
�, if ' = −�,                                                       	�[
�Pr {�� < �} + 
�∗Pr {�� ≥ �}], if ' = −�,	�[	�Pr {�� < �} + 	�∗Pr {�� ≥ �}], if ' = �,   	�	�, if ' = �.                                                           

� 
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Theorem 3. The probability 3&�� < �( is equal to 

3&�� < �( = 	�(
� − 
�∗) 435������ < �6 	�	�!�
��

���

+
	�
�∗ + 	�	�
� + 	� -1 −  	�	�!
.. 

 

Theorem 4. The sequence 3&�� < �( has the limit 

lim
�→�

3&�� < �( =
 	�
�∗ + 	�!(1 −  	�	�!
) 	�
� + 	�! − 	�(
� − 
�∗)(1 −  	�	�!
)

                (4.1). 

 

Fig. 6 illustrates the sequence of 3&�� < �( and its limit with the example 

when � = 8, 
� = 0.3, 
� = 1,1 = 0.2. 

 

 

Fig. 6. Number of events 7 occurred is given on the axis OX and probabilities 8&�	 < 9( are presented on the axis OY, the line is defined by 8&�	 < 9(  
from formula (4.1) 

We can use the formula (3.1) to compute the expected gain in this model. 
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5. Examples 

5.1. The expected gain as a function of 9 
We will draw the expected gain as a function of � for each model taking the 

one year horizon in each case. The parameters are taken from S&P500 analysis 

in [1] are � = 0.6, −� = −0.6, � = 2.8, −� = −2.9, � = 246, � = 4. Let the 

probability of errors in �-events be 
� = 1 (it means that the player can not 

predict crisis at all), and the probability of errors in regular events 
� will be 

0.2, 0.3, 0.4 and 0.46. For the new models the parameters are � = 0.05 (which 

defines the increase of � when the player successfully detected �-events � 

times consequently) and 1 = 0.1 (which defines the increase of 	� when the 

player successfully detected �-events � times consequently).  

The expected gain ���� in the basic model for all cases is 77, 47, 18 and 

0.2, respectively. 

You can see the dependence ���� on � on the Fig.7. 
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Fig. 7. The solid line corresponds to the expected gain in the model with 

stimulation and dotted line corresponds to the model with learning 

 

Some values of expected gain can be seen in Tables 1 and 2. 

 

Table 1. The expected gain for :� = ;.< �(�) when 
� = 0.2 � = 1 � = 10 � = 30 

The model with stimulation 85 80 78 

The model with training 103 90 81 

The basic model [1] 77 77 77 

 

Table 2. The expected gain for :� = ;.=> ���� when 
� = 0.46 � = 1 � = 5 � = 10 

The model with stimulation 3.7 0.5 0.2 

The model with training 17.6 1.7 0.3 

The basic model [1] 0.2 0.2 0.2 

 

Thus, when the error probabilities come closer to critical values (for which 

the expectation is zero), the expected gains in both models tend to the expected 
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gain in the basic model much faster for the same � (moment of transition to a 

more advantage condition).  

 

5.2. The expected gain as a function of :� 
Now the expected gain �(�) will be considered as a function of probability 

error 
�. Obviously �(�) increases in these advanced models comparing with 

the basic model, but will the critical value of 
� also increase (we denote 

critical value as a value of 
�, that gives zero expected gain �(�))?  

Parameters are still the same: � = 0.6, −� = −0.6, � = 2.8, −� =

−2.9, � = 246, � = 4, � = 0.05, 1 = 0.1. Let � = 5. 

 

 

Fig. 8. The solid line corresponds to the expected gain in the basic model, 

dashed line – to the model with stimulation and dotted line corresponds  

to the model with learning 

 

Because of the condition 
�∗ = 
� − 1 ∈ [0,1] the values of 
� in the third 

model must be in the interval [1, 1]. The comparison of the results is given in 

Table 3. 
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Table 3. The expected gain as a function of :� when 9 = ? 

@(�) Critical :� @(�)  

when :� = ; @(�)  

when :� = A 
The basic model [1] 0.461 136 106 

The model with stimulation 0.462 147 112 

The model with training 0.466 - 132 

 

If � = 10 then all critical values of 
� (when ���� = 0) will be equal to 

0.461. This means that if � increases then 
� decreases to the critical value of 

the basic model. 

On Fig. 9 the graphs for 1 = 0.2 are given. 

 

 

 

Fig. 9. The solid line corresponds to the expected gain in the basic model, 

dashed line – to the model with stimulation and dotted line corresponds  

to the model with learning 

 

The probability :� will increase if parameter A increases or parameter 9 

decreases (Table 4). In the basic model :� is equal to 0.461. 
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Table 4. Critical value 
� for different � 

 9 = B 
Critical :� 

9 = ? 
Critical :� 

9 = C; 
Critical :� 

The model with stimulation � = 0.05 

The model with training 1 = 0.1 

0.464 

0.477 

0.462 

0.466 

0.461 

0.461 

The model with stimulation � = 0.05 

The model with training 1 = 0.2 

0.464 

0.497 

0.462 

0.473 

0.461 

0.461 

The model with stimulation � = 0.05 

The model with training 1 = 0.3 

0.464 

0.522 

0.462 

0.485 

0.461 

0.462 

The model with stimulation � = 0.05 

The model with training 1 = 0.4 

0.464 

0.554 

0.462 

0.504 

0.461 

0.465 

 

If the player does not try to recognize coming events but “toss up a coin” to 

decide (this corresponds to the model with 
� =
�

�
, 
� =

�

�
), then she will have 

negative gain ���� = −0.2% in a year.  

 

6. Conclusion 

We considered new models based on [1] adding award for ‘successful 

behavior’ as increase in gain and as increase in the probability of correct 

recognition, which means that the player can train on his past actions and 

accumulate experience. Both of these models allows the player to enlarge the 

total gain and to make more mistakes, because she can get more in the sequence 

of correctly detected events. 
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Appendix. Proofs of the theorems 

Proof of Theorem 1.  

The device does not know what event came at a time �, so received gain 

from recognition that event is a random variable �� with discrete law of 

distribution. Since the flows of �-events and �-events are simplest (and hence 

stationary), and probabilities 	� and 	� do not depend on time, all �� is 

distributed equally as the random variable X with the law of distribution 

Pr&� = '( = D	� , if ' = −�,	�, if ' = −�,	�, if ' = �,	� , if ' = �.

� 
As flows of �- and �-events are simplest, i.e. stationary, ordinary and has 

no aftereffects, then superposition of these flows will also be a simplest flow 

with intensity � + � [3]. Hence, the probability that coming unknown event is � is equal to 	� =
�

���
 and the probability that coming unknown event is � is 

equal to 	� =
�

���
. Then 	� (the probability that the random variable � takes 

the value –�) is equal to the probability that the event occurred is the �-type 

and the device has not recognized it, i.e. 	� = 	�
�. We can find other 

probabilities similarly.  

Let E�(') be the distribution function of a payoff �. The total value of 

received payoffs for time 
 equals to 

� = 4�� ,��

���

 

where all �� are random variables of gain of one event and they have the same 

distribution by the law of distribution of �, and F� is the number of events 

occurred during the time 
, it is distributed according to the Poisson distribution 



19 

with parameter (� + �)
 (for the flow of events is the simplest flow with the 

intensity � + �).  

This sum of a Poisson number F� terms, where F� and �� are independent, 

is called a compound Poisson random variable. Its distribution is given by a 

pair of 3((� + �)
;  E��'�), and the explicit form of the distribution function 

can be obtained by applying the formula of total probability with hypotheses 

{F� = G} 

E��'� = 4 3{�� + ⋯ + �� ≤ '}3{F� = G}

∞

���

=

= 4 E�
��
(')

((� + �)
)�G!
H���∞

���

, 

where 3&F� = G( = 3��
� =
((���)�)�

�!
H���, E�
��

(') – G-fold convolution 

of E�('), E�
��
= E�
����

∗ E,E ∗ E– the distribution law of variable �� + �� 

with probabilities 3��� + ��� = ∑ 3��� = '��3(�� = J� − '�)�
��� , where '� 

denotes a possible value of �� (it can be –�, −�, �, �) and J� is a possible value 

of �� + ��. 

Then the expected value of � is equal to 

���� = 4���|F� = K�3&F� = K(∞

���

= ����4K3&F� = K( = ����∞

���

��F�� =

= L−
� ��� + � − 
� ��� + � + 	� ��� + � + 	� ��� + �M �� + ��
 =

= ��(	�� − 
��) + �(	��
− 
��)�
.                                               
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Proof of Theorem 2.  

Suppose � is an event of correct recognition of �-type events and the 

probability of � is 	� = 	�	� =
�

���
	�.  If the �-event comes, we should 

choose the value of winning � or � + � according to the experience function ��. 
We defined the experience function �� on � step in the following way �� = 0, 

�� = � ���� + 1, if A occurs,                               

0, if A� occurs �does not occur A�,             
� 

The experience function on step � can take values from 0 to � with some 

probabilities. For example, the probability of �� = � is equal 3&�� = �( = 	�� , 

for another values � = 0,1,2, … , � − 1 the probabilities are 3&�� = �( = 	�
 ∙

(1 − 	�). 

Obviously 	� = Pr {�� < �} = 1 for � < �. For � ≥ �  

	� = 1 − Pr N�̅ �. .�P



Q = 1 − 	�
. 

So, the probability 	� is equal to 

	� = �1, if � < �,                 

1 − 	�
, if � ≥ �.       
� 

Let �� be a random variable of gain in the model with stimulation. �� 
depends on number �: for � < � the probability to get value � + � is zero and 

for � ≥ � this probability is positive. Then �� takes values –�, −�, �, � + �, � 

with probabilities 
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Pr&�� = '( =

)**
*+
***
, 	�
�, if ' = −�,                                                  	�
�, if ' = −�,                                                  	�	�, if ' = � and � < �,                                       	�	� -1 −  	�	�!
. , if ' = � and � ≥ �,     

0, if ' = � + � and � < �,                                   	�	�!
��, if ' = � and � ≥ �,                        	�	�, if ' = �.                                                     

� 

It will be convenient to divide random variable �� into two variables ��(�) 
for � < � and ��(�) for � ≥ �. Their distributions can be obtained from the law 

of the random variable �� by selection the relevant cases. 

Let ���
= �� + ��
 be intensity of flow of unknown events. Then for 

compound Poisson random variable of total winnings � = ∑ ����

���  we have 

�[�] = 4�[�|F� = K]3&F� = K(∞

���

= 

4�R4��(�)��

���

SF� = KT3&F� = K(
��

���

+ 4�U4��(�)
��

���

VF� = KW3&F� = K( +

∞

��


+ 4�R4��(�)��

��


SF� = KT3&F� = K(∞

��


. 

The sum is divided into two parts in the last formula because before �th 

term all �� are ��(�) and after �th term all of them are equal to ��(�). We take � > 1, for � = 1 is the case of basic model. 

The first sum is 

4�R4��
����

���

SF� = KT3&F� = K(
��

���

= � �(�)!H���� 4K ���
!�K!


��

���
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We will use formula 5.24.3 from из [2] 

  4 1X!
'�


���

=
1�!
H Γ�� + 1, '�,                                               (�1) 

where Γ(�, Y) is incomplete gamma function defined as 

Γ��, Y� = Z H��
����
�

!

. 

In our case it will be 

4K ���
!�K!


��

���

= 4  ���
!�

(K − 1)!


��

���

= 4  ���
!���G!


��

���

= ���

1

(� − 2)!
H���Γ � − 1, ���

!. 

Then first sum in the expression for expectation of total gain is 

4�R4��
����

���

SF� = KT3&F� = K(
��

���

= �[�(�)\���

Γ � − 1, ���
!

Γ�� − 1� . 

Let us find the second sum 

4�U4��
��
��

���

VF� = KW3&F� = K(∞

��


= 4�-�� − 1��
��.3&F� = K(∞

��


= 

= �� − 1�� �
��!43&F� = K(∞

��


= (� − 1)�[�
��\H���� 4 ���
!�K!

∞

��


. 

We can find this sum using formula (A1) 

H���� 4 ���
!�K!

∞

��


= H���� ]4 ���
!�K!

∞

���

− 4 ���
!�K!


��

���

^ = 

= H���� _H��� −
1�� − 1�!

H���Γ(�, ���
)` = 1 −

Γ(�, ���
)

Γ(�)
. 
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So the second sum is equal to 

4�U4��
��
��

���

VF� = KW3&F� = K(∞

��


= (� − 1)� �(�)! #1 −
Γ(�, ���

)

Γ(�)
$. 

The last sum in our formula can be represented as 

4�R4��(�)��

��


SF� = KT ∙ 3&F� = K(∞

��


= 4�R4��(�)�

��


T ∙ 3&F� = K(∞

��


= 

= �[�
��\ ∙ 4�K − � + 1� ∙ 3&F� = K(∞

��


= 

= �[�
��\ ∙ ]4K ∙ 3&F� = K(∞

��


+ (1 − �)43&F� = K(∞

��


^ = 

= � �
��! ∙ "���
∙ #1 −

Γ(� − 1, ���
)

Γ(� − 1)
$ + (1 − �) ∙ #1 −

Γ(�, ���
)

Γ(�)
$%. 

Hence the expectation of total gain is equal to 

���� = � R4����

���

T = 

= � �
��! ∙ "���
∙
Γ � − 1, ���

!
Γ�� − 1� + �� − 1� ∙ #1 −

Γ �, ���
!

Γ��� $% + 

+� �
��! ∙ "���
∙ #1 −

Γ(� − 1, ���
)

Γ(� − 1)
$ + (1 − �) ∙ #1 −

Γ(�, ���
)

Γ(�)
$%.       

 

Proof of Theorem 3. �� – an experience function on step � – is a random variable equal to the 

number of consequently correctly recognized �-events,  
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�� = 0, 

�� = � ���� + 1, if � occurred,                                  

0, if �2 occurred �� did not occur�,               
� 

The experience function on step � can take values from 0 to � with some 

probabilities.  

We have to know the probabilities 3&�� < �( and 3&�� ≥ �(, because now 

the random variable of single winning �� takes values –�, −�, �, � with 

probabilities 

Pr&�� = '( = )+
,	�
�, if ' = −�,                                                       	�[
�Pr {�� < �} + 
�∗Pr {�� ≥ �}], if ' = −�,	�[	�Pr {�� < �} + 	�∗Pr {�� ≥ �}], if ' = �,   	�	�, if ' = �.                                                           

� 
Because the probability 3&�� < �( is equal to 

3&�� < �( = 1 − 3&�� ≥ �( = 

= 3&�� = 0 or �� = 1 or �� = 2 or …  or �� = � − 1( = 

= 3&�� = 0 ( + 3&�� = 1 ( + 3&�� = 2( + ⋯ + 3&�� = � − 1(, 
we will describe all terms. 3&�� = 0(  is a probability of experience function to get value 0 on step �, 
i.e. the device incorrectly recognized coming event � or it was event �. Hence, 

3&�� = 0( = 3&�� = −� or �� = � or �� = −�( = 

= 	��
�3&���� < �( + 
�∗3&���� ≥ �(� + 	�	� + 	�
� = 

= 	��
�3&���� < �( + 
�∗3&���� ≥ �(� + 	� . 

3&�� = 1( is a probability of experience function to get value 1 on step �, 
i.e. the device correctly recognized coming event � on step � and did a mistake 

on step � − 1. It means that ���� = 0 and then happens �� = � (it can be with 

probability 	�	�) 



25 

3&�� = 1( = [	��
�3&���� < �( + 
�∗3&���� ≥ �(� + 	�\ 	�	�!. 

In the same way we can find another probabilities 

3&�� = 0(,3&�� = 1(, … ,3&�� = � − 1(. 
For example  3&�� = � − 1( = 

= [	�[
�35�����(
��) < �6 + 
�∗3&���
 ≥ �(\ + 	�\ 	�	�!
��. 

Now we can evaluate a sum 3&�� < �( = 3&�� = 0 ( + 3&�� = 1 ( +

+3&�� = 2( + ⋯ + 3&�� = � − 1( taking 35�� ≥ �6 = 1 − 35�� < �6: 
3&�� < �( = 3&�� = 0 ( + 3&�� = 1 ( + ⋯ + 3&�� = � − 1( = 

= 	� 4[
�35������ < �6 + 
�∗ 1 − 35��—��� < �6!\ 	�	�!� +


��

���

 

+	� 4 	�	�!�
��

���

= 

= 	�(
� − 
�∗) 435������ < �6 	�	�!�
��

���

+  	�
�∗ + 	�!4 	�	�!�
��

���

. 

The last sum is geometric progression and the answer is 3&�� < �( = 

= 	�(
� − 
�∗) 435������ < �6 	�	�!�
��

���

+  	�
�∗ + 	�!  	�	�!
 − 1	�	� − 1
. 

Using the known dependences between the probabilities, we can express 	�	� − 1 = 	� − 	�
� − 1 = −	� − 	�
�. 
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Finally the probability 3&�� < �( is 

3&�� < �( = 	�(
� − 
�∗) 435������ < �6 	�	�!�
��

���

+
	�
�∗ + 	�	�
� + 	� -1 −  	�	�!
. .                                                 ��2� 

 

Proof of Theorem 4.  

Let us denote 3&�� < �( = Y�, 	�(
� − 
�∗) = a, 0 < a < 1, 	�	� = b, 0 ≤

b < 1, 
"�#�

∗�"�
"�#��"�

∙ -1 −  	�	�!
. = c, 0 < c < 1, and c =
$��%�&(��'�%)

(��%)
, then 

the equation (A2) is written as 

Y� = a ∙ 4 b����� ∙ Y����

����


+ c 

or Y� = a ∙ �Y��� + bY��� + b�Y��� + ⋯ + b
��Y��
� + c. 

As all Y� = 3{�� < �} are probabilities and ∀� 0 ≤ Y� ≤ 1, the sequence 

{Y�}����  is bounded from both sides.  

This sequence is nonincreasing, we will prove it by induction. The first � 

terms are equal to 1: Y� =  Y� = Y� = ⋯ = Y
�� = 1, because �� = 0 and if � < � then Y� = 3&�� < �( = 1.  

First of all we prove Y
 ≤ Y
�� to have � inequalities for the induction  

Y
 = a�1 + b + b� + ⋯ + b
��� + c = a �1 − b
��1 − b� +
�1 − b
��1 − a − b��1 − b�

= 1 − b
 ≤ 1 = Y
��. 
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Let inequality Y��� ≤ Y��� holds for all � − 1 first terms of the sequence. 

We will take Y� and prove that Y� ≤ Y���. The difference between two terms of 

the sequence is  

Y� = a ∙ �Y��� + bY��� + b�Y��� + ⋯ + b
��Y��
� + c Y��� = a ∙ �Y��� + bY��( + b�Y��� + ⋯ + b
��Y��
��� + c Y� − Y��� = 

= a ∙ �Y��� + �b − 1�Y��� + b�b − 1�Y��� + ⋯ + b
���b − 1�Y��

− b
��Y��
��� ≤ 

≤ a ∙ �Y��� + �b − 1�Y��� + b�b − 1�Y��� + ⋯ + b
���b − 1�Y��

− b
��Y��
��� = 

= a ∙ �bY��� + b�b − 1�Y��� + ⋯ + b
���b − 1�Y��
 − b
��Y��
��� = 

= a ∙ �b�Y��� + b��b − 1�Y��( + ⋯ + b
���b − 1�Y��
 − b
��Y��
��� ≤ ⋯

≤ 

≤ a�b
��Y)�
 − b
��Y)�
��� = ab
���Y)�
 − Y)�
��� ≤ 0, 

because of 0 < a < 1, 0 ≤ b < 1, and Y��
 ≤ Y��
��. 

So Y� ≤ Y��� and the sequence {Y�}����  is monotonic (nonincreasing). If 

nonincreasing sequence is bounded from below, then this sequence converges 

[4], hence, the sequence {Y�}����  has a limit lim�→� Y� = Y. 

Let � → ∞, then 

Y = lim
�→�

Y� =  lim
�→�

da 4 b�����Y����

����


+ ce = a 4 b�����Y���

����


+ c
= Ya 1 − b


1 − b + c 

i.e. 

Y =
(1 − b)c

1 − b − a(1 − b
)
. 
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Rewriting it in the initial notations, we obtain 

lim௜→ஶ ܲሼ ௜ܵ < ݇ሽ = ൫݌ொݍଵ∗ + ோ൯(1݌ − ൫݌ொ݌ଵ൯௞)൫݌ொݍଵ + ோ൯݌ − ଵݍ)ொ݌ − ଵ∗)(1ݍ − ൫݌ொ݌ଵ൯௞).             
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