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1. Introduction

In [1] stock exchange work was presented as a flow of coming events of
two types — “regular” events (happen very often) and “crisis” (happen rare).
What event came at a particular moment is not known beforehand and the
player has to identify an unknown event. His wealth depends on how
successfully he can recognize events. It was shown that successful
identification of frequent “regular” events in a little more than half of the cases
allows the player to have a positive average gain, and hence errors in the
recognition of “crisis” events are not fatal. The basic model contains some
important assumptions about the kind of processes. It is known that the actual
flows of stock exchange events are not simplest. It can be better described as a
piecewise stationary stochastic processes with unknown switch points.
Stationarity of real data for S&P500 has been tested in [1] and periods of crisis
and periods of absence of shocks show stationary time series indeed. However,
we can not speak of stationary series in the long time. Aware of these
shortcomings of our model, we consider it as a first step to the study of real
stock exchange and the basis for constructing more sophisticated models.

In this work we extend mathematical model from [1] allowing player to
learn on her own behavior and to receive an award for the “correct” behavior.
Each of the proposed new models allows the player to have more freedom in
her decisions and make mistakes in regular events more often.

The structure of the paper is as follows. In Section 2 we remind the problem
and its solution from [1], Section 3 studies a model with stimulation for correct
recognition, and Section 4 studies a model with learning. Section 5 contains
data analysis for our model, Section 6 concludes. All proofs and derivations of

the formulas are given in the Appendix.
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2. Basic model

We remind the problem statement in [1] and its solution. The flow of events
of two types — type Q (quiet) and type R (rare) — enters the device. Each of
them is the simplest, i.e. stationary, ordinary and has no aftereffects [3]. The
intensity of the flow of Q-events is equal to 4, the intensity of the flow of R-
events is equal to u, where A > u (Q-events are far more frequent).

The device should recognize coming event X. If an event Q occurs and
device identified it correctly, then it gets a small reward a, if the error occurred,
and the event Q is recognized as the event R, then the device is “fined” by an
amount b. The probabilities of such outcomes are known and equal p; and g,
respectively. Similarly for R-events — correct identification of event R will give
the value of ¢, where ¢ > a, and incorrect one will give loss —d, d > b. After
each coming event received values of “win” / “loss” are added to the previous
amount (Fig. 1).

How large on average will be the amount received for the time £?
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Fig. 1. The general scheme of identification of a random event X

One possible implementation of a random process Z(t), which is equal to
the sum of all values of a random variable X received at the time ¢, is given on

Fig. 2.
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Fig. 2. One possible implementation of a random process Z(t)



Theorem 1. The expected value of Z is equal to

E[Z] = (A(p1a — q1b) + p(p,c — qd))t.

The proofs of this and next statements are given in Appendix.

We used this model to estimate the stock exchange behavior [1]. The event
X can be interpreted as a signal received by a broker about the changes of the
economy that helps him to decide whether the economy is in “a normal mode”
or in a crisis. The valuesa,b,c,d also have some meaning in such
interpretation. If the event Q occurs (which means that the economy is stable),
and broker correctly recognizes it, then he can get a small income (value a). If
the event Q will be taken instead of R, he will loose the amount of —b. If the R-
event occurred (crisis) and it was not recognized correctly, the broker will lose
more (value —d). If he could forecast a crisis, he can earn a good deal of money
on this — correct identification of the event of type R gives the broker the
value c.

Such outcomes correspond to the opening of the long and short positions in
a period of growth and recession in the work of the trader. A long position
means that the broker buys assets to sale some time later at a higher price.
A short position means that the broker sells assets with the hope of further
buying at a lower price.

A long position will bring a small income a and a significant loss of —d to
the trader, when the market is growing (“regular” event) and falls (“crisis”),
respectively. It will be the opposite with the short positions: trader will lose
some value —bp in case of economic growth, but he can earn a considerable
amount of ¢ in the case of strong fall in the crisis.

In [1] we evaluated parameters of this model using stock index S&P500 [5]

and showed that flows’ intensities are A = 246,u =4, and values of



parameters are a = 0.6%,b = 0.6%,c = 2.8%,d = 29% (values are

measured in a percentage of the value of the index).

3. The model with stimulation

Let us extend the basic model from [1] adding new conditions.

Since the intensity of regular events Q is much higher than the intensity of
rare events R, regular events often happen one by one and form a sequence of
these “peaceful” events. So, we can suggest that the device can “learn” on such
sequences and turn them to its advantage raising the winnings from regular
events.

It means that if the event Q has been correctly detected by the device
consecutively k times, then it gets a higher award a + € (not a as in the basic
model) for the recognition of the Q-events.

Definition. The experience function S; on step i is a random variable equal
to the number of consequently correctly recognized Q-events (we designate an
event of correct recognition of Q-type event as A) that occurred by this step

So =0,

{ Si_4 + 1,if A occured,
7 10,if A occured(Aohas not occured).

The model is graphically depicted on Fig. 3.
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Fig. 3. Scheme of model with stimulation

The experience function S;(t) for implementation of random process Z(t)

from Fig. 2 is shown on Fig. 4.
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Fig. 4. One possible implementation of Z(t) and its experience function S;(t)

Theorem 2. The expectation of total gain in the model with stimulation is

I'k—1,1 (k2
E(Z) =E(XW)- [ANZ '(F(k—_ll)vz)+ (k—1)- (1 ——(F(kg’Z))] +
o 555 155,

where Ay, = (4 + p)t is the intensity of flow of unknown events (both Q and

R), Xl.(l) and Xl.(z) are the random variables for the total gain in case i < k and
i > k, respectively. Their distributions can be obtained by selection of relevant

cases from the distribution of general variable X;



Prq2 if x = —d,
Poq1,if x = —b,

Popnifx =aandi <k,

Pr{X; =x}=1{ DoP1 (1 - (prl)k),ifx =gandi >k,
0,ifx=a+candi <k,

(prl)kH, ifx=a+eandi >k,

PrD2, ifx =c.

So, the distribution law of X (i < k) is

Prqs, if x = —d,

PF{X(i) — x} — Po4q1, if x = —b,
L prliifx =aq,
pRerifx = .

and for X? (i > k) the distribution law is

Prq2, if x = —d,
Poq1,if x = —b,

Pr{Xi(z) = x} =< Pob1 (1 - (PQP1)R),ifX =aq,
(prl)kH,ifx =a+e¢g,

PrP2, ifx = c.

4. The model with learning

Now we consider more complicated model where our device will also learn

on its actions: if Q-event was successfully recognized k times consequently (it
means that k times the device received an award a), then it will further

recognize an event of Q correctly with greater probability p; = p; + § > p;.

Denote S; as an experience function on step i, it is a random variable of the

number of consequently correctly recognized Q-events. This experience

function is defined almost like an experience function in the previous Section,

10



but this function is changed if an event X; = a occurs, i.e. our device
successfully detected coming event Q
50 = 0,

_ { Si_1 + 1,if a occurred,
* 7 0,if @ occurred (a has not occurred).

The graph for the model is given on Fig. 5.
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Fig. 5. The graph for model with learning

The question is still about the expected value of the total gain, but now we
have to know the probabilities P{S; < k} and P{S; = k}, because the random

variable of single winning X; takes values - d, —b, a, ¢ with probabilities

pRQZ'ifx =—d,

Polq1Pr{S; < k} + qiPr {S; = k}],if x = —b,
Polp1Pr{S; <k} +piPr{S; = k}],ifx = q,
pPrP2, if X = c.

11
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Theorem 3. The probability P{S; < k} is equal to
k-1

P(S; < K} = po(as = 4) ) P{Sicay < K} (pgr)’
j=0

Poq1 + Pr k
+== (1- .
m%+m( (per)')

Theorem 4. The sequence P{S; < k} has the limit

(Podi + =) (1 = (pop1)")
(ot + 1) — Po(d1 — 41 = (pgp1))

lim P{S; < k} = (4.1)
1—00

Fig. 6 illustrates the sequence of P{S; < k} and its limit with the example
whenk =8,q; =0.3,q;, =1,6 =0.2.
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Fig. 6. Number of events i occurred is given on the axis OX and probabilities
P{S; < k} are presented on the axis OY, the line is defined by P{S; < k}
from formula (4.1)

We can use the formula (3.1) to compute the expected gain in this model.

12



5. Examples

5.1. The expected gain as a function of k

We will draw the expected gain as a function of k for each model taking the
one year horizon in each case. The parameters are taken from S&P500 analysis
in [1] are a =0.6,—b = —0.6,c = 2.8,—d = —2.9,4 = 246, u = 4. Let the
probability of errors in R-events be g, = 1 (it means that the player can not
predict crisis at all), and the probability of errors in regular events g; will be
0.2, 0.3, 0.4 and 0.46. For the new models the parameters are € = 0.05 (which
defines the increase of a when the player successfully detected Q-events k
times consequently) and § = 0.1 (which defines the increase of p; when the
player successfully detected Q-events k times consequently).

The expected gain E(Z) in the basic model for all cases is 77, 47, 18 and
0.2, respectively.

You can see the dependence E(Z) on k on the Fig.7.
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Fig. 7. The solid line corresponds to the expected gain in the model with

stimulation and dotted line corresponds to the model with learning

Some values of expected gain can be seen in Tables 1 and 2.

Table 1. The expected gain for g4 = 0.2

E(Z) whenq, = 0.2 k=1 k=10 k=30
The model with stimulation 85 80 78
The model with training 103 90 81
The basic model [1] 77 77 77
Table 2. The expected gain for q; = 0.46
E(Z) when q; = 0.46 k=1 k=5 k=10
The model with stimulation 3.7 0.5 0.2
The model with training 17.6 1.7 0.3
The basic model [1] 0.2 0.2 0.2

Thus, when the error probabilities come closer to critical values (for which

the expectation is zero), the expected gains in both models tend to the expected




gain in the basic model much faster for the same k (moment of transition to a

more advantage condition).

5.2. The expected gain as a function of q,

Now the expected gain E'(Z) will be considered as a function of probability
error q;. Obviously E(Z) increases in these advanced models comparing with
the basic model, but will the critical value of g, also increase (we denote
critical value as a value of g4, that gives zero expected gain E (2))?

Parameters are still the same: a=0.6,—b=—-0.6,c =2.8 —d =

—29,1=246,u =4, =0.05,6 = 0.1. Let k = 5.

150 .

06 08 1

-150

Fig. 8. The solid line corresponds to the expected gain in the basic model,
dashed line — to the model with stimulation and dotted line corresponds

to the model with learning
Because of the condition q; = q; — § € [0,1] the values of g, in the third

model must be in the interval [§, 1]. The comparison of the results is given in

Table 3.
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Table 3. The expected gain as a function of q; when k =5

E(Z) EZ)
E(Z) Critical q,
whenq, =0 | whengq, =6
The basic model [1] 0.461 136 106
The model with stimulation 0.462 147 112
The model with training 0.466 - 132

If k = 10 then all critical values of g, (when E(Z) = 0) will be equal to
0.461. This means that if k increases then g, decreases to the critical value of

the basic model.

On Fig. 9 the graphs for § = 0.2 are given.
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Fig. 9. The solid line corresponds to the expected gain in the basic model,
dashed line — to the model with stimulation and dotted line corresponds

to the model with learning

The probability g, will increase if parameter § increases or parameter k

decreases (Table 4). In the basic model g is equal to 0.461.

16



Table 4. Critical value q, for different k

k=3 k=5 k=10
Critical g, | Critical g, | Critical q,
The model with stimulation € = 0.05 0.464 0.462 0.461
The model with training § = 0.1 0.477 0.466 0.461
The model with stimulation € = 0.05 0.464 0.462 0.461
The model with training § = 0.2 0.497 0.473 0.461
The model with stimulation € = 0.05 0.464 0.462 0.461
The model with training § = 0.3 0.522 0.485 0.462
The model with stimulation € = 0.05 0.464 0.462 0.461
The model with training § = 0.4 0.554 0.504 0.465

If the player does not try to recognize coming events but “toss up a coin” to

decide (this corresponds to the model with gq; = %, q, = %), then she will have

negative gain E(Z) = —0.2% in a year.

Conclusion

We considered new models based on [1] adding award for ‘successful

behavior’ as increase in gain and as increase in the probability of correct

recognition, which means that the player can train on his past actions and

accumulate experience. Both of these models allows the player to enlarge the

total gain and to make more mistakes, because she can get more in the sequence

of correctly detected events.
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Appendix. Proofs of the theorems

Proof of Theorem 1.

The device does not know what event came at a time i, so received gain
from recognition that event is a random variable X; with discrete law of
distribution. Since the flows of @Q-events and R-events are simplest (and hence
stationary), and probabilities p; and p, do not depend on time, all X; is

distributed equally as the random variable X with the law of distribution

Py, ifx = —d,

4 _ )ppifx=-b,
Pr{X =x} = poifx = a,
Peifx =c.

As flows of Q- and R-events are simplest, i.e. stationary, ordinary and has
no aftereffects, then superposition of these flows will also be a simplest flow

with intensity A4 + p [3]. Hence, the probability that coming unknown event is

Q is equal to py = ﬁ and the probability that coming unknown event is R is

equal to pg = ﬁ Then p, (the probability that the random variable X takes

the value - d) is equal to the probability that the event occurred is the R-type
and the device has not recognized it, i.e. pg; = prq,. We can find other
probabilities similarly.

Let Fyx(x) be the distribution function of a payoff X. The total value of

received payoffs for time t equals to

Nz
Z = ZXi,
i=1

where all X; are random variables of gain of one event and they have the same
distribution by the law of distribution of X, and N, is the number of events

occurred during the time ¢, it is distributed according to the Poisson distribution

18



with parameter (A + u)t (for the flow of events is the simplest flow with the
intensity A + p).

This sum of a Poisson number N, terms, where N, and X; are independent,
is called a compound Poisson random variable. Its distribution is given by a
pair of P((1+ w)t; F;(x)), and the explicit form of the distribution function
can be obtained by applying the formula of total probability with hypotheses
{Nz = m}

Fy(x) = z P(X; + -+ Xy < x}P{Ny = m} =
m=0

= > B A +m’f)t)m e,

m=0

where P{N, = m} = P,(t) = e M, FX(m) (x) — m-fold convolution

(@A+mO™
m!

of Fy(x), E{™ = E{™ ™ + F,F + F— the distribution law of variable X; + X,

with probabilities P(X; + X,) = Xio; P(Xy = x;)P(X, = s; — x;), where x;

denotes a possible value of X; (it can be -d, —b, a, ¢) and s; is a possible value

of X; + X;.

Then the expected value of Z is equal to

ElZ] = ) EIZIN, = jIPN; = J} = EIX] ) jP{N, = j} = EIX] EIN;] =
j=0 j=0

_< du b/1+ a/1+ cu

= (A(p1a — q1b) + pu(p,c
— qzd)t.

)@+ e =

19



Proof of Theorem 2.

Suppose A is an event of correct recognition of Q-type events and the
probability of A is p, = pop; = ﬁpl. If the Q-event comes, we should
choose the value of winning a or a + € according to the experience function S;.

We defined the experience function S; on i step in the following way

SOZO,

_ { S;_1 + 1,if A occurs,
" 710, if A occurs (does not occur A),

The experience function on step i can take values from 0 to i with some
probabilities. For example, the probability of S; = i is equal P{S; = i} = pl,
for another values k = 0,1,2,...,i — 1 the probabilities are P{S; = k} = p¥ -
(1 = pa)-

Obviously ps = Pr{S; <k} =1fori <k.Fori >k

ps=1 —Pr{AA..A} =1-pk.
4

So, the probability p; is equal to

_ {1, ifi <k,
Ps =1 - pkifi > k.
Let X; be a random variable of gain in the model with stimulation. X;
depends on number i: for i < k the probability to get value a + ¢ is zero and

for i > k this probability is positive. Then X; takes values -d, —b,a,a + ¢, ¢
with probabilities

20



Prq2 ifx = —d,

P41, ifx = —b,
popy,ifx =aandi <k,

K\ | .
Pr{X; = x} ={ PoP1 (1 — (pop1) ),lfx =aandi >k,
0,ifx=a+eandi <k,
k+1 | ]
(prl) ,ifx=aandi >k,

PrD2, ifx =c.

It will be convenient to divide random variable X; into two variables y (1)
L
for i < k and x@ for i > k. Their distributions can be obtained from the law
L

of the random variable X; by selection the relevant cases.

Let Ay, = (A + Wt be intensity of flow of unknown events. Then for

compound Poisson random variable of total winnings Z = Z?’:Zl X; we have

E[Z)= ) E[ZIN, = /IP(N, = j} =

Jj=0
k-1 Nz © k-1
(€] . _ 1 — —
ZE in Ny =j P{Nz—}}+ZE<ZXL- Nz—]>P{NZ—]}+
j=0 \i=1 j=k M=t
Nz

+ZE ZX}Z) N, =j |P{N, = j}.
j=k k

i=

The sum is divided into two parts in the last formula because before kth
term all X; are Xl.(l) and after kth term all of them are equal to X i(z)_ We take

k > 1, for k = 1 is the case of basic model.

The first sum is

k-1 Nz k-1 (/1 )f
B[ XD (N, = |, =y = B(x®)e vz ) jARE
j=0 \i=1 =

21



We will use formula 5.24.3 from u3 [2]

Z—x" = —e"F(k +1,x),

where I (a, z) is incomplete gamma function defined as

I'(a,z) = j e tte14dt.
z
In our case it will be

k-1

j=0

-

1 Y
= Am M2l (e =1, Ay,).

Then first sum in the expression for expectation of total gain is

k-1 Nz

ZX}” N, = |PN; = j} = E[X®]ay,
j=0 i=

Let us find the second sum

) k—1
Z E <Z xP N,

=k \i=1

0

2 L

k-1,

(A1)

=i> PN, =)= ) B (k= DX®) PN, =) =
=k

N . ()
= (k= DE(X®) Y PN, = j} = (k = DE[XD]e~nz ) 222

We can find this sum using formula (A1)

—ANZ Z (ANZ) —ANZ Z (ANZ) Z (ANZ)

ML (k, ANZ)] =1 g

— o~ N ANg _
€ Z[e Y]

22



So the second sum is equal to

© k-1
22

i=1

_ . o Tk, Ay,)
N, —1>P{Nz =j} = (k= DE(X®) (1 - W)

The last sum in our formula can be represented as

0 Nz i i
DE( Y x@ Ny =j )P, == E Y P | PN, =) =
=k \i=k j=k  \i=k

=E[X®]- > (—k+1)-P{N;=j}=

— E[X(Z)]' Z]’-P{NZ =j1+(1 —k)ZP{Nz =} =
j=k j=k

I(k = 1,y,) I'(k, Ax)
=), (1= Fr ) -0 (1 )|

Hence the expectation of total gain is equal to

Nz

E@) =B Y X |=

i=1

I'(k—1,1 T'(k, A
=B [A”Z ' (r(k - 1I)VZ) Hlem D (1 ) (r(k;VZ))] ’

Y. [ (1 - =L An,) 4 Dl Any)
+E(Xx®) [ANZ (1 Th— D )+(1 k) (1 30 )]

Proof of Theorem 3.

S; — an experience function on step i — is a random variable equal to the

number of consequently correctly recognized Q-events,
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50:0,

_ {Si—l + 1,if a occurred,
t 710, if @ occurred (a did not occur),

The experience function on step i can take values from 0 to i with some
probabilities.
We have to know the probabilities P{S; < k} and P{S; = k}, because now

the random variable of single winning X; takes values -d,—b,a,c with
probabilities

Prq2, if x = —d,
PolqiPr{S; < k} + qiPr {S; = k}],if x = —b,
Dolp1Pr{S; <k} + piPr{S; = k}],ifx = a,

PrP2, if x = c.

Pr{Xi = x} =

Because the probability P{S; < k} is equal to
P{Sl<k}= 1—P{512k}:
=P{S;=0o0rS;=1orS;=2o0r..orS;=k—1} =

=P{S;=0}+P{S; =1} +P{S; =2} + -+ P{S; =k — 1},

we will describe all terms.

P{S; = 0} is a probability of experience function to get value 0 on step i,

i.e. the device incorrectly recognized coming event Q or it was event R. Hence,
P{S; =0} =P{X;=—-borX,=corX; =—-d} =
= polg1P{Si—1 <k} + qiP{Si—1 = k}] + prp2 + PrG2 =
= Pola1P{Si—1 <k} + qiP{Si_1 = k}] + pr.

P{S; = 1} is a probability of experience function to get value 1 on step i,
i.e. the device correctly recognized coming event @ on step { and did a mistake

on step i — 1. It means that S;_; = 0 and then happens X; = a (it can be with

probability pyp;)
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P{S; =1} = [PQ [q1P{Si—» < k} + qiP{S;—» = k}] + pR](prl)'
In the same way we can find another probabilities
P{S; = 0}, P{S; =1}, ..., P{S; = k — 1}.
For example

P{S;=k—-1}=

* k-1
= [pola1P{Sic1—ge—1y < k} + @i P{Si_i = k3] + pr|(Pop1)” -
Now we can evaluate a sum P{S; <k}=P{S;=0}+P{S;=1}+
+P{S; = 2} + - + P{S; = k — 1} taking P{S; > k} = 1 — P{S; < k}:
P{S; <k}=P{S;=0}+P{S;=1}++P{S;=k—-1}=

k-1

= po ) [01P{Sic1y < K} + 43 (1= P{Siasy < )] (pepa) +

k-1 ]
+Dg Z(pqpl)’ =
=0

k-1 k-1

= po(d1 — 41) Z P{Si_1-; < k}(popr)” + (P + Pr) Z(prl)j-

Jj=0 j=0

The last sum is geometric progression and the answer is

P{S; < k} =
k-1 X
7 i * p p _'1
= pols = aD) ) PlSics-; < K)(pops) + (podi + pﬂ%‘
j=0 PoP1

Using the known dependences between the probabilities, we can express

PoPp1— 1 =Dg —Peq1 — 1 = —Pr — Po1-
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Finally the probability P{S; < k} is
k-1

P{S; <k} =po(q1 — q7) Z P{S;,_; < k}(prl)j
j=0
Peqi + Pr k
+—|1- . A2
m%+m( (or:)’) “2)
Proof of Theorem 4.

Let us denote P{S; < k} = z;, pe(q1 — q1) = a,0 < a < 1,pep; = 5,0 <

PQUitPR (4 _ kY _ _ (1-g")(-a-B)
B <1, — (1 (prl) ) =y,0<y <1, and y = S — then

the equation (A2) is written as

i-1
s=i-k

or
zi=a (zi1 +fziy + Pz + -+ N2 ) + .
As all z; = P{S; < k} are probabilities and Vi 0 < z; < 1, the sequence
{z;}i2, is bounded from both sides.
This sequence is nonincreasing, we will prove it by induction. The first k
terms are equal to 1: zy = zy =z, = -+ = z,_; = 1, because S; = 0 and if
i <kthenz; =P{S; <k}=1.

First of all we prove z;, < z,_; to have k inequalities for the induction

(1—ﬁ")+(1—ﬁ")(1—a—ﬁ)
1-p 1-p

zZe=a(l+B+p*+ -+ DN+y=a

=1_,8k31=Zk_1.
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Let inequality z;_; < z;_, holds for all i — 1 first terms of the sequence.
We will take z; and prove that z; < z;_,. The difference between two terms of

the sequence is

zi=a (21 + Pz + PPz + o+ BTz ) +y
Zig =z + Bzis +BPzia+ o+ Tz ) +y
Zi = Zi-1 =

=a (21 + (B —Dzip + BB —Dzip + -+ 2B — Dziy
— Bz ) <

Sa (i + (B —Dzip + BB —Dzip + -+ 2B — Dziy
— Bz ) =

=a - (Bzi, + BB =Dz + -+ 2B~ Dz — 2 -1) =
=a- (B2 + 2B~ VDziz+ -+ 2B Dz — B2 1) <

<

<aB* 'z — Bz pm1) = afF Nz — 2p-k-1) S0,

becauseof 0 < a < 1,0<f < 1,and z;_, < z;_;_4-

So z; < z;_; and the sequence {z;};jz;, is monotonic (nonincreasing). If
nonincreasing sequence is bounded from below, then this sequence converges
[4], hence, the sequence {z;}{=, has a limit lim;_,., z; = z.

Leti — oo, then

i-1

=a Z B Sz +y

s=i—k

i—-1
z=limz; = lim [a Z Bt Sz +y

>0 i—00
s=i—k

1- Bk
1-p

=zZa +y

1.e.

,___ a-py
IRV R ey D)
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Rewriting it in the initial notations, we obtain

(Podi +pr)(1 = (pop1)") .
(Po@ + Pr) — Po(d1 — 4 (A = (Pgp1))

i—>o0
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