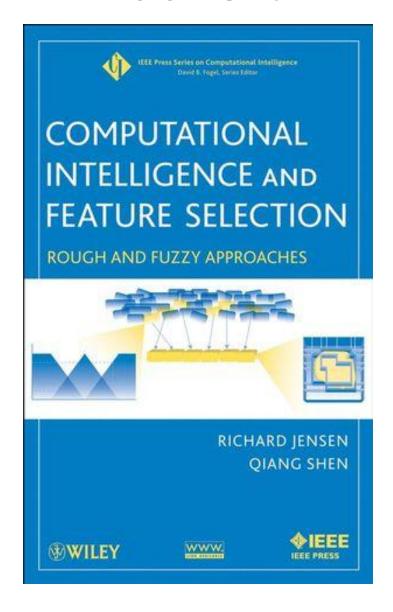
Fuzzy-rough data mining

Richard Jensen

rkj@aber.ac.uk

http://users.aber.ac.uk/rkj

An advert...



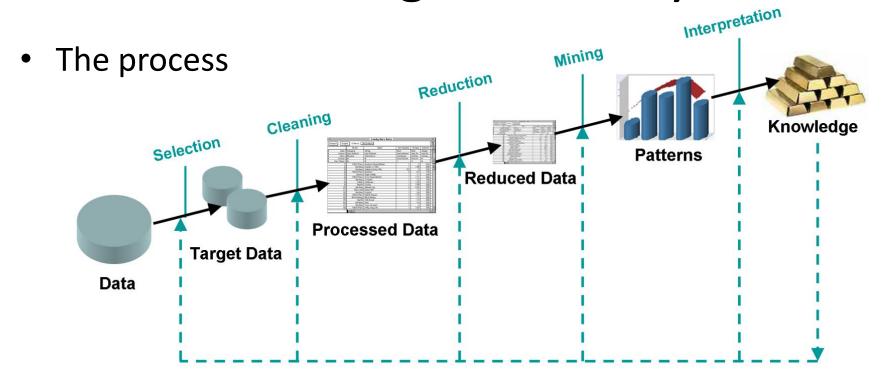
Outline

- Introduction to knowledge discovery/data mining
- Feature selection and rough set theory
- Fuzzy-rough feature selection and extensions
- Fuzzy-rough instance selection
- Fuzzy-rough classification/prediction
- Practical session with Weka

Data mining

- Process of semi-automatically analyzing large databases to find patterns (or models) that are:
 - valid: hold on new data with some certainty
 - novel: non-obvious to the system
 - useful: should be possible to act on the item
 - understandable: humans should be able to interpret the pattern/model

Knowledge discovery



- The problem of too much data
 - Requires storage
 - Intractable for data mining algorithms
 - Noisy or irrelevant data is misleading/confounding

Results of Data Mining include:

- Forecasting what may happen in the future
- Classifying people or things into groups by recognizing patterns
- Clustering people or things into groups based on their attributes
- Associating what events are likely to occur together
- Sequencing what events are likely to lead to later events

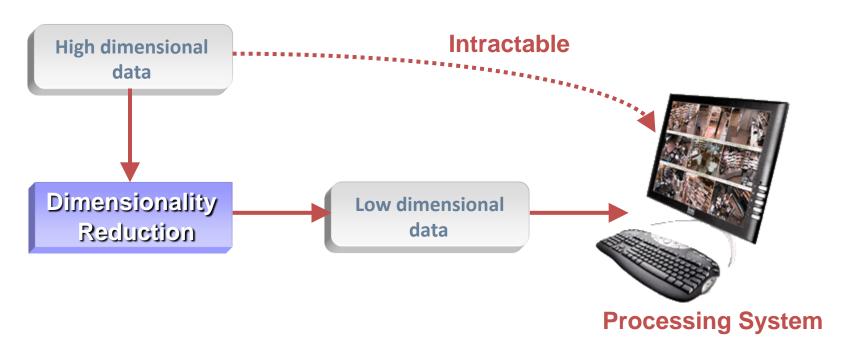
Applications

- Banking: loan/credit card approval
 - predict good customers based on old customers
- Customer relationship management:
 - identify those who are likely to leave for a competitor
- Targeted marketing:
 - identify likely responders to promotions
- Fraud detection: telecommunications, financial transactions
 - from an online stream of events identify fraudulent events
- Medicine: disease outcome, effectiveness of treatments
 - analyze patient disease history: find relationship between diseases

Feature Selection

Feature selection

Why dimensionality reduction/feature selection?



- Growth of information need to manage this effectively
- Curse of dimensionality a problem for machine learning and data mining
- Data visualisation graphing data

Why do it?

- Case 1: We're interested in features
 - We want to know which are relevant
 - If we fit a model, it should be interpretable

- Case 2: We're interested in prediction
 - Features are not interesting in themselves
 - We just want to build a good classifier (or other kind of predictor)

Case 1

- We want to know which features are relevant; we don't necessarily want to do prediction
- E.g. what causes lung cancer?
 - Features are aspects of a patient's medical history
 - Decision feature: did the patient develop lung cancer?
 - Which features best predict whether lung cancer will develop?
- E.g. what stabilizes protein structure?
 - Features are structural aspects of a protein
 - Real-valued decision feature—protein energy
 - Features that give rise to low energy are stabilizing

Case 2

- We want to build a good predictor
- E.g. text classification
 - Features for all English words, and maybe all word pairs
 - Common practice: throw in every feature you can think of, let feature selection get rid of useless ones
 - Training too expensive with all features
- E.g. disease diagnosis
 - Features are outcomes of expensive medical tests
 - Which tests should we perform on the patient?

Aspects of features

- Correlation
 - The extent to which one subset of features depends on another

- So ideally we want:
 - High relevancy: high correlation with the decision feature
 - Low redundancy: very little correlation between features within a subset

Problems

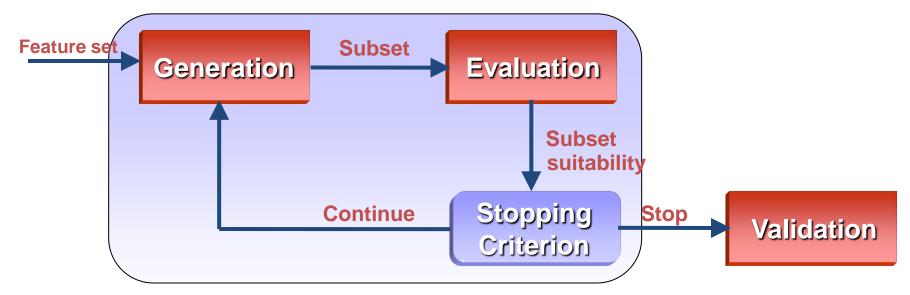
- Noisy data
 - Due to measurement inaccuracies
 - Can also affect decision feature values

Inconsistent data

	f ₁	f_2	class	
instance 1	а	b	c1	
instance 2	а	b	c2	

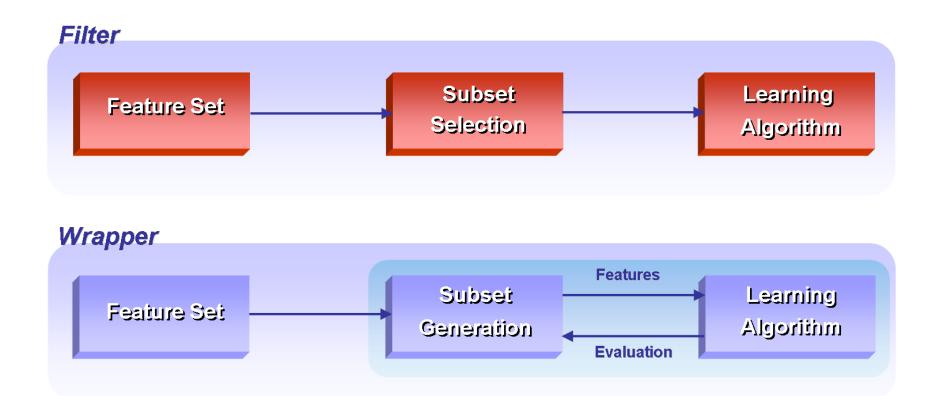
Feature selection process

 Feature selection (FS) preserves data semantics by selecting rather than transforming



- Subset generation: forwards, backwards, random...
- Evaluation function: determines 'goodness' of subsets
- Stopping criterion: decide when to stop subset search

Types of FS



Search in FS

- We have an evaluation function Eval
 - Task: find a subset of features, F, that maximises Eval(F)
 - Often want to minimise |F|
 - Filter, if Eval = subset evaluation measure
 - Wrapper, if Eval = evaluation via classifier
- Brute-force approach impractical, so search is required
 - Often greedy hill-climbing is used
 - Other search techniques can be used...

Sequential forward selection

Algorithm:

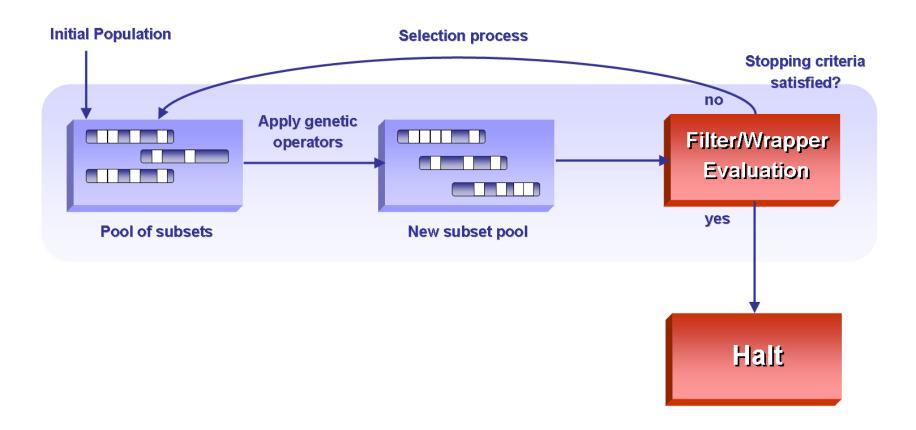
- Begin with zero attributes
- Evaluate all feature subsets w/ exactly 1 feature
- Select the one with the best performance
- Add to this subset the feature that yields the best performance for subsets of next larger size
- Repeat this until stopping criterion is met

Sequential backward selection

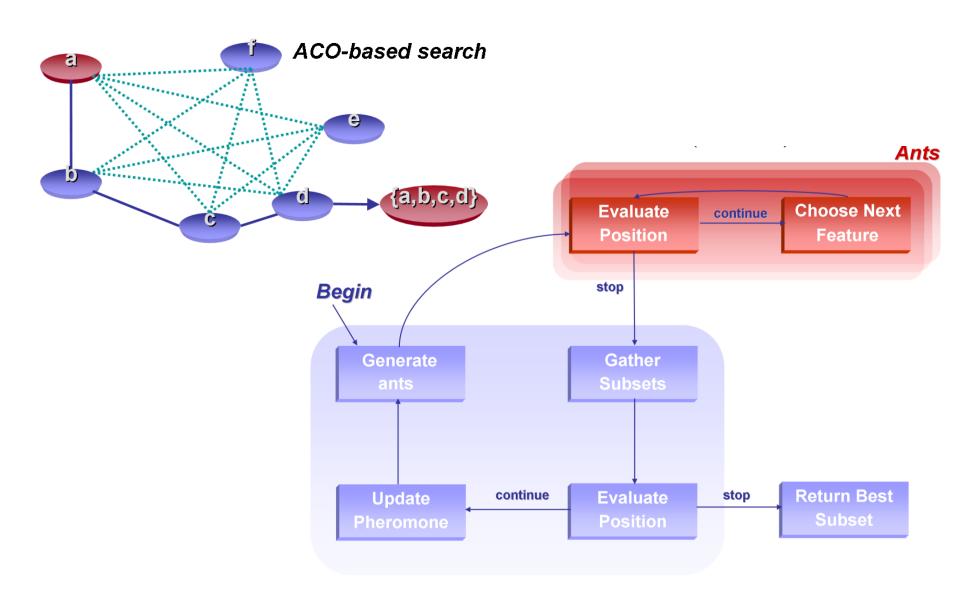
Begins with all features

- Repeatedly removes a feature whose removal yields the maximal performance improvement
 - Can be filter or wrapper

GA-based FS

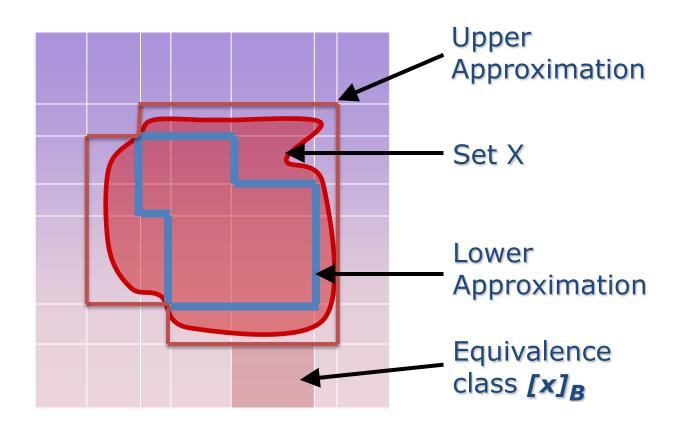


Ant-based FS

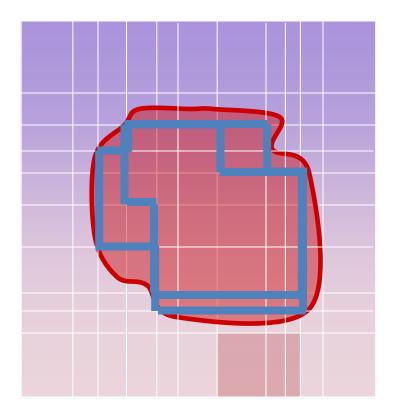


Invented in 1982, but took off in the 1990s

- Based on set theory
- Approximates (estimates) a concept via two sets:
 - Lower approximation (containing elements that definitely belong to the concept)
 - Upper approximation (containing elements that possibly belong)



 By considering more features, concepts become easier to define...



Recap: datasets

		Headache	Muscle pain	Тетр.	Flu
	U1	Yes	Yes	Normal	No
7	U2	Yes	Yes	High	Yes
/	U3	Yes	Yes	Very-high	Yes
	U4	No	Yes	Normal	No
	U5	No	No	High	No
	U6	No	Yes	Very-high	Yes
Objects, ins	stances				
Each colum	ın is a fe	ature/sympton	n/measurem	ent	
					
			The final col	umn is the decis	sion feature

Example dataset

	Headache	Muscle pain	Favourite TV program	Temp.	Flu
U1	Yes	Yes	Lost	Normal	No
U2	Yes	Yes	24	High	Yes
U3	Yes	Yes	24	Very-high	Yes
U4	No	Yes	A-Team	Normal	No
U5	No	No	24	High	No
U6	No	Yes	A-Team	Very-high	Yes

Equivalence classes

	Headache	Muscle pain	Favourite TV program	Тетр.	Flu
U1	Yes	Yes	Lost	Normal	No
U2	Yes	Yes	24	High	Yes
U3	Yes	Yes	24	Very-high	Yes
U4	No	Yes	A-Team	Normal	No
U5	No	No	24	High	No
U6	No	Yes	A-Team	Very-high	Yes

$$[U1]_{R_H} = R_{H}U1 = \{U1, U2, U3\}$$

$$[U5]_{R_{H}} = R_{\{H\}} U5 = \{U4, U5, U6\}$$

$$X = \{U1, U2, U3, U4, U5, U6\}$$

$$R_{H} = \{\{U1, U2, U3\}, \{U4, U5, U6\}\}$$

$$R_{H,M} = \{\{U1,U2,U3\}, \{U4,U6\},\{U5\}\}$$

- Approximating a concept A using knowledge in feature subset B
 - Lower approximation: contains objects that definitely belong to A

$$R_B \downarrow A = \{x \in X | [x]_{R_B} \subseteq A\}$$

Upper approximation: contains objects that possibly belong to A

$$R_B \uparrow A = \{x \in X | [x]_{R_B} \cap A \neq \emptyset\}$$

	Headache	Muscle pain	Тетр.	Flu
U1	Yes	Yes	Normal	No
U2	Yes	Yes	High	Yes
U3	Yes	Yes	Very-high	Yes
U4	No	Yes	Normal	No
U5	No	No	High	No
U6	No	Yes	Very-high	Yes

Set $B=\{H,M\}$ $R_B = \{\{U1,U2,U3\}, \{U4,U6\}, \{U5\}\}$

$$R_B \downarrow A = \{x \in X | [x]_{R_B} \subseteq A\}$$

For concept Flu=No A={U1,U4,U5}

$$R_B \downarrow A =$$

Positive region

- Find the lower approximation for each decision concept
- Take the union of these
- Summarises the information contained in a subset for the full dataset

 $POS_B = \bigcup_{x \in X} R_B \downarrow [x]_{R_d}$

Dependency function

- Take the cardinality of the positive region (number of elements) and divide by the number of objects in the dataset
- This is the evaluation measure
- When this reaches 1, search can stop

$$\gamma_B = \frac{|POS_B|}{|X|}$$

Reducts

Given $(X,A \cup \{d\})$, $B \subseteq A$

B is a decision reduct if B satisfies

$$\gamma_B = \gamma_A$$

and no proper subset of B satisfies it

 Core = set of all features that appear in every reduct

- One approach: QuickReduct
- Attempts to remove unnecessary or redundant features
 - Evaluation: function based on rough set concept of lower approximation
 - Generation: greedy hill-climbing algorithm employed
 - Stopping criterion: when maximum evaluation value is reached (= reduct or superreduct)

	Headache	Muscle pain	Favourite TV program	Temp.	Flu
U1	Yes	Yes	Lost	Normal	No
U2	Yes	Yes	24	High	Yes
U3	Yes	Yes	24	Very-high	Yes
U4	No	Yes	A-Team	Normal	No
U5	No	No	24	High	No
U6	No	Yes	A-Team	Very-high	Yes

consider each feature individually at first

	Headache	Flu
U1	Yes	No
U2	Yes	Yes
U3	Yes	Yes
U4	No	No
U5	No	No
U6	No	Yes

```
Set B={H}
Lower approximation for Flu=No is {}
Lower approximation for Flu=Yes is {}
Positive region is {}
```

	Тетр.	Flu
U1	Normal	No
U2	High	Yes
U3	Very-high	Yes
U4	Normal	No
U5	High	No
U6	Very-high	Yes

Set B={T}
Lower approximation for Flu=No is {U1,U4}
Lower approximation for Flu=Yes is {U3,U6}
Positive region is {U1,U3,U4,U6}

Rough set feature selection

	Favourite TV program	Тетр.	Flu	
U1	Lost	Normal	No	
U2	24	High	Yes	
U3	24	Very-high	Yes	
U4	A-Team	Normal	No	
U5	24	High N		
U6	A-Team	Very-high	Yes	

Set B={TV, T}
Lower approximation for Flu=No is {U1,U4}
Lower approximation for Flu=Yes is {U3,U6}
Positive region is {U1,U3,U4,U6} (unchanged)

Rough set feature selection

	Headache	Тетр.	Flu	
U1	Yes	Normal	No	
U2	Yes	High	Yes	
U3	Yes	Very-high	Yes	
U4	No	Normal		
U5	No	High	No	
U6	No	Very-high	Yes	

Set B={H,T}
Lower approximation for Flu=No is {U1,U4,U5}
Lower approximation for Flu=Yes is {U2,U3,U6}
Positive region is {U1,U2,U3,U4,U5,U6} = X

Example 2

	Diploma	Experience	French	Reference	Decision
x_1	MBA	Medium	Yes	Excellent	Accept
x_2	MBA	Low	Yes	Neutral	Reject
x_3	MCE	Low	Yes	Good	Reject
x_4	MSc	High	Yes	Neutral	Accept
x_5	MSc	Medium	Yes	Neutral	Reject
x_6	MSc	High	Yes	Excellent	Accept
x_7	MBA	High	No	Good	Accept
x_8	MCE	Low	No	Excellent	Reject

$$R_B \downarrow A = \{x \in X | [x]_{R_B} \subseteq A\}$$

Fuzzy-rough feature selection

Fuzzy-rough set theory

Problems:

- Rough set methods (usually) require data discretization beforehand
- Also no flexibility in approximations

Example

 Objects either belong fully to the lower (or upper) approximation, or not at all

Hybridizing rough and fuzzy sets

- Two lines of thought in hybridization
 - Axiomatic approach investigate mathematical properties
 - Constructive approach generalize lower and upper approximations
- The fuzzy-rough tools described in this tutorial are built on the definition in:
 - A.M. Radzikowska, E.E. Kerre, A comparative study of fuzzy rough sets, Fuzzy Sets and Systems, vol. 126, no. 2, pp. 137-155, 2002.

Fuzzy rough sets

Rough set
$$R_B {\uparrow} A = \{x \in X \ [x]_{R_B} \cap A \neq \emptyset \}$$

$$R_B {\downarrow} A = \{x \in X \ [x]_{R_B} \subseteq A \}$$
Fuzzy-rough set
$$R {\uparrow} A(y) = \sup_{\substack{x \in X \\ x \in X}} \mathcal{T}(R(x,y),A(x))$$

$$R {\downarrow} A(y) = \inf_{\substack{x \in X \\ \text{implicator}}} \mathcal{T}(R(x,y),A(x))$$

FRFS (old)

- Based on Dubois and Prade's definitions
 - Fuzzy lower approximation:

$$\mu_{\underline{P}X}(x) = \sup_{F \in U/P} \min(\mu_F(x), \inf_{y \in U} I(\mu_F(y), \mu_X(y)))$$

– Fuzzy positive region:

$$\mu_{POS_P(Q)}(x) = \sup_{X \in U/Q} \mu_{\underline{P}X}(x)$$

– Evaluation function:

$$\gamma'_{P}(Q) = \frac{|\mu_{POS_{P}(Q)}(x)|}{|U|} = \frac{\sum_{x \in U} \mu_{POS_{P}(Q)}(x)}{|U|}$$

FRFS (new)

Based on fuzzy similarity

$$R_{a}(x, y) = 1 - \frac{|a(x) - a(y)|}{|a_{\text{max}} - a_{\text{min}}|}$$

$$R_{p}(x, y) = \bigcap_{a \in P} \{R_{a}(x, y)\}$$

Lower/upper approximations

$$R \uparrow A(y) = \sup_{x \in X} \mathcal{T}(R(x, y), A(x))$$

 $R \downarrow A(y) = \inf_{x \in X} \mathcal{I}(R(x, y), A(x))$

FRFS: evaluation function

Fuzzy positive region #1

$$POS_B(y) = \left(\bigcup_{x \in X} R_B \downarrow R_d x\right)(y)$$

Fuzzy positive region #2 (weak)

$$POS_B(y) = (R_B \downarrow R_d y)(y)$$

Dependency function

$$\gamma_B = \frac{|POS_B|}{|POS_A|}$$

FRFS: evaluation function

Alternative measure: delta function

$$\delta_B = \frac{\min_{x \in X} POS_B(x)}{\min_{x \in X} POS_A(x)}$$

Properties

Proposition 2: For subsets B_1, B_2 of A,

$$B_1 \subseteq B_2 \Rightarrow \begin{cases} \gamma_{B_1} \le \gamma_{B_2} \\ \delta_{B_1} \le \delta_{B_2} \end{cases}$$

Proposition 3: $\gamma_{\mathcal{A}} = \delta_{\mathcal{A}} = 1$

FRFS: finding reducts

- Fuzzy-rough QuickReduct
 - Evaluation: use the dependency function (or other fuzzy-rough measure)

- Generation: greedy hill-climbing

- Stopping criterion: when maximal evaluation function is reached (or to degree α)

Object	a	b	С	q
1	-0.4	-0.3	-0.5	no
2	-0.4	0.2	-0.1	yes
3	-0.3	-0.4	-0.3	no
4	0.3	-0.3	0	yes
5	0.2	-0.3	0	yes
6	0.2	0	0	no

$$R_a(x,y) = \max\left(\min\left(\frac{a(y) - a(x) + \sigma_a}{\sigma_a}, \frac{a(x) - a(y) + \sigma_a}{\sigma_a}\right), 0\right)$$

• If $A = \{1,3,6\}$, calculate $(R_a \downarrow A)(3)$

$$A = \{1,3,6\}, \text{ calculate } (R_a \downarrow A)(3)$$

$$R_a(x,y) = \begin{pmatrix} 1.0 & 1.0 & 0.699 & 0.0 & 0.0 & 0.0 \\ 1.0 & 1.0 & 0.699 & 0.0 & 0.0 & 0.0 \\ 0.699 & 0.699 & 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 1.0 & 0.699 & 0.699 \\ 0.0 & 0.0 & 0.0 & 0.699 & 1.0 & 1.0 \\ 0.0 & 0.0 & 0.0 & 0.699 & 1.0 & 1.0 \end{pmatrix}$$

$$A(x) = (1,0,1,0,0,1)$$

$$\mathcal{I}_{\mathcal{S}_{\mathbf{W}}}(x,y) = \min(1 - x + y, 1)$$

$$(R \downarrow A)(y) = \inf_{x \in X} \mathcal{I}(R(x, y), A(x))$$

$$(R \downarrow A)(y) = \inf_{x \in X} \mathcal{I}(R(x, y), A(x))$$

= $\inf\{I(0.699, 1), I(0.699, 0), I(1, 1), I(0, 0), I(0, 0), I(0, 1)\}$
= 0.301

$$\gamma_{\{a\}} = \frac{0.602}{6} \\
= 0.1003$$

The search continues...

$$\gamma_{\{b\}} = 0.3597$$
 $\gamma_{\{c\}} = 0.4078$

 Feature c looks more promising, so choose this and continue searching

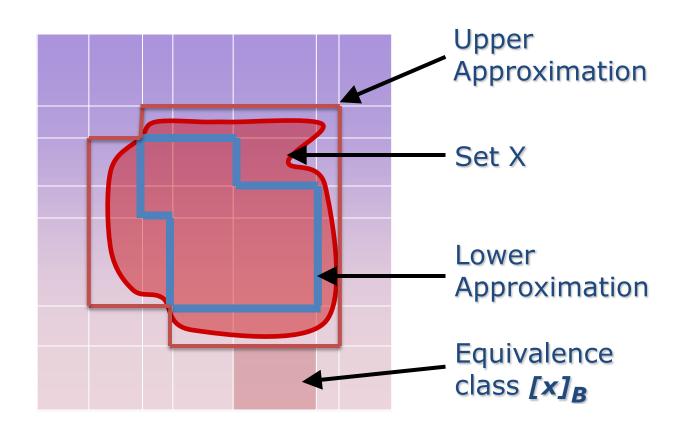
$$\gamma_{\{a,c\}} = 0.5501$$
 $\gamma_{\{b,c\}} = 1.0$

FRFS

- Other subset generation methods
 - GAs
 - ACO
 - Backward elimination

- Other subset evaluations
 - Fuzzy boundary region
 - Fuzzy entropy
 - Fuzzy discernibility functions

Boundary region



FRFS: boundary region

 Fuzzy lower and upper approximation define fuzzy boundary region

$$R \uparrow A(y) - R \downarrow A(y)$$

- For each concept, minimise the boundary region
 - (also applicable to crisp RSFS)
- Results seem to show this is a more informed heuristic (but slower to calculate)

FRFS: issues

Problem – noise tolerance!

$$R \uparrow A(y) = \sup_{x \in X} \mathcal{I}(R(x,y),A(x))$$

 $R \downarrow A(y) = \inf_{x \in X} \mathcal{I}(R(x,y),A(x))$

Vaguely quantified rough sets

Pawlak rough set

y belongs to the lower approximation of A iff all elements of Ry belong to A

y belongs to the upper approximation of A iff at least one element of Ry belongs to A

VQRS

y belongs to the lower approximation of A iff **most** elements of Ry belong to A

y belongs to the upper approximation of A iff at least some elements of Ry belong to A

VQRS

$$R \uparrow_{Q_l} A(y) = Q_l \left(\frac{|Ry \cap A|}{|Ry|} \right)$$

 $R \downarrow_{Q_u} A(y) = Q_u \left(\frac{|Ry \cap A|}{|Ry|} \right)$

R, A: crisp or fuzzy $R \downarrow A$, $R \uparrow A$: fuzzy

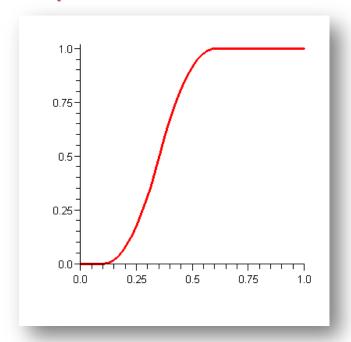
y belongs to the lower approximation to the extent that most elements of Ry belong to A

y belongs to the upper approximation *to the extent that* **some elements of** Ry belongs to A

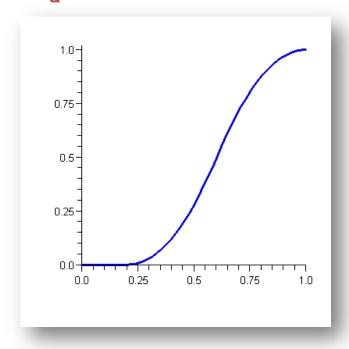
Fuzzy quantifiers: examples

Fuzzy quantifier (Zadeh): $[0,1] \rightarrow [0,1]$ mapping Q

Q_I: some



Q_u: most

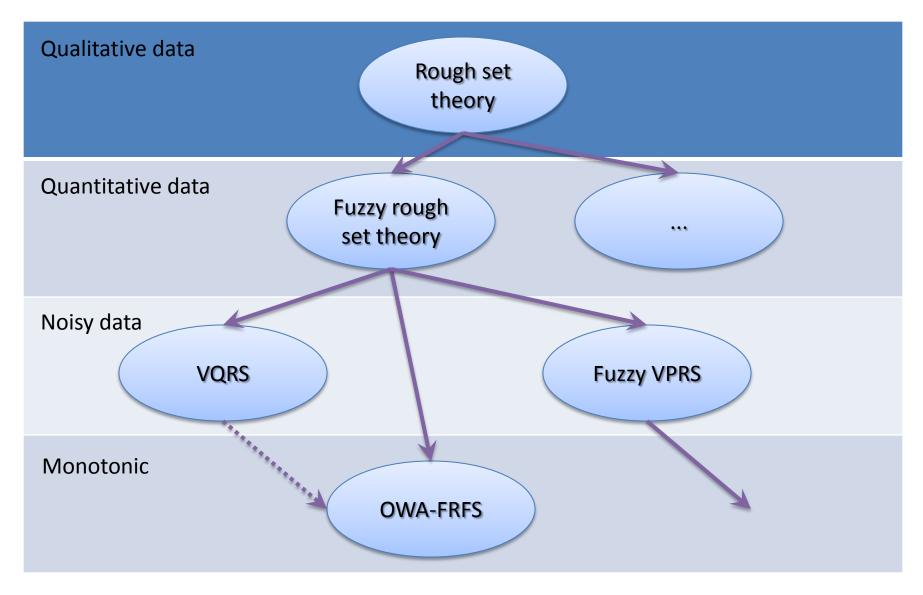


VQRS-based feature selection

- Use the quantified lower approximation, positive region and dependency degree
 - Evaluation: the quantified dependency (can be crisp or fuzzy)
 - Generation: greedy hill-climbing
 - **Stopping criterion**: when the quantified positive region is maximal (or to degree α)

 Should be more noise-tolerant, but is nonmonotonic

Progress



OWA-FRFS

- E.g. values {3, 5, 2, 7, 4}
 - (Ordered values = 7 5 4 3 2)

- OWA modelling of sup and inf:
 - sup-weights 10000 = 7
 - inf-weights 00001 = 2

- OWA relaxation of sup and inf:
 - sup-relax-weights

 $0.7\ 0.2\ 0.1\ 0.0\ 0.0 = 6.3$

• inf-relax-weights

 $0.0\ 0.0\ 0.1\ 0.2\ 0.7 = 2.4$

OWA-FRFS

New lower and upper approximations

$$(R\downarrow_{W_l} A)(y) = OWA_{W_l} \langle \mathcal{I}(R(x_i, y), A(x_i)) \rangle$$

$$(R\uparrow_{W_u} A)(y) = OWA_{W_u} \langle \mathcal{T}(R(x_i, y), A(x_i)) \rangle$$

Feature selectors can be built on this

Vague quantifiers can be modelled with this

More issues...

Problem #1: how to choose fuzzy similarity?

Problem #2: how to handle missing values?

Interval-valued FRFS

 Answer #1: Model uncertainty in fuzzy similarity by interval-valued similarity

IV fuzzy rough set

$$\begin{array}{lcl} \mu_{\widetilde{R_PX}}(x) & = & \inf_{y \in \mathbb{U}} \mathcal{I}(\mu_{\widetilde{R_P}}(x,y),\mu_{\widetilde{X}}(y)) \\ \mu_{\widetilde{\overline{R_PX}}}(x) & = & \sup_{y \in \mathbb{U}} \mathcal{T}(\mu_{\widetilde{R_P}}(x,y),\mu_{\widetilde{X}}(y)) \end{array}$$

IV fuzzy similarity

$$\mu_{R_{a*}}(x,y) = 1 - \left(\frac{|a(x) - a(y)|}{|a_{\max} - a_{\min}|}\right)^{m}$$

$$\mu_{R_{a*}}(x,y) = 1 - \frac{|a(x) - a(y)|}{|a_{\max} - a_{\min}|}$$

Interval-valued FRFS

- When comparing two object values for a given attribute – what to do if at least one is missing?
- Answer #2: Model missing values via the unit interval

$$\mu_{\widetilde{R_a}}(x,y) = \begin{cases} \mu_{\widetilde{R_a}}(x,y) & \text{if } a(x), a(y) \neq *, \\ [0,1] & \text{otherwise} \end{cases}$$

Other measures

Boundary region

$$\mu_{\widetilde{BND}_P(X)}(x) = \mu_{\widetilde{R}_P X}(x) - \mu_{\underline{\widetilde{R}_P X}}(x)$$

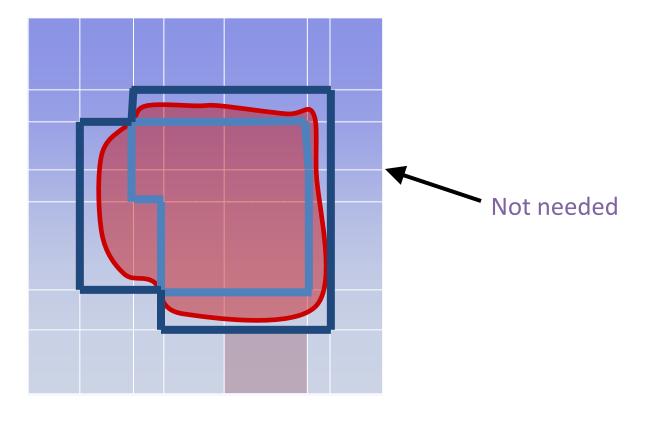
Discernibility function

$$\widetilde{c_{ij}}(P) = \mathcal{I}(\mathcal{T}(\underbrace{\mu_{\widetilde{R_a}}(x_i, x_j)}_{a \in P}), \mu_{\widetilde{R_{\mathbb{D}}}}(x_i, x_j))$$

$$\widetilde{g}(P) = \frac{2 \cdot \sum_{1 \le i < j \le n} \widetilde{c_{ij}}(P)}{n(n-1)}$$

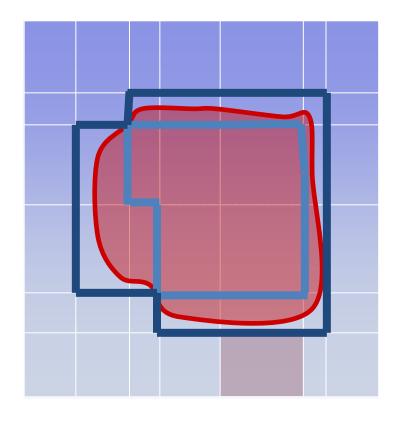
Instance Selection

Instance selection: basic idea



Remove objects to keep the underlying approximations unchanged, or to improve them

Instance selection: basic idea



Remove objects to keep the underlying approximations unchanged, or to improve them

Fuzzy-rough sets

Parameterized relation

$$R_a^{\alpha}(x,y) = \max\left(0, 1 - \alpha \frac{|a(x) - a(y)|}{l(a)}\right)$$

$$R_B^{\alpha}(x,y) = \mathcal{T}(\underbrace{R_a^{\alpha}(x,y)}_{a \in B})$$

Fuzzy-rough definitions:

$$(R_B^{\alpha} \downarrow^S A)(y) = \inf_{x \in S} \mathcal{I}(R_B^{\alpha}(x, y), A(x))$$

$$POS_B^{\alpha, S}(y) = (R_B^{\alpha} \downarrow^S R_d^{\alpha} y)(y)$$

$$\gamma_B^{\alpha, S} = \frac{\sum_{y \in S} POS_B^{\alpha, S}(y)}{|S|}$$

FRIS-I

```
FRIS-I(S, \alpha, \tau).

S, the set of objects to be reduced;

\alpha, the granularity parameter;

\tau, a selection threshold.
```

- $(1) \quad Y \leftarrow S$
- (2) **foreach** $x \in S$
- (3) **if** $(POS_A^{\alpha,S}(x) < \tau)$
- $(4) Y \leftarrow Y \{x\}$
- (5) return Y

FRIS-II

FRIS-II(S, α).

S, the set of objects to be reduced; α , the granularity parameter.

```
(1)
         while (true)
              z \leftarrow \emptyset, \, \rho_z \leftarrow 1
(2)
(3)
              foreach x \in S
                     if (POS_A^{\alpha,S}(x) < \rho_z)
(4)
(5)
                           \rho_z \leftarrow POS_{\mathcal{A}}^{\alpha,S}(x)
(6)
(7)
               if (z \neq \emptyset)
                     S \leftarrow S - \{z\}
(8)
               else return S
(9)
```

FRIS-III

```
FRIS-III(S,\alpha). S, the set of objects to be reduced;
```

 α , the granularity parameter.

```
(1) \rho \leftarrow \gamma_{\mathcal{A}}^{\alpha,S}

(2) while (\rho \neq 1)

(3) z \leftarrow \emptyset, \rho_z \leftarrow 0

(4) foreach x \in S

(5) if (\gamma_{\mathcal{A}}^{\alpha,S-\{x\}} > \rho_z)

(6) z \leftarrow x, \rho_z \leftarrow \gamma_{\mathcal{A}}^{\alpha,S-\{x\}}

(7) S \leftarrow S - z

(8) \rho \leftarrow \rho_z

(9) return S
```

Fuzzy-rough classification and prediction

Nearest neighbour algorithm

• 1-NN:

Given a test instance x_m ,

- First locate the nearest training example x_n
- Then $f(x_m) := f(x_n)$

• *k*-NN:

Given a test instance x_m ,

neighbours (prediction)

- First locate the *k* nearest training examples
- If target function = discrete then take vote among its k nearest neighbours
 else take the mean of the f values of the k nearest

Fuzzy NN

Fuzzy-rough NN

```
Input: X, the training data; \mathcal{C}, the set of decision classes; y, the
         object to be classified
Output: Classification for y
begin
   N \leftarrow \text{getNearestNeighbours}(y, K)
   \tau \leftarrow 0, Class \leftarrow \emptyset
   foreach C \in \mathcal{C} do
       if ((R\downarrow C)(y) + (R\uparrow C)(y))/2 \ge \tau then
        end
   end
    output Class
end
```

Fuzzy-rough NN

```
Input: X, the training data; d, the decision feature; y, the object for
          which to find a prediction
Output: Classification for y
begin
    N \leftarrow \text{getNearestNeighbours}(y, K)
    \tau_1 \leftarrow 0, \ \tau_2 \leftarrow 0
    foreach z \in N do
        M \leftarrow ((R \downarrow R_d z)(y) + (R \uparrow R_d z)(y))/2
       \tau_1 \leftarrow \tau_1 + M * d(z)
        \tau_2 \leftarrow \tau_2 + M
    end
    if \tau_2 > 0 then
         output \tau_1/\tau_2
    else
         output \sum_{z \in N} d(z)/|N|
    end
end
```

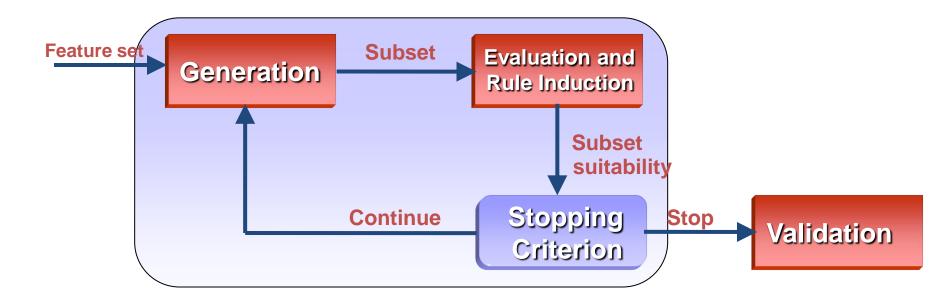
Discovering rules via RST

- Equivalence classes
 - Form the antecedent part of a rule
 - The lower approximation tells us if this is predictive of a given concept (certain rules)

- Typically done in one of two ways:
 - Overlaying reducts
 - Building rules by considering individual equivalence classes (e.g. LEM2)

Framework

 The fuzzy tolerance classes used during this process can be used to create fuzzy rules



QuickRules

```
B := \{\}, Rules := \{\}, Cov := \{\}
(1)
(2)
         do
(3)
              T := B
(4)
              foreach a \in (A \setminus B)
(5)
                    foreach y \in X \setminus covered(Cov)
                       if POS_{B\cup\{a\}}(y) = POS_{\mathcal{A}}(y)
(6)
                           CHECK(B \cup \{a\}, R_{B \cup \{a\}}y, R_dy)
(7)
(8)
                    if \gamma_{B\cup\{a\}} > \gamma_T
                       T := B \cup \{a\}
(9)
(10)
              B := T
         until \gamma_B = \gamma_A
(11)
         return B, Rules
(12)
```

Check

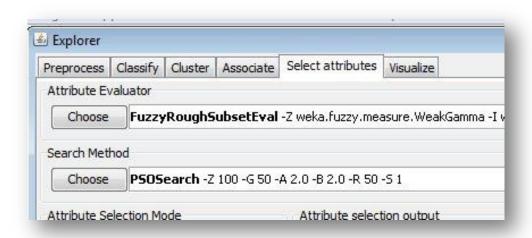
```
CHECK(B, C, D).
(1)
      Add := true
(2)
       foreach Rule \in Rules
(3)
          if C \subseteq Rule.C
(4)
             Add := false; break
(5)
          elseif Rule.C \subset C
             Rules := Rules \setminus Rule
(6)
(7)
       if Add = true
(8)
          Rules := Rules \cup (B, C, D)
          Cov := Cov \cup C
(9)
(10)
       return
```

Weka

Try the algorithms!

FR methods in Weka

 Weka implementations of all fuzzy-rough methods can be downloaded from:



http://users.aber.ac.uk/rkj/book/wekafull.jar

Other developments

- Fuzzy Discernibility Matrices for FRFS
 - Extends the DMs for crisp rough set feature selection
 - Also employs similar simplification schemes

- Fuzzy-rough semi-supervised learning
 - For mixtures of labelled and unlabelled data

Papers

- Fuzzy-rough feature selection
 - R. Jensen and Q. Shen. **New Approaches to Fuzzy-Rough Feature Selection**. IEEE Transactions on Fuzzy Systems, vol. 17, no. 4, pp. 824-838, 2009.
 - R. Jensen and Q. Shen. Computational Intelligence and Feature Selection: Rough and Fuzzy Approaches. IEEE Press/Wiley & Sons, 2008.
 - C. Cornelis, R. Jensen, G. Hurtado Martin, D. Slezak. **Attribute Selection with Fuzzy Decision Reducts.** Information Sciences, vol. 180, no. 2, pp. 209-224, 2010.
 - G.C.Y. Tsang, D. Chen, E.C.C. Tsang, J.W.T. Lee, and D.S. Yeung. **On attributes** reduction with fuzzy rough sets. Proc. 2005 IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 2775–2780, 2005.
 - X.Z. Wang, Y. Ha, and D. Chen. **On the reduction of fuzzy rough sets.** Proc. 2005 International Conference on Machine Learning and Cybernetics, vol. 5, pp. 3174–3178, 2005.
 - Q. Hu, D. Yu, and Z. Xie. Information-preserving hybrid data reduction based on fuzzy-rough techniques. Pattern Recognition Letters, vol. 27, no. 5, pp. 414–423, 2006.
 - Q. Hu, P. Zhu, J. Liu, Y. Yang, D. Yu. **Feature Selection via Maximizing Fuzzy Dependency.** Fundamenta Informaticae, vol. 98 (2-3): 167-181, 2010.
 - E.C.C. Tsang, D. Chen, D.S. Yeung, X. Wang, J. Lee. **Attributes Reduction Using Fuzzy Rough Sets.** IEEE T. Fuzzy Systems, vol. 16, no. 5, pp. 1130-1141, 2008.

• ...

Papers

FRFS extensions

- R. Jensen and Q. Shen. Interval-valued Fuzzy-Rough Feature Selection in Datasets with Missing Values. Proceedings of the 18th International Conference on Fuzzy Systems (FUZZ-IEEE'09), pp. 610-615, 2009.
- C. Cornelis, N. Verbiest and R. Jensen. Ordered Weighted Average Based Fuzzy Rough Sets. Proceedings of the 5th International Conference on Rough Sets and Knowledge Technology (RSKT2010), pp. 78-85, 2010.
- C. Cornelis and R. Jensen. A Noise-tolerant Approach to Fuzzy-Rough Feature Selection. Proceedings of the 17th International Conference on Fuzzy Systems (FUZZ-IEEE'08), pp. 1598-1605, 2008.

Papers

FR instance selection

• R. Jensen and C. Cornelis. **Fuzzy-rough instance selection.** Proceedings of the 19th International Conference on Fuzzy Systems (FUZZ-IEEE'10), pp. 1776-1782, 2010.

FR classification/prediction

- R. Jensen and C. Cornelis. A New Approach to Fuzzy-Rough Nearest Neighbour Classification. Transactions on Rough Sets XIII, LNCS 6499, pp. 56-72, 2011.
- R. Jensen, C. Cornelis and Q. Shen. **Hybrid Fuzzy-Rough Rule Induction and Feature Selection.** Proceedings of the 18th International Conference on Fuzzy Systems (FUZZ-IEEE'09), pp. 1151-1156, 2009.
- R. Jensen and Q. Shen. Fuzzy-Rough Feature Significance for Fuzzy Decision Trees. Proceedings of the 2005 UK Workshop on Computational Intelligence, pp. 89-96. 2005.