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Abstract

We investigate necessary and sufficient conditions for timtence of Bayesian-
Nash equilibria that satisfy th€ondorcet Jury TheorerfCJT). In the Bayesian
gameGy, amongn jurors, we allow for arbitrary distribution on the types afgrs.
In particular, any kind of dependency is possible. If eadiorju has a “constant
strategy”, o' (that is, a strategy that is independent of the size i of the jury),
such thaio = (a,02,...,0"...) satisfies th&€JT, then by McLennan (1998) there
exists a Bayesian-Nash equilibrium that also satisfie€tHe We translate th€JT
condition on sequences of constant strategies into thexoig problem:

(**) For a given sequence of binary random variabtes- (X1, X2, ..., X", ...) with
joint distribution P, does the distributior? satisfy the asymptotic part of the
CJT?

We provide sufficient conditions and two general (distimggessary conditions for

(**). We give a complete solution to this problem whXns a sequence of exchange-

able binary random variables.

Introduction

The simplest way to present our problem is by quoting Coretrclassic result (see
Young (1997)):

Theorem 1. (CJT—Condorcet 1785) Let n voters (n odd) choose between
two alternatives that have equal likelihood of being cotr@priori. Assume
that voters make their judgements independently and thet bas the same
probability p of being correc(% < p < 1). Then, the probability that the
group makes the correct judgement using simple majority isul

n

[n!/hl (n—h)!]p"(L—p)™ "
h=(n+1)/2

which approache& as n becomes large.
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We build on some of the literature on this issue in the lagtythjears. First we
notice that Nitzan and Paroush (1982) and Shapley and Grofbh®84) allow for unequal
competencies of the juries. They replace the simple mgjoommittee by weighted
majority simple games to maintain the optimality of the mgtrule.

Second, we notice the many papers on the dependency amang. jdimong these
papers are Shapley and Grofman (1984), Boland, Prochafcengd(1989), Ladha (1992,
1993, 1995), Berg (1993a, 1993b), Dietrich and List (20@Erend and Sapir (2007),
and Dietrich (2008). It is widely understood and accepted the votes of the jurors are
often correlated. For example, group deliberation priovdting is viewed, justifiably,
as undermining independence (Grofman, Owen, and Feld [128&8ha (1992, 1995),
Estlund (1994), and Dietrich and List (2004)). In particuRietrich (2008) argues that
independence cannot be fully justified in the Condorcet mogel.

Finally, we mention the seminal paper of Austen-Smith antk841996) which incor-
porated strategic analysis into the Condorcet jury modeis paper had many followers,
in particular McLennan (1998), and Duggan and Martineli2) which investigated the
Condorcet Jury Theorent(T) for Bayesian-Nash equilibria (BNE).

In this work, we investigate th€JT for BNE. Unlike Austen-Smith and Banks
(1996), we do not assume that thgesof the voters are independent (given ttate
of naturg. Indeed we assume arbitrary dependency among (the typgsofs. As far
as we could ascertain, McLennan (1998) is the only paperstiodies theCJT for BNE
assuming dependency among the jurors. In fact we rely heamiMcLennan’s work; the
game among jurors, is a Bayesian gant&, in which all the players have the same payoff
function which is the probability oforrect decision Therefore, any-tuple of strategies
on=(a},...,al) that maximizes the common payoff is a BNE (McLennan (199BEGF
rem 1). Now consider an infinite sequence of such strategie$oi, 0,...,0y,...) that
are BNE for the sequence of gant@g G, ..., Gy, ... with a jury of growing size. If there
exists any other sequence of strategies (71, 72,...,Tp,...) (not necessarily BNE), that
satisfies th&€JT, then the original sequeneris a sequence (of BNE) that also satisfies
theCJT. Thus, we may focus on the following problem:

(*) For a given sequence of Bayesian gam®&sGso, ..., Gy, ... with an increasing set
of jurors, find some sequence of strategies (11, T2,...,Tn,...) Wheret, is ann-
tuple of strategies for the gani&,, so that the sequence,)>_, satisfies th&€JT.

n=1

In view of the generality and the complexity of our model, weait ourselves to se-
quenced of “constant” strategies; that is, we assume that 71, if 1 <i <m<n < oo,
This means that the strategy of a specific juroii does not change when the size of the
jury increases. We shall refer to such a sequence as a “cossiquence.* We prove
that verifying theCJT for a constant sequence is equivalent to the following bl

(**) For a given sequence of binary random variab¥es- (X1, X?,.... X", ...) with joint
distributionP, find whether or not the distributida satisfies th&€JT.

4The restriction to constant strategies is needed only fettistence results. The sufficient condition
as well as the necessary conditions are valid for any infagitpience of strategies. See Remark 1 on page 7
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Note that prior to Austen-Smith and Banks (1996), the amalylsthe Condorcet jury
problem had focused on problem (**). One general resultas$ ¢ Berend and Paroush
(1998) which characterizes the independent sequencesafybiandom variables that
satisfy theCJT.

In this paper we find sufficient conditions for (**). Then wepgly two general nec-
essary conditions. However, we do not have a complete deaization of the solution to
(**). We do have full characterization (necessary and sigffitconditions) for sequences
of exchangeableandom variables.

Our basic model is introduced in Section 1. The full chamdza¢ion for the case of
exchangeable variables is given in Section 2. In Section giwe sufficient conditions
for theCJT. In Section 4 we develop necessary conditions for the wglwfitheCJT in
two different planes of parameters of the distribution. &tt®n 5 we prove that these
necessary conditions are not sufficient, unless the sequsraf exchangeable random
variables. In Section 6 we introduce the notionimterlacing of two sequences, which
proves to be a useful tool to construct new classes of digtoibs that satisfy th€JT. In
particular we construct rich classes of non-exchangeagaences that satisfy tiix]T.
We conclude in section 7. Two proofs are given in the Appenthxthe last part of the
appendix we clarify the relationship between &T and theLaw of Large Numbers
(LLN). Basically we show that these are two different propeities do not imply each
other in spite of their superficial similarity.

1 The basic model

We generalize Condorcet’s model by presenting it as a gathendgomplete information
in the following way: Letl = {1,2,...,n} be a set of jurors and |& be the defendant.
There are twatates of natureg— the defendant is guilty, are the defendant is innocent.
Thus® = {g,z} is the set of states of nature. Each juror has two availatierec c- to
convict the defendant, ara- to acquit the defendant; thés= {a,c} is the action set
of each of the jurors. Before voting, each jurors gets a pgivandom signai} eT =

{t},....t }. In the terminology of games with incomplete informatiaH, is the type
setof juror i. The private signals of the jurors may be dependent and niagowrse,
depend on the state of nature. Again, in the style of gamdsimtomplete information,
let Q, = O x Tix,...,xT" be the set of thetates of the world That is, a state of the
world w = (8,t,.. . t") consists of the state of nature and the list of types ofitjugors.
Let p™ be the probability distribution (i.e., a common prior) @. This is the joint
probability distribution of the state of nature and the sign(types) of all jurors. We
assume that the action taken by the finite society of jurets{1,2,...,n} .i.e., the jury
verdict, is determined by the voting ride: A' — A, which is thesimple majorityrule (with
some tie-breaking procedure such as coin tossing). Finalomplete the description of
the game, we let all jurors have the same payoff funaio® x A — R namely,

u(g,c)=u(za)=1 and u(g,a)=u(z,c)=0, Viel



This concludes the definition of a game, which we denot&hyA (pure) strategy of
jurori € | in G, is a functions : T' — A. We denote by8 the set of all pure strategies
of jurori € | and byS= Slx,..., xS" the set of strategy profiles of the society. The
(common) ex-ante payoff for each juror, when the strategyores = (s',...,s") € Sis
used, i€, = Eu(8,V (st(t}),...,s"(t"))), where@ is the true state of nature. Note it
is precisely the probability of correct decision bwhen the strategy vectaris used.

Example 1. In the original Condorcet theorem we have=F {ti t}}; p("(g) = p("(2) =
1/2 and the types are conditionally independent given the sihteature; each has a
probability p> 1/2 of getting the correct signal. That is,

- - 1
P (tylg) = P (thf2) = p> >

Condorcet further assumed that all the jurors vote inforively, that is, use the strategy
s(ty) =aand §(ty) = c. In this case, the probability of correct voting, by eactojuis p,
and as the signals are (conditionally) independent, the @lbws (for example, by the
Law of Large Numbers).

Figure 1 illustrates our construction in the case 2. In this example, according to
p@ the state of nature is chosen with unequal probabilitiesHertwo statesp(® (g) =
1/4 andp®(z) = 3/4 and then the types of the two jurors are chosen accordingpiota
probability distribution that depends on the state of ratur

Nature
1/4 3/4
g z
12 t2 A5 12t1 5
| 3| 2 tt/ 0] 0
1 1
B 73| 37 ] 0| 1

Figure 1 The probability distributiorp(?.

Following the seminal work of Austen-Smith and Banks (199&) intend to study the
CJT via the Bayesian Nash Equilibria (BNE) of the ga&e However, unlike in the case
of (conditionally) independent signals, there is no obsgiaay to find the relevant BNE in
the general case of arbitrary dependence. Therefore, puoagh will be indirect. Before
describing our techniques we first enlarge the set of stetexf the jurors by adding the
possibility of mixed strategies. Indeed, it was shown by {1898) that the introduction
of mixed strategies may help the realization of GET.



A mixed strategy for juror i € I, in the gameGy, is a functiono!, : T' — A(A),
whereA(A) is the set of probability distributions ok Denote byz! the set of all mixed
strategies of juror and by>, = =1 x ... x 21 the set of mixed strategy vectors (profiles)
in the gameG,,. The (common) ex-ante payoff for each juror, when the gjsatector
On=(0%,...,00) € Zhis used, i€, = Eu(0,V(ai(th),...,al(t")), whered is the true
state of nature. Agairk, is precisely the probability of correct decision byvhen the
strategy vectou is played.

We shall now find a more explicit expression for the paygff Given a strategy vector
on=(0l,...,a") € 2, we denote by (d') : @ x T' — {0,1} the indicator of the set of
correct voting of juroi when using the mixed strategy. That is,

i i.a .y [ 1 if Bh=gandd(t)=cor Bp=z and g\ (t}) =a
*a(0n; On,to) _{ 0 otherwise (1)

where by a slight abuse of notation we denotedobyt!) the realized pure action when
jurori of typet! uses mixed strategy',. Given a strategy vectar, = (o3,...,a0), the

probability distributionp(™ on Q,, induces a joint probability distribution on the vector of

binary random variablegX}, X2, ..., X") which we denote byog'r?. Assume now that is

odd; theng, is given by 0
Eu = by (1% > ).

Guided by Condorcet, we are looking for limit theorems astheesize of the jury
increases. Formally, asgoes to infinity we obtain an increasing sequence of “wotlds”
(Qn)p_1, such that for alh, the projection 0fQn ;1 on Qp is the wholeQ,. The corre-
sponding sequence of probability distributiong rhé”))‘r’f:l and we assume that for every
n, the marginal distribution op(™Y on Q, is p". It follows from the Kolmogorov ex-
tension theorem (see Loeve (1963), p. 93) that this definesgae probability measure
P on the (projective, oinversg limit

Q= Iiann:@lex...xT”...
such that, for alh, the marginal distribution d? on Q,, is p(".
Let (on)p_4 be an infinite sequence of strategy vectors for an incregsiggWe say
that(on),,_; satisfies the (asymptotic part @pT if

. Lo n
lim p5) (ZLX(0h) > 5) =1 2)
Our aim in this work is to find sufficient conditions for the stance of a sequence of

BNE (on);_; that satisfy the (asymptotic part &P T. As far as we know, the only exist-
ing result on this general problem is that of Berend and Par¢ii998), which deals only

5As a matter of fact, the strategy we define heretighavior strategybut as the game is clearly a game
with perfect recal it follows from Kuhn’s theorem (1953) that any mixed statdnas a payoff equivalent
behavior strategy. Thus we (ab)use the term “mixed stratefich is more familiar in this literature.
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with independent jurors. For that, we make use of the folhgaresult due to McLennan
for games with common interest (which is our case):

Theorem 2. (McLennan (1998)) Fore=1,2,. .., if

or= (o .. oiMe arg( lmax)) Eu(6,V(oi(th),...,oht")), (3)
Of,...,00

thenao}, is a Bayesian Nash Equilibrium of the gamg G

This is an immediate application of Theorem 1 in McLennarB@9which implies
thatoy, is a Nash equilibrium of the type-agent representatio@pfSince by Theorem 2,
a Bayesian Nash Equilibrium @, maximizes the probability of correct decision, then
clearly, if there exists any sequence of strategy vedtors,>_, that satisfies the asymp-
totic part ofCJT, (2), then there is also a sequeric;)”_; of BNE that satisfies (2), the
asymptotic part o€JT.

Our approach in this paper is to provide such a sequence dhafias theCJT. In
particular, we shall consider infinite sequences of mixeatagy vectors that are constant
with respect to the number of players, that(ig,)®_, such that ifn > mthend!, = o',
for all i < m. Such a constant sequence can be represented as one irdqutnse of
strategiew = (0, 02,...,0",...), whered' is the strategy of jurarrin all juries that he is
a member of (i.e. in all gamé&s, with n > i). Whenever we find such a constant sequence
that satisfies th€JT, it follow, as we argued, that there is a sequefa®,,_, of BNE that
satisfies (2), the asymptotic part@JT. A constant sequenden);_, can be interpreted
as a sequence of an increasing jury in which the strategiéisegury members do not
change as the jury increases. In addition to their plaussibve restrict our attention to
constant sequences because of the complexity of our modelveAshall see, even with
this restriction, we get some interesting results. Thefaihg two examples demonstrate
the advantage of the game theoretical model over the twaditprobabilistic modél

Example 2. (Reverse voting) Suppose that given the state of nature, jaear has two
types, § and t, and the signals of the voters are i.i.d. witlitp| g) = p(t; | 2) = p <
1/2. Clearly, in the probabilistic model witinformative voting such a jury will not
satisfy the CJT. However, if we consider the strateggiven by: o(ty) = a (that is,
acquit with probabilityl) and o(t;) = ¢ (convict with probabilityl), then the sequence
of constant strategies = (o, 0,...,0,...) will satisfy the CJT and consequently, there
exists a sequend@y,),;,_, of BNE that satisfy (2), the asymptotic part of CIT.

Example 3. (Random voting) In a model with equal probability to the twaias of nature
(p(9) = p(z) = 1/2), suppose that a fraction of the jury 0 < o < 1/2) receive i.i.d.
signals with probability p> 1/2 of being correct, that is {8} | 9) = p(t, | 2) = p > 1/2.
The rest, a{— a) fraction of the jury, receive the wrong signal, that i&p g) = p(t} |

Swe are grateful to an anonymous referee for drawing our tteto these examples
’In informative voting, each juror votes according to his/signal: Typetq juror votes to convict and
typet; juror votes to acquit.



z) = 0. Again, in the probabilistic model with informative votirguch a jury will not

satisfy the CJT. However, if only the well informed jurorsevimformatively while the
rest of the jurors vote randomly (convict with probability2 and acquit with probability

1/2), such strategy vector will satisfy the CJT. Consequetitig game also has an
infinite sequencéoy;)y_, of BNE that satisfy the asymptotic part of CJT.

Remark 1. As far as we can see, the assumption of constant strategilesenmeeded
only for our existence results (Theorem 5, Corollary 8, ahddrem 16). For the sufficient
condition, as well as for the two necessary conditions, weslneeither the restriction to
constant strategies, nor the assumption on the statiopafitthe probabilities ¥ (of
Gn). The proofs are the same, with the appropriate adjustmenbtations; mainly, for a
general sequence of strategi@s,);;_;, the corresponding sequence X of binary random
variables, is the sequence of n-vectors of random variab{gs. .., X) corresponding to
the game G and the strategy vectary; thatis, X= (X{ ; X3,X2 ;... ; X%,... . X0;..0).
The CJT property is defined, as usual, by equation (2)

A constant sequence of mixed strategies- (ot,02,...,a0",...) naturally yields a
sequence of binary random variabkes= (X, X2,... X", .. ) whereX' = X!(ok; Op,th)
is the indicator variable of correct voting of jurodefined in (1), and is independent of
n since the strategy is constant. As B&T is expressed in terms of, we shall mostly
be working with this infinite sequence of binary random Males. In fact, working with
the infinite sequencexs is equivalent to working with the underlying infinite seques
of games and strategy vectors: on the one hand, as we sagliense of game&s,);y_;
and an infinite sequence of constant strategies (g*,0?,...,ad",...), yield an infinite
sequenceX of binary random variables. On the other hand, as we show peAgix
8.1, for any infinite sequence of binary random varial{ekere is a sequence of games
(Gn)>_, and an infinite sequence of constant strategies(ot,0?,...,0",...) that yield
this X as the infinite sequence of the indicators of correct voting.

Let us now briefly remark on the non-asymptotic part of@3d (see Ben-Yashar and
Paroush (2000)). An infinite sequence of mixed strategyorect, = (at,...,a"), n=
1,2,...,is said to beonsistent with the majority ruléfor n=212,...,

oy, (Z{ler'u(ff'n) > 5) > pol(Xi(ah)=1); i=1...,n
1) i n
pg]r:l szrlXn-|—1< n+1> > =5 > IOon ( 1Xn( ) —) o n=212....
2 2
In view of the complexity of our model we shall not investigaton-asymptotic con-

sistency with majority rule of infinite sequences of stragegand shall study only the
asymptotic part of th€JT.

2 Exchangeable variables

In this section we fully characterize the distributions efjsenceX = (X%, X2, ..., X", ...)
of exchangeableandom binary variables that satisfy #88T. Let us first introduce some
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notation:

Given a sequence of binary random variabtes: (X1, X2 ...,X", ...) with joint distribu-
tion P, denotep' = E(X'), Var(X") = E(X' — p')? andCouX',X}) = E[(X' — p')(X] —
pl)], for i # j, whereE denotes, as usual, the expectation operator. Alsopet
(pt+p?,... + p")/nandX, = (X1 +X2,... + XM /n. Next we recall:

Definition 1. A sequence of random variablesX(X1, X2, ..., X", ...) is exchangeablef
for every n and every permutatidky, . .., k,) of (1,...,n), the finite sequendex's, . .., Xkn)
has the same n-dimensional probability distribution(Xs, ..., X").

In our context, this property may be interpretechasnymityof the jurors; the names
and the location in the list of jurors does not affect therthstion of correct voting. Note
that this does not rule out correlation between the didiivbs of the ‘correct voting’
among jurors.

We shall make use of the following characterization theodem to de Finettf (see,
e.g., Feller (1966), Vol. I, page 225).

Theorem 3. A sequence of binary random variable&X(Xl,Xz, ...,X" ...) is exchange-
able if and only if there is a probability distribution F df, 1] such that for every n,

1
Prixt=...=xk=1 XK1= =X"=0) = /Op"(l—p)”—de (4)

Pr(Xt4. . 4+ X"=k) = (E) /01pk<1_p)nde (5)

In words, de-Finetti’s theorem says that binary exchanigeadriables areondition-
ally i.i.d.: Given the value op, the variables are i.i.d. Bernouli random variables with
parametep. In our underlying model, the paramejercan be interpreted gmublic infor-
mationregarding the defendant (all available evidence, witreesse). Given this public
information, the distribution of ‘correct voting’ is thersa& for all jurors and independent
among jurors.

Using de Finetti’'s theorem we can characterize the didiobs of sequences of ex-
changeable binary random variables by their expectatidnla asymptotic variance of
Xn-

Theorem 4. Let X = (X1,X?,...,X",...) be a sequence of exchangeable binary random
variables and let F be the corresponding distribution fumctin de Finetti’s theorem.
Then,

y = lim E(X,—u)?2=V(F), (6)

- n—oo

where L L
u:/ pdF and V(F):/ (p —u)?dF.
0 0

8As far as we know, Ladha (1993) was the first to apply de Fiadttieorem to exchangeable variables
in order to derive (some parts) 60 T. However, Ladha investigates only the non-asymptotic @@ T.
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Proof. We have

and fori # |,

. . . 1
cOv(x',xl):Pr(x':xl:1)—u2:/ X2 dF —u? =V(F).
0

So,
_ 1 . 2
EXn—u)? = E<ﬁzg(x'—u))
Loy ixiyy L iy
= le (X)+in#jCov(x,X)
nu(l—u) n(n—1)
= n2 + n2 V(F),
which implies equation (6). ]

We can now state the characterization theorem:

Theorem 5. A sequence X (X1, X2, ..., X", ...) of binary exchangeable random variables
with a corresponding distribution fp) satisfies the CJT if and only if

Pr(%<p§1):1, (7

that is, if and only if a support of F is in the semi-open intérid/2, 1].

Proof. The “only if” part follows from the fact that any sequenxe= (XL, X2, XN L)
of binaryi.i.d. random variables with expectati@{X') = p < 1/2, violates theCJT (by
the Berend and Paroush’s necessary condition).

To prove that a sequence satisfying condition (7) alsofseitheCJT, note that for
0<e<1/4,

_ 1 1 - 1 1
~ > > = ~“lp>= .
Pr(xn>2)_Pr(p_2+2e)Pr(xn>2}p_2+25) (8)
For the second term in (8) we have:
- 1 1
Pr<xn>§}p2§+2$) =

(x1+ XK= kyp>1+2s) 9)
) K(1—p)"kdF (10)
+2£

JPr
(
28[ - (E)p (1-p)" k} dF (12)

Si(p) dF (12)



Now, using Chebyshev’s inequality we have:

Sn(p):Pr(Yn>%]p) > Pr(Yn>%+s]p) (13)
V(Xalp) p(1-p)

1——20F 1 14

o1 nplez Y

Since the last expression in (14) converges to 1 uniformljlgR+ 2¢, 1] ash — o, taking
the limitn — o of (12) and using (14) we have:

. — 1 1 1 1
r!moPr(Xn>§\p2§+2£)2/%+28dF:Pr(p2§+2£). (15)

From (8) and (15) we have that for any fixed- O,

I'P¥1>P >122 16
nm)r n>§_ rp_§+s . (16)

Since (16) must hold for all 4 > & > 0, and sincér (3 < p < 1) = 1, we conclude
that

. - 1
lim Pr (Xn > E) =1 @an

Nn—oo
i.e., the sequencé = (X1, X2 ..., X" ...) satisfies the€JT. O

To draw the consequences of Theorem 5 we prove first the folpwroposition
which enables us, for testing the validity of t6dT, to use the easily computed parame-
tersu andV (F), rather than the unknown distributién

Proposition 1. Any distribution F of a variablg in [1/2, 1] satisfies

V(F) < (u-2)(1-u), 18)
where u= E(F), and equality holds in (18) only for F for which

Pr(p = %) =2(1-u) and Pr(p=1)=2u—1 (19)

Proof. We want to show that

1 1
| PPF(p)~ 1 < (u-2)(2-u) (20)

1/2 2

or, equivalently,
1 3 1
2
— = —<o.

/l/zp dF(p) — Su-+5 <0 21)
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Replacingu = fll/zp drF(p) and% = fll/z% dF(p), inequality (20) is equivalent to

[ 0201 3 o) = | jzgm) 4F(p) <0 (22)

The parabola(p) is convex and satisfieg{1/2) = g(1) = 0 andg(p) < 0 for all 1/2 <
p < 1, which proves (22). Furthermore, equality to 0 in (22) isafed only wherF is
such thaPr(1/2 < p < 1) =0, and combined with = E(F) this implies (19). O

The next Proposition provides a sort of inverse to propasiti.

Proposition 2. For (u,w) = (1,0) and for any pair(u,w) wherel/2 < u< 1and
0<w< (u—1/2)(1—u), there is a distribution Fp) on (1/2,1] such that EF ) = u and
V(F)=w.

Proof. For (u,w) = (1,0) the claim is trivially true (with the distributioRr(p = 1) = 1).
Given (u,w), for anyy satisfying ¥/2 < y < u < 1 define the distributiofy, for which

Pr(p=y)=(1-u)/(1-y) and Pr(p=1)=(u-y)/(1-y).

This distribution satisfieg(F,) = u and it remains to show that we can chogss that
V(Fy) =w. Indeed,

~1-u u—-y
V(F) = l_yszrl_y 2.
For a givenu < 1 this is a continuous function gfsatisfying both lig_,V (F) = 0 and
limy_1,,V(Fy) = (u—1/2)(1—u). Therefore, for 0< w < (u—1/2)(1—u), there is a
valuey* for whichV (F) = w. O

2.1 Presentation inR2

In studying the validity of theCJT for a sequenc& = (X1,X2,..., X", ...) with general
joint distribution (X, P), rather than working with the whole covariance structuré¢hef
sequence, we shall see that many results can be obtainedioyreng just two parameters
of the distribution namely(p,y) defined by.

liminf p,, (23)

Nn—oo

ke
n

y = liminfE(Xn—py)* (24)
(Note that this definition of is consistent with that given in equation (6) for exchange-
able variables; a case in which the limit exists.)
Therefore we shall study th@JT property of a sequenc¥ = (X1, X2, ... . X", ..)
through its projection on the plaf in which we shall denote the coordinates ).
We first identify the range of this mapping:
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Proposition 3. For every pair(X,P), the corresponding paramete{p, y)

satisfy y< p(1—p).

Proof. Given a sequence of binary random variab¥ewith its joint distributionP, we
first observe that for any+ |,

Coux',x}) = E(X'x]) — p'p! <min(p', p!) — p'pl.
Therefore,

X B 1)< Vi e i
E(Xn—Pp)? = @{;;CO\(X,X‘Hin(l—p)} (25)

< n—lz{é;[minmi, p')—p'p] +ép‘<l— p‘)}. (26)

We claim that the maximum of the last expression (26), urtgeconditions ! ; p' = np,,,

is P,(1—P,). This is attained whep! = --. = p" = p,. To see that this is indeed the
maximum, assume to the contrary that the maximum is attangd= (p*, - - -, p") with

p' £ p! for somei andj. Without loss of generality assume that: < p2 < --- < p" with

pt < pl andpt = pf for £ < j. Let0< & < (P! — pt) /2 and defing* = (p*L,---, p™") by
pl=pl+e, pl=pl—¢ andp’ = for ¢ ¢ {1,j}. Atedious, but straightforward,
computation shows that the expression (26) is highepfdhan forp, in contradiction to
the assumption that it is maximized@t\We conclude that

E(Xn—Pn)? < Pn(1-Pn)-
Let now (P, )x_, be a subsequence convergingtdhen

y = liminf E(Xo—Py)* < liminf E(Xn ~ Py,)°
< liminf Py, (1-Pp) =P~ p).
This leads to:

Theorem 6. The range of the mapping, P) — (
FE;={(uw)|0<u<1, 0

y) is (see Figure 1)

py)is
<w<u(l-u)} (27)

w=u(l—u)

| __

NI

FE,

o
N~ -
—_

Figure 1: The feasible s&tE,
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That is, for any pai(X,P), we have(p,y) € FEz and for any(u,w) € FE; there is a
pair (X, P) for which p = uandy = w.

Proof. The first part follows from Proposition 3 (since cleagly> 0). For the second
part, observe first, as we have remarked in the proof of Pitipos3, that for the pair
(X,P) in whichP{X!=X?2=...=1} =uandP{X!=X?=... =0} = 1—uwe have
pt=p?=-.-=p"=p,=uand hence = u. Also, foralln=1,2, ...,

E(Xn—Pn)?=E(Xn—u)>=u(1—u) and hencey= liminf E(X, —Pn)?=u(l—u),

which means that any point on the parabola u(l—~ u) is attainable as an image of a
pair (X,P). Next note that fou € [0, 1], the pair(Y,P) in which (Y){Z; are i.i.d. with
P{Y; = 1} = uandP{Y; = 0} = 1—uis mapped tqp,y) = (u,0) since

y=liminf E(Xx —P,)? —I|m|nf 12,” 1E(Xi— )Z:Iiminf l 31 ,u(1—u)=liminf u-u =0.
n—oo n—oo n n—oo n

It remains to prove that all interior points &fE, are attainable. Letu,w) be such an

interior point, that is, 0< u < 1 and 0< w < u(1—u). Define the pai(Z,Q) to be the

above-defined paifX, P) with probabilityw/u(1 — u) and the above-defing®, P) with

probability 1—w/u(1 —u). It is readily seen that this pair is mapped to

u(lviu)(u,u(l—u))Jr (1— u(lviu)> (U,0) = (u,w).

O

The geometric expression of Theorem 5, combined with The@gProposition 1,
and Proposition 2, can now be stated as follows: InRA@lane of(p,y) let

{(py)}1<p<1 andy<<p—— - }U{lo (28)

This is the region strictly below the small parabola in Fg@r excluding1/2,0) and
adding(1,0).

w=y
w=u(l—u) w=(u—3%)(1-u)
1] \ _
| g
1 FE,
16
T u=pr
0 1 3 1
2 4

Figure 2: TheCJT region for exchangeable variables.
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Theorem 7. 1. Any exchangeable sequence of binary random variabldssttefy
the CJT corresponds t@,y) € A.

2. Toany(p,y) € Athere exists an exchangeable sequence of binary randdables
with parametersg p,y) that satisfy the CJT.

Proof. The statements of the theorems are trivially true for thenpdi, 0), as it corre-
sponds to the unique distributioRr(X! = ... = X"...) = 1, which is both exchangeable
and satisfies th€JT. For all other points im:

e Part 1. follows de Finetti's Theorem 3, Theorem 5, and Pritjoosl.

e Part 2. follows de Finetti's Theorem 3, Theorem 5, and Pribjoos2.

2.2 Application to symmetric juries

A jury gameG,, as defined in Section 1, is said to ®anmetriaf
o Tl=T2=_. =T
e The probability distributiorp™ is symmetric in the variablas, ... t".

We consider a sequence of increasing ju(i®g),,_, such thaG, is symmetric for aln.
In such a sequends, is the same for all and alln and is denoted b¥. A strategy vector
On=(0},...,00) € %, is said to besymmetricif o} = 02 =... = all.

Corollary 8. Leto = (0,0,...,0,...) € Z* and let X= (X1, X?,...,X",...) be the se-
quence of binary random variables derived franby (1); then Xis exchangeable. If X

satisfieq7), then there exists a sequence of BNE= (o7, ...,0;) of Gyforn=1,2, ..,
that satisfies the CJT.

Proof. Follows from Theorem 5 and Theorem 2 of McLennan (1998). ]

3 Sufficient conditions

Having characterized th@JT conditions for exchangeable variables we proceed now to
the general case and we start with sufficient conditions.

Let X = (X1,X2,...,X",...) be a sequence of binary random variables with range in
{0,1} and with joint probability distributiorP. The sequenc& is said to satisfy the
Condorcet Jury TheoreCJT) if

im P (21X > 7) =1 (29)

Nn—oo 2

14



Observe that in our model the vectdrresults from strategic voting and (29) is the
condition corresponding to condition (2) (on page 5) wign= Xi(oj) for an infinite
sequence of constant strategies) ; that satisfyCJT.

In this section we provide sufficient conditions for a p@f, P) to satisfy theCJT.
Recall our notationX, = (XX +X?, ...+ X" /n, p' = E(X') andp, = (p* + p>,...+p")/n.

Theorem 9. Assume thap,, > 3 for all n > Np and

X 12
lim M _0, (30)
e (pn - 2)
or equivalently assume that
bn _%

lim = o; (31)
then the CJT is satisfied.
Proof.
n I < _ _sh >
P(Z,:1X < ) P( s x> 2)

, , . n
=P (zinzlpl -3 X' >3 p - é)

NI >

<P(

: : .n
>Lp — zin:1x|’ >3lp - é)

By Chebyshev’s inequality (assumiaf)_, p' > 5) we have
. . 2 _ o
) EGLXS9)_ Epy

P = _ =—=
( 2 (2. - 9)° (P —32)?
As this last term tends to zero by (30), @B8T (29) then follows. O

RS IV IES R

Corollary 10. If =N ;5 iCovX',XJ) <0 for n> Ng (in particular if Coy X', X1) <0
for alli # j) andlimp_.../N(P, — 3) = o, then the CJT is satisfied.

Proof. Since the variance of a binary random variakleith meanp is
p(1—p) <1/4 we have fon > Np,

- 1 i iy 2
0<E(Xn—Pn)* = SE(EL(X'-p))

1 . oy
- 2 (ZL,var(X') + 21,2 Cou X', X)) < an
Therefore, if lim— v/N(Py — %) — o, then
Y. _7)2
E(Xn = Pn) < lim 1 -0

OSM& (Pn— )2 T e An(p, — )2
Pn Pn

ol

NI
NI
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Remark 2. It follows from equation (30) that an{X, P) satisfying this sufficient condi-
tion must have y= 0; that is, it corresponds to a poirfip, 0) in the R? plane. Thus, any
distribution with y> 0 that satisfy the CJT, does not satisfy this sufficient caoditin
particular, this is true for the exchangeable sequenceth(wi> 0) we identified in Sec-
tion 2 and the non-exchangeable sequences satisfying thex@Jwill see in Section 6.

Remark 3. Note that under the condition of corollary 10, namely, fouhded random

variables with all covariances being non-positive, the gigeLaw of Large Numbers
(LLN) holds for arbitrarily dependent variables (see, eleeller (1957), Vol. |, exer-

cise 9, p. 262). This is not implied by corollary 10 since, asslow in Appendix 8.3, the
CJT, strictly speaking, is not a Law of Large Lumbers. In gatarr, CJT does not imply
LLN and LLN does not imply CJT.

Remark 4. When X, X2, .... X", ... are independent, then under mild conditions
limn_e +/N(P, — 3) = @ is a necessary and sufficient condition for CJT
(see Berend and Paroush (1998)).

4 Necessary conditions

We start this section with a simple observation and there $ta necessary conditions
that do not fully imply one another in either direction.

Proposition 4. Given a sequence ¥ (X1, X2, ..., X", ...) of binary random variables with
a joint probability distribution P, if the CJT holds the_nzp%.

Proof. Define a sequence of everf&,);,_, by By = {w | Xn(w) > 1/2}. Since theCJT
holds, limh_. P (£ ;X' > J) = 1 and hence lif... P(Bn) = 1. Since

Sy A AT

taking the liminf, the right-hand side tends to zero and wiolkthat
liminfn_wPph=p> 3. ]

4.1 A necessary condition with respect to thé, norm

In this subsection we provide a necessary condition witheetsto the_, norm for a gen-
eral sequencgX, P) to satisfy theCJT. Thatis, a condition in terms of two characteristics,
p=liminfy_.. P, andy = liminfp_e E(Xn — Pp)2.

Theorem 11. Let X = (X%, X2, ...,X", ...) be a sequence of binary random variables with
joint distribution P. If (X, P) satisfy the CJT, then¥ (p— %)(1—9).

16



Proof. Recall our notatio, = {w € Q | Xp(w) > %}; then, sincé X, P) satisfy theCJT,

limn_« P(Bn) = 1. The main part of the proof is a direct computatiofe¢K(w)

Denote byBf := Q\ B, the complement oBy; then:

E(Xn() ~Pr)? = E(X( w) - %%—m)
1
2

IA
ja(;\ >
N\

X

EN

£

|
NI

m
X

>

S

|

ol

2
N

VAN
w\
N
X

>

£

|
NI
N———
N

o

v

|
NI
I
N\

X
2
£

|
NI~
N———

o

e

_|_
NI =

m

For anye > 0 there existd(g) such that fom > N(¢),

1/ 1 1 \? _ 1\2 1
2(3) - (Gom) o [ (Roor3) w3

= (m-3) a-pa+ [ (Xalw)- %)de—g [, (xot@

= 1\?, ¢ 1[0 (o 1 £
/Bﬁ (X”(w)_i) dP<§ and ’5/59, (Xn(a))—é)dp‘<§.

Hence fom > N(¢),

We conclude that

y = liminf E(X;, — p,)? < liminf (p - }) (1-Pn) +¢,

- n—oo n—oo

for everye > 0. Hence

y =liminf E(X;, —P,)? < liminf (p —%) (1-Py)-

Nn—oo Nn—oo

17
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Choose a sequenéay),’_, such that lim_.. P, = p; then

y < liminf (T)nk— %) (1—Pn) = (9— %) 1-p). °

k— o0

NCJT

u:B

3 1
4

Figure 3: TheCJT region of validity for general distributions.

o
N~ =

Figure 3 depicts the regions of validity of tl&)T in the R? plane: Any distribution
for which the parameter,y) lie in lightly colored region denoted BMCJT, does not
satisfy theCJT. In particular, if a sequence of strategy vectoos)>_; in McLennan’s
theorem (i.e. maximizers in equation (3)) does not satiséyrtecessary condition (i.e.,
the correspondingp,y) lies in the regiorNCJT) then there is no sequence of strategies
(on)%_, whether constant or not, that satisfy @&T. The dark region, denoted byCJT
(for weak CJ7), is the closed area below the small parabola. Any disiobuhat satisfies
theCJT must have parametefp, y) in this region. However, for general distributions this
is not a sufficient condition; as we shall see later, for my) in this region, excluding
(1,0), there is a sequence with these parameters that does refy sa¢iCJT.

4.2 A necessary condition with respect to thé&1 norm

In this subsection we provide a necessary condition witheetsto the_; norm for a gen-
eral sequencgX, P) to satisfy theCJT. Thatis, a condition in terms of two characteristics,
p=liminfy_.e P, andy* = liminfp_e E|Xy — 1y

Theorem 12. Let X = (X%, X2, ..., X", ...) be a sequence of binary random variables with
joint distribution P. If (X, P) satisfy the CJT, then'y< 2(2p—1)(1— p).

Proof. See Appendix 8.2

%Since for anye > 0 inequality (32) holds for alh > N(¢), then for a subsequenégy)i_, such that
liMy_.c Py, = B and lime_.o E(Xn, —r)nk)2 =¥, we gety’< (f— %)(1— p). It follows that if (X, P) satisfies
the CJT, then any limit point of(p,, E(X, — P,)?) is in the regionA of Figure 2 (or regionWVCJT in
Figure 3). We are indebted to A. Neyman for a discussion amireg this observation.

18



L 3
w= 2u(1{A
1
27 w=22u—1)(1—u)
1 NCJT
1
f u=p
0 % % 1

Figure 4: TheCJT region of validity with respect to thie; norm.

Figure 4 depicts the regions of validity of t@J T in theR? plane with respect to the
L1 norm; the analogue of Figure 3.

Strangely enough, Theorem 12 and Theorem 11 do not imply et in either
direction. Furthermore, the techniques of the proofs ferlthnorm and for the_, norm
are very different. We could derive only a weak implicatiarone direction which stems
from the following lemma:

Lemma 1. One always has:’y> 2y.

Proof. DenotingA, = {w € Q | P, — Xn(w) > 0}, we have:

Similarly,

Hence for alin we have:
= En )2 = [ (Ko P2 P <P+ (1-pp 2 =20
Q 2 2 2
Taking a subsequencey),’_, such thatlim .. y;, = y*, we conclude that

y' > 2Ii|£ninfynk >2y.

Combining Lemma 1 with Theorem 12 yields,

Corollary 13. Let X= (X1, X?,...,X",...) be a sequence of binary random variables with
joint distribution P. If y> (2p—1)(1— p), then(X,P) does not satisfy the CJT.
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0 1
2

| 0o
—_

Figure 5: TheCJT validity region with respect to thie; norm as implied by the
condition with respect to thie; norm.

Figure 5 depicts the conclusion of the last corollary: Thgiae with the lightest
color, denoted byNCJT, is the region in which th€JT is not satisfied for anyX, P)
with these values ofp,y). The darkest region, denoted WCJT, is the region of p,y)
for which there existX, P) with these parameters that satisfy @©&T. Clearly, this is a
weaker result than Theorem 11 that we obtained directlyifetLs norm and is described
in Figure 3 according to which, the crescent in Figure 5, tiethdy “?”, belongs to the
NCJT region.

5 Distributions in WCJTthat do not satisfy theCJT

In this section we prove that the necessary conditionsdtat&€heorems 11 and 12 are
not sufficient. In fact we prove a stronger result, namelyaig pair of parameters in the
closure of the darkVCJTregion (either in Figure 3 for thie;, norm or in Figure 4 for the
L, norm), excluding the pointl,0), there is a distribution that does not satisfy @&T.
We shall prove this only for the; norm (the proof for the; norm is similar). This is
established by the following:

Theorem 14. For any (u,w) € {(u,w) |[O0<u<1; 0<w<u(l—u)},
there is a sequence of binary random variables Z with joistrbution H such that:

(i) E(Z') = u,Vvi.
(i) liminf, o E(Zn—u)?=w.
(i) The distribution H does not satisfy the CJT.
Proof. ForO<u< 1,
e let(X,Fp) be given byXt =X?=...=X"=... andE(X") = u;

e let(Y,F1) be a sequence of @i.d. random variablegY')® ; with expectatioru.

20



e For0<t <1 let(Z,H) be the pair in whichz] = tX' 4+ (1—t)Y' fori=1,2,...
andH; is the product distributiofdy = Fy x F; (that is, theX and theY sequences
are independent).

Note first thate(Z{) = u for all i and

u(l—u)

lim E(Z;n—u)? = lim <(1—t)

Nn—oo n—oo

+tu(l— u)) =tu(l—u),

and therefore the paiiz;, H;) corresponds to the poirit, w) in the L, space, whergv =
tu(1—u) rangesinO,u(l—u))as 0<t < 1.
Finally, (Z,H;) does not satisfy th€JT since for alln,

Pr(Zyn > %) <1-Pr(zt=Z%=..=0)=1-t(1-u) <1l

As this argument does not apply fioe= 0 it remains to prove that, except f(t, 0), to
any point(u,0) on thex axis corresponds a distribution that does not satisi\CXhE. For
0 <u< 1/2, the sequencgY,Fy) of of i.i.d. random variablegY') ; with expectation
u does not satisfy th€JT, as follows from the result of Berend and Paroush (1998). For
1/2 < u< 1 such a sequence bf.d. random variables does satisfy 88T and we need
the following more subtle construction.

Given the two sequencéX, Fy) and(Y,F;) defined above, we construct a sequence
Z = (Z"), consisting of alternating blocks of -s andY'-s, with the probability distri-
bution onZ being that induced by the product probability= Fy x Fy. ClearlyE(Z') = u
for alli, in particularp, = u for all n andp = u. We denote byB, the set of indices of the
¢-th block and its cardinality bi,. Thusn(¢) = Zlebj is the index ofZ' at the end of the
¢-th block. Therefore

Bry1={n(¢)+1,...,n(¢) +by1)} and n(l+1) =n(£)+bys.
Define the block sizé, inductively by:
1. by=1,andfork=1,2,..;
2. by = kzlj(zlsz,l andbyy 1 = bo.

Finally, we define the sequenZe= (Z') , to consist ofX'-s in the odd blocks and'-s
in the even blocks, that is,

i _ X' if i€By_q forsomek=1,2,...
1YY if ieBy forsomek=1,2,...

Denote byny(¢) andny(¢) the number oK coordinates and coordinates respectively
in the sequencg at the end of thé-th block and byn(¢) = ny(¢) + ny(¢) the number of
coordinates at the end of tlieh block ofZ. It follows from 1 and 2 (in the definition of
by) that fork=1,2,...,
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k(2k—1) = ny(2k—1)+1 (33)
Nk (2K) 1 nk(2k) 1
ny(2K) < K and hence also n(2K) < P (34)

It follows from (33) that at the end of each odd-numbered bl2k— 1, there is a
majority of X; coordinates that with probabilifyt — u) will all have the value 0. Therefore,

= 1
Pr (Zn(2k1) < E) >(1—u) for k=1,2,...,

and hence 1
liminf Pr (Zn > é) <u<1;

nN—oo

that is,(Z,H) does not satisfy th€JT.
It remains to show that

y =liminf E(Z,—p,)? = 0.

- n—oo

To do so, we show that the subsequencé®f(Z, —r)n)z)}:;l corresponding to the end
of the even-numbered blocks converges to 0, namely,

Jim E(Zn(26) — Przx)° = 0.

Indeed,

2
= ~ 2 x(2K) 1 1 _ny2k i
E(Zn2k) — Pniay) =E ( n(2K) (X*—u)+ mziil Y'—u) ) .
Since theY'-s arei.i.d. and independent 0f! we have

2
E(Zn(20 — Prizi)° = :)2(5;:3 ul—u)+ rrgglg u(l—u),

and by property (34) we get finally:

- 1 1
. _ 2 .
l!moE(Zn(Zk) - pn(2k)> < l!mo (@U(l— u) + @U(l— U)) =0,

concluding the proof of the theorem. ]
An immediate implication of Theorem 14 is the following:

Corollary 15. For any pair of parametergp,y) satisfyingl/2<p<land0<y<

(pP—1/2)(1— p) (thatis, the pointp,y) is in the closure of the regioWCJTin Figure 3,
excluding(1,0)), there is a distribution with these parameters that doessatisfy the
CJT.
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6 Non-exchangeable sequences satisfying t8d T

In this section prove the existence of sequencéd®) of dependent random variables,
sequences that are non-exchangeable and satis§JheBy Theorem 11, such distribu-
tions must have their parameter in the closure of the Wa€kI T region (either in Figure

3in Ly orin Figure 4 inL;). In fact, we shall prove that for any point in this regionréne

is a distribution that satisfies tl&]T, and is not exchangeable. We shall prove that only
in theL, plane. The proof for thé; plane is similar. The construction of these sequences
uses the idea of thiaterlacingof two sequences, which can be generalized and proves to
be useful.

Theorem 16. Lett € [0, 3]. If F is a distribution with parametergp,y), then there exists
a distribution H with parameterf = 1—t +tpandy = tZX that satisfy the CJT.

Proof. To illustrate the idea of the proof we first prove (somewh#&brimally) the case
t=1/2. LetX = (X%, X2,...,X",...) be a sequence of binary random variables with a joint
probability distributiorF. LetG be the distribution of the sequente= (Y1,Y?,....Y",..),
whereEY" = 1 for all n (that is,Y! = Y2 = ..Y" = ... andP(Y' = 1) = 1 Vi). Consider
now the followinginterlacingof the two sequences andY::

Z=(YLy2 x1y3 x2y4 x3,.. yn X1 yntl xn ),

and let the probability distributiorl of Z be the product distributiorl = F x G. It is
verified by straightforward computation that the paransetdrthe distributiorH are in
accordance with the theorem for= 3, namely,p= 1 + 2p andy’= zy. Finally, as each
initial segment of voters ifZ contains a majority of'-s (thus with all values 1), the
distributionH satisfies th&€ JT, completing the proof for = %

The proof for a generale [0,1/2) follows the same lines: We construct the sequence
Z so that any finite initial segment ofvariables, includes “about, but not more than” the
initial tn segment of th&X sequence, and the rest is filled with the cons¥anariables.
This will imply that theCJT is satisfied.

Formally, for any reak > O let | x| be the largest integer less than or equad émd let
[X] be smallest integer greater than or equal.tdNote that for anyn and any 0<t <1
we have|tn| + [(1—t)n] = n; thus, one and only one of the following holds:

(i) [tn] <[t(n+1)] or

(i) [(1-t)n] <[(1-t)(n+1)]

From the given sequeneéand the above-defined sequeiYc@f constant 1 variables) we
define now the sequene= (Z1,Z2,...,Z",...) as follows:Z! = Y* and for anyn > 2, let
Z" = X t+D1if (i) holds andZz, = YD1 it (i) holds. This inductive construction
guarantees that for afl, the sequence containtn| X' coordinates and(1—t)n] Y!

coordinates. The probability distributidth is the product distributiofr x G. The fact
that(Z,H) satisfies th€JT follows from:

[(1-t)n] > (1—t)n>tn> |tn],
and finallyg=1-t+tpandy= t23_/ is verified by straightforward computation. [
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Remark 5. ¢ Note that the sequence Z is clearly not exchangeédteept for the
caset = 0 which corresponds td), 0)).

e The interlacing of the two sequences X and Y described inrtiud pf Theorem 16
may be defined for anyd [0, 1]. We were specifically interested ik {0, 1/2] since
this guarantees the CJT.

point (1,0), corresponds to all interlacing withe [0,1]. The lower part, described as a
thick line, corresponds to interlacing whew [0,1/2]. For these values df the inter-
lacing yields distributions satisfying tH@JT. The small parabola is the locus of points
corresponding tb= 1/2 when(u*,w*) ranges over the parabola= u(1—u).

wrEy (1 —t+ tu*, t2w*)
w=u(l—u) _ 1
;- BU L wewea-
w*
1
16 ] u=p
0 u* % é ﬁl

Figure 6: Interlacing with{1,0) in L.
Corollary 17. For any(p,y) in the set

A={(py) |0<y<(p-1/2)(1-p); 1/2<p<1}

(thisis the closure of the regi® CJTin Figure 3) there is a sequence of non-exchangeable
random variables, with these parameters, that satisfy thé.C

Proof. By straightforward verification we observe that the &a$ obtained from Theo-
rem 16 by letting p,y) range over the points of parabele= u(1—u) defining the feasible

setFE,. In other wordsA can also be written as:

A={(py) |p=1-t+tu; y=t2u(l-u); 0<t<1/2, 0<u<1}

O

Note thatA is the closure of the s& defined in equation (28) for exchangeable vari-
ables, buA # A. More specifically, the point§,y) on the parabolg= (p—1/2)(1—- p),
excluding(1,0), are inA but not inA. For each of these points there is a corresponding
sequence satisfying tl&] T but this sequence cannot be exchangeable.

Finally, combining Corollary 17 and Theorem 14 yields:

Corollary 18. For any point(p,y) in A\ {(1,0)} there is a corresponding sequence sat-
isfying the CJT and a corresponding sequences that doestistysthe CJT.
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6.1 Other distributions satisfying the CJT: General interlacing

So far we have identified three types of distributions th&ésathe CJT; all correspond
to parametersp,y) in the setA, the closure of the regiowCJTin Figure 3.

1. Distributions satisfying the sufficient condition (Them 9).
2. Exchangeable distributions characterized in Theorem 5.

3. Non-exchangeable distributions obtained by interigewth constant sequence
Y =(1,1,...) (Theorem 16).

In this section we construct more distributions satisfyimgCJT that are not in either of
the three families mentioned above. We do so by generalth@gotion of the “interlac-
ing” of two distributions that we introduced in Section 6.

Definition 2. Let X = (X%, X?,...,X" ...) be a sequence of binary random variables with
joint probability distribution F and let Y= (Y1,Y2,....Y"....) be another sequence of
binary random variables with joint distribution G. Fort [0, 1], the tinterlacingof (X, F)
and(Y,G) is the pair(Z,H) := (X,F) % (Y,G) where forn=1,2,.. .,

XLl it |tn]>[t(n-1)]
n_
L' = { YI@=Ontif o ra-tn]>[(1-t)(n-1)] (59)

and H=F x G is the product probability distribution of F and G.
The following lemma is a direct consequence of Definition 2.

Lemma 2. If (X,F) and(Y,G) satisfy the CJT, then for anyd [0, 1] the pair(Z,H) =
(X,F) # (Y, G) also satisfies the CJIT.

Proof. We may assume that (0,1). Note that
- 1 - 1 o 1
w[Zn(w) > 5( =2 W[ X (@) > é} MY aym (@) > >

By our construction and the fact that bdik, F) and(Y, G) satisfy theCJT,

: - 1 . o 1
lim F (XM > E) =1 and IimG (Ymt)m > E) =1

n—oo n—oo

_ 1 - 1 o 1
H (Zn > é) 2 F (XUnJ > é) -G (Y((lt)n} > é) y

the proof follows. O

Thus, from any two distributions satisfying tB@& T we can construct a continuum of
distributions satisfying th€JT. These distributions will generally be outside the union
of the three families listed above.
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7 Conclusions

We have analyzed the Condorcet jury problem in a detailedneraas a strategic game
with incomplete information (Section 2). This frameworlshhe following advantages:

() Itis in line with the modern approach of Austen-Smith @ahks (1996);

(1) It enables us to focus on a natural candidate BNE fors§ztig theCJT, namely,
McLennan’s BNE (see Theorem 2);

(111 1t explains, in a transparent way, Condorcet’s own ralbahich was originally re-
stricted to two types of voters and informative voting;

(IV) It enables us to deal with "reverse voting” and "randowoting” (and other strate-
gies) without altering our model, since we consid#mpossible strategieand not
only informative voting (see Examples 3 and 2);

(V) Using our model we find (sharp) necessary conditions lier éxistence of a se-
quence of BNE that satisfies the CJT. Indeed, as we statedyenp8), if a McLen-
nan sequence of BNE does not satisfy one of our necessaritioosgdthemo other
sequence of strategissatisfies th&€JT.

(VI) Informative voting may not be Bayesian Nash EquilibriurgSee Austen-Smith and
Banks (1996)).

Technically, we deal, in most of the paper, with distribngof sequences of binary
random variables that are derived from sequences of sieated the players. This is
mainly implied by the fact that th€JT is a probabilistic property. In Section 2 we find
necessary and sufficient conditions for a sequence of egeladnte variables to satisfy
the CJT (see Theorem 5). We then go on to find a purely geometricabckenization
for our result. For exchangeable variables the geometmclition is fully determined
by the expectation of a variable in the sequence and the iaowar of the two variables
(see Theorem 7). Our sufficient conditions are standard emdexived by Chebyshev’s
inequality. On the other hand the derivation of the necgssamditions makes use of spe-
cial techniques. The necessary condition with respectadtmorm, quite surprisingly,
coincides with the necessary condition for exchangeabliabas. However, of course, it
is not a sufficient condition for general sequences of randamnables. Indeed in section
5 we provide sequences of random variables satisfying #gessary condition but do
not satisfy theCJT (see Theorem 14 and Corollary 15). The necessary conditittn w
respect to thé, norm is difficult to derive and may be useful in special cas@sally, we
introduce in Section 6 the operation of interlacing of twqeences of random variables.
This enables to generate many new dependant sequencesf l@Endom variables that
satisfy theCJT.
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8 Appendix

8.1 Every sequence of of binary random variables is attainale

In this section we prove what we claimed on page 7, namely fthany infinite sequence
of binary random variableX there is a sequence of gam&);;_; and an infinite sequence
of constant strategies = (o, 02,...,0",...) that yield thisX as the infinite sequence of
the indicators of correct voting.

Let X = (X1,X2,...,X",...) be a sequence of binary random variables on some probadilitge
(Q,%, ). LetP also denote the distribution &f. In our model lefT’ = {t} ! } be the type
set of jurori and let the type of juror, t' =t'(8,X!(w)) be defined byt'(g,0) =t'(z, 1) =t}
andt'(g,1) =t'(z,0) =t}. We define the probability distributiop™ onQ, =0 xT1x ... x
T" as follows: Letp™(2) = p"(g) = 1/2; for g, € {0,1}; k=1,...,nlet

~ ~ 1
BlogXt=€1,... . X"=g)=pzXt=1—-¢1,.... X" =1—¢,) = EP(Xlzsl,...,X”:sn)

and define
pM(6,t5t2, .. t") = B(6,X1 X2, ... X").

The sequenceﬁp(”))ﬁ;l clearly satisfies the projective structure required for Keémogorov's
extension theorem (that is, the marginal distributionp8f on Q, is equal top"). It
defines therefore a probability distributigmon Q = lime.n Qn.
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Define now the (informative voting) strategigsby: o' (t)) = aanda' (t}) = ¢, and letX?, ..., X"...
be the indicators of correct voting (w.r.t. thig, then

Xi(g,t'(g,1)) =Xi(zt'(z1)) =1 and X' =0 otherwise

Thus _ _
X(0,w)=1 < X(w)=1,

which means that we obtained the original given sequence.

8.2 Proof of Theorem 12

In this section we provide a necessary condition for a gérseguence of binary random
variablesX = (X1, X2, ...,X", ...) with joint distributionP, in terms of two of its characteris-
tics namely,p = liminf,_. P, andy* = liminf,_. E[Xn —Py|.

Letyy, = E[Xn —Py|; theny* =liminf,_y;. Forn=1,2,..., let
An={weQ|P,—Xn(w) >0} and AS=Q\A,.

Then, sinceE (X, —P,) =0,

[ o=t P="0 and [ (1-p,) dP=(1-p)P(ay) > . Hence
A 2 A 2
_ ¢ Yh
P(An) =1-P(A;) <1- AP, (36)
Also,
[ oY) dP =P80 - [ KnoP=2. @7)
Hence, since, > 0,
P(Ay) > Y (38)

~ 2P

Assumingy* > 0 andp < 1, it follows from (38) and (36) that there is a subseque(mggf;_, such
that (P(An,))x_4 is uniformly bounded away from 0 and 1,

Ilim P, =p and kIim P(An) =¢ where O</<1 (39)

Lemma 3. Lett > 0O; then

Iimian({weAnk

k— o0

R Yhe
Pn, — Xn(w) < 2P(An) —t}) < /. (40)
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Proof. Assume by contradiction that (40) does not hold; then, siheesets on the left-hand
side are subsets &, , it follows from (39) that:

. S Vi B

IlmP({weAnk Pn — Xn (W) < 2P k)—t} =/. (41)
DenoteA, = P — X oy
enote.Ank_{ooeAnk Pr — Xn (W) < m—t}.Then,

v n P A k
PaPlin)— [ Xn(wrcp < B

Clearly, lim_..P(A) = £ = limy_ .. P(A,) and sincél, C A, , we have

im | /A X (@)dP — /An X ()dP
Nk k

—tP(A,). (42)

=0.

k— 00

Thus forkg sufficiently large, the inequality (42) contradicts thet kaguality in (37) fom = ny,. ]

Let
X e Yn
Bn = - X ¢l
n=An\An {weAn ( Pr— Xn(w) > PA) tes
then, by Lemma 3, there is a subseque(®g¢),_, andq > 0, such thaP(By, ) > q> 0 for
all k, that is v
V2 — n . .
X (@) < P, — 2P(Ak\nk) +t; Vwe By,; Vk. (43)
Example 4. Let% <p<landy =2p(1- p);then, by (36) and (43) we have
Ynk(w) <Pn — —yﬁkyﬁ +t; Vwe By, Vk (44)
2(1= 5755)

By taking subsequences (ok),_, (to make j; converge) we may assume w.l.o.g. that:

+¢€
lim | Py, — ka* +t|=p— fiy*% +t, forsomee > 0.
o\ 201 ) T 21—y
2(1-Pn,) 2(1-p)
Thus, for somedwe have
- y' +¢€ _ _
Xn(w) < p— ——— - T2 VweBy; Vk>ko. (45)
201 2p)
Inserting y = 2p(1— p) we have:
+¢€
pP- X*iy*_i_g +2t < pP- Ly* + 2t
201~ 2p) 2= 7))
2p(1-p)
TR 2D ra=4,
( - 2(1*3))



implying that
Xn () < 2t; Yw e By,; Vk> ko. (46)

As t> 0 is arbitrary, in particular, if 2t < 1/2; since RBy,) > q > 0 for all k, inequalities (46) imply
that (X, P) does not satisfy the CJT.

We concludeNo distribution with3 < p < 1landy* =2p(1— p) satisfy theCJT.

Inspired by the previous example we move now to the proof afofém 12 stating the general
necessary condition for t@JT in L;.

Theorem 19. Let X = (X1,X2,...,X", ...) be sequence of binary random variables with joint dis-
tribution P. If y* > 2(2p—1)(1— p), then(X,P) does not satisfy the CJT.

Proof. Let X= (2p—1)(1— p) and notice thak/(1—x/(1— p)) is an increasing function
for x < 1— p. Sincey*/2 > X, lett be such that

1 y* X
O<t< = = — s
2<2(12(1yp)) 11X|o)

By Lemma 3, there exists a sequence of evéts)y_, andq > 0, such thaP(B,,, ) >q>0
for all k, and (43) and, (by choosing an appropriate subsequenés)ald satisfied. Thus,
on these events we have,

Xn (W) < p —v e t& < p- —— T2
2(1_2(1——9)) 201 2(1_—p))
X
< p- 1_i+2t—2t
1-p

We conclude thaXn, (w) < 3, for all w € By, and for allk > ko, implying that(X,P) does
not satisfy theCJT.

O

8.3 TheCJT and the Law of Large Numbers

At first sight, the asymptoti€JT condition may look rather similar to the well-knovizaw
of Large NumbergLLN). It is the purpose of this section to clarify and state melgi the
relationship between these two concepts.

31



Recall that an infinite sequence of binary random variables (X*,X2,...,X",...) with a joint
probability distributionP satisfies the (weak) Law of Large Numbeks ) if (in our nota-
tions):

Ve >0, AmP(\Yn—bn\ <g)=1 (47)

while it satisfies the Condorcet Jury Theore@d ) if:

. - 1
lim P <xn > §> =1 (48)
Since by Proposition 4, the conditign> % is necessary for the validity of tH@JT, let us

check the relationship between theN and theCJT in this region. Our first observation is:

Proposition 5. For a sequence X% (X1,X2,...,X",...) with probability distribution P satisfying
p> 3, if the LLN holds then the CJT also holds.

Proof. Let p=1/2+ 34 for somed > 0 and letNo be such thap, > 1/2+ 24 for all n > No;
then for alln > Ng we have

- 1 - _1 —
P(Xn> 5) > P(Xn > §+5> > P (|Xn— Pl < 9)
Since the last expression tends to Inas> «, the first expression does too, and hence the
CJT holds. ]

Remark 6. The statement of Proposition 5 does not hold for é Indeed, the sequence=X
(X1, X2,...,X"....) of i.i.d. variables with FX' = 1) = P(X' = 0) = 1/2 satisfies the LLN but does
not satisfy the CJT since it does not satibfy,_.../N(P, — %) = oo which is a necessary and
sufficient condition for CJT (see Berend and Paroush (1998))

Unfortunately, Proposition 5 is of little use to us. This isedo the following fact:

Proposition 6. If the random variables of the sequence=X(X!,X2,...,X",...) are uniformly
bounded then the condition
lim E (Xn—P)° =0

n—oo

is a necessary condition for LLN to hold.

The proof is elementary and can be found, e.g., in Uspen$d/7(]1 page 185.

It follows thus from Proposition 6 thdtLN cannot hold whery > 0 and thus we cannot use
Proposition 5 to establish distributions in this regiont teisfy theCJT.

Summing up, TheLLN and theCJT are substantially two different properties that do not im-
ply each other. The partial implicatidcLN =- CJT applies only for the horizontal line in
Lo; (p,0), for p> 1/2, where theCJT is easily established directly. Furthermore, all dis-
tributions withy > 0 for which we established the validity of tf@JT do not satisfy the
LLN.
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