
Extending the Condorcet Jury Theorem
to a general dependent jury

Bezalel Peleg1 and Shmuel Zamir2’3

December 9, 2010

Abstract

We investigate necessary and sufficient conditions for the existence of Bayesian-
Nash equilibria that satisfy theCondorcet Jury Theorem(CJT). In the Bayesian
gameGn amongn jurors, we allow for arbitrary distribution on the types of jurors.
In particular, any kind of dependency is possible. If each juror i has a “constant
strategy”,σ i (that is, a strategy that is independent of the sizen ≥ i of the jury),
such thatσ = (σ1,σ2, . . . ,σn . . .) satisfies theCJT, then by McLennan (1998) there
exists a Bayesian-Nash equilibrium that also satisfies theCJT. We translate theCJT
condition on sequences of constant strategies into the following problem:

(**) For a given sequence of binary random variablesX = (X1,X2, ...,Xn, ...) with
joint distribution P, does the distributionP satisfy the asymptotic part of the
CJT ?

We provide sufficient conditions and two general (distinct)necessary conditions for
(**). We give a complete solution to this problem whenX is a sequence of exchange-
able binary random variables.

Introduction

The simplest way to present our problem is by quoting Condorcet’s classic result (see
Young (1997)):

Theorem 1. (CJT–Condorcet 1785) Let n voters (n odd) choose between
two alternatives that have equal likelihood of being correct a priori. Assume
that voters make their judgements independently and that each has the same
probability p of being correct(1

2 < p < 1). Then, the probability that the
group makes the correct judgement using simple majority rule is

n

∑
h=(n+1)/2

[n!/h!(n−h)!]ph(1− p)n−h

which approaches1 as n becomes large.

1Center for the Study of Rationality, The Hebrew University of Jerusalem.
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3We thank Marco Scarsini and Yosi Rinott for drawing our attention to de Finetti’s theorem.
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We build on some of the literature on this issue in the last thirty years. First we
notice that Nitzan and Paroush (1982) and Shapley and Grofman (1984) allow for unequal
competencies of the juries. They replace the simple majority committee by weighted
majority simple games to maintain the optimality of the voting rule.

Second, we notice the many papers on the dependency among jurors. Among these
papers are Shapley and Grofman (1984), Boland, Prochan, andTong (1989), Ladha (1992,
1993, 1995), Berg (1993a, 1993b), Dietrich and List (2004),Berend and Sapir (2007),
and Dietrich (2008). It is widely understood and accepted that the votes of the jurors are
often correlated. For example, group deliberation prior tovoting is viewed, justifiably,
as undermining independence (Grofman, Owen, and Feld (1983), Ladha (1992, 1995),
Estlund (1994), and Dietrich and List (2004)). In particular, Dietrich (2008) argues that
independence cannot be fully justified in the Condorcet jurymodel.

Finally, we mention the seminal paper of Austen-Smith and Banks (1996) which incor-
porated strategic analysis into the Condorcet jury model. This paper had many followers,
in particular McLennan (1998), and Duggan and Martinelli (2001) which investigated the
Condorcet Jury Theorem (CJT) for Bayesian-Nash equilibria (BNE).

In this work, we investigate theCJT for BNE. Unlike Austen-Smith and Banks
(1996), we do not assume that thetypesof the voters are independent (given thestate
of nature). Indeed we assume arbitrary dependency among (the types of) jurors. As far
as we could ascertain, McLennan (1998) is the only paper thatstudies theCJT for BNE
assuming dependency among the jurors. In fact we rely heavily on McLennan’s work; the
game amongn jurors, is a Bayesian gameGn in which all the players have the same payoff
function which is the probability ofcorrect decision. Therefore, anyn-tuple of strategies
σn = (σ1

n, . . . ,σn
n) that maximizes the common payoff is a BNE (McLennan (1998), Theo-

rem 1). Now consider an infinite sequence of such strategiesσ = (σ1,σ2, . . . ,σn, . . .) that
are BNE for the sequence of gamesG1,G2, . . . ,Gn, . . . with a jury of growing size. If there
exists any other sequence of strategiesτ = (τ1,τ2, . . . ,τn, . . .) (not necessarily BNE), that
satisfies theCJT, then the original sequenceσ is a sequence (of BNE) that also satisfies
theCJT. Thus, we may focus on the following problem:

(*) For a given sequence of Bayesian gamesG1,G2, . . . ,Gn, . . . with an increasing set
of jurors, find some sequence of strategiesτ = (τ1,τ2, . . . ,τn, . . .) whereτn is ann-
tuple of strategies for the gameGn, so that the sequence(τn)

∞
n=1 satisfies theCJT.

In view of the generality and the complexity of our model, we limit ourselves to se-
quencesτ of “constant” strategies; that is, we assume thatτ i

n = τ i
m if 1 ≤ i ≤m≤ n < ∞.

This means that the strategyτ i
n of a specific jurori does not change when the size of the

jury increases. We shall refer to such a sequence as a “constant sequence.”4 We prove
that verifying theCJT for a constant sequence is equivalent to the following problem:

(**) For a given sequence of binary random variablesX = (X1,X2, ...,Xn, ...) with joint
distributionP, find whether or not the distributionP satisfies theCJT.

4The restriction to constant strategies is needed only for the existence results. The sufficient condition
as well as the necessary conditions are valid for any infinitesequence of strategies. See Remark 1 on page 7
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Note that prior to Austen-Smith and Banks (1996), the analysis of the Condorcet jury
problem had focused on problem (**). One general result is that of Berend and Paroush
(1998) which characterizes the independent sequences of binary random variables that
satisfy theCJT.

In this paper we find sufficient conditions for (**). Then we supply two general nec-
essary conditions. However, we do not have a complete characterization of the solution to
(**). We do have full characterization (necessary and sufficient conditions) for sequences
of exchangeablerandom variables.

Our basic model is introduced in Section 1. The full characterization for the case of
exchangeable variables is given in Section 2. In Section 3 wegive sufficient conditions
for theCJT. In Section 4 we develop necessary conditions for the validity of theCJT in
two different planes of parameters of the distribution. In Section 5 we prove that these
necessary conditions are not sufficient, unless the sequence is of exchangeable random
variables. In Section 6 we introduce the notion ofinterlacing of two sequences, which
proves to be a useful tool to construct new classes of distributions that satisfy theCJT. In
particular we construct rich classes of non-exchangeable sequences that satisfy theCJT.
We conclude in section 7. Two proofs are given in the Appendix. In the last part of the
appendix we clarify the relationship between theCJT and theLaw of Large Numbers
(LLN). Basically we show that these are two different propertiesthat do not imply each
other in spite of their superficial similarity.

1 The basic model

We generalize Condorcet’s model by presenting it as a game with incomplete information
in the following way: LetI = {1,2, . . . ,n} be a set of jurors and letD be the defendant.
There are twostates of nature: g– the defendant is guilty, andz– the defendant is innocent.
ThusΘ = {g,z} is the set of states of nature. Each juror has two available actions: c– to
convict the defendant, anda– to acquit the defendant; thusA = {a,c} is the action set
of each of the jurors. Before voting, each jurors gets a private random signalt i

j ∈ T i =

{t i
1, . . . , t

i
ki
}. In the terminology of games with incomplete information,T i is the type

set of juror i. The private signals of the jurors may be dependent and may, of course,
depend on the state of nature. Again, in the style of games with incomplete information,
let Ωn = Θ×T1×, . . . ,×Tn be the set of thestates of the world. That is, a state of the
world ω = (θ , t1, . . . , tn) consists of the state of nature and the list of types of then jurors.
Let p(n) be the probability distribution (i.e., a common prior) onΩn. This is the joint
probability distribution of the state of nature and the signals (types) of all jurors. We
assume that the action taken by the finite society of jurorsI = {1,2, . . . ,n} .i.e., the jury
verdict, is determined by the voting ruleV : AI→A, which is thesimple majorityrule (with
some tie-breaking procedure such as coin tossing). Finally, to complete the description of
the game, we let all jurors have the same payoff functionu : Θ×A→ R namely,

u(g,c) = u(z,a) = 1 and u(g,a) = u(z,c) = 0, ∀i ∈ I
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This concludes the definition of a game, which we denote byGn. A (pure) strategy of
juror i ∈ I in Gn is a functionsi : T i → A. We denote bySi the set of all pure strategies
of juror i ∈ I and byS= S1×, . . . ,×Sn the set of strategy profiles of the society. The
(common) ex-ante payoff for each juror, when the strategy vector s= (s1, . . . ,sn) ∈ S is
used, isEu = Eu(θ ,V(s1(t1), . . . ,sn(tn))), whereθ is the true state of nature. Note thatEu

is precisely the probability of correct decision byI when the strategy vectors is used.

Example 1. In the original Condorcet theorem we have Ti = {t i
g, t

i
z}; p(n)(g) = p(n)(z) =

1/2 and the types are conditionally independent given the stateof nature; each has a
probability p> 1/2 of getting the correct signal. That is,

p(n)(t i
g|g) = p(n)(t i

z|z) = p >
1
2

Condorcet further assumed that all the jurors vote informatively, that is, use the strategy
si(t i

z) = a and si(t i
g) = c. In this case, the probability of correct voting, by each juror, is p,

and as the signals are (conditionally) independent, the CJTfollows (for example, by the
Law of Large Numbers).

Figure 1 illustrates our construction in the casen = 2. In this example, according to
p(2) the state of nature is chosen with unequal probabilities forthe two states:p(2)(g) =
1/4 andp(2)(z) = 3/4 and then the types of the two jurors are chosen according to ajoint
probability distribution that depends on the state of nature.
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Figure 1 The probability distributionp(2).

Following the seminal work of Austen-Smith and Banks (1996), we intend to study the
CJT via the Bayesian Nash Equilibria (BNE) of the gameGn. However, unlike in the case
of (conditionally) independent signals, there is no obvious way to find the relevant BNE in
the general case of arbitrary dependence. Therefore, our approach will be indirect. Before
describing our techniques we first enlarge the set of strategies of the jurors by adding the
possibility of mixed strategies. Indeed, it was shown by Wit(1998) that the introduction
of mixed strategies may help the realization of theCJT.
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A mixed strategy5 for juror i ∈ I , in the gameGn, is a functionσ i
n : T i → ∆(A),

where∆(A) is the set of probability distributions onA. Denote byΣi
n the set of all mixed

strategies of jurori and byΣn = Σ1
n× . . .×Σn

n the set of mixed strategy vectors (profiles)
in the gameGn. The (common) ex-ante payoff for each juror, when the strategy vector
σn = (σ1

n, . . . ,σn
n) ∈ Σn is used, isEu = Eu(θ ,V(σ1

n(t
1), . . . ,σn

n(t
n))), whereθ is the true

state of nature. Again,Eu is precisely the probability of correct decision byI when the
strategy vectorσ is played.

We shall now find a more explicit expression for the payoffEu. Given a strategy vector
σn = (σ1

n, . . . ,σn
n) ∈ Σn we denote byXi

n(σ i
n) : Θ×T i →{0,1} the indicator of the set of

correct voting of jurori when using the mixed strategyσ i . That is,

Xi
n(σ

i
n;θn, t

i
n) =

{

1 if θn = g and σ i
n(t

i
n) = c or θ n = z and σ i

n(t
i
n) = a

0 otherwise
(1)

where by a slight abuse of notation we denoted byσ i
n(t

i
n) the realized pure action when

juror i of type t i
n uses mixed strategyσ i

n. Given a strategy vectorσn = (σ1
n, . . . ,σn

n), the
probability distributionp(n) onΩn induces a joint probability distribution on the vector of

binary random variables(X1
n ,X2

n , . . . ,Xn
n) which we denote byp(n)

σn . Assume now thatn is
odd; thenEu is given by

Eu = p(n)
σ n (Σn

i=1Xi
n >

n
2
).

Guided by Condorcet, we are looking for limit theorems as thethe size of the jury
increases. Formally, asn goes to infinity we obtain an increasing sequence of “worlds”,
(Ωn)

∞
n=1, such that for alln, the projection ofΩn+1 on Ωn is the wholeΩn. The corre-

sponding sequence of probability distributions is(p(n))∞
n=1 and we assume that for every

n, the marginal distribution ofp(n+1) on Ωn is p(n). It follows from the Kolmogorov ex-
tension theorem (see Loeve (1963), p. 93) that this defines a unique probability measure
P on the (projective, orinverse) limit

Ω = lim
∞←n

Ωn = Θ×T1× . . .×Tn . . .

such that, for alln, the marginal distribution ofP onΩn is p(n).
Let (σn)

∞
n=1 be an infinite sequence of strategy vectors for an increasingjury. We say

that(σn)
∞
n=1 satisfies the (asymptotic part of)CJT if

lim
n→∞

p(n)
σ n

(

Σn
i=1Xi

n(σ
i
n) >

n
2

)

= 1. (2)

Our aim in this work is to find sufficient conditions for the existence of a sequence of
BNE (σn)

∞
n=1 that satisfy the (asymptotic part of)CJT. As far as we know, the only exist-

ing result on this general problem is that of Berend and Paroush (1998), which deals only

5As a matter of fact, the strategy we define here is abehavior strategy, but as the game is clearly a game
with perfect recall, it follows from Kuhn’s theorem (1953) that any mixed strategy has a payoff equivalent
behavior strategy. Thus we (ab)use the term “mixed strategy” which is more familiar in this literature.
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with independent jurors. For that, we make use of the following result due to McLennan
for games with common interest (which is our case):

Theorem 2. (McLennan (1998)) For n= 1,2, . . ., if

σ∗n = (σ∗1n , . . . ,σ∗nn ) ∈ arg max
(σ1

n,...,σn
n))

Eu(θ ,V(σ1
n(t

1), . . . ,σn
n(t

n))), (3)

thenσ∗n is a Bayesian Nash Equilibrium of the game Gn

This is an immediate application of Theorem 1 in McLennan (1998), which implies
thatσ∗n is a Nash equilibrium of the type-agent representation ofGn. Since by Theorem 2,
a Bayesian Nash Equilibrium ofGn maximizes the probability of correct decision, then
clearly, if there exists any sequence of strategy vectors(σn)

∞
n=1 that satisfies the asymp-

totic part ofCJT, (2), then there is also a sequence(σ∗n)∞
n=1 of BNE that satisfies (2), the

asymptotic part ofCJT.
Our approach in this paper is to provide such a sequence that satisfies theCJT. In

particular, we shall consider infinite sequences of mixed strategy vectors that are constant
with respect to the number of players, that is,(σn)

∞
n=1 such that ifn≥ m thenσ i

n = σ i
m

for all i ≤ m. Such a constant sequence can be represented as one infinite sequence of
strategiesσ = (σ1,σ2, . . . ,σn, . . .), whereσ i is the strategy of jurori in all juries that he is
a member of (i.e. in all gamesGn with n≥ i). Whenever we find such a constant sequence
that satisfies theCJT, it follow, as we argued, that there is a sequence(σ∗n)∞

n=1 of BNE that
satisfies (2), the asymptotic part ofCJT. A constant sequence(σn)

∞
n=1 can be interpreted

as a sequence of an increasing jury in which the strategies ofthe jury members do not
change as the jury increases. In addition to their plausibility, we restrict our attention to
constant sequences because of the complexity of our model. As we shall see, even with
this restriction, we get some interesting results. The following two examples demonstrate
the advantage of the game theoretical model over the traditional probabilistic model6.

Example 2. (Reverse voting) Suppose that given the state of nature, each juror has two
types, tg and tz, and the signals of the voters are i.i.d. with p(tg | g) = p(tz | z) = p <
1/2. Clearly, in the probabilistic model withinformative voting7 such a jury will not
satisfy the CJT. However, if we consider the strategyσ given by: σ(tg) = a (that is,
acquit with probability1) and σ(tz) = c (convict with probability1), then the sequence
of constant strategiesσ = (σ ,σ , . . . ,σ , . . .) will satisfy the CJT and consequently, there
exists a sequence(σ∗n)∞

n=1 of BNE that satisfy (2), the asymptotic part of CJT.

Example 3. (Random voting) In a model with equal probability to the two states of nature
(p(g) = p(z) = 1/2), suppose that a fractionα of the jury (0 < α < 1/2) receive i.i.d.
signals with probability p> 1/2 of being correct, that is p(t i

g | g) = p(t i
z | z) = p > 1/2.

The rest, a (1−α) fraction of the jury, receive the wrong signal, that is p(t i
g | g) = p(t i

z |
6we are grateful to an anonymous referee for drawing our attention to these examples
7In informative voting, each juror votes according to his/her signal: Typetg juror votes to convict and

typetz juror votes to acquit.
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z) = 0. Again, in the probabilistic model with informative voting, such a jury will not
satisfy the CJT. However, if only the well informed jurors vote informatively while the
rest of the jurors vote randomly (convict with probability1/2 and acquit with probability
1/2), such strategy vector will satisfy the CJT. Consequently,this game also has an
infinite sequence(σ∗n)∞

n=1 of BNE that satisfy the asymptotic part of CJT.

Remark 1. As far as we can see, the assumption of constant strategies will be needed
only for our existence results (Theorem 5, Corollary 8, and Theorem 16). For the sufficient
condition, as well as for the two necessary conditions, we need neither the restriction to
constant strategies, nor the assumption on the stationarity of the probabilities p(n) (of
Gn). The proofs are the same, with the appropriate adjustment of notations; mainly, for a
general sequence of strategies(σn)

∞
n=1, the corresponding sequence X of binary random

variables, is the sequence of n-vectors of random variables(X1
n , . . . ,Xn

n) corresponding to
the game Gn and the strategy vectorσn; that is, X= (X1

1 ; X1
2 ,X2

2 ; . . . ; X1
n , . . . ,Xn

n ; . . .).
The CJT property is defined, as usual, by equation (2)

A constant sequence of mixed strategiesσ = (σ1,σ2, . . . ,σn, . . .) naturally yields a
sequence of binary random variablesX = (X1,X2, . . . ,Xn, . . .) whereXi := Xi

n(σ i
n;θn, t i

n)
is the indicator variable of correct voting of jurori defined in (1), and is independent of
n since the strategy is constant. As theCJT is expressed in terms ofX, we shall mostly
be working with this infinite sequence of binary random variables. In fact, working with
the infinite sequencesX is equivalent to working with the underlying infinite sequences
of games and strategy vectors: on the one hand, as we said, a sequence of games(Gn)

∞
n=1

and an infinite sequence of constant strategiesσ = (σ1,σ2, . . . ,σn, . . .), yield an infinite
sequenceX of binary random variables. On the other hand, as we show in Appendix
8.1, for any infinite sequence of binary random variablesX there is a sequence of games
(Gn)

∞
n=1 and an infinite sequence of constant strategiesσ = (σ1,σ2, . . . ,σn, . . .) that yield

thisX as the infinite sequence of the indicators of correct voting.
Let us now briefly remark on the non-asymptotic part of theCJT (see Ben-Yashar and

Paroush (2000)). An infinite sequence of mixed strategy vectorsσn = (σ1
n, . . . ,σn

n), n =
1,2, . . ., is said to beconsistent with the majority ruleif for n = 1,2, . . .,

p(n)
σn

(

Σn
i=1Xi

n(σ
i
n) >

n
2

)

> p(n)
σ n (Xi

n(σ
i
n) = 1); i = 1, . . . ,n

p(n+1)
σ n+1

(

Σn+1
i=1 Xi

n+1(σ
i
n+1) >

n+1
2

)

≥ p(n)
σ n

(

Σn
i=1Xi

n(σ
i
n) >

n
2

)

; n = 1,2, . . . .

In view of the complexity of our model we shall not investigate non-asymptotic con-
sistency with majority rule of infinite sequences of strategies, and shall study only the
asymptotic part of theCJT.

2 Exchangeable variables

In this section we fully characterize the distributions of sequencesX = (X1,X2, ...,Xn, ...)
of exchangeablerandom binary variables that satisfy theCJT. Let us first introduce some
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notation:
Given a sequence of binary random variablesX = (X1,X2, ...,Xn, ...) with joint distribu-
tion P, denotepi = E(Xi), Var(Xi) = E(Xi− pi)2 andCov(Xi,X j) = E[(Xi− pi)(X j −
p j)], for i 6= j, whereE denotes, as usual, the expectation operator. Also, letpn =
(p1+ p2, ...+ pn)/n andXn = (X1+X2, ...+Xn)/n. Next we recall:

Definition 1. A sequence of random variables X= (X1,X2, ...,Xn, ...) is exchangeableif
for every n and every permutation(k1, . . . ,kn) of (1, . . . ,n), the finite sequence(Xk1, . . . ,Xkn)
has the same n-dimensional probability distribution as(X1, . . . ,Xn).

In our context, this property may be interpreted asanonymityof the jurors; the names
and the location in the list of jurors does not affect the distribution of correct voting. Note
that this does not rule out correlation between the distributions of the ‘correct voting’
among jurors.

We shall make use of the following characterization theoremdue to de Finetti8 (see,
e.g., Feller (1966), Vol. II, page 225).

Theorem 3. A sequence of binary random variables X= (X1,X2, ...,Xn, ...) is exchange-
able if and only if there is a probability distribution F on[0,1] such that for every n,

Pr(X1 = · · ·= Xk = 1, Xk+1 = . . . = Xn = 0) =
∫ 1

0
ρk(1−ρ)n−kdF (4)

Pr(X1+ · · ·+Xn = k) =

(

n
k

)

∫ 1

0
ρk(1−ρ)n−kdF (5)

In words, de-Finetti’s theorem says that binary exchangeable variables arecondition-
ally i.i.d.: Given the value ofρ , the variables are i.i.d. Bernouli random variables with
parameterρ . In our underlying model, the parameterρ can be interpreted aspublic infor-
mationregarding the defendant (all available evidence, witnesses etc.). Given this public
information, the distribution of ‘correct voting’ is the same for all jurors and independent
among jurors.

Using de Finetti’s theorem we can characterize the distributions of sequences of ex-
changeable binary random variables by their expectation and the asymptotic variance of
Xn.

Theorem 4. Let X = (X1,X2, ...,Xn, ...) be a sequence of exchangeable binary random
variables and let F be the corresponding distribution function in de Finetti’s theorem.
Then,

y := lim
n→∞

E(Xn−u)2 = V(F), (6)

where

u =

∫ 1

0
ρdF and V(F) =

∫ 1

0
(ρ−u)2dF.

8As far as we know, Ladha (1993) was the first to apply de Finetti’s Theorem to exchangeable variables
in order to derive (some parts) ofCJT. However, Ladha investigates only the non-asymptotic partof CJT.
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Proof. We have

u = E(Xi) = Pr(Xi = 1) =
∫ 1

0
x dF ; V(Xi) = u(1−u)

and fori 6= j,

Cov(Xi,X j) = Pr(Xi = X j = 1)−u2 =
∫ 1

0
x2 dF−u2 = V(F).

So,

E(Xn−u)2 = E

(

1
n

Σn
1(X

i−u)

)2

=
1
n2Σn

1V(Xi)+
1
n2Σi 6= jCov(Xi,X j)

=
nu(1−u)

n2 +
n(n−1)

n2 V(F),

which implies equation (6).

We can now state the characterization theorem:

Theorem 5. A sequence X= (X1,X2, ...,Xn, ...) of binary exchangeable random variables
with a corresponding distribution F(ρ) satisfies the CJT if and only if

Pr

(

1
2

< ρ ≤ 1

)

= 1, (7)

that is, if and only if a support of F is in the semi-open interval (1/2,1].

Proof. The “only if” part follows from the fact that any sequenceX = (X1,X2, ...,Xn, ...)
of binaryi.i.d. random variables with expectationE(Xi) = ρ ≤ 1/2, violates theCJT (by
the Berend and Paroush’s necessary condition).

To prove that a sequence satisfying condition (7) also satisfies theCJT, note that for
0 < ε < 1/4,

Pr

(

Xn >
1
2

)

≥ Pr

(

ρ ≥ 1
2

+2ε
)

Pr

(

Xn >
1
2

∣

∣ ρ ≥ 1
2

+2ε
)

. (8)

For the second term in (8) we have:

Pr

(

Xn >
1
2

∣

∣ ρ ≥ 1
2

+2ε
)

= Σk> n
2
Pr

(

X1+ · · ·+Xk = k
∣

∣ ρ ≥ 1
2

+2ε
)

(9)

= Σk> n
2

(

n
k

)

∫ 1

1
2+2ε

ρk(1−ρ)n−kdF (10)

=

∫ 1

1
2+2ε

[

Σk> n
2

(

n
k

)

ρk(1−ρ)n−k
]

dF (11)

:=
∫ 1

1
2+2ε

Sn(ρ) dF (12)
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Now, using Chebyshev’s inequality we have:

Sn(ρ) = Pr

(

Xn >
1
2

∣

∣ ρ
)

≥ Pr

(

Xn >
1
2

+ ε
∣

∣ ρ
)

(13)

≥ 1− V(Xn|ρ)

(ρ− 1
2− ε)2

= 1− ρ(1−ρ)

n(ρ− 1
2− ε)2

(14)

Since the last expression in (14) converges to 1 uniformly on[1/2+2ε,1] asn→∞, taking
the limit n→ ∞ of (12) and using (14) we have:

lim
n→∞

Pr

(

Xn >
1
2

∣

∣ ρ ≥ 1
2

+2ε
)

≥
∫ 1

1
2+2ε

dF = Pr

(

ρ ≥ 1
2

+2ε
)

. (15)

From (8) and (15) we have that for any fixedε > 0,

lim
n→∞

Pr

(

Xn >
1
2

)

≥
[

Pr

(

ρ ≥ 1
2

+2ε
)]2

. (16)

Since (16) must hold for all 1/4 > ε > 0, and sincePr
(

1
2 < ρ ≤ 1

)

= 1, we conclude
that

lim
n→∞

Pr

(

Xn >
1
2

)

= 1, (17)

i.e., the sequenceX = (X1,X2, ...,Xn, ...) satisfies theCJT.

To draw the consequences of Theorem 5 we prove first the following proposition
which enables us, for testing the validity of theCJT, to use the easily computed parame-
tersu andV(F), rather than the unknown distributionF.

Proposition 1. Any distribution F of a variableρ in [1/2,1] satisfies

V(F)≤ (u− 1
2
)(1−u), (18)

where u= E(F), and equality holds in (18) only for F for which

Pr(ρ =
1
2
) = 2(1−u) and Pr(ρ = 1) = 2u−1. (19)

Proof. We want to show that

∫ 1

1/2
ρ2dF(ρ)−u2≤ (u− 1

2
)(1−u), (20)

or, equivalently,
∫ 1

1/2
ρ2dF(ρ)− 3

2
u+

1
2
≤ 0. (21)

10



Replacingu =
∫ 1

1/2 ρ dF(ρ) and 1
2 =

∫ 1
1/2

1
2 dF(ρ), inequality (20) is equivalent to

∫ 1

1/2
(ρ2− 3

2
ρ +

1
2
) dF(ρ) :=

∫ 1

1/2
g(ρ) dF(ρ)≤ 0. (22)

The parabolag(ρ) is convex and satisfiesg(1/2) = g(1) = 0 andg(ρ) < 0 for all 1/2 <
ρ < 1, which proves (22). Furthermore, equality to 0 in (22) is obtained only whenF is
such thatPr(1/2 < ρ < 1) = 0, and combined withu = E(F) this implies (19).

The next Proposition provides a sort of inverse to proposition 1.

Proposition 2. For (u,w) = (1,0) and for any pair(u,w) where1/2 < u < 1 and
0≤w< (u−1/2)(1−u), there is a distribution F(ρ) on (1/2,1] such that E(F) = u and
V(F) = w.

Proof. For (u,w) = (1,0) the claim is trivially true (with the distributionPr(ρ = 1) = 1).
Given(u,w), for anyy satisfying 1/2 < y≤ u < 1 define the distributionFy for which

Pr(ρ = y) = (1−u)/(1−y) and Pr(ρ = 1) = (u−y)/(1−y).

This distribution satisfiesE(Fy) = u and it remains to show that we can choosey so that
V(Fy) = w. Indeed,

V(Fy) =
1−u
1−y

y2 +
u−y
1−y

−u2.

For a givenu < 1 this is a continuous function ofy satisfying both limy→uV(Fy) = 0 and
limy→1/2V(Fy) = (u−1/2)(1−u). Therefore, for 0≤ w < (u−1/2)(1−u), there is a
valuey∗ for whichV(Fy∗) = w.

2.1 Presentation inR
2

In studying the validity of theCJT for a sequenceX = (X1,X2, ...,Xn, ...) with general
joint distribution(X,P), rather than working with the whole covariance structure ofthe
sequence, we shall see that many results can be obtained by examining just two parameters
of the distribution namely,(p,y) defined by.

p := lim inf
n→∞

pn (23)

y := lim inf
n→∞

E(Xn− pn)
2 (24)

(Note that this definition ofy is consistent with that given in equation (6) for exchange-
able variables; a case in which the limit exists.)

Therefore we shall study theCJT property of a sequenceX = (X1,X2, ...,Xn, ...)
through its projection on the planeR2 in which we shall denote the coordinates by(u,w).
We first identify the range of this mapping:

11



Proposition 3. For every pair(X,P), the corresponding parameters(p,y)
satisfy y≤ p(1− p).

Proof. Given a sequence of binary random variablesX with its joint distributionP, we
first observe that for anyi 6= j,

Cov(Xi,X j) = E(XiX j)− pi p j ≤min(pi , p j)− pi p j .

Therefore,

E(Xn− pn)
2 =

1
n2

{

n

∑
i=1

∑
j 6=i

Cov(Xi,X j)+
n

∑
i=1

pi(1− pi)

}

(25)

≤ 1
n2

{

n

∑
i=1

∑
j 6=i

[min(pi , p j)− pi p j ]+
n

∑
i=1

pi(1− pi)

}

. (26)

We claim that the maximum of the last expression (26), under the condition∑n
i=1 pi = npn,

is pn(1− pn). This is attained whenp1 = · · · = pn = pn. To see that this is indeed the
maximum, assume to the contrary that the maximum is attainedat p̃ = (p̃1, · · · , p̃n) with
p̃i 6= p̃ j for somei and j. Without loss of generality assume that: ˜p1≤ p̃2≤ ·· · ≤ p̃n with
p̃1 < p̃ j andp̃1 = p̃ℓ for ℓ < j. Let 0< ε < (p̃ j− p̃1)/2 and definep∗ = (p∗1, · · · , p∗n) by
p∗1 = p̃1 + ε , p∗ j = p̃ j − ε, andp∗ℓ = p̃ℓ for ℓ /∈ {1, j}. A tedious, but straightforward,
computation shows that the expression (26) is higher forp∗ than for p̃, in contradiction to
the assumption that it is maximized at ˜p. We conclude that

E(Xn− pn)
2≤ pn(1− pn).

Let now(pnk
)∞
k=1 be a subsequence converging top; then

y = lim inf
n→∞

E(Xn− pn)
2≤ lim inf

k→∞
E(Xnk− pnk

)2

≤ lim inf
k→∞

pnk
(1− pnk

) = p(1− p).

This leads to:

Theorem 6. The range of the mapping(X,P)→ (p,y) is (see Figure 1)

FE2 = {(u,w)|0≤ u≤ 1, 0≤w≤ u(1−u)} (27)

u = p

w = y

0 1

2
1

0

1

4

FE2

w = u(1− u)

Figure 1: The feasible setFE2
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That is, for any pair(X,P), we have(p,y) ∈ FE2 and for any(u,w) ∈ FE2 there is a
pair (X,P) for which p = u andy = w.

Proof. The first part follows from Proposition 3 (since clearlyy≥ 0). For the second
part, observe first, as we have remarked in the proof of Proposition 3, that for the pair
(X,P) in which P{X1 = X2 = . . . = 1} = u andP{X1 = X2 = . . . = 0} = 1−u we have
p1 = p2 = · · ·= pn = pn = u and hencep = u. Also, for alln = 1,2, . . .,

E(Xn− pn)
2 = E(Xn−u)2 = u(1−u) and hence y = lim inf

n→∞
E(Xn− pn)

2 = u(1−u),

which means that any point on the parabolaw = u(1−u) is attainable as an image of a
pair (X,P). Next note that foru ∈ [0,1], the pair(Y, P̃) in which (Yi)

∞
i=1 are i.i.d. with

P̃{Yi = 1}= u andP̃{Yi = 0}= 1−u is mapped to(p,y) = (u,0) since

y= lim inf
n→∞

E(Xn−pn)
2 = lim inf

n→∞

1
n2Σn

i=1E(Xi−u)2 = lim inf
n→∞

1
n2Σn

i=1u(1−u) = lim inf
n→∞

u(1−u)

n
= 0.

It remains to prove that all interior points ofFE2 are attainable. Let(u,w) be such an
interior point, that is, 0< u < 1 and 0< w < u(1−u). Define the pair(Z,Q) to be the
above-defined pair(X,P) with probabilityw/u(1−u) and the above-defined(Y, P̃) with
probability 1−w/u(1−u). It is readily seen that this pair is mapped to

w
u(1−u)

(u,u(1−u))+

(

1− w
u(1−u)

)

(u,0) = (u,w).

The geometric expression of Theorem 5, combined with Theorem 3, Proposition 1,
and Proposition 2, can now be stated as follows: In theR

2 plane of(p,y) let

A =

{

(p,y)
∣

∣

∣

1
2

< p≤ 1; and y < (p− 1
2
)(1− p)

}

⋃

{(1,0)} (28)

This is the region strictly below the small parabola in Figure 2, excluding(1/2,0) and
adding(1,0).

u = p

w = y

0 1

2

3

4
1

1

4

1

16 A

w = u(1− u) w = (u− 1

2
)(1− u)

FE2

Figure 2: TheCJT region for exchangeable variables.
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Theorem 7. 1. Any exchangeable sequence of binary random variables that satisfy
the CJT corresponds to(p,y) ∈ A.

2. To any(p,y)∈A there exists an exchangeable sequence of binary random variables
with parameters(p,y) that satisfy the CJT.

Proof. The statements of the theorems are trivially true for the point (1,0), as it corre-
sponds to the unique distribution:Pr(X1 = . . . = Xn . . .) = 1, which is both exchangeable
and satisfies theCJT. For all other points inA:

• Part 1. follows de Finetti’s Theorem 3, Theorem 5, and Proposition 1.

• Part 2. follows de Finetti’s Theorem 3, Theorem 5, and Proposition 2.

2.2 Application to symmetric juries

A jury gameGn, as defined in Section 1, is said to besymmetricif

• T1 = T2 = . . . = Tn

• The probability distributionp(n) is symmetric in the variablest1, . . . , tn.

We consider a sequence of increasing juries(Gn)
∞
n=1 such thatGn is symmetric for alln.

In such a sequenceΣi
n is the same for alli and alln and is denoted byΣ. A strategy vector

σn = (σ1
n, . . . ,σn

n) ∈ Σn is said to besymmetric, if σ1
n = σ2

n = . . . = σn
n.

Corollary 8. Let σ
∼

= (σ ,σ , . . . ,σ , . . .) ∈ Σ∞ and let X
∼

= (X1,X2, . . . ,Xn, . . .) be the se-

quence of binary random variables derived fromσ
∼

by (1); then X
∼

is exchangeable. If X
∼

satisfies(7), then there exists a sequence of BNE,σn
∗ = (σ∗n, . . . ,σ∗n) of Gn for n= 1,2, . . .,

that satisfies the CJT.

Proof. Follows from Theorem 5 and Theorem 2 of McLennan (1998).

3 Sufficient conditions

Having characterized theCJT conditions for exchangeable variables we proceed now to
the general case and we start with sufficient conditions.

Let X = (X1,X2, ...,Xn, ...) be a sequence of binary random variables with range in
{0,1} and with joint probability distributionP. The sequenceX is said to satisfy the
Condorcet Jury Theorem(CJT) if

lim
n→∞

P
(

Σn
i=1Xi >

n
2

)

= 1 (29)
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Observe that in our model the vectorX results from strategic voting and (29) is the
condition corresponding to condition (2) (on page 5) whenXi = Xi(σ i) for an infinite
sequence of constant strategies(σ i)∞

i=1 that satisfyCJT.
In this section we provide sufficient conditions for a pair(X,P) to satisfy theCJT.

Recall our notation:Xn = (X1+X2, ...+Xn)/n, pi = E(Xi) andpn = (p1+ p2, ...+ pn)/n.

Theorem 9. Assume thatpn > 1
2 for all n > N0 and

lim
n→∞

E(Xn− pn)
2

(pn− 1
2)2

= 0, (30)

or equivalently assume that

lim
n→∞

pn− 1
2

√

E(Xn− pn)
2

= ∞; (31)

then the CJT is satisfied.

Proof.

P
(

Σn
i=1Xi ≤ n

2

)

= P
(

−Σn
i=1Xi ≥−n

2

)

= P
(

Σn
i=1pi−Σn

i=1Xi ≥ Σn
i=1pi− n

2

)

≤ P
(∣

∣

∣
Σn

i=1pi−Σn
i=1Xi

∣

∣

∣
≥ Σn

i=1pi − n
2

)

By Chebyshev’s inequality (assumingΣn
i=1pi > n

2) we have

P
(∣

∣

∣
Σn

i=1pi−Σn
i=1Xi

∣

∣

∣
≥ Σn

i=1pi− n
2

)

≤ E
(

Σn
i=1Xi−Σn

i=1pi
)2

(

Σn
i=1pi− n

2

)2 =
E(Xn− pn)

2

(pn− 1
2)2

As this last term tends to zero by (30), theCJT (29) then follows.

Corollary 10. If Σn
i=1Σ j 6=iCov(Xi,X j) ≤ 0 for n > N0 (in particular if Cov(Xi,X j) ≤ 0

for all i 6= j) and limn→∞
√

n(pn− 1
2) = ∞, then the CJT is satisfied.

Proof. Since the variance of a binary random variableX with meanp is
p(1− p)≤ 1/4 we have forn > N0,

0≤ E(Xn− pn)
2 =

1
n2E

(

Σn
i=1(X

i− pi)
)2

=
1
n2

(

Σn
i=1Var(Xi)+Σn

i=1Σ j 6=iCov(Xi,X j)
)

≤ 1
4n

Therefore, if limn→∞
√

n(pn− 1
2) = ∞, then

0≤ lim
n→∞

E(Xn− pn)
2

(pn− 1
2)2

≤ lim
n→∞

1

4n(pn− 1
2)2

= 0

15



Remark 2. It follows from equation (30) that any(X,P) satisfying this sufficient condi-
tion must have y= 0; that is, it corresponds to a point(p,0) in theR

2 plane. Thus, any
distribution with y> 0 that satisfy the CJT, does not satisfy this sufficient condition. In
particular, this is true for the exchangeable sequences (with y> 0) we identified in Sec-
tion 2 and the non-exchangeable sequences satisfying the CJT we will see in Section 6.

Remark 3. Note that under the condition of corollary 10, namely, for bounded random
variables with all covariances being non-positive, the (weak) Law of Large Numbers
(LLN) holds for arbitrarily dependent variables (see, e.g., Feller (1957), Vol. I, exer-
cise 9, p. 262). This is not implied by corollary 10 since, as we show in Appendix 8.3, the
CJT, strictly speaking, is not a Law of Large Lumbers. In particular, CJT does not imply
LLN and LLN does not imply CJT.

Remark 4. When X1,X2, ...,Xn, ... are independent, then under mild conditions
limn→∞

√
n(pn− 1

2) = ∞ is a necessary and sufficient condition for CJT
(see Berend and Paroush (1998)).

4 Necessary conditions

We start this section with a simple observation and then state two necessary conditions
that do not fully imply one another in either direction.

Proposition 4. Given a sequence X= (X1,X2, ...,Xn, ...) of binary random variables with
a joint probability distribution P, if the CJT holds then p≥ 1

2.

Proof. Define a sequence of events(Bn)
∞
n=1 by Bn = {ω | Xn(ω)≥ 1/2}. Since theCJT

holds, limn→∞ P
(

Σn
i=1Xi > n

2

)

= 1 and hence limn→∞ P(Bn) = 1. Since

pn−
1
2

= E

(

Xn−
1
2

)

≥−1
2

P(Ω\Bn),

taking the liminf, the right-hand side tends to zero and we obtain that
liminfn→∞ pn = p≥ 1

2.

4.1 A necessary condition with respect to theL2 norm

In this subsection we provide a necessary condition with respect to theL2 norm for a gen-
eral sequence(X,P) to satisfy theCJT. That is, a condition in terms of two characteristics,
p = lim infn→∞ pn andy = lim infn→∞ E(Xn− pn)

2.

Theorem 11. Let X = (X1,X2, ...,Xn, ...) be a sequence of binary random variables with
joint distribution P. If(X,P) satisfy the CJT, then y≤ (p− 1

2)(1− p).
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Proof. Recall our notationBn = {ω ∈Ω | Xn(ω)≥ 1
2}; then, since(X,P) satisfy theCJT,

limn→∞ P(Bn) = 1. The main part of the proof is a direct computation ofE(Xn(ω)− pn)
2.

Denote byBc
n := Ω\Bn the complement ofBn; then:

E(Xn(ω)− pn)
2 = E

(

Xn(ω)− 1
2

+
1
2
− pn

)2

= E

(

Xn(ω)− 1
2

)2

+2

(

1
2
− pn

)

E

(

Xn(ω)− 1
2

)

+

(

1
2
− pn

)2

= E

(

Xn(ω)− 1
2

)2

−
(

1
2
− pn

)2

=
∫

Bc
n

(

Xn(ω)− 1
2

)2

dP+
∫

Bn

(

Xn(ω)− 1
2

)(

Xn(ω)− 1
2

)

dP−
(

1
2
− pn

)2

≤
∫

Bc
n

(

Xn(ω)− 1
2

)2

dP+
1
2

∫

Bn

(

Xn(ω)− 1
2

)

dP−
(

1
2
− pn

)2

.

Thus,

E(Xn(ω)− pn)
2 ≤

∫

Bc
n

(

Xn(ω)− 1
2

)2

dP− 1
2

∫

Bc
n

(

Xn(ω)− 1
2

)

dP+
1
2

E

(

Xn(ω)− 1
2

)

−
(

1
2
− pn

)2

=
1
2

(

pn−
1
2

)

−
(

1
2
− pn

)2

+
∫

Bc
n

(

Xn(ω)− 1
2

)2

dP− 1
2

∫

Bc
n

(

Xn(ω)− 1
2

)

dP

=

(

pn−
1
2

)

(1− pn)+

∫

Bc
n

(

Xn(ω)− 1
2

)2

dP− 1
2

∫

Bc
n

(

Xn(ω)− 1
2

)

dP

For anyε > 0 there existsN(ε) such that forn > N(ε),

∫

Bc
n

(

Xn(ω)− 1
2

)2

dP<
ε
2

and
∣

∣

∣

1
2

∫

Bc
n

(

Xn(ω)− 1
2

)

dP
∣

∣

∣
<

ε
2
.

Hence forn > N(ε),

E(Xn(ω)− pn)
2≤

(

pn−
1
2

)

(1− pn)+ ε. (32)

We conclude that

y = lim inf
n→∞

E(Xn− pn)
2≤ lim inf

n→∞

(

pn−
1
2

)

(1− pn)+ ε,

for everyε > 0. Hence

y = lim inf
n→∞

E(Xn− pn)
2≤ lim inf

n→∞

(

pn−
1
2

)

(1− pn).
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Choose a sequence(nk)
∞
k=1 such that limk→∞ pnk

= p; then

y≤ lim inf
k→∞

(

pnk
− 1

2

)

(1− pnk
) =

(

p− 1
2

)

(1− p). 9

u = p

w = y

0 1

2

3

4
1

1

4

1

16

NCJT

WCJT

w = u(1− u) w = (u− 1

2
)(1− u)

Figure 3: TheCJT region of validity for general distributions.

Figure 3 depicts the regions of validity of theCJT in theR
2 plane: Any distribution

for which the parameters(p,y) lie in lightly colored region denoted byNCJT, does not
satisfy theCJT. In particular, if a sequence of strategy vectors(σn)

∞
n=1 in McLennan’s

theorem (i.e. maximizers in equation (3)) does not satisfy the necessary condition (i.e.,
the corresponding(p,y) lies in the regionNCJT) then there is no sequence of strategies
(σn)

∞
n=1, whether constant or not, that satisfy theCJT. The dark region, denoted byWCJT

(for weak CJT), is the closed area below the small parabola. Any distribution that satisfies
theCJT must have parameters(p,y) in this region. However, for general distributions this
is not a sufficient condition; as we shall see later, for any(p,y) in this region, excluding
(1,0), there is a sequence with these parameters that does not satisfy theCJT.

4.2 A necessary condition with respect to theL1 norm

In this subsection we provide a necessary condition with respect to theL1 norm for a gen-
eral sequence(X,P) to satisfy theCJT. That is, a condition in terms of two characteristics,
p = lim infn→∞ pn andy∗ = lim infn→∞ E

∣

∣Xn− pn

∣

∣.

Theorem 12. Let X = (X1,X2, ...,Xn, ...) be a sequence of binary random variables with
joint distribution P. If(X,P) satisfy the CJT, then y∗ ≤ 2(2p−1)(1− p).

Proof. See Appendix 8.2

9Since for anyε > 0 inequality (32) holds for alln > N(ε), then for a subsequence(nk)
∞
k=1 such that

limk→∞ pnk
= p̃ and limk→∞ E(Xnk− pnk

)2 = ỹ, we get ˜y≤ (p̃− 1
2)(1− p̃). It follows that if (X,P) satisfies

the CJT, then any limit point of(pn,E(Xn− pn)
2) is in the regionA of Figure 2 (or regionWCJT in

Figure 3). We are indebted to A. Neyman for a discussion concerning this observation.
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u = p

w = y∗

0 1

2

3

4
1

1

2

1

4

WCJT

NCJT

w = 2u(1− u)

w = 2(2u− 1)(1− u)

Figure 4: TheCJT region of validity with respect to theL1 norm.

Figure 4 depicts the regions of validity of theCJT in theR
2 plane with respect to the

L1 norm; the analogue of Figure 3.
Strangely enough, Theorem 12 and Theorem 11 do not imply eachother in either

direction. Furthermore, the techniques of the proofs for the L1 norm and for theL2 norm
are very different. We could derive only a weak implication in one direction which stems
from the following lemma:

Lemma 1. One always has: y∗ ≥ 2y.

Proof. DenotingAn = {ω ∈Ω | pn−Xn(ω)≥ 0}, we have:
∫

An

(pn−Xn)
2 dP =

∫

An

(pn−Xn)(pn−Xn) dP

≤ pn

∫

An

(pn−Xn) dP= pn
y∗n
2

.

Similarly,
∫

Ac
n

(Xn− pn)
2 dP≤ (1− pn)

y∗n
2

.

Hence for alln we have:

yn := E(Xn− pn)
2 =

∫

Ω
(Xn− pn)

2 dP≤ pn
y∗n
2

+(1− pn)
y∗n
2

=
y∗n
2

.

Taking a subsequence(nk)
∞
k=1 such that limk→∞ y∗nk

= y∗, we conclude that

y∗ ≥ 2liminf
k→∞

ynk ≥ 2y.

Combining Lemma 1 with Theorem 12 yields,

Corollary 13. Let X= (X1,X2, ...,Xn, ...) be a sequence of binary random variables with
joint distribution P. If y> (2p−1)(1− p), then(X,P) does not satisfy the CJT.
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u = p

w = y

0 1

2

3

4
1

1

4

1

16

1

8

WCJT

NCJT

?

w = u(1− u) w = (u− 1

2
)(1− u)

w = (2u− 1)(1− u)

Figure 5: TheCJT validity region with respect to theL2 norm as implied by the
condition with respect to theL1 norm.

Figure 5 depicts the conclusion of the last corollary: The region with the lightest
color, denoted byNCJT, is the region in which theCJT is not satisfied for any(X,P)
with these values of(p,y). The darkest region, denoted byWCJT, is the region of(p,y)
for which there exist(X,P) with these parameters that satisfy theCJT. Clearly, this is a
weaker result than Theorem 11 that we obtained directly for theL2 norm and is described
in Figure 3 according to which, the crescent in Figure 5, denoted by “?”, belongs to the
NCJT region.

5 Distributions in WCJT that do not satisfy theCJT

In this section we prove that the necessary conditions stated in Theorems 11 and 12 are
not sufficient. In fact we prove a stronger result, namely: Toany pair of parameters in the
closure of the darkWCJTregion (either in Figure 3 for theL2 norm or in Figure 4 for the
L1 norm), excluding the point(1,0), there is a distribution that does not satisfy theCJT.
We shall prove this only for theL2 norm (the proof for theL1 norm is similar). This is
established by the following:

Theorem 14. For any(u,w) ∈ {(u,w) | 0 < u < 1 ; 0≤ w≤ u(1−u)},
there is a sequence of binary random variables Z with joint distribution H such that:

(i) E(Zi) = u,∀i.

(ii) lim infn→∞ E(Zn−u)2 = w.

(iii) The distribution H does not satisfy the CJT.

Proof. For 0< u < 1,

• let (X,F0) be given byX1 = X2 = . . . = Xn = . . . andE(Xi) = u;

• let (Y,F1) be a sequence of ofi.i.d. random variables(Yi)∞
i=1 with expectationu.
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• For 0< t ≤ 1 let (Zt ,Ht) be the pair in whichZi
t = tXi +(1− t)Yi for i = 1,2, . . .

andHt is the product distributionHt = F0×F1 (that is, theX and theY sequences
are independent).

Note first thatE(Zi
t) = u for all i and

lim
n→∞

E(Zt,n−u)2 = lim
n→∞

(

(1− t)
u(1−u)

n
+ tu(1−u)

)

= tu(1−u),

and therefore the pair(Zt ,Ht) corresponds to the point(u,w) in theL2 space, wherew =
tu(1−u) ranges in(0,u(1−u)) as 0< t ≤ 1.

Finally, (Zt ,Ht) does not satisfy theCJT since for alln,

Pr(Zt,n >
1
2
)≤ 1−Pr(Z1

t = Z2
t = . . . = 0) = 1− t(1−u) < 1.

As this argument does not apply fort = 0 it remains to prove that, except for(1,0), to
any point(u,0) on thex axis corresponds a distribution that does not satisfy theCJT. For
0≤ u≤ 1/2, the sequence(Y,F1) of of i.i.d. random variables(Yi)∞

i=1 with expectation
u does not satisfy theCJT, as follows from the result of Berend and Paroush (1998). For
1/2 < u < 1 such a sequence ofi.i.d. random variables does satisfy theCJT and we need
the following more subtle construction.

Given the two sequences(X,F0) and(Y,F1) defined above, we construct a sequence
Z = (Zi)∞

i=1 consisting of alternating blocks ofXi-s andYi-s, with the probability distri-
bution onZ being that induced by the product probabilityH = F0×F1. ClearlyE(Zi) = u
for all i, in particularpn = u for all n andp = u. We denote byBℓ the set of indices of the
ℓ-th block and its cardinality bybℓ. Thusn(ℓ) = Σℓ

j=1b j is the index ofZi at the end of the
ℓ-th block. Therefore

Bℓ+1 = {n(ℓ)+1, . . . ,n(ℓ)+bℓ+1)} and n(ℓ+1) = n(ℓ)+bℓ+1.

Define the block sizebℓ inductively by:

1. b1 = 1, and fork = 1,2, . . .;

2. b2k = kΣk
j=1b2 j−1 andb2k+1 = b2k.

Finally, we define the sequenceZ = (Zi)∞
i=1 to consist ofXi-s in the odd blocks andYi-s

in the even blocks, that is,

Zi =

{

Xi if i ∈ B2k−1 for some k = 1,2, . . .
Yi if i ∈ B2k for some k = 1,2, . . .

Denote bynx(ℓ) andny(ℓ) the number ofX coordinates andY coordinates respectively
in the sequenceZ at the end of theℓ-th block and byn(ℓ) = nx(ℓ)+ny(ℓ) the number of
coordinates at the end of theℓ-th block ofZ. It follows from 1 and 2 (in the definition of
bℓ) that fork = 1,2, . . .,
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nx(2k−1) = ny(2k−1)+1 (33)

nx(2k)
ny(2k)

≤ 1
k

and hence also
nx(2k)
n(2k)

≤ 1
k

(34)

It follows from (33) that at the end of each odd-numbered block 2k− 1, there is a
majority ofXi coordinates that with probability(1−u) will all have the value 0. Therefore,

Pr

(

Zn(2k−1) <
1
2

)

≥ (1−u) for k = 1,2, . . . ,

and hence

liminf
n→∞

Pr

(

Zn >
1
2

)

≤ u < 1;

that is,(Z,H) does not satisfy theCJT.
It remains to show that

y = lim inf
n→∞

E(Zn− pn)
2 = 0.

To do so, we show that the subsequence of
{

E((Zn− pn)
2)

}∞
n=1 corresponding to the end

of the even-numbered blocks converges to 0, namely,

lim
k→∞

E(Zn(2k)− pn(2k))
2 = 0.

Indeed,

E(Zn(2k)− pn(2k))
2 = E

(

nx(2k)
n(2k)

(X1−u)+
1

n(2k)
Σny(2k)

i=1 (Yi−u)

)2

.

Since theYi-s arei.i.d. and independent ofX1 we have

E(Zn(2k)− pn(2k))
2 =

n2
x(2k)

n2(2k)
u(1−u)+

ny(2k)

n2(2k)
u(1−u),

and by property (34) we get finally:

lim
k→∞

E(Zn(2k)− pn(2k))
2≤ lim

k→∞

(

1
k2u(1−u)+

1
n(2k)

u(1−u)

)

= 0,

concluding the proof of the theorem.

An immediate implication of Theorem 14 is the following:

Corollary 15. For any pair of parameters(p,y) satisfying1/2 ≤ p < 1 and 0 ≤ y≤
(p−1/2)(1− p) (that is, the point(p,y) is in the closure of the regionWCJT in Figure 3,
excluding(1,0)), there is a distribution with these parameters that does notsatisfy the
CJT.
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6 Non-exchangeable sequences satisfying theCJT

In this section prove the existence of sequences(X,P) of dependent random variables,
sequences that are non-exchangeable and satisfy theCJT. By Theorem 11, such distribu-
tions must have their parameter in the closure of the darkWCJT region (either in Figure
3 in L2 or in Figure 4 inL1). In fact, we shall prove that for any point in this region there
is a distribution that satisfies theCJT, and is not exchangeable. We shall prove that only
in theL2 plane. The proof for theL1 plane is similar. The construction of these sequences
uses the idea of theinterlacingof two sequences, which can be generalized and proves to
be useful.

Theorem 16. Let t∈ [0, 1
2]. If F is a distribution with parameters(p,y), then there exists

a distribution H with parameters̃p = 1− t + t p andỹ = t2y that satisfy the CJT.

Proof. To illustrate the idea of the proof we first prove (somewhat informally) the case
t = 1/2. LetX = (X1,X2, ...,Xn, ...) be a sequence of binary random variables with a joint
probability distributionF. LetGbe the distribution of the sequenceY =(Y1,Y2, ...,Yn, ...),
whereEYn = 1 for all n (that is,Y1 = Y2 = ...Yn = ... andP(Yi = 1) = 1 ∀i). Consider
now the followinginterlacingof the two sequencesX andY:

Z = (Y1,Y2,X1,Y3,X2,Y4,X3, ...,Yn,Xn−1,Yn+1,Xn...),

and let the probability distributionH of Z be the product distributionH = F ×G. It is
verified by straightforward computation that the parameters of the distributionH are in
accordance with the theorem fort = 1

2, namely, ˜p = 1
2 + 1

2 p andỹ = 1
4y. Finally, as each

initial segment of voters inZ contains a majority ofYi-s (thus with all values 1), the
distributionH satisfies theCJT, completing the proof fort = 1

2.
The proof for a generalt ∈ [0,1/2) follows the same lines: We construct the sequence

Z so that any finite initial segment ofn variables, includes “about, but not more than” the
initial tn segment of theX sequence, and the rest is filled with the constantYi variables.
This will imply that theCJT is satisfied.

Formally, for any realx≥ 0 let⌊x⌋ be the largest integer less than or equal tox and let
⌈x⌉ be smallest integer greater than or equal tox. Note that for anyn and any 0≤ t ≤ 1
we have⌊tn⌋+ ⌈(1− t)n⌉= n; thus, one and only one of the following holds:

(i) ⌊tn⌋< ⌊t(n+1)⌋ or

(ii) ⌈(1− t)n⌉< ⌈(1− t)(n+1)⌉
From the given sequenceX and the above-defined sequenceY (of constant 1 variables) we
define now the sequenceZ = (Z1,Z2, ...,Zn, ...) as follows:Z1 = Y1 and for anyn≥ 2, let
Zn = X⌊t(n+1)⌋ if (i) holds andZn = Y⌈(1−t)(n+1)⌉ if (ii) holds. This inductive construction
guarantees that for alln, the sequence contains⌊tn⌋ Xi coordinates and⌈(1− t)n⌉ Yi

coordinates. The probability distributionH is the product distributionF ×G. The fact
that(Z,H) satisfies theCJT follows from:

⌈(1− t)n⌉ ≥ (1− t)n> tn≥ ⌊tn⌋,
and finally p̃ = 1− t + t p andỹ = t2y is verified by straightforward computation.
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Remark 5. • Note that the sequence Z is clearly not exchangeable(except for the
caset = 0 which corresponds to)(1,0)).

• The interlacing of the two sequences X and Y described in the proof of Theorem 16
may be defined for any t∈ [0,1]. We were specifically interested in t∈ [0,1/2] since
this guarantees the CJT.

Figure 6 depicts the interlacing procedure: The parabolic line joining(u∗,w∗) to the
point (1,0), corresponds to all interlacing witht ∈ [0,1]. The lower part, described as a
thick line, corresponds to interlacing whent ∈ [0,1/2]. For these values oft, the inter-
lacing yields distributions satisfying theCJT. The small parabola is the locus of points
corresponding tot = 1/2 when(u∗,w∗) ranges over the parabolaw = u(1−u).

u = p

w = y

0 1

2

3

4
1

1

4

1

16

w = u(1− u)
w = (u− 1

2
)(1− u)

u∗

w∗

(1− t + tu∗, t2w∗)

Figure 6: Interlacing with(1,0) in L2.

Corollary 17. For any(p,y) in the set

A = {(p,y) | 0≤ y≤ (p−1/2)(1− p) ; 1/2≤ p≤ 1}

(this is the closure of the regionWCJTin Figure 3), there is a sequence of non-exchangeable
random variables, with these parameters, that satisfy the CJT.

Proof. By straightforward verification we observe that the setA is obtained from Theo-
rem 16 by letting(p,y) range over the points of parabolaw= u(1−u) defining the feasible
setFE2. In other words,A can also be written as:

A = {(p,y) | p = 1− t + tu ; y = t2u(1−u) ; 0≤ t ≤ 1/2, 0≤ u≤ 1}

Note thatA is the closure of the setA defined in equation (28) for exchangeable vari-
ables, butA 6= A. More specifically, the points(p,y) on the parabolay= (p−1/2)(1− p),
excluding(1,0), are inA but not inA. For each of these points there is a corresponding
sequence satisfying theCJT but this sequence cannot be exchangeable.

Finally, combining Corollary 17 and Theorem 14 yields:

Corollary 18. For any point(p,y) in A\ {(1,0)} there is a corresponding sequence sat-
isfying the CJT and a corresponding sequences that does not satisfy the CJT.
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6.1 Other distributions satisfying theCJT: General interlacing

So far we have identified three types of distributions that satisfy theCJT; all correspond
to parameters(p,y) in the setA, the closure of the regionWCJT in Figure 3.

1. Distributions satisfying the sufficient condition (Theorem 9).

2. Exchangeable distributions characterized in Theorem 5.

3. Non-exchangeable distributions obtained by interlacing with constant sequence
Y = (1,1, . . .) (Theorem 16).

In this section we construct more distributions satisfyingtheCJT that are not in either of
the three families mentioned above. We do so by generalizingthe notion of the “interlac-
ing” of two distributions that we introduced in Section 6.

Definition 2. Let X = (X1,X2, ...,Xn, ...) be a sequence of binary random variables with
joint probability distribution F and let Y= (Y1,Y2, ...,Yn, ...) be another sequence of
binary random variables with joint distribution G. For t∈ [0,1], the t-interlacingof (X,F)
and(Y,G) is the pair(Z,H) := (X,F)∗t (Y,G) where for n= 1,2, . . .,

Zn =

{

X⌊tn⌋ if ⌊tn⌋>⌊t(n−1)⌋
Y⌈(1−t)n⌉ if ⌈(1−t)n⌉>⌈(1−t)(n−1)⌉

, (35)

and H= F×G is the product probability distribution of F and G.

The following lemma is a direct consequence of Definition 2.

Lemma 2. If (X,F) and(Y,G) satisfy the CJT, then for any t∈ [0,1] the pair(Z,H) =
(X,F)∗t (Y,G) also satisfies the CJT.

Proof. We may assume thatt ∈ (0,1). Note that
{

ω|Zn(ω) >
1
2

}

⊇
{

ω |X⌊tn⌋(ω) >
1
2
}∩{ω|Y⌈(1−t)n⌉(ω) >

1
2

}

By our construction and the fact that both(X,F) and(Y,G) satisfy theCJT,

lim
n→∞

F

(

X⌊tn⌋ >
1
2

)

= 1 and lim
n→∞

G

(

Y⌈(1−t)n⌉ >
1
2

)

= 1.

As

H

(

Zn >
1
2

)

≥ F

(

X⌊tn⌋ >
1
2

)

·G
(

Y⌈(1−t)n⌉ >
1
2

)

,

the proof follows.

Thus, from any two distributions satisfying theCJT we can construct a continuum of
distributions satisfying theCJT. These distributions will generally be outside the union
of the three families listed above.
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7 Conclusions

We have analyzed the Condorcet jury problem in a detailed manner as a strategic game
with incomplete information (Section 2). This framework has the following advantages:

(I) It is in line with the modern approach of Austen-Smith andBanks (1996);

(II) It enables us to focus on a natural candidate BNE for satisfying theCJT, namely,
McLennan’s BNE (see Theorem 2);

(III) It explains, in a transparent way, Condorcet’s own model which was originally re-
stricted to two types of voters and informative voting;

(IV) It enables us to deal with ”reverse voting” and ”random voting” (and other strate-
gies) without altering our model, since we considerall possible strategiesand not
only informative voting (see Examples 3 and 2);

(V) Using our model we find (sharp) necessary conditions for the existence of a se-
quence of BNE that satisfies the CJT. Indeed, as we stated on page (18), if a McLen-
nan sequence of BNE does not satisfy one of our necessary conditions, thenno other
sequence of strategiessatisfies theCJT.

(VI) Informative voting may not be aBayesian Nash Equilibrium(See Austen-Smith and
Banks (1996)).

Technically, we deal, in most of the paper, with distributions of sequences of binary
random variables that are derived from sequences of strategies of the players. This is
mainly implied by the fact that theCJT is a probabilistic property. In Section 2 we find
necessary and sufficient conditions for a sequence of exchangeable variables to satisfy
theCJT (see Theorem 5). We then go on to find a purely geometrical characterization
for our result. For exchangeable variables the geometric condition is fully determined
by the expectation of a variable in the sequence and the covariance of the two variables
(see Theorem 7). Our sufficient conditions are standard and are derived by Chebyshev’s
inequality. On the other hand the derivation of the necessary conditions makes use of spe-
cial techniques. The necessary condition with respect to the L2 norm, quite surprisingly,
coincides with the necessary condition for exchangeable variables. However, of course, it
is not a sufficient condition for general sequences of randomvariables. Indeed in section
5 we provide sequences of random variables satisfying this necessary condition but do
not satisfy theCJT (see Theorem 14 and Corollary 15). The necessary condition with
respect to theL1 norm is difficult to derive and may be useful in special cases.Finally, we
introduce in Section 6 the operation of interlacing of two sequences of random variables.
This enables to generate many new dependant sequences of binary random variables that
satisfy theCJT.
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8 Appendix

8.1 Every sequence of of binary random variables is attainable

In this section we prove what we claimed on page 7, namely, that for any infinite sequence
of binary random variablesX there is a sequence of games(Gn)

∞
n=1 and an infinite sequence

of constant strategiesσ = (σ1,σ2, . . . ,σn, . . .) that yield thisX as the infinite sequence of
the indicators of correct voting.

Let X = (X1,X2, ...,Xn, ...) be a sequence of binary random variables on some probabilityspace
(Ω̃,B,P). Let P also denote the distribution ofX. In our model letT i = {t i

0, t
i
1} be the type

set of jurori and let the type of jurori, t i = t i(θ ,Xi(ω)) be defined by:t i(g,0) = t i(z,1) = t i
0

andt i(g,1) = t i(z,0) = t i
1. We define the probability distributionp(n) onΩn = Θ×T1× . . .×

Tn as follows: Letp(n)(z) = p(n)(g) = 1/2; for εk ∈ {0,1}; k = 1, . . . ,n let

p̃(g,X1 = ε1, . . . ,X
n = εn) = p̃(z,X1 = 1− ε1, . . . ,X

n = 1− εn) =
1
2

P(X1 = ε1, . . . ,X
n = εn)

and define
p(n)(θ , t1, t2, . . . , tn) = p̃(θ ,X1,X2, . . . ,Xn).

The sequence(p(n))∞
n=1 clearly satisfies the projective structure required for theKolmogorov’s

extension theorem (that is, the marginal distribution ofp(n+1) on Ωn is equal top(n)). It
defines therefore a probability distributionp on Ω = lim∞←n Ωn.
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Define now the (informative voting) strategiesσ i by: σ i(t i
0)= aandσ i(t i

1)= c, and letX̃1, . . . , X̃n . . .
be the indicators of correct voting (w.r.t. thisσ ), then

X̃i(g, t i(g,1)) = X̃i(z, t i(z,1)) = 1 and X̃i = 0 otherwise.

Thus
X̃i(θ ,ω) = 1 ⇔ Xi(ω) = 1,

which means that we obtained the original given sequence.

8.2 Proof of Theorem 12

In this section we provide a necessary condition for a general sequence of binary random
variablesX = (X1,X2, ...,Xn, ...) with joint distributionP, in terms of two of its characteris-
tics namely,p = lim infn→∞ pn andy∗ = lim infn→∞ E|Xn− pn|.

Let y∗n = E|Xn− pn|; theny∗ = lim infn→∞ y∗n. Forn = 1,2, . . ., let

An = {ω ∈Ω | pn−Xn(ω)≥ 0} and Ac
n = Ω\An.

Then, sinceE(Xn− pn) = 0,

∫

Ac
n

(Xn− pn) dP=
y∗n
2

and
∫

Ac
n

(1− pn) dP= (1− pn)P(Ac
n)≥

y∗n
2

. Hence,

P(An) = 1−P(Ac
n)≤ 1− y∗n

2(1− pn).
(36)

Also,
∫

An

(pn−Xn) dP= pnP(An)−
∫

An

Xn dP=
y∗n
2

. (37)

Hence, sinceXn≥ 0,

P(An)≥
y∗n

2pn.
(38)

Assumingy∗ > 0 andp< 1, it follows from (38) and (36) that there is a subsequence(nk)
∞
k=1 such

that(P(Ank))
∞
k=1 is uniformly bounded away from 0 and 1,

lim
k→∞

pnk
= p and lim

k→∞
P(Ank) = ℓ where 0< ℓ < 1. (39)

Lemma 3. Let t > 0; then

lim inf
k→∞

P

({

ω ∈ Ank

∣

∣

∣ pnk
−Xnk(ω)≤

y∗nk

2P(Ank)
− t

})

< ℓ. (40)
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Proof. Assume by contradiction that (40) does not hold; then, sincethe sets on the left-hand
side are subsets ofAnk, it follows from (39) that:

lim
k→∞

P

({

ω ∈ Ank

∣

∣

∣ pnk
−Xnk(ω) ≤

y∗nk

2P(Ank)
− t

})

= ℓ. (41)

Denote:Ãnk =
{

ω ∈ Ank

∣

∣

∣ pnk
−Xnk(ω) ≤ y∗nk

2P(Ank)
− t

}

. Then,

pnk
P(Ãnk)−

∫

Ãnk

Xnk(ω)dP ≤
y∗nk

P(Ãnk)

2P(Ank)
− tP(Ãnk). (42)

Clearly, limk→∞ P(Ãnk) = ℓ = limk→∞ P(Ank) and sinceÃnk ⊆ Ank, we have

lim
k→∞

∣

∣

∣

∫

Ãnk

Xnk(ω)dP−
∫

Ank

Xnk(ω)dP
∣

∣

∣
= 0.

Thus fork0 sufficiently large, the inequality (42) contradicts the last equality in (37) forn = nk0.

Let

Bn = An\ Ãn =

{

ω ∈ An

∣

∣

∣
pn−Xn(ω) >

y∗n
2P(An)

− t

}

;

then, by Lemma 3, there is a subsequence(Bnk)
∞
k=1 andq > 0, such thatP(Bnk) > q > 0 for

all k, that is

Xnk(ω) < pnk
−

y∗nk

2P(Ank)
+ t; ∀ω ∈ Bnk; ∀k. (43)

Example 4. Let 1
2 ≤ p < 1 and y∗ = 2p(1− p); then, by (36) and (43) we have

Xnk(ω) < pnk
−

y∗nk

2(1− y∗nk
2(1−pnk

))
+ t; ∀ω ∈ Bnk; ∀k. (44)

By taking subsequences of(nk)
∞
k=1 (to make y∗nk

converge) we may assume w.l.o.g. that:

lim
k→∞






pnk
−

y∗nk

2(1− y∗nk
2(1−pnk

))
+ t






= p−

y∗+ ε

2(1− y∗+ε
2(1−p))

+ t, for some ε ≥ 0.

Thus, for some k0 we have

Xnk(ω) < p−
y∗+ ε

2(1− y∗+ε
2(1−p))

+2t; ∀ω ∈ Bnk; ∀k > k0. (45)

Inserting y∗ = 2p(1− p) we have:

p−
y∗+ ε

2(1− y∗+ε
2(1−p))

+2t ≤ p−
y∗

2(1− y∗

2(1−p))
+2t

= p−
2p(1− p)

2(1− 2p(1−p)
2(1−p) )

+2t = 2t,
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implying that
Xnk(ω) < 2t; ∀ω ∈ Bnk; ∀k > k0. (46)

As t > 0 is arbitrary, in particular, if 2t < 1/2; since P(Bnk) > q > 0 for all k, inequalities (46) imply
that (X,P) does not satisfy the CJT.

We conclude:No distribution with1
2 ≤ p < 1 andy∗ = 2p(1− p) satisfy theCJT.

Inspired by the previous example we move now to the proof of Theorem 12 stating the general
necessary condition for theCJT in L1.

Theorem 19. Let X = (X1,X2, ...,Xn, ...) be sequence of binary random variables with joint dis-
tribution P. If y∗ > 2(2p−1)(1− p), then(X,P) does not satisfy the CJT.

Proof. Let x̃ = (2p−1)(1− p) and notice thatx/(1− x/(1− p)) is an increasing function
for x < 1− p. Sincey∗/2 > x̃, let t be such that

0 < t <
1
2





y∗

2(1− y∗

2(1−p))
− x̃

1− x̃
1−p





By Lemma 3, there exists a sequence of events(Bnk)
∞
k=1 andq> 0, such thatP(Bnk) > q > 0

for all k, and (43) and, (by choosing an appropriate subsequence), (45) are satisfied. Thus,
on these events we have,

Xnk(ω) < p−
y∗+ ε

2(1− y∗+ε
2(1−p))

+2t ≤ p−
y∗

2(1− y∗

2(1−p))
+2t

< p− x̃

1− x̃
1−p

+2t−2t.

Substituting ˜x = (2p−1)(1− p) we have

Xnk(ω) < p−
(2p−1)(1− p)

1− (2p−1)
=

1
2
.

We conclude thatXnk(ω) < 1
2, for all ω ∈ Bnk and for allk > k0, implying that(X,P) does

not satisfy theCJT.

8.3 TheCJT and the Law of Large Numbers

At first sight, the asymptoticCJT condition may look rather similar to the well-knownLaw
of Large Numbers(LLN). It is the purpose of this section to clarify and state precisely the
relationship between these two concepts.
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Recall that an infinite sequence of binary random variablesX = (X1,X2, ...,Xn, ...) with a joint
probability distributionP satisfies the (weak) Law of Large Numbers (LLN) if (in our nota-
tions):

∀ε > 0, lim
n→∞

P
(

|Xn− pn|< ε
)

= 1 (47)

while it satisfies the Condorcet Jury Theorem (CJT) if:

lim
n→∞

P

(

Xn >
1
2

)

= 1 (48)

Since by Proposition 4, the conditionp≥ 1
2 is necessary for the validity of theCJT, let us

check the relationship between theLLN and theCJT in this region. Our first observation is:

Proposition 5. For a sequence X= (X1,X2, ...,Xn, ...) with probability distribution P satisfying
p > 1

2, if the LLN holds then the CJT also holds.

Proof. Let p= 1/2+3δ for someδ > 0 and letN0 be such thatpn > 1/2+2δ for all n> N0;
then for alln > N0 we have

P

(

Xn >
1
2

)

≥ P

(

Xn≥
1
2

+ δ
)

≥ P
(

|Xn− pn|< δ
)

Since the last expression tends to 1 asn→ ∞, the first expression does too, and hence the
CJT holds.

Remark 6. The statement of Proposition 5 does not hold for p= 1
2. Indeed, the sequence X=

(X1,X2, ...,Xn, ...) of i.i.d. variables with P(Xi = 1) = P(Xi = 0) = 1/2 satisfies the LLN but does
not satisfy the CJT since it does not satisfylimn→∞

√
n(pn− 1

2) = ∞ which is a necessary and
sufficient condition for CJT (see Berend and Paroush (1998)).

Unfortunately, Proposition 5 is of little use to us. This is due to the following fact:

Proposition 6. If the random variables of the sequence X= (X1,X2, ...,Xn, ...) are uniformly
bounded then the condition

lim
n→∞

E
(

Xn− pn

)2
= 0

is a necessary condition for LLN to hold.

The proof is elementary and can be found, e.g., in Uspensky (1937), page 185.

It follows thus from Proposition 6 thatLLN cannot hold wheny > 0 and thus we cannot use
Proposition 5 to establish distributions in this region that satisfy theCJT.

Summing up, TheLLN and theCJT are substantially two different properties that do not im-
ply each other. The partial implicationLLN ⇒CJT applies only for the horizontal line in
L2; (p,0), for p > 1/2, where theCJT is easily established directly. Furthermore, all dis-
tributions withy > 0 for which we established the validity of theCJT do not satisfy the
LLN.
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