Marketing via Friends: Strategic Diffusion of Information in Social Networks with Homophily

Roman Chuhay

Higher School of Economics, ICEF, CAS

2011

Homophily

• **Homophily** is a tendency of people to interact more with those who are similar to them.

Homophily

- **Homophily** *is a tendency of people to interact more with those who are similar to them.*
 - In our context people with similar preferences tend to interact more.

Homophily

- **Homophily** is a tendency of people to interact more with those who are similar to them.
 - In our context people with similar preferences tend to interact more.

イロン イロン イヨン イヨン 三日

ho = 1.0

Literature review

• WOM literature:

- Theoretical: Campbell (2010), Goyal and Galeotti (2009), Lopez-Pintado & Watts (2009)
- Empirical: Leskovec et al. (2008), Iribarren and Moro (2007)

・ロト ・回ト ・ヨト ・ヨト

Literature review

• WOM literature:

- Theoretical: Campbell (2010), Goyal and Galeotti (2009), Lopez-Pintado & Watts (2009)
- ▶ Empirical: Leskovec et al. (2008), Iribarren and Moro (2007)

• Homophily:

- Friendship and segregation: Currarini, Jackson & Pin (2009)
- Learning and diffusion: Jackson & Golub (2010)
- Social norms and preferences: Christakis & Fowler (2007), Fiore and Donath (2005)

・ロト ・個ト ・ヨト ・ヨト

Network structure:

2

・ロト ・回ト ・ヨト ・ヨト

Network structure:

• There is measure γ of consumers of type A and $1 - \gamma$ of type B.

2

イロン イ団と イヨン イヨン

Network structure:

- There is measure γ of consumers of type A and $1-\gamma$ of type B.
- Consumers are embedded into undirected network of social contacts:

◆□> ◆圖> ◆臣> ◆臣>

Network structure:

- There is measure γ of consumers of type A and $1-\gamma$ of type B.
- Consumers are embedded into undirected network of social contacts:
 - Degree distribution $\mathbf{p}(\mathbf{k})$.

・ロン ・四 と ・ ヨ と ・ モン・

Network structure:

- There is measure γ of consumers of type A and $1-\gamma$ of type B.
- Consumers are embedded into undirected network of social contacts:
 - Degree distribution $\mathbf{p}(\mathbf{k})$.
 - Vector (ρ^A, ρ^B) identifies proportion of consumers of the same type in the neighborhood of a randomly chosen consumer of type A and B.

・ロン ・四 と ・ ヨ と ・ 日 と

Consumers:

2

Consumers:

• Heterogenous preferences towards the product

E

Consumers:

- Heterogenous preferences towards the product
 - Across types:
 - ★ Type A prefers high values of characteristic w
 - * Type B prefers low values of characteristic w

Consumers:

- Heterogenous preferences towards the product
 - Across types:
 - * Type A prefers high values of characteristic w
 - * Type B prefers low values of characteristic w
 - Within types:
 - ★ Reservation price P
 _j
 - * Threshold level of the product's characteristic $\bar{w}_{j},$ s.t. induces a consumer to buy the product

イロン イヨン イヨン イヨン

Consumers:

- Heterogenous preferences towards the product
 - Across types:
 - * Type A prefers high values of characteristic w
 - * Type B prefers low values of characteristic w
 - Within types:
 - ★ Reservation price P
 _j
 - * Threshold level of the product's characteristic $\bar{w}_{j},$ s.t. induces a consumer to buy the product
- Consumers can buy the product only if they learn about it from:
 - Direct advertisement.
 - Observing a neighbor who has already acquired the product.

Monopolist:

2

Monopolist:

• Knows degree distribution $\mathbf{p}(\mathbf{k})$ and homophily levels (ρ^{A}, ρ^{B}) .

Monopolist:

- Knows degree distribution $\mathbf{p}(\mathbf{k})$ and homophily levels (ρ^{A}, ρ^{B}) .
- Maximizes profits by choosing:

Monopolist:

- Knows degree distribution $\mathbf{p}(\mathbf{k})$ and homophily levels (ρ^{A}, ρ^{B}) .
- Maximizes profits by choosing:
 - ▶ Price $\mathbf{P} \in [0, 1]$

イロン イ団 とくほと くほとう

Monopolist:

- Knows degree distribution $\mathbf{p}(\mathbf{k})$ and homophily levels (ρ^{A}, ρ^{B}) .
- Maximizes profits by choosing:
 - ▶ Price $\mathbf{P} \in [0, 1]$
 - \blacktriangleright Characteristic of the product $\bm{w} \in [0,1]$

イロン イヨン イヨン イヨン

Monopolist:

- Knows degree distribution $\mathbf{p}(\mathbf{k})$ and homophily levels (ρ^{A}, ρ^{B}) .
- Maximizes profits by choosing:
 - ▶ Price $\mathbf{P} \in [0, 1]$
 - \blacktriangleright Characteristic of the product $\bm{w} \in [0,1]$
- Cost of production is 0.

イロン イヨン イヨン イヨン

Monopolist:

- Knows degree distribution $\mathbf{p}(\mathbf{k})$ and homophily levels (ρ^{A}, ρ^{B}) .
- Maximizes profits by choosing:
 - ▶ Price $\mathbf{P} \in [0, 1]$
 - \blacktriangleright Characteristic of the product $\bm{w} \in [0,1]$
- Cost of production is 0.
- To induce sales the monopolist advertises product to infinitesimal part of the population.

・ロン ・四 と ・ ヨ と ・ 日 と

Population:

2

・ロト ・回ト ・ヨト ・ヨト

Population:

• Consumers of type A and B constitute half of the population $\gamma=0.5$ and consequently $\rho=\rho^{A}=\rho^{B}$

イロン イ団 とくほと くほとう

Population:

• Consumers of type A and B constitute half of the population $\gamma=0.5$ and consequently $\rho=\rho^A=\rho^B$

Preferences:

イロン イ団 とくほと くほとう

Population:

• Consumers of type A and B constitute half of the population $\gamma=0.5$ and consequently $\rho=\rho^A=\rho^B$

Preferences:

• Reservation price \bar{P}_j and threshold value of characteristic \bar{w}_j are i.i.d. U[0,1]

イロン イ団と イヨン イヨン

Population:

• Consumers of type A and B constitute half of the population $\gamma=0.5$ and consequently $\rho=\rho^A=\rho^B$

Preferences:

- Reservation price \bar{P}_j and threshold value of characteristic \bar{w}_j are i.i.d. U[0,1]
- Consumers buy the product with probability:

イロン イヨン イヨン イヨン

Population:

• Consumers of type A and B constitute half of the population $\gamma=0.5$ and consequently $\rho=\rho^A=\rho^B$

Preferences:

- Reservation price \bar{P}_j and threshold value of characteristic \bar{w}_j are i.i.d. U[0,1]
- Consumers buy the product with probability:
 - ▶ Type A: $q^A = Pr(w \ge \bar{w}_j \cap P \le \bar{P}_j) = (1 P)w$

イロト イポト イヨト イヨト 二百

Population:

• Consumers of type A and B constitute half of the population $\gamma=0.5$ and consequently $\rho=\rho^A=\rho^B$

Preferences:

- Reservation price \bar{P}_j and threshold value of characteristic \bar{w}_j are i.i.d. U[0,1]
- Consumers buy the product with probability:
 - ► Type A: $q^A = Pr(w \ge \bar{w}_j \cap P \le \bar{P}_j) = (1 P)w$
 - ▶ Type *B*: $q^B = Pr(w \leq \bar{w}_j \cap P \leq \bar{P}_j) = (1 P)(1 w)$

<ロ> (四) (四) (三) (三) (三) (三)

• Monopolist chooses optimally characteristic *w* and price *P* to maximize profits:

Preferences frontier

Induced network of potential buyers

• Monopolist chooses optimally characteristic *w* and price *P* to maximize profits:

Preferences frontier

Induced network of potential buyers

<ロ> (日) (日) (日) (日) (日)

2011 8 / 20

• Monopolist chooses optimally characteristic *w* and price *P* to maximize profits:

Preferences frontier

Induced network of potential buyers

• Monopolist chooses optimally characteristic *w* and price *P* to maximize profits:

Preferences frontier

Induced network of potential buyers

• Monopolist chooses optimally characteristic *w* and price *P* to maximize profits:

Preferences frontier

Induced network of potential buyers

• Monopolist chooses optimally characteristic *w* and price *P* to maximize profits:

Preferences frontier

Induced network of potential buyers
Cascade of sales per advertisement

• We modify Newman's mixing patterns model by incorporating consumers decision to buy the product (probability that a node is operational).

・ロン ・四 と ・ ヨン ・ ヨン

Cascade of sales per advertisement

- We modify Newman's mixing patterns model by incorporating consumers decision to buy the product (probability that a node is operational).
- Expected size of cascade of sales per advertisement:

$$s(q^{A}, q^{B}, \rho, z_{1}, z_{2}, \gamma) = (\gamma \ 1 - \gamma) \left[\mathbf{I} + \frac{z_{1}^{2}}{z_{2}} \left(\begin{bmatrix} \mathbf{I} - \frac{z_{2}}{z_{1}} \begin{pmatrix} q^{A}\rho & q^{A}(1-\rho) \\ q^{B}(1-\rho) & q^{B}\rho \end{pmatrix} \right)^{-1} - \mathbf{I} \right) \right] \begin{pmatrix} q^{A} \\ q^{B} \end{pmatrix}$$

where z_1 and z_2 are expected numbers of first and second neighbors.

• **The global cascade:** advertisement to infinitesimal part of the population leads to acquisition of the product by non-zero proportion of the population.

• **The global cascade:** advertisement to infinitesimal part of the population leads to acquisition of the product by non-zero proportion of the population.

Proposition

If $\frac{z_2}{z_1} > \min\{2, \rho^{-1}\}$ there exist combinations of product characteristic and price (w, P) such that global cascade of sales arises.

イロト イヨト イヨト イヨト

• **The global cascade:** advertisement to infinitesimal part of the population leads to acquisition of the product by non-zero proportion of the population.

Proposition

If $\frac{z_2}{z_1} > \min\{2, \rho^{-1}\}$ there exist combinations of product characteristic and price (w, P) such that global cascade of sales arises.

• Necessary condition for existence of the giant component of connected consumers, $\frac{z_2}{z_1} > 1$.

・ロト ・四ト ・ヨト ・ヨト

• **The global cascade:** advertisement to infinitesimal part of the population leads to acquisition of the product by non-zero proportion of the population.

Proposition

If $\frac{z_2}{z_1} > \min\{2, \rho^{-1}\}$ there exist combinations of product characteristic and price (w, P) such that global cascade of sales arises.

- Necessary condition for existence of the giant component of connected consumers, $\frac{z_2}{z_1} > 1$.
- The existence of the global cascade in the case when $\frac{z_2}{z_1} < 2$ hinges on the homophily level.

<ロ> (四) (四) (三) (三) (三) (三)

Optimal design strategy:

Proposition

• The optimal characteristic of the product is the following correspondence:

$$w^* = \begin{cases} [0,1], & \rho = \frac{1}{2} \\ 1/2, & \rho < \frac{1}{2} \\ \{0,1\}, & \rho > \frac{1}{2} \end{cases}$$

Optimal design strategy: Intuition

2

▲□▶ ▲圖▶ ▲国▶ ▲国▶

Optimal design strategy: Intuition

- Case $\rho = 0$:
 - All neighbors are of different type.
 - Spreading depends on the attractiveness of the product to both types.

イロン イヨン イヨン ・ ヨン

Optimal design strategy: Intuition

- Case ρ = 0:
 - All neighbors are of different type.
 - Spreading depends on the attractiveness of the product to both types.
- Case $\rho = 1$:
 - Two clusters of consumers of the same type.
 - Specialized design is optimal.

(日) (四) (E) (E) (E) (E)

Optimal pricing strategy:

Proposition

- The optimal price P^* is lower than in the case of full information and for $\rho > \frac{1}{2}$ is strictly decreasing function in the level of homophily.
- For two degree distributions p(k) and p'(k) and corresponding optimal prices P^* and P'^* if p(k) is a mean preserving spread of p'(k) then $P^* < {P'}^*$.

イロン イ団と イヨン イヨン

Demand function

$$Q(P,\rho,z_1,z_2) = \begin{cases} \frac{1-P}{2} \left(1 + \frac{z_1(1-P)}{2-z_2/z_1(1-P)} \right), & \rho \leq \frac{1}{2} \\ \frac{1-P}{2} \left(1 + \frac{z_1(1-P)}{\frac{1}{\rho}-z_2/z_1(1-P)} \right), & \rho > \frac{1}{2} \end{cases}$$

2011 14 / 20

2

イロト イヨト イヨト イヨト

Demand function

$$Q(P,\rho,z_1,z_2) = \begin{cases} \frac{1-P}{2} \left(1 + \frac{z_1(1-P)}{2-z_2/z_1(1-P)} \right), & \rho \leq \frac{1}{2} \\ \frac{1-P}{2} \left(1 + \frac{z_1(1-P)}{\frac{1}{\rho}-z_2/z_1(1-P)} \right), & \rho > \frac{1}{2} \end{cases}$$

Proposition

The demand function $Q(P, \rho, z_1, z_2)$ has following properties:

- Decreasing and convex in price P.
- Increasing and convex in homophily level ρ , for $\rho > \frac{1}{2}$.
- The absolute value of the price elasticity of demand is:

$$\frac{P}{1-P}\left(1+z_1\left(\frac{1}{z_1-(1-P)z_2\rho}-\frac{1}{z_1+(1-P)(z1^2-z2)\rho}\right)\right),$$

which is higher than price elasticity in the case of full information $\frac{P}{1-P}$ and is increasing in homophily level ρ , for $\rho > \frac{1}{2}$.

• Demand is decreasing and convex in *P*.

Induced network of buyers.

E

• Demand is decreasing and convex in *P*.

Induced network of buyers.

E

• Demand is decreasing and convex in *P*.

Induced network of buyers.

• Demand is decreasing and convex in *P*.

Induced network of buyers.

• Demand is decreasing and convex in *P*.

Induced network of buyers.

• Demand is decreasing and convex in *P*.

Induced network of buyers.

• Demand is decreasing and convex in *P*.

Induced network of buyers.

Proposition

Consumers and producers surplus are increasing functions in the homophily level of the society.

E

・ロト ・回ト ・ヨト ・ヨト

Proposition

Consumers and producers surplus are increasing functions in the homophily level of the society.

• Monopolist surplus is increasing in the level of homophily

Proposition

Consumers and producers surplus are increasing functions in the homophily level of the society.

- Monopolist surplus is increasing in the level of homophily
 - Demand is increasing in the level of homophily.

 $PS(P^{*}(\rho), \rho, z_{1}, z_{2}) = P^{*}(\rho) \times Q(P^{*}(\rho), \rho, z_{1}, z_{2})$

イロン イ団と イヨン イヨン

Proposition

Consumers and producers surplus are increasing functions in the homophily level of the society.

- Monopolist surplus is increasing in the level of homophily
 - Demand is increasing in the level of homophily.

$$PS(P^{*}(\rho), \rho, z_{1}, z_{2}) = P^{*}(\rho) \times Q(P^{*}(\rho), \rho, z_{1}, z_{2})$$

• Consumer surplus is increasing in the level of homophily

Proposition

Consumers and producers surplus are increasing functions in the homophily level of the society.

- Monopolist surplus is increasing in the level of homophily
 - Demand is increasing in the level of homophily.

$$\mathsf{PS}(\mathsf{P}^*(\rho), \rho, \mathsf{z}_1, \mathsf{z}_2) = \mathsf{P}^*(\rho) imes \mathsf{Q}(\mathsf{P}^*(\rho), \rho, \mathsf{z}_1, \mathsf{z}_2)$$

• Consumer surplus is increasing in the level of homophily

- Demand is increasing more consumers buy the product.
- The optimal price is decreasing in the level of homophily.

$$CS(P^*(\rho), \rho, z_1, z_2) = \int_{P^*(\rho)}^1 Q(P, \rho, z_1, z_2) dP$$

イロト イポト イヨト イヨト

Model Extensions

- Targeted advertisement.
 - Targeting advertisement is always optimal.
 - For high enough connectivity the optimal design is the same as without targeting.

Model Extensions

• Targeted advertisement.

- Targeting advertisement is always optimal.
- For high enough connectivity the optimal design is the same as without targeting.

• Non-linear probability frontier.

- Bend inward frontier results are the same.
- Bend outward frontier similar shape, but design is continuous.

Model Extensions

• Targeted advertisement.

- Targeting advertisement is always optimal.
- For high enough connectivity the optimal design is the same as without targeting.

• Non-linear probability frontier.

- Bend inward frontier results are the same.
- Bend outward frontier similar shape, but design is continuous.

• Monopolist benefits from one group.

- Low levels of homophily compromise design is still optimal.
- High levels of homophily compromise design is optimal when audience is small.

イロン イ団 と イヨン イヨン

• Price P is fixed and the monopolist maximizes sales to consumers of type B.

E

イロト イヨト イヨト イヨト

• Price P is fixed and the monopolist maximizes sales to consumers of type B.

Proposition

There is threshold value $\hat{\rho}_1(z_1, z_2)$ such that if $\rho < \hat{\rho}_1(z_1, z_2)$ the optimal characteristic w_1^* belongs to the interval $(0, \frac{1}{2}]$, while if $\rho > \hat{\rho}_1(z_1, z_2)$ then $w_1^* = 0$

(日) (同) (三) (三)

- Consumers of type A constitute 80% of the population ($\gamma = 0.8$). The monopolist maximizes sales to consumers of type B.
- The solution:

- Consumers of type A constitute 80% of the population ($\gamma = 0.8$). The monopolist maximizes sales to consumers of type B.
- The solution:

Roman Chuhay (ICEF, CAS, HSE)

2

イロン イヨン イヨン ・ ヨン

• For low levels of homophily the compromise design of product is preferred to specialized products even if there is no cost of producing more than one type of product.

- For low levels of homophily the compromise design of product is preferred to specialized products even if there is no cost of producing more than one type of product.
- Price elasticity of demand is increasing in the homophily level.

- For low levels of homophily the compromise design of product is preferred to specialized products even if there is no cost of producing more than one type of product.
- Price elasticity of demand is increasing in the homophily level.
- Monopolist and consumers benefit from increase in the level of homophily.

イロン イヨン イヨン イヨン
Conclusions

- For low levels of homophily the compromise design of product is preferred to specialized products even if there is no cost of producing more than one type of product.
- Price elasticity of demand is increasing in the homophily level.
- Monopolist and consumers benefit from increase in the level of homophily.
- A product designed to attract both types of consumers may be optimal even if a monopolist benefits only from one group of consumers.

・ロン ・四 と ・ ヨ と ・