Sources of Risk in Currency Returns

Mikhail Chernov (LSE), Jeremy Graveline (Minnesota), and Irina Zviadadze (LBS)

LFE conference, Moscow | November 2011
Excess currency returns

- Borrow \(\$e^{-r_t} \) at the interest rate \(r_t \)

- The exchange rate is \(S_t \) (pay \(\$S_t \) for £1)

- Convert \(\$ \) into \(\£1/S_t \cdot e^{-r_t} \) and invest for one period at the UK interest rate \(\tilde{r}_t \)

- At the end of the period, receive \(\£1/S_t \cdot e^{	ilde{r}_t-r_t} \)

- Convert the cash back into \(\$S_{t+1}/S_t \cdot e^{	ilde{r}_t-r_t} \) at the prevailing exchange rate \(S_{t+1} \)

- Finally, repay the loan with interest, i.e., one unit of the domestic currency

- In this paper, we will always treat USD as a domestic currency
Which types of risk affect currency returns?

AUD

CHF

GBP

JPY
Which types of risk affect currency returns?
Which types of risk affect currency returns?

AUD

CHF

GBP

JPY
Basic properties of excess currency returns

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std Dev</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>Nobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUD Return</td>
<td>0.0186</td>
<td>0.7435</td>
<td>-0.3870</td>
<td>13.7202</td>
<td>6332</td>
</tr>
<tr>
<td>Δ√IV</td>
<td>0.0109</td>
<td>3.7661</td>
<td>0.9077</td>
<td>9.7290</td>
<td>3933</td>
</tr>
<tr>
<td>CHF Return</td>
<td>0.0057</td>
<td>0.7232</td>
<td>0.1194</td>
<td>4.7841</td>
<td>6521</td>
</tr>
<tr>
<td>Δ√IV</td>
<td>0.0073</td>
<td>3.8057</td>
<td>0.9966</td>
<td>9.8095</td>
<td>3823</td>
</tr>
<tr>
<td>GBP Return</td>
<td>0.0096</td>
<td>0.6197</td>
<td>-0.2337</td>
<td>5.6832</td>
<td>6521</td>
</tr>
<tr>
<td>Δ√IV</td>
<td>0.0142</td>
<td>4.0001</td>
<td>1.3884</td>
<td>44.2683</td>
<td>3823</td>
</tr>
<tr>
<td>JPY Return</td>
<td>0.0003</td>
<td>0.6950</td>
<td>0.3626</td>
<td>8.0878</td>
<td>6393</td>
</tr>
<tr>
<td>Δ√IV</td>
<td>-0.0045</td>
<td>4.8257</td>
<td>1.0395</td>
<td>10.7764</td>
<td>3934</td>
</tr>
<tr>
<td>SPX Return</td>
<td>0.0090</td>
<td>1.1803</td>
<td>-1.3584</td>
<td>32.9968</td>
<td>6521</td>
</tr>
<tr>
<td>Δ√VIX</td>
<td>0.0089</td>
<td>5.8997</td>
<td>0.5096</td>
<td>6.7502</td>
<td>3914</td>
</tr>
</tbody>
</table>
How important are these risks?

- We quantify relative importance of the different sources of risk
 1. Stochastic variance
 2. Jumps in currencies
 3. Jumps in variance
How important are these risks?

- We quantify relative importance of the different sources of risk
 - 1. Stochastic variance
 - 2. Jumps in currencies
 - 3. Jumps in variance

- We estimate a joint model of FX/IV using Bayesian MCMC
 - Main advantage: jump times and sizes are a by-product of estimation
Relation to Uncovered Interest Parity

- s_t is the log spot exchange rate
- f_t is the log one-period forward exchange rate
- r_t is the domestic, or low, one-period bond yield
- \tilde{r}_t is the foreign, or high, one-period bond yield
- UIP:

$$E_t(s_{t+1} - s_t) = f_t - s_t \equiv r_t - \tilde{r}_t$$

- Fama’s regression:

$$y_{t+1} = (s_{t+1} - s_t) - (r_t - \tilde{r}_t) = \alpha + \beta(r_t - \tilde{r}_t) + \varepsilon_{t+1}$$

- $\hat{\beta} \approx -3$, hence the puzzle
Relation to Uncovered Interest Parity

- s_t is the log spot exchange rate
- f_t is the log one-period forward exchange rate
- r_t is the domestic, or low, one-period bond yield
- \tilde{r}_t is the foreign, or high, one-period bond yield
- UIP:

$$E_t(s_{t+1} - s_t) = f_t - s_t \equiv r_t - \tilde{r}_t$$

- Fama’s regression:

$$y_{t+1} = (s_{t+1} - s_t) - (r_t - \tilde{r}_t) = \alpha + \beta(r_t - \tilde{r}_t) + \varepsilon_{t+1}$$

- $\hat{\beta} \approx -3$, hence the puzzle
- This paper does not explain the puzzle
- This paper makes a first step by analysing ε_{t+1}
Summary of findings

Three types of jumps:

1. Variance: probability is affected by the variance itself
2. USD depreciation (up): probability is affected by the US interest rate
3. USD appreciation (down): probability is affected by the non-US interest rate
Summary of findings

- Three types of jumps:
 1. Variance: probability is affected by the variance itself
 2. USD depreciation (up): probability is affected by the US interest rate
 3. USD appreciation (down): probability is affected by the non-US interest rate

- Jumps in FX are connected to major macro and political news
- Jumps in variance are not – “economic uncertainty”
Summary of findings

- Three types of jumps:
 1. Variance: probability is affected by the variance itself
 2. USD depreciation (up): probability is affected by the US interest rate
 3. USD appreciation (down): probability is affected by the non-US interest rate

- Jumps in FX are connected to major macro and political news
- Jumps in variance are not – “economic uncertainty”
- Jumps contribute 25%, on average to the total currency risk; can be as high as 40%
Summary of findings

- Three types of jumps:
 1. Variance: probability is affected by the variance itself
 2. USD depreciation (up): probability is affected by the US interest rate
 3. USD appreciation (down): probability is affected by the non-US interest rate

- Jumps in FX are connected to major macro and political news
- Jumps in variance are not – “economic uncertainty”
- Jumps contribute 25%, on average to the total currency risk; can be as high as 40%
- Estimated currency risk premiums are in conflict with baseline equilibrium models
The Model
$y_{t+1} = \mu_t + v_t^{1/2} w_{t+1}^s + z_{t+1}^u - z_{t+1}^d$
The Model

\[y_{t+1} = \mu_t + \nu_t^{1/2} w_{t+1}^s + z_{t+1}^u - z_{t+1}^d \]

\[\nu_{t+1} = (1 - \nu) \nu + \nu \nu_t + \sigma_\nu \nu_t^{1/2} w_{t+1}^\nu + z_{t+1}^\nu \ [corr_t(w_{t+1}^s, w_{t+1}^\nu) = \rho] \]
The Model

\[y_{t+1} = \mu_t + v_t^{1/2} w_{t+1}^s + z_{t+1}^u - z_{t+1}^d \]
\[v_{t+1} = (1 - \nu) v + \nu v_t + \sigma_v v_t^{1/2} w_{t+1}^v + z_{t+1}^v \quad [corr_t(w_{t+1}^s, w_{t+1}^v) = \rho] \]
\[h_t^k = h_0^k + h_r^k r_t + \tilde{h}_r^k \tilde{r}_t + h_v^k v_t, \quad k = u, d, v \quad [\text{jump intensity}] \]
\[z_t^k \sim \mathcal{E}xp(\theta_k), \quad k = u, d, v \quad [\text{jump size}] \]
The Model

\[y_{t+1} = \mu_t + v_t^{1/2} w_{t+1}^s + z_{t+1}^u - z_{t+1}^d \]
\[v_{t+1} = (1 - \nu) v + \nu v_t + \sigma_v v_t^{1/2} w_{t+1}^\nu + z_{t+1}^\nu \quad [\text{corr}_t(w_{t+1}^s, w_{t+1}^\nu) = \rho] \]
\[h_t^k = h_0^k + h_r^k r_t + \tilde{h}_r^k \tilde{r}_t + h_v^k v_t, \quad k = u, d, v \quad [\text{jump intensity}] \]
\[z_t^k \sim \mathcal{E}xp(\theta_k), \quad k = u, d, v \quad [\text{jump size}] \]
\[\mu_t = \mu_0 + \mu_r r_t + \tilde{\mu}_r \tilde{r}_t + \mu_v v_t \]
Implied Variance
Implied Variance

- It is extremely hard to pin down the specification of jumps

- We also add information from options:

\[IV_t = \alpha_{iv} + \beta_{iv} v_t + \text{error} \]
Implied Variance

- It is extremely hard to pin down the specification of jumps

- We also add information from options:

 \[IV_t = \alpha_{iv} + \beta_{iv} v_t + \text{error} \]

- Use time-series of daily carry returns and one-month at-the-money IVs to estimate parameters and state realizations
The preferred model
The preferred model

\[y_{t+1} = \mu_0 + \mu_r (r_t - \tilde{r}_t) + \mu_v v_t + \nu_t^{1/2} w_{t+1}^s + z_{t+1}^u - z_{t+1}^d \]
The preferred model

\[y_{t+1} = \mu_0 + \mu_r (r_t - \tilde{r}_t) + \mu \nu v_t + v_t^{1/2} w_{t+1}^s + z_{t+1}^u - z_{t+1}^d \]

\[\nu_{t+1} = (1 - \nu) v + \nu v_t + \sigma \nu v_t^{1/2} w_{t+1}^\nu + z_{t+1}^\nu \]
The preferred model

\[y_{t+1} = \mu_0 + \mu_r (r_t - \tilde{r}_t) + \mu_v v_t + v_t^{1/2} w_{t+1}^s + z_{t+1}^u - z_{t+1}^d \]

\[v_{t+1} = (1 - \nu) v + \nu v_t + \sigma_v v_t^{1/2} w_{t+1}^v + z_{t+1}^v \]

\[h_t^u = h_0 + h_r r_t, \quad h_t^d = h_0 + h_r \tilde{r}_t, \quad h_t^v = h_0^v + h_v v_t \]
The preferred model

\[y_{t+1} = \mu_0 + \mu_r (r_t - \tilde{r}_t) + \mu \nu v_t + v_t^{1/2} w_{t+1}^s + z_{t+1}^u - z_{t+1}^d \]

\[v_{t+1} = (1 - \nu) v + \nu v_t + \sigma \nu v_t^{1/2} w_{t+1}^v + z_{t+1}^v \]

\[h_t^u = h_0 + h_r r_t, \quad h_t^d = h_0 + h_r \tilde{r}_t, \quad h_t^v = h_0^v + h_v v_t \]

\[z_{t}^{u,d} \sim \mathcal{E}xp(\theta), \quad z_t^v | j \sim \mathcal{E}xp(\theta_v) \]
The preferred model

\[
\begin{align*}
 y_{t+1} &= \mu_0 + \mu_r (r_t - \tilde{r}_t) + \mu_v \nu_t + \nu_t^{1/2} w_{t+1}^s + z_{t+1}^u - z_{t+1}^d \\
 \nu_{t+1} &= (1 - \nu) \nu + \nu \nu_t + \sigma_v \nu_t^{1/2} w_{t+1}^v + z_{t+1}^v \\
 h_t^u &= h_0 + h_r r_t, \quad h_t^d = h_0 + h_r \tilde{r}_t, \quad h_t^v = h_0^v + h_v \nu_t \\
 z_t^{u,d} &\sim \mathbb{E}xp(\theta), \quad z_t^v | j \sim \mathbb{E}xp(\theta_v)
\end{align*}
\]

- Implications:
 - On average, 1.3 to 2.6 jumps in variance per year; average jump size increases vol by 20% to 40%
 - On average, 0.4 to 1.3 jumps in currencies per year; average jumps size is 1.2% to 1.6%
 - Third cumulant \(\kappa_3(t)(s_{t+1} - s_t) = 6\theta^3 h_r (r_t - \tilde{r}_t) \)
 - The loading \(\mu_r \approx -3 \) as in Fama’s regression
GBP excess returns, estimated states, jump intensities

(a) Excess return

(b) Volatility

(c) Jumps in excess return

(d) Jumps in volatility
Contribution to total risk
Contribution to total risk

- What is total risk?
Contribution to total risk

- What is total risk?

- Variance, skewness, kurtosis, etc. capture different aspects of risk
Contribution to total risk

- What is total risk?

- Variance, skewness, kurtosis, etc. capture different aspects of risk

- We use entropy (a.k.a. generalised variance):

$$L_t(S_{t+n}/S_t) = \log E_t(e^{s_{t+n}-s_t}) - E_t(s_{t+n} - s_t)$$
Contribution to total risk

- What is total risk?

- Variance, skewness, kurtosis, etc. capture different aspects of risk

- We use entropy (a.k.a. generalised variance):

\[
L_t(S_{t+n}/S_t) = \log E_t(e^{s_{t+n}-s_t}) - E_t(s_{t+n} - s_t)
\]

- Intuition:

\[
L_t = \kappa_2 t(s_{t+n} - s_t)/2! + \kappa_3 t(s_{t+n} - s_t)/3! + \kappa_4 t(s_{t+n} - s_t)/4! + \ldots,
\]

where \(\kappa_j\) is the \(j\)th cumulant of \(s_{t+n} - s_t\)
Decomposition of entropy
Decomposition of entropy

AUD

CHF

GBP

JPY
Risk Premiums

AUD

FX risk premium

-0.03 0.01 0.05 0.09

CHF

Var risk premium

-0.4 0.0 0.1

GBP

FX risk premium

-0.6 0.03 0.06

JPY

Var risk premium

-0.4 0.0 0.2
Risk Premiums

AUD

CHF

GBP

JPY
Interesting challenges for theory
Interesting challenges for theory

- What is the structure of fundamental shocks?
Interesting challenges for theory

- What is the structure of fundamental shocks?
 - Jump probabilities are affected by interest rates – cannot assume this
Interesting challenges for theory

- What is the structure of fundamental shocks?
 - Jump probabilities are affected by interest rates – cannot assume this

- What are jumps – disasters or something else?
Interesting challenges for theory

- What is the structure of fundamental shocks?
 - Jump probabilities are affected by interest rates – cannot assume this

- What are jumps – disasters or something else?

- Probabilities of jumps in FX vs variance are different in economically meaningful way
Interesting challenges for theory

- What is the structure of fundamental shocks?
 - Jump probabilities are affected by interest rates – cannot assume this

- What are jumps – disasters or something else?

- Probabilities of jumps in FX vs variance are different in economically meaningful way

- Ex-ante FX risk premia from the non-US perspective do not conform to the basic intuition
Interesting challenges for theory

- What is the structure of fundamental shocks?
 - Jump probabilities are affected by interest rates – cannot assume this

- What are jumps – disasters or something else?

- Probabilities of jumps in FX vs variance are different in economically meaningful way

- Ex-ante FX risk premia from the non-US perspective do not conform to the basic intuition

- What is the economic mechanism generating the positive variance premiums?
Summary

- We study risks in carry returns
 - Identify and describe sources of risks
 - Measure risk premiums (RP)
 - Compare the dynamics of RP with the predictions of the structural models
We study risks in carry returns

Identify and describe sources of risks

Measure risk premiums (RP)

Compare the dynamics of RP with the predictions of the structural models

We find that

Both normal and jump risks are important

Jump risks have time-varying nature

Jumps in FX can be linked to news. Jumps in vol cannot

Jumps are not necessarily idiosyncratic

Estimated dynamics of RP pose challenges for structural models
Literature Review

- Joint currency/implied variance time-series analysis w/o jumps
 - Brandt and Santa-Clara (2002); Graveline (2006)
- Hedging jump risk with options
 - Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011); Jordà and Taylor (2009); Jurek (2009)
 - Farhi, Fraiberger, Gabaix, Ranciere, and Verdelhan (2009)
- Option-based models of currencies with jumps in FX only
 - Bates (1996); Carr and Wu (2007)
 - Bakshi, Carr, and Wu (2008)
- Equilibrium models of FX with jumps
 - Farhi and Gabaix (2008); Guo (2007); Plantin and Shin (2011)
- News and FX
 - Andersen, Bollerslev, Diebold, and Vega (2003)
- Jumps in variance of equity returns
 - Broadie, Chernov, and Johannes (2007); Duffie, Pan, and Singleton (2000); Eraker, Johannes, and Polson (2003)
- Entropy as generalised variance
 - Alvarez and Jermann (2005); Backus, Chernov, and Martin (2011); Backus, Chernov, and Zin (2011); Martin (2011)
Diagnostics: An AUD example

<table>
<thead>
<tr>
<th></th>
<th>SV</th>
<th>SVJV</th>
<th>SVJVC-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>skewness<sup>C</sup></td>
<td>-0.3080</td>
<td>-0.3074</td>
<td>-0.2004</td>
</tr>
<tr>
<td></td>
<td>(-0.3308, -0.2860)</td>
<td>(-0.3304, -0.2855)</td>
<td>(-0.2408, -0.1599)</td>
</tr>
<tr>
<td>kurtosis<sup>C</sup></td>
<td>4.1472</td>
<td>4.0822</td>
<td>3.4892</td>
</tr>
<tr>
<td></td>
<td>(4.0677, 4.2366)</td>
<td>(4.0006, 4.1810)</td>
<td>(3.3802, 3.6055)</td>
</tr>
<tr>
<td>autocorrelation<sup>C</sup></td>
<td>-0.0281</td>
<td>-0.0271</td>
<td>-0.0324</td>
</tr>
<tr>
<td></td>
<td>(-0.0311, -0.0252)</td>
<td>(-0.0303, -0.0241)</td>
<td>(-0.0406, -0.0242)</td>
</tr>
<tr>
<td>skewness<sup>IV</sup></td>
<td>0.0402</td>
<td>0.0303</td>
<td>0.0310</td>
</tr>
<tr>
<td></td>
<td>(-0.0373, 0.1181)</td>
<td>(-0.0466, 0.1070)</td>
<td>(-0.0459, 0.1080)</td>
</tr>
<tr>
<td>kurtosis<sup>IV</sup></td>
<td>3.0618</td>
<td>3.0385</td>
<td>3.0375</td>
</tr>
<tr>
<td></td>
<td>(2.9103, 3.2314)</td>
<td>(2.8902, 3.2034)</td>
<td>(2.8896, 3.2033)</td>
</tr>
<tr>
<td>autocorrelation<sup>IV</sup></td>
<td>0.1043</td>
<td>0.0634</td>
<td>0.0637</td>
</tr>
<tr>
<td></td>
<td>(0.0749, 0.1336)</td>
<td>(0.0331, 0.0937)</td>
<td>(0.0334, 0.0940)</td>
</tr>
<tr>
<td>IVvar</td>
<td>0.0064</td>
<td>0.0034</td>
<td>0.0034</td>
</tr>
<tr>
<td></td>
<td>(0.0041, 0.0122)</td>
<td>(0.0021, 0.0070)</td>
<td>(0.0021, 0.0070)</td>
</tr>
</tbody>
</table>
Diagnostics: A CHF example

<table>
<thead>
<tr>
<th></th>
<th>SV</th>
<th>SVJV</th>
<th>SVJVC-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>skewness<sup>C</sup></td>
<td>0.1178</td>
<td>0.1282</td>
<td>0.0586</td>
</tr>
<tr>
<td></td>
<td>(0.0994, 0.1365)</td>
<td>(0.1078, 0.1486)</td>
<td>(0.0182, 0.0983)</td>
</tr>
<tr>
<td>kurtosis<sup>C</sup></td>
<td>3.9497</td>
<td>3.9438</td>
<td>3.4333</td>
</tr>
<tr>
<td></td>
<td>(3.8825, 4.0198)</td>
<td>(3.8919, 4.0011)</td>
<td>(3.3373, 3.5405)</td>
</tr>
<tr>
<td>autocorrelation<sup>C</sup></td>
<td>-0.0203</td>
<td>-0.0198</td>
<td>-0.0272</td>
</tr>
<tr>
<td></td>
<td>(-0.0227, -0.0179)</td>
<td>(-0.0226, -0.0170)</td>
<td>(-0.0352, -0.0192)</td>
</tr>
<tr>
<td>skewness<sup>IV</sup></td>
<td>0.0224</td>
<td>0.0201</td>
<td>0.0210</td>
</tr>
<tr>
<td></td>
<td>(-0.0574, 0.1022)</td>
<td>(-0.0585, 0.0985)</td>
<td>(-0.0573, 0.0995)</td>
</tr>
<tr>
<td>kurtosis<sup>IV</sup></td>
<td>3.0648</td>
<td>3.0399</td>
<td>3.0406</td>
</tr>
<tr>
<td></td>
<td>(2.9091, 3.2378)</td>
<td>(2.8887, 3.2097)</td>
<td>(2.8890, 3.2094)</td>
</tr>
<tr>
<td>autocorrelation<sup>IV</sup></td>
<td>0.0777</td>
<td>0.0565</td>
<td>0.0564</td>
</tr>
<tr>
<td></td>
<td>(0.0459, 0.1094)</td>
<td>(0.0247, 0.0883)</td>
<td>(0.0246, 0.0881)</td>
</tr>
<tr>
<td>IVvar</td>
<td>0.0010</td>
<td>0.0006</td>
<td>0.0006</td>
</tr>
<tr>
<td></td>
<td>(0.0007, 0.0017)</td>
<td>(0.0004, 0.0011)</td>
<td>(0.0004, 0.0011)</td>
</tr>
<tr>
<td></td>
<td>SV</td>
<td>SVJV</td>
<td>SVJVC-P</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>skewness<sup>C</sup></td>
<td>-0.0407</td>
<td>-0.0211</td>
<td>-0.0232</td>
</tr>
<tr>
<td></td>
<td>(-0.0606, -0.0202)</td>
<td>(-0.0436, 0.0012)</td>
<td>(-0.0609, 0.0143)</td>
</tr>
<tr>
<td>kurtosis<sup>C</sup></td>
<td>3.9181</td>
<td>3.8540</td>
<td>3.4947</td>
</tr>
<tr>
<td></td>
<td>(3.8427, 4.0061)</td>
<td>(3.7784, 3.9423)</td>
<td>(3.4006, 3.5969)</td>
</tr>
<tr>
<td>autocorrelation<sup>C</sup></td>
<td>0.0009</td>
<td>0.0006</td>
<td>-0.0027</td>
</tr>
<tr>
<td></td>
<td>(-0.0024, 0.0040)</td>
<td>(-0.0038, 0.0047)</td>
<td>(-0.0094, 0.0037)</td>
</tr>
<tr>
<td>skewness<sup>IV</sup></td>
<td>0.0352</td>
<td>0.0212</td>
<td>0.0215</td>
</tr>
<tr>
<td></td>
<td>(-0.0443, 0.1146)</td>
<td>(-0.0565, 0.0995)</td>
<td>(-0.0568, 0.0998)</td>
</tr>
<tr>
<td>kurtosis<sup>IV</sup></td>
<td>3.0710</td>
<td>3.0293</td>
<td>3.0296</td>
</tr>
<tr>
<td>autocorrelation<sup>IV</sup></td>
<td>0.0791</td>
<td>0.0510</td>
<td>0.0510</td>
</tr>
<tr>
<td></td>
<td>(0.0483, 0.1096)</td>
<td>(0.0204, 0.0814)</td>
<td>(0.0204, 0.0815)</td>
</tr>
<tr>
<td>IVvar</td>
<td>0.0011</td>
<td>0.0004</td>
<td>0.0004</td>
</tr>
<tr>
<td></td>
<td>(0.0007, 0.0019)</td>
<td>(0.0003, 0.0008)</td>
<td>(0.0003, 0.0008)</td>
</tr>
</tbody>
</table>
Diagnostics: A JPY example

<table>
<thead>
<tr>
<th></th>
<th>SV</th>
<th>SVJV</th>
<th>SVJVC-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>skewnessC</td>
<td>0.3348</td>
<td>0.3360</td>
<td>0.1298</td>
</tr>
<tr>
<td></td>
<td>(0.3060, 0.3650)</td>
<td>(0.3038, 0.3668)</td>
<td>(0.0799, 0.1800)</td>
</tr>
<tr>
<td>kurtosisC</td>
<td>4.8254</td>
<td>4.7148</td>
<td>3.6054</td>
</tr>
<tr>
<td></td>
<td>(4.7109, 4.9645)</td>
<td>(4.5982, 4.8361)</td>
<td>(3.4829, 3.7445)</td>
</tr>
<tr>
<td>autocorrelationC</td>
<td>-0.0146</td>
<td>-0.0140</td>
<td>-0.0221</td>
</tr>
<tr>
<td></td>
<td>(-0.0176, -0.0116)</td>
<td>(-0.0174, -0.0108)</td>
<td>(-0.0312, -0.0131)</td>
</tr>
<tr>
<td>skewnessIV</td>
<td>0.0568</td>
<td>0.0278</td>
<td>0.0311</td>
</tr>
<tr>
<td></td>
<td>(-0.0210, 0.1349)</td>
<td>(-0.0495, 0.1054)</td>
<td>(-0.0465, 0.1087)</td>
</tr>
<tr>
<td>kurtosisIV</td>
<td>3.0707</td>
<td>3.0430</td>
<td>3.0423</td>
</tr>
<tr>
<td></td>
<td>(2.9175, 3.2420)</td>
<td>(2.8940, 3.2100)</td>
<td>(2.8923, 3.2098)</td>
</tr>
<tr>
<td>autocorrelationIV</td>
<td>0.1042</td>
<td>0.0758</td>
<td>0.0768</td>
</tr>
<tr>
<td></td>
<td>(0.0733, 0.1349)</td>
<td>(0.0443, 0.1070)</td>
<td>(0.0453, 0.1083)</td>
</tr>
<tr>
<td>IVvar</td>
<td>0.0061</td>
<td>0.0029</td>
<td>0.0037</td>
</tr>
<tr>
<td></td>
<td>(0.0036, 0.0125)</td>
<td>(0.0017, 0.0059)</td>
<td>(0.0021, 0.0078)</td>
</tr>
</tbody>
</table>
JPY excess returns, estimated states, jump intensities

(a) Excess return

(b) Volatility

(c) Jumps in excess return

(d) Jumps in volatility
JPY excess returns, estimated states, jump intensities

(a) Excess return

(b) Volatility

(c) Jumps in excess return

(d) Jumps in volatility
AUD excess returns, estimated states, jump intensities

(a) Excess return

(b) Volatility

(c) Jumps in excess return

(d) Jumps in volatility
AUD excess returns, estimated states, jump intensities

(a) Excess return

(b) Volatility

(c) Jumps in excess return

(d) Jumps in volatility
CHF excess returns, estimated states, jump intensities

(a) Excess return

(b) Volatility

(c) Jumps in excess return

(d) Jumps in volatility
CHF excess returns, estimated states, jump intensities

(a) Excess return

(b) Volatility

(c) Jumps in excess return

(d) Jumps in volatility

Backus, David, Mikhail Chernov, and Stanley Zin, 2011, Sources of entropy in representative agent models, Working paper, NBER.

Bibliography IV

Farhi, Emmanuel, and Xavier Gabaix, 2008, Rare disasters and exchange rates, Working paper, NBER.

