Is the function field of a reductive Lie algebra purely transcendental over the field of invariants for the adjoint action?

Jean-Louis Colliot-Thélène, Boris Kunyavskiĭ, Vladimir L. Popov and Zinovy Reichstein

Валентину Евгеньевичу Воскресенскому, коллеге и учителю, с уважением и благодарностью

Abstract

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let \mathfrak{g} be its Lie algebra. Let k(G), respectively, $k(\mathfrak{g})$, be the field of krational functions on G, respectively, \mathfrak{g} . The conjugation action of G on itself induces the adjoint action of G on \mathfrak{g} . We investigate the question whether or not the field extensions $k(G)/k(G)^G$ and $k(\mathfrak{g})/k(\mathfrak{g})^G$ are purely transcendental. We show that the answer is the same for $k(G)/k(G)^G$ and $k(\mathfrak{g})/k(\mathfrak{g})^G$, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n , and negative for groups of other types, except possibly G_2 . A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Contents

1	Preliminaries on lattices, tori, and special groups		433
	1.1	Γ -lattices	433
	1.2	Tori	434
	1.3	Special groups	434
2	Quotients, (G, S) -fibrations, and (G, S) -varieties		435
	2.1	Geometric quotients	435
	2.2	(G,S)-fibrations	436
	2.3	(G,S)-varieties	439
	2.4	Categorical quotients	441
3	Versal actions		442
4	The conjugation action and the adjoint action		446