On the Cayley degree
of an algebraic group

Nicole Lemire, Vladimir L. Popov, Zinovy Reichstein

Abstract

A connected linear algebraic group \(G \) is called a Cayley group if the Lie algebra of \(G \) endowed with the adjoint \(G \)-action and the group variety of \(G \) endowed with the conjugation \(G \)-action are birationally \(G \)-isomorphic. In particular, the classical Cayley map

\[
X \mapsto (I_n - X)(I_n + X)^{-1}
\]

between the special orthogonal group \(\text{SO}_n \) and its Lie algebra \(\mathfrak{so}_n \), shows that \(\text{SO}_n \) is a Cayley group. In an earlier paper we classified the simple Cayley groups defined over an algebraically closed field of characteristic zero. Here we consider a new numerical invariant of \(G \), the Cayley degree, which “measures” how far \(G \) is from being Cayley, and prove upper bounds on Cayley degrees of some groups.

1. Introduction

Let \(G \) be a connected linear algebraic group and let \(\mathfrak{g} \) be its Lie algebra. We say that \(G \) is a Cayley group if there is a birational isomorphism

\[
\varphi : G \dashrightarrow \mathfrak{g}
\]

which is equivariant with respect to the conjugation action of \(G \) on itself and the adjoint action of \(G \) on \(\mathfrak{g} \); see [3, Definition 1.5]. In particular, the classical Cayley map [1]

\[
X \mapsto (I_n - X)(I_n + X)^{-1}
\]

2000 Mathematics Subject Classification: 14L10, 17B45, 14L30

Keywords: Algebraic group, Lie algebra, reductive group, maximal torus, Weyl group, birational isomorphism, Cayley map, Cayley group, Cayley degree.
References

Nicole Lemire
Department of Mathematics
University of Western Ontario
London, Ontario N6A 5B7, Canada
nlemire@uwo.ca

Vladimir L. Popov
Steklov Mathematical Institute
Russian Academy of Sciences
Gubkina 8, Moscow 119991, Russia
popovvl@orc.ru

Zinovy Reichstein
Department of Mathematics,
University of British Columbia,
Vancouver, BC V6T 1Z2, Canada
reichste@math.ubc.ca
www.math.ubc.ca/~reichst

N. Lemire and Z. Reichstein were supported in part by NSERC research grants. V.L. Popov was supported in part by ETH, Zürich (Switzerland), Russian grants РФФИ 05–01–00455, HH–9969.2006.1, and a (granting) program of the Mathematics Branch of the Russian Academy of Sciences.