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We study the PBW filtration on the highest weight representations V(λ) of sp2n. This

filtration is induced by the standard degree filtration on U (n−). We give a description

of the associated graded S(n−)-module gr V(λ) in terms of generators and relations. We

also construct a basis of gr V(λ). As an application we derive a graded combinatorial

formula for the character of V(λ) and obtain a new class of bases of the modules V(λ).

1 Introduction

In this paper, we continue the study of the PBW filtration on irreducible representations

of simple Lie algebras initiated in [9]. The goal of this paper is to develop the theory

of PBW-graded modules for symplectic Lie algebras sp2n. We start with recalling the

definition of the PBW filtration.

Let g be a simple Lie algebra and let g = n+ ⊕ h ⊕ n− be a Cartan decomposition.

For a dominant integral λ, we denote by V(λ) the irreducible g-module with highest

weight λ. Fix a highest weight vector vλ ∈ V(λ). Then V(λ) = U(n−)vλ, where U(n−) denotes

the universal enveloping algebra of n−. The degree filtration U(n−)s on U(n−) is defined by

U(n−)s = span{x1 · · · xl : xi ∈ n−, l ≤ s}.
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In particular, U(n−)0 = C and gr U(n−) � S(n−), where S(n−) denotes the symmetric alge-

bra over n−. The filtration of U(n−) by the subspaces U(n−)s induces a filtration of V(λ)

by the subspaces V(λ)s:

V(λ)s = U(n−)svλ.

We call this filtration the PBW filtration. The central objects of our paper are the asso-

ciated graded spaces gr V(λ) as S(n−)-modules for g of type Cn.

We note that gr V(λ) = S(n−)vλ is a cyclic S(n−)-module. So one has

gr V(λ) � S(n−)/I (λ),

for some ideal I (λ) ⊂ S(n−). For example, for any simple root αi the power f (λ,αi)+1
αi

of a

root vector fαi ∈ n−
−αi

belongs to I (λ) since f (λ,αi)+1
αi

vλ = 0 in V(λ). To describe I (λ) explic-

itly, we prepare some notation. All positive roots of sp2n can be divided into two groups:

αi, j = αi + αi+1 + · · · + α j, 1 ≤ i ≤ j ≤ n,

αi, j = αi + αi+1 + · · · + αn + αn−1 + · · · + α j, 1 ≤ i ≤ j ≤ n.

In particular, α1,1 is the highest root. Consider the action of the opposite subalgebra n+

on V(λ). It is easy to see that n+V(λ)s ↪→ V(λ)s, so we obtain the structure of an U (n+)-

module on gr V(λ) as well. We show:

Theorem A. The ideal I (λ) is generated as S(n−)-module by the subspace

U(n+) ◦ span{ f
(λ,αi, j)+1
αi, j , 1 ≤ i ≤ j ≤ n− 1, f (λ,αi,n)+1

αi,i
, 1 ≤ i ≤ n}. �

Theorem A should be understood as a commutative analog of the well-known

description of V(λ) as the quotient

V(λ) � U(n−)/〈 f (λ,αi)+1
αi

, 1 ≤ i ≤ n〉

(see, for example, [14]).

Our second problem (closely related to the first one) is to construct a monomial

basis of gr V(λ). The elements
∏

α>0 fsα
α vλ with sα ≥ 0 obviously span gr V(λ) (recall that

the order in
∏

α>0 fsα
α is not important since fα are considered as elements of S(n−)).
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For each λ, we construct a set S(λ) of multi-exponents s = {sα}α>0 such that the elements

fsvλ =
∏
α>0

fsα

α vλ, s ∈ S(λ)

form a basis of gr V(λ). To give a definition of S(λ), we need the notion of a symplec-

tic version of Dyck path, which is precisely defined in Definition 2.2. The definition is

similar to the one for usual Dyck paths, see, for example, [9]). In short, a Dyck path

p = (p(0), . . . , p(k)) is a sequence of positive roots starting at a simple root αi, ending at

a root α j or α j, j, j ≥ i and obeying some recursion rules. We denote by D the set of all

Dyck paths.

For a dominant weight λ, we introduce a polytope P (λ) ⊂ R
n2

≥0:

P (λ) :=
{

(sα)α>0 | ∀p ∈ D :
if p(0) = αi, p(k) = α j then sp(0) + · · · + sp(k) ≤ (λ, αi, j),

if p(0) = αi, p(k) = α j, j then sp(0) + · · · + sp(k) ≤ (λ, αi,n)

}
.

Let S(λ) be the set of integral points in P (λ).

We show the following.

Theorem B. The set of elements fsvλ, s ∈ S(λ), forms a basis of gr V(λ). �

For s ∈ S(λ) define the weight

wt(s) :=
∑

1≤ j≤k≤n

sα j,kα j,k +
∑

1≤ j≤k<n

sα j,k
α j,k.

As an important application we obtain the following corollary.

Corollary 1.1.

(i) For each s ∈ S(λ) fix an arbitrary order of factors fα in the product
∏

α>0 fsα
α .

Let fs = ∏
α>0 fsα

α be the ordered product. Then the elements fsvλ, s ∈ S(λ),

form a basis of V(λ).

(ii) dim V(λ) = �S(λ).

(iii) char V(λ) = ∑
s∈S(λ) eλ−wt(s). �

We note that the order in the corollary above is important since we are back

to the action of the (in general) not commutative enveloping algebra. We thus obtain a
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family of bases for irreducible sp2n-modules. The existence of these bases (with the same

indexing set) was proved by Vinberg for sp4 (see [17]).

The modules gr V(λ) have one more nice property. Namely, given two dominant

integral weights λ and μ, consider the subspace gr V(λ, μ) ↪→ gr V(λ) ⊗ gr V(μ) gener-

ated from the product of highest weight vectors: gr V(λ, μ) = S(n−)(vλ ⊗ vμ). We prove

that gr V(λ, μ) � gr V(λ + μ) as S(n−)-modules. This is an analog of the corresponding

classical result. In type A, this statement was proved in [9]. Dualizing the embed-

ding gr V(λ + μ) ↪→ gr V(λ) ⊗ gr V(μ), one obtains an algebra structure on the space⊕
λ(gr V(λ))∗. The projective spectrum of this algebra is a certain degeneration of the

symplectic flag variety. In type A it was studied in [6].

Remark 1.2. The data labeling the basis vectors is similar to that for the symplectic

Gelfand–Tsetlin patterns (see [2, 13]). However, these bases are very different from the

symplectic GT basis. On the combinatorial side the connection with the Gelfand–Tsetlin

patterns was recently clarified by Ardila et al. [1]. Generalizing a result of Stanley,

they show that for every partition λ there exists a marked poset (P , A, λ) such that the

Gelfand–Tsetlin polytope coincides with the corresponding marked order polytope and

our polytope P (λ) coincides with the corresponding marked chain polytope. Note that

both polytopes have the same Ehrhart polynomials [1]. �

We finish the introduction with several remarks. The PBW filtration for highest

weight representations was considered in [4–7, 9, 16]. It was shown that it has important

applications in algebraic geometry, representation theory of current and affine algebras

and in mathematical physics.

There exist special representations V(λ) such that the operators fs consist only

of mutually commuting root vectors, even before passing to gr V(λ). These modules can

be described via the theory of abelian radicals and turned out to be important in the

theory of vertex operator algebras (see [8, 10, 12]).

Finally, we note that gr V(λ) carries an additional grading on each weight space

V(λ)μ of V(λ):

gr V(λ)μ =
⊕
s≥0

grsV(λ)μ =
⊕
s≥0

V(λ)
μ
s

V(λ)
μ
s−1

.

The graded character of the weight space is the polynomial

pλ,μ(q) :=
∑
s≥0

(
dim

V(λ)
μ
s

V(λ)
μ
s−1

)
qs.
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Define the degree
deg(s) :=

∑
1≤ j≤k≤n

sα j,k +
∑

1≤ j≤k<n

sα j,k

for s ∈ S(λ), and let S(λ)μ be the subset of elements such that μ = λ − wt(s). Then we have

the following corollary.

Corollary. pλ,μ(q) = ∑
s∈S(λ)μ qdeg s. �

We note that our filtration is different from the Brylinski–Kostant filtration

(see [3, 15]).

Our paper is organized as follows:

In Section 2, we introduce notation and state the problems. Sections 3 and 4 are

devoted to the proof of Theorems A and B. In Section 3, we prove the spanning property

of our basis and in Section 4 we finalize the proof.

2 Definitions

Let R+ be the set of positive roots of sp2n. For each α ∈ R+, we fix a non-zero element

fα ∈ n−
−α. Let αi, ωi i = 1, . . . , n be the simple roots and the fundamental weights. All pos-

itive roots of sp2n can be divided into two groups:

αi, j = αi + αi+1 + · · · + α j, 1 ≤ i ≤ j ≤ n,

αi, j = αi + αi+1 + · · · + αn + αn−1 + · · · + α j, 1 ≤ i ≤ j ≤ n

(note that αi,n = αi,n). We will use the following short versions:

αi = αi, αi = αi,i, fi, j = fαi, j , fi, j = fαi, j
.

We recall the usual order on the alphabet J = {1, . . . , n, n− 1, . . . , 1}

1 < 2 < · · · < n− 1 < n< n− 1 < · · · < 1.

Let sp2n = n+ ⊕ h ⊕ n− be the Cartan decomposition. Consider the increasing

degree filtration on the universal enveloping algebra of U(n−):

U(n−)s = span{x1 · · · xl : xi ∈ n−, l ≤ s}, (2.1)

for example, U(n−)0 = C · 1.
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For a dominant integral weight λ = m1ω1 + · · · + mnωn let V(λ) be the corre-

sponding irreducible highest weight sp2n-module with a highest weight vector vλ. Since

V(λ) = U(n−)vλ, the filtration (2.1) induces an increasing filtration V(λ)s on V(λ):

V(λ)s = U(n−)svλ.

We call this filtration the PBW filtration and study the associated graded space gr V(λ).

In the following lemma, we describe some operators acting on gr V(λ). Let S(n−) denote

the symmetric algebra of n−.

Lemma 2.1. The action of U(n−) on V(λ) induces the structure of a S(n−)-module on

gr V(λ) and

gr(V(λ)) = S(n−)vλ.

The action of U(n+) on V(λ) induces the structure of a U (n+)-module on gr V(λ). �

Our aims are:

• to describe gr V(λ) as an S(n−)-module, that is, describe the ideal I (λ) ↪→ S(n−)

such that gr V(λ) � S(n−)/I (λ);

• to find a basis of gr V(λ).

The description of the ideal is given in the introduction (see Theorem A).

To describe the basis, we introduce the notion of the symplectic Dyck paths.

Definition 2.2. A symplectic Dyck path (or simply a path) is a sequence

p = (p(0), p(1), . . . , p(k)), k≥ 0

of positive roots satisfying the following conditions:

(a) the first root is simple, p(0) = αi for some 1 ≤ i ≤ n;

(b) the last root is either simple or the highest root of a symplectic subalgebra,

more precisely p(k) = α j or p(k) = α j for some i ≤ j ≤ n;

(c) the elements in between obey the following recursion rule: If p(s) = αr,q

with r, q ∈ J, then the next element in the sequence is of the form either

p(s + 1) = αr,q+1 or p(s + 1) = αr+1,q, where x + 1 denotes the smallest element

in J which is bigger than x. �
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To give a visual interpretation of the notion of a Dyck-path for sp8, arrange the

positive roots in the form of a triangle. In this picture, a Dyck path is a path in the

directed graph, starting at a simple root and ending at one of the edges.

α1,1 → α1,2 → α1,3 → α1,4 → α1,3 → α1,2 → α1,1

↓ ↓ ↓ ↓ ↓
α2,2 → α2,3 → α2,4 → α2,3 → α2,2

↓ ↓ ↓
α3,3 → α3,4 → α3,3

↓
α4,4

Denote by D the set of all Dyck-paths. For a dominant weight λ = ∑n
i=1 miωi let

P (λ) ⊂ R
n2

≥0 be the polytope

P (λ) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(sα)α>0 | ∀p ∈ D :

if p(0) = αi, p(k) = α j then sp(0) + · · · + sp(k)

≤ mi + · · · + mj,

if p(0) = αi, p(k) = α j then sp(0) + · · · + sp(k)

≤ mi + · · · + mn

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (2.2)

and let S(λ) be the set of integral points in P (λ).

For a multi-exponent s = {sβ}β>0, sβ ∈ Z≥0, let fs be the element

fs =
∏

β∈R+
f

sβ

β ∈ S(n−).

In the next two sections, we prove the following theorem (Theorem B from the

introduction), which immediately implies Corollary 1.1.

Theorem 2.3. The set fsvλ, s ∈ S(λ), forms a basis of gr V(λ). �

Proof. In Section 3, we show that the elements fsvλ, s ∈ S(λ), span gr V(λ), see

Theorem 3.4. In Section 4, we show that the elements are linear independent in gr V(λ)

(see Theorem 4.6), which finishes the proof. �

3 The Spanning Property

We start with writing down the powers of certain positive roots annihilating a highest

weight vector in an irreducible sp2n-module.
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Lemma 3.1. Let λ = ∑n
i=1 miωi be the sp2n-weight and let V(λ) be the corresponding

highest weight module with highest weight vector vλ. Then

f
mi+···+mj+1
αi, j vλ = 0, 1 ≤ i ≤ j ≤ n− 1, (3.1)

fmi+···+mn+1
αi,i

vλ = 0, 1 ≤ i ≤ n. (3.2)

�

Proof. For each positive root α, we have the corresponding sl2-triple {eα, hα, fα}. Now

the lemma follows immediately from the sl2-theory. �

In the following, we use the differential operators ∂α defined by

∂α fβ =
⎧⎨
⎩ fβ−α if β − α ∈ �+,

0 otherwise.

As in the An-case (see [9]), we have a natural action of U (n+) on S(n−) coming from the

natural action of U (n+) on S(g) and the identification S(n−) � S(g)/S(n−)S+(h ⊕ n+). The

operators ∂α satisfy the property

∂α fβ = cα,β(ad eα)( fβ),

where cα,β are some nonzero constants. In what follows, we sometimes use the equality

αi,n = αi,n. We also use the notation

∂i, j = ∂αi, j , ∂i, j = ∂αi, j
.

Lemma 3.2. The only nontrivial vectors of the form ∂β fα, α, β > 0 are as follows: for

α = αi, j, 1 ≤ i ≤ j ≤ n

∂i,s fi, j = fs+1, j, i ≤ s < j, ∂s, j fi, j = fi,s−1, i < s ≤ j, (3.3)

and for α = αi, j, 1 ≤ i ≤ j ≤ n

∂i,s fi, j = fs+1, j, i ≤ s < j, ∂i,s fi, j = fj,s+1, j ≤ s, ∂i,s fi, j = fj,s−1, j < s, (3.4)

∂s+1, j fi, j = fi,s, i ≤ s < j, ∂ j,s+1 fi, j = fi,s, j ≤ s, ∂ j,s−1 fi, j = fi,s, j < s. (3.5)

�
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Let us illustrate this lemma by the following picture in type C5.

� � � � � � � � �

� � � � � � ��

� � � � �

� � �

�

Here all circles correspond to the positive roots of the root system of type C5 in

the following way: in the upper row, we have from left to right α1,1, . . . , α1,5, α1,4, . . . , α1,1,

in the second row, we have from left to right α2,2, . . . , α2,5, α2,4, . . . , α2,2, and the last line

corresponds to the root α5,5. Now let us take the root α1,3 (which corresponds to the fat

circle). Then all roots which can be obtained by applying the operators ∂β are depicted

as filled small circles.

The following remark will be important to us.

Remark 3.3. Formula (3.3) reproduces the picture in type An. Formulas (3.3)–(3.5)

resemble the situation in type A2n−1. The difference is that in the symplectic case the

roots ∂β fα with fixed α do not form two segments (as in type A), but three segments. �

Our goal is to prove the following theorem.

Theorem 3.4.

(i) The vectors fsvλ, s ∈ S(λ) span gr V(λ).

(ii) Let I (λ) be the ideal I (λ) = S(n−)(U(n+) ◦ R), where

R= span{ f
mi+···+mj+1
αi, j , 1 ≤ i ≤ j ≤ n− 1, fmi+···+mn+1

αi,i
, 1 ≤ i ≤ n}.

There exists a monomial order on S(n−) = C[ fα | α > 0], denoted by “�”, such

that for any s �∈ S(λ) there exists a homogeneous expression (a straightening

law) of the form

fs −
∑
s�t

ct f t ∈ I (λ). (3.6)

�
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Remark 3.5. In the following, we refer to (3.6) as a straightening law for the

polynomial ring S(n−) = C[ fα | α > 0] with respect to the ideal I (λ). Such a straighten-

ing law implies that in the quotient ring S(n−)/I (λ) we can express fs for s �∈ S(λ) as a

linear combination of monomials which are smaller in the monomial order than fs, but

of the same total degree since the expression in (3.6) is homogeneous. �

We show first that (ii) implies (i).

Proof. [(ii) ⇒ (i)] The elements in R obviously annihilate vλ ∈ gr V(λ), and so do the

elements of U(n+) ◦ R, and hence so do the elements of the ideal I (λ). As a consequence,

we get a surjective map S(n−)/I (λ) → gr V(λ).

Suppose s �∈ S(λ). We know by (ii) that fs = ∑
s�t ct f t in S(n−)/I (λ). If some t with

nonzero coefficient ct is not an element of S(λ), then we can again apply a straighten-

ing law and replace f t by a linear combination of smaller monomials. Since there are

only finite number of monomials of the same total degree, by repeating the procedure

if necessary, after a finite number of steps we obtain an expression of fs in S(n−)/I (λ)

as a linear combination of elements f t, t ∈ S(λ). It follows that the set { f t | t ∈ S(λ)} is a

spanning set for S(n−)/I (λ), and hence, by the surjection above, we get a spanning set

{ f tvλ | t ∈ S(λ)} for gr V(λ). �

To prove the second part, we need to define the total order. We start by defining

a total order on the variables:

fn,n >

fn−1,n−1 > fn−1,n > fn−1,n−1 >

fn−2,n−2 > fn−2,n−1 > fn−2,n > fn−2,n−1 > fn−2,n−2 >

. . . > . . . > . . . >

f1,1 > f1,2 > · · · > f1,n−1 > f1,n > f1,n−1 > · · · > f1,2 > f1,1.

(3.7)

We use the same notation for the induced homogeneous lexicographic ordering on the

monomials. Note that this monomial order > is not the order �. To define the latter, we

need some more notation. Let

s•, j =
j∑

i=1

si, j, s•, j =
j∑

i=1

si, j,

si,• =
n∑

j=i

si, j +
n−1∑
j=i

si, j.
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Define a map d from the set of multi-exponents s to Z
n
≥0:

d(s) = (sn,•, sn−1,•, . . . , s1,•).

So, d(s)i = sn−i+1,•. We say d(s) > d(t), if there exists an i such that

d(s)1 = d(t)1, . . . , d(s)i = d(t)i, d(s)i+1 > d(t)i+1.

Definition 3.6. For two monomials fs and f t, we say fs � f t if either

(a) the total degree of fs is greater than the total degree of f t; or

(b) both have the same total degree, but d(s) < d(t); or

(c) both have the same total degree, d(s) = d(t), but fs > f t. �

In words, if both have the same total degree, this definition says that fs is greater

than f t if d(s) is smaller than d(t), or d(s) = d(t) but fs > f t with respect to the homoge-

neous lexicographic ordering on C[ fα | α > 0].

Remark 3.7. It is easy to check that “�” defines a monomial ordering, that is, if fs � f t

and fm �= 1, then

fs fm = fs+m � f t fm = f t+m � f t. �

Slightly abusing notation, we use the same symbol � also for the multi-

exponents: we write s � t if and only if fs � f t.

Proof of Theorem 3.4(ii). We discuss first some reduction steps. Let s be a multi-

exponent violating some of the Dyck paths condition from the definition of S(λ) and

let p be a corresponding Dyck path. We write s as a sum s = s1 + s2, where s1 is defined

as follows: s1
α = sα if α ∈ p and s1

α = 0 if α �∈ p, so s1
α has support (i.e. nonzero entries) only

on p. Now obviously we still have s1 �∈ S(λ). If we have a straightening law for fs1
:

fs1 −
∑
s1�t

ct f t ∈ I (λ)

then multiplication by fs2
gives a straightening law for fs = fs1

fs2
, because � is a

monomial order.
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So it suffices to find a straightening law for those s �∈ S(λ) which are supported

on a Dyck path p and s violates the Dyck path condition for S(λ) for the path p.

Suppose first that the Dyck path p is such that p(0) = αi, p(k) = α j for some

1 ≤ i ≤ j < n. We are going to show that in this case we get a straightening law by the

corresponding result for the Lie algebra sln from [9]. In fact, consider the Lie subalge-

bra M ⊂ sp2n generated by the elements eαi,i , fαi,i , hαi,i , 1 ≤ i < n. This subalgebra is iso-

morphic to sln. Let M = n+
M ⊕ hM ⊕ n−

M be the Cartan decomposition obtained by setting

n+
M = n+ ∩ M, n−

M = n− ∩ M and hM = h ∩ M. Let

RM = span{ f
mi+···+mj+1
αi, j , 1 ≤ i ≤ j ≤ n− 1} ⊂ S(n−

M) ⊂ S(n−).

Then RM ⊂ R and U (n+
M) ◦ RM ⊂ U (n+) ◦ R. Set λM = ∑n−1

i=1 miωi and let IM(λM) be the ideal

IM(λ) := S(n−
M)(U (n+

M) ◦ RM) ⊂ S(n−
M).

We have an obvious inclusion IM(λM) ⊂ I (λ). But note that the ideal IM(λM) is

considered in [9] for the sln-case (recall, M � sln). Also the Dyck path considered here is

an sln Dyck path, because all roots occurring in the path are roots in the subroot-system

associated to the Lie-subalgebra M. It follows by [9] that we have a straightening law

fs −
∑
s>t

ct f t ∈ IM(λM) ⊂ I (λ). (3.8)

It remains to show that in the sum above we can replace “>” by “�”. For this, we

need to recall the proof in the type A-case. Recall that we work now with the subal-

gebra M � sln ⊂ sp2n. To get the straightening law above, one starts with the element

f
sp(0)+···+sp(k)

1,i ∈ RM. Applying the ∂-operators (see [9]) one shows that

B = fs•,1

1,1 fs•,2

1,2 · · · fs•,i

1,i ∈ RM.

One applies then the following ∂-operators to B to get

A= ∂
s2,•
1,1 ∂

s3,•
1,2 · · · ∂si,•

1,i−1 B ∈ RM (3.9)

(since s is supported on p and p(k) = α j, j < n, we have sl,• = ∑n−1
j=l sl, j). We show in [9] that

A=
∑
t≤s

ct F t (3.10)
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for some cs �= 0, which gives rise to the straightening law in (3.8). Now in this special

case Lemma 3.2 implies that the application of the ∂-operators in (3.9) produces only

summands such that d(s) = d(t) for any t occurring in the sum with a nonzero coefficient.

Hence we can replace “>” by “�” in (3.8), which finishes the proof of the theorem in

this case.

Now assume p(0) = αi,i and p(k) = α j, j for some j ≥ i. We include the case j = n

by writing αn,n = αn,n. We proceed by induction on n. For n= 1 we have sp2 = sl2, so we

can refer to [9]. Now assume that we have proved the existence of a straightening law

for all symplectic algebras of rank strictly smaller than n. If i > 1, then the Dyck path is

also a Dyck path for the symplectic subalgebra L � sp2n−2(i−1) generated by eαk,k, fαk,k, hαk,k,

i ≤ k≤ n. Let n+
L , n−

L , etc. be defined by the intersection of n+, n−, etc. with L and set

λL = ∑n
k=i mkωk. It is now easy to see that the straightening law for fs viewed as an

element in S(n−
L ) with respect to IL(λL) defines also a straightening law for fs viewed as

an element in S(n−) with respect to I (λ).

So from now on we fix p(0) = α1 and p(k) = αi,i for some i ∈ {1, . . . , n}. For a multi-

exponent s supported on p, set

Σ =
k∑

l=0

sp(l) > m1 + · · · + mn.

We have obviously fΣ

1,1̄
∈ I (λ). We consider now two operators

Δ1 := ∂
s•,ī+si,•
1,i−1 ∂

s•,i

i+1,i+1
· · · ∂s•,n−1

n,n̄︸ ︷︷ ︸
δ3

∂
s•,n−1+s•,n

1,n−1 · · · ∂s•,i+s•,i+1

1,i︸ ︷︷ ︸
δ2

∂
s•,i−1

1,ī
· · · ∂s•,2

1,3̄
∂

s•,1

1,2̄︸ ︷︷ ︸
δ1

(so Δ1 := ∂
s•,ī+si,•
1,i−1 δ3δ2δ1) and

Δ2 := ∂
s2,•
1,1 ∂

s3,•
1,2 · · · ∂si−1,•

1,i−2.

We will show that

Δ2Δ1 fΣ

1,1̄ = cs fs +
∑
s�t

ct f t (3.11)

with complex coefficients cs and ct, where cs �= 0. Since Δ2Δ1 fΣ

1,1̄
∈ I (λ), the proof of (3.11)

finishes the proof of the theorem. A first step in the proof of (3.11) is the following

lemma.
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Recall the alphabet J = {1, . . . , n, n− 1, . . . , 1}. Let q1, . . . , qi ∈ J be a sequence of

increasing elements defined by

qk = max{l ∈ J : αk,l ∈ p}.

For example, qi = i. The roots of p are then of the form

α1,1, . . . , α1,q1 , α2,q1 , . . . , α2,q2 , . . . , αi,qi−1 , . . . , αi,qi .

Lemma 3.8. Set fs′ = fs•,1

1,1 fs•,2

1,2 · · · f
s•,qi−1 −si,qi−1
1,qi−1

f
si,qi−1
i,qi−1

· · · f
si,ī

i,ī
. Then Δ1 fΣ

1,1̄
is of the form

Δ1 fΣ

1,1̄ = cs′ fs′ +
∑
s′�t

ct f t (3.12)

such that cs′ �= 0. In addition, if f t, t �= s′, is a monomial occurring in this sum, then one

of the following statements holds:

• there exists an index j such that d(t) j > 0 for some j ∈ {1, 2, . . . , n− i},
• d(t) j = 0 for all j ∈ {1, 2, . . . , n− i} and d(t)n−i+1 > si,•,

• d(t) = d(s′) and fti,i
i,i f ti,i+1

i,i+1 · · · f
ti,ī
i,ī

< fsi,i

i,i f si,i+1

i,i+1 · · · f
si,ī

i,ī
. �

Before proving the lemma, we explain in the following corollary the reason why

we need the lemma. The corollary is proved after the proof of the lemma.

Corollary 3.9. If f t �= fs′
is a monomial occurring in (3.12), then Δ2 f t is a sum of

monomials fk such that fs � fk. �

Proof of the lemma. One sees easily by induction that

δ1( fΣ

1,1̄) = fs•,1

1,1 fs•,2

1,2 · · · fs•,i−1

1,i−1 fΣ−s•,1−s•,2−···−s•,i−1

1,1̄
.

Since α1, j − α1,�, 1 ≤ j < i, i < � ≤ n, and α1, j − α�,�̄, 1 ≤ j < i, i < � ≤ n, and α1, j − α1,i−1,

1 ≤ j < i, are never positive roots, all factors of δ2 and δ3, as well as ∂1,i−1, annihilate

the vector

fx = fs•,1

1,1 fs•,2

1,2 · · · fs•,i−1

1,i−1.

Therefore

Δ1( fΣ

1,1̄) = fx∂
s•,ī+si,•
1,i−1 δ3δ2( fΣ−s•,1−s•,2−···−s•,i−1

1,1̄
).
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To visualize the following procedure, one should think of the variables fi, j as

being arranged in a triangle as in the picture after Lemma 3.2, or in the following

example (type C4):

f11 f12 f13 f14 f13̄ f12̄ f11̄

f22 f23 f24 f23̄ f22̄

f33 f34 f33̄

f44

(3.13)

With respect to the ordering “>”, the largest element is in the bottom row and the small-

est element is in the top row on the left side. We enumerate the rows and columns as the

indices of the variables, so the top row is the 1st row, the bottom row the nth row, the

columns are enumerated from left to right, so we have the 1st column on the left side

and the most right one is the 1̄st column.

The operator ∂1,q, 1 ≤ q ≤ n− 1, kills all f1, j for 1 ≤ j ≤ q, ∂1,q( f1, j) = fq+1, j for

j = q + 1, . . . , q + 1, ∂1,q( f1, j̄) = fj,q+1 for j = 1, . . . , q, and ∂1,q kills all fk,� for k≥ 2.

Because of the set of indices of the operators occurring in δ2, the operator applied

to fΣ−s•,1−s•,2−···−s•,i−1

1,1̄
never increases the zero entries in the first row, column ī up to

column 2̄. As a consequence, the application of δ2 produces the monomial

fx f
s•,i+s•,i+1

1,i+1
· · · f

s•,n−2+s•,n−1

1,n−1
fs•,n−1+s•,n

1,n f
s•,ī

1,1̄
+

∑
ck fk,

where the monomials fk occurring in the sum are such that the corresponding trian-

gle (see (3.13)) has at least one non-zero entry in one of the rows between the (i + 1)th

row and the nth row (counted from top to bottom). This implies d(k) j > 0 for some

j = 1, . . . , n− i. The operators δ3 and ∂
s•,ī+si,•
1,i−1 do not change this property, because (in

the language of the scheme (3.13) above) the operators ∂ j, j̄ used to compose δ3 either kill

a monomial or, in the language of the scheme (3.13), they subtract from an entry in the

j̄th column, kth row and add to the entry in the same row, but ( j − 1)th column. The

operator ∂1,i−1 subtracts from the entries in the top row. Since the entries in the top row,

column i − 1 up to 2̄, are zero, it adds to the entries in the ith row. The only exception

is ∂1,i−1 applied to f1,1̄, the result is f1,ī. It follows that the monomials fk′
occurring in

∂
s•,ī+si,•
1,i−1 δ3 fk already have the desired properties, because we have just seen that d(k′

) j > 0

for some j = 1, . . . , n− i.
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So to finish the proof of the lemma, it suffices to look at

fx∂
s•,ī+si,•
1,i−1 δ3 f

s•,i+s•,i+1

1,i+1
· · · f

s•,n−2+s•,n−1

1,n−1
fs•,n−1+s•,n

1,n f
s•,ī

1,1̄
(3.14)

= fx∂
s•,ī+si,•
1,i−1 fs•,i

1,i f s•,i+1

1,i+1 · · · fs•,n

1,n f
s•,n−1

1,n−1
· · · f

s•,i+1

1,i+1
f

s•,ī

1,1̄
(3.15)

Note that the operator ∂1,i−1 being applied to any variable in (3.15) but to f1,1̄, increases

the degree with respect to the variables fi,∗ or gives zero. We note also that ∂1,i−1 f1,1 =
f1,ī. So (3.14) written as a linear combination

∑
ck fk of monomials such that d(k) j = 0

for j = 1, . . . , n− i and d(k)n−i+1 ≥ si,•.

It remains to consider the case where d(k)n−i+1 = si,•. This is only possible

if ∂1,i−1 is applied s•,ī + si,•-times to f
s•,ī

1,1 , in which case d(k) has only two nonzero

entries: d(k)n = Σ − si,• and d(k)n−i+1 = si,•, so d(k) = d(s′). If k �= s′, then necessarily

fti,i
i,i f ti,i+1

i,i+1 · · · f
ti,ī
i,ī

< fsi,i

i,i f si,i+1

i,i+1 · · · f
si,ī

i,ī
. �

Proof of the corollary. The operators used to compose Δ2 do not change anymore the

entries of d(t) for the first n− i + 1 indices.

Suppose first t is such that there exists an index j such that d(t) j > 0 for some

j ∈ {1, 2, . . . , n− i} or d(t)n−i+1 > si,•. By the description of the operators occurring in Δ2,

every monomial fk occurring with a nonzero coefficient in Δ2 f t has this property too

and hence fs � fk.

Next assume d(t) = d(s′) and fti,i
i,i f ti,i+1

i,i+1 · · · f
ti,ī
i,ī

< fsi,i

i,i f si,i+1

i,i+1 · · · f
si,ī

i,ī
. Recall that t1,i−1 =

· · · = t1,1 = 0. It follows that the operators occurring in Δ2 always only subtract from one

of the entries in the top row and add to the entry in the same column and a correspond-

ing row (of index strictly smaller than i). It follows that all monomials fk occurring in

Δ2( f t) have the property: d(k) = d(s). Since fti,i
i,i f ti,i+1

i,i+1 · · · f
ti,ī
i,ī

< fsi,i

i,i f si,i+1

i,i+1 · · · f
si,ī

i,ī
, it follows

that fs > fk and hence fs � fk. �

Continuation of the proof of Theorem 3.4(ii). We have seen that to prove Theorem 3.4(ii),

it suffices to prove (3.11). By Lemma 3.8 and Corollary 3.9, it remains to prove for fs′

that Δ2 fs′
is a linear combination of fs with a non trivial coefficient and monomials

strictly smaller than fs. The following lemma proves this claim and hence finishes the

proof of the theorem.

The following lemma completes the proof of part (ii) of Theorem 3.4.
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Lemma 3.10. The operator Δ2 := ∂
s2,•
1,1 ∂

s3,•
1,2 · · · ∂si−1,•

1,i−2 applied to the monomial fs′
is a

linear combination of fs and smaller monomials:

Δ2 fs′ = cfs +
∑
s�t

ct f t where c �= 0. (3.16)

�
�

Proof. First note that all monomials fk occurring in Δ2 fs′
have the same total degree.

Recall that s′
1,i−1

= · · · = s′
1,1

= 0. It follows that the operators occurring in Δ2 always only

subtract from one of the entries in the top row and add to the entry in the same column

and a corresponding row (of index strictly smaller than i and strictly greater than 1).

Thus, all monomials fk occurring in Δ2( fs′
) have the same multi-degree. In fact, we will

see below that fs is a summand and hence d(k) = d(s).

So in the following, we can replace the ordering � by > since, in this special

case, the latter implies the first.

The elements fi, j and fi, j̄, 2 ≤ i ≤ j ≤ n are in the kernel of the operators ∂1,k for

all 1 ≤ k≤ n, and so are the variables f1, j, j ≤ k in the first k columns.

The operator ∂1,k, 1 ≤ k≤ n, “moves” the variables f1, j, k + 1 ≤ j ≤ n from the first

row to the variable fk+1, j in the same column.

The operator ∂1,k, 1 ≤ k≤ n “moves” the variables f1, j̄, k + 1 ≤ j ≤ n from the first

row to the variable fk+1, j̄ in the same column. For j ≤ k, the operator makes the variables

switch also the column, it moves the variable f1, j̄ to the variable fj,k+1 in the jth row and

(k + 1)th column.

If i = 1, 2, then Δ2 is the identity operator, fs = fs′
and hence the lemma is triv-

ially true. Now assume i ≥ 3. We note that the monomial

fs1,1

1,1 · · · f
s1,q1
1,q1

·
(
∂

s2,q1
1,1 f

s2,q1
1,q1

· · · ∂s2,q2
1,1 f

s2,q2
1,q2

)
· . . .

·
(
∂

si−1,qi−2
1,i−2 f

si−1,qi−2
1,qi−2

· · · ∂si−1,qi−1
1,i−2 f

si−1,qi−1
1,qi−1

) (
f

si,qi−1
i,qi−1

· · · f
si,ī

i,ī

)

is proportional to fs and appears as a summand in Δ2 fs′
. Our goal is to show that all

other monomials in Δ2 fs′
are less than fs.

All monomials share the common factor ( f
si,qi−1
i,qi−1

· · · f
si,ī

i,ī
). The maximal variable

smaller than those occurring in this factor is the variable fi−1,qi−1 . Note that if j < i − 1

then for any q ∈ J the variable ∂1, j f1,q lies in the ( j + 1)th row and j + 1 < i. The operator

∂1,i−2 is applied si−1,• times and the unique maximal monomial in the sum expression
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of ∂
si−1,•
1,i−2 fs′

is

fs•,1

1,1 fs•,2

1,2 · · · f
s•,qi−2 −si−1,qi−2
1,qi−2

(
f

si−1,qi−2
i−1,qi−2

· · · f
si−1,qi−1
i−1,qi−1

) (
f

si,qi−1
i,qi−1

· · · f
si,ī

i,ī

)
.

In fact, applying the operator ∂1,i−2 to any of the variables f1, j such that j �= qi−2, . . . , qi−1,

one gets a monomial smaller in the order >. The exponents si−1, j, j = qi−2, . . . , qi−1, are

the maximal powers such that ∂1,i−2 can be applied to f y
1, j because either qi−2 < j < qi−1,

and then y= s•, j = si−1, j, or j = qi−1, then si−1,qi−1 is the power with which the variable

occurs in fs′
, or j = qi−2, then only the power si−1,qi−2 of the operator is left.

Repeating the arguments for the operators ∂1,i−3, etc. we complete the proof of

the lemma. �

4 Main Theorem

Recall that in [1] the equality #S(λ) = dim V(λ) is proved using purely combinatorial

tools. Combining this result with Theorem 3.4 we obtain Theorems A and B from the

introduction. However, in this section, we present a representation theoretical proof of

the equality #S(λ) = dim V(λ) by showing that the vectors fs, s ∈ S(λ), are linearly inde-

pendent in gr V(λ). The advantage of our proof is that in the course of the proof we obtain

the following important statement: the subspace of gr V(λ) ⊗ gr V(μ) generated from the

product of highest weight vectors is isomorphic to gr V(λ + μ) (see Theorem 4.6(iii)).

4.1 Fundamental weights and minimal sets

In this subsection, we study the case λ = ωi. The following lemma follows from the

definition of S(ωi).

Lemma 4.1. S(ωi) consists of all s such that sα ≤ 1 and the support of s is given by

the set

Ms = {α jl ,kl
| l = 1, . . . , p} ∪ {αtl ,rl | l = 1, . . . , q}

with the following conditions:

1 ≤ j1 < j2 < · · · < jp ≤ i ; 1 ≤ k1 < k2 < · · · < kp,

jp < t1 < t2 · · · < tq ≤ i ≤ r1 < · · · < rq ≤ n. �

Remark 4.2. We note that �Ms ≤ i and every path contains at most one element from

Ms, since the roots on a path are ordered with respect to the order >. �
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Lemma 4.3. For every fundamental weight ωi, we have

�S(ωi) = dim V(ωi). �

Proof. Follows from [1] or by establishing a bijection with Kashiwara–Nakashima

tableaux or by showing that

�S(ωi) + �S(ωi−2) + · · · =
(

2n

i

)

(compare with ΛiV(ω1) = V(ωi) ⊕ V(ωi−2) ⊕ · · · , see [11]). �

We set

Ri = {β ∈ R+ | (ωi, β) �= 0}.

Let λ = ∑
mjω j ∈ P + and s ∈ S(λ). We set

Rs
i = {β ∈ Ri | sβ �= 0}.

From now on let i be the minimal index, s.t. mi �= 0.

Definition 4.4. For s ∈ S(λ) denote by Ms
i the set of minimal elements in Rs

i with respect

to the order > (see (3.7)). Denote by ms
i the tuple mβ = 1, if β ∈ Ms

i and 0 otherwise. �

Lemma 4.5. Let λ = ∑
miωi and i minimal with mi �= 0. If s ∈ S(λ), then ms

i ∈ S(ωi) and

s − ms
i ∈ S(λ − ωi). �

Proof. We first note that the statement ms
i ∈ S(ωi) follows from Remark 4.2. Let us prove

that s − ms
i ∈ S(λ − ωi). For this, we need to show that the conditions from (2.2) for s − ms

i

are satisfied for all paths p. Let p = (p(0), . . . , p(k)). Let p(0) = αa. Then we know that∑k
l=0 sp(l) ≤ ma + · · · + mb, where p(k) = αb if b < n and p(k) = α j, j if b = n ( j ≥ a). The cases

b < i or a> i are trivial. So we assume a≤ i and b ≥ i. If Ms
i ∩ p �= ∅, then

k∑
l=0

(s − ms
i )p(l) ≤ ma + · · · + mb − 1.
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Now assume that Ms
i ∩ p = ∅. Let l be the minimal number such that sp(l) > 0. Then

there exists α ∈ Ms
i such that α < p(l). Therefore, there exists a path p′ containing α,

p(l), . . . , p(k). We note that

mi + · · · + mb ≥
∑
l≥0

sp′(l) >
∑
l≥0

sp(l).

Therefore,
∑

l≥0(s − ms
i )p(l) ≤ mi + · · · + mb. �

4.2 Proof of the main theorem

In the following, we write Va(λ) for the associated graded module gr V(λ). Denote by

Va(λ, μ) ↪→ Va(λ) ⊗ Va(μ) the S(n−)-submodule generated by the tensor product vλ ⊗ vμ

of the highest weight vectors.

Theorem 4.6.

(i) The vectors fsvλ, s ∈ S(λ) form a basis of Va(λ),

(ii) Let Va(λ) = S(n−)/I (λ). Then I (λ) = S(n−)(U(n+) ◦ R), where

R= span{ f
mi+···+mj+1
αi, j , 1 ≤ i ≤ j ≤ n− 1, fmi+···+mn+1

αi,i
, 1 ≤ i ≤ n}.

(iii) The S(n−) modules Va(λ, μ) and Va(λ + μ) are isomorphic. �

The proof of the theorem is by an inductive procedure. We know that part (i)

of the theorem holds for all fundamental weights. For a dominant weight λ = ∑
i aiωi

denote by |λ| = ∑
ai the sum of the coefficients. A first step in the proof is the following

proposition:

Let λ be a dominant weight, and let i be the minimal number such that (λ, αi) �= 0.

Proposition 4.7. The vectors fs(vλ−ωi ⊗ vωi ), s ∈ S(λ), are linearly independent in Va(λ −
ωi) ⊗ Va(ωi), and the vectors fs(vλ), s ∈ S(λ), form a basis for Va(λ). �

Proof. The proof is by induction on |λ|. If λ is a fundamental weight, then the first part

of the claim makes no sense and the second part is true.

So assume now |λ| ≥ 2 and assume that the second part of the proposition

holds for all dominant weights μ such that |μ| < |λ|. We prove now the first part of the

proposition for λ.
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Assume that there exists some vanishing linear combination

∑
s∈S(λ)

cs fs(vλ−ωi ⊗ vωi ) = 0. (4.1)

We will prove that cs = 0 for all s.

Recall first that we have an order � on the set of Cn-multi-exponents (see

Definition 3.6) such that if t /∈ S(λ) then

f tvλ =
∑
t�s

s∈S(λ)

ds fsvλ.

Another important ingredient will be the elements ms
i (Definition 4.4). Recall that i is

minimal such that (λ, αi) �= 0, ms
i ∈ S(ωi) and s − ms

i ∈ S(λ − ωi).

The proof is by contradiction. Assume that cs �= 0 for some s. In the following, we

fix such an element s ∈ S(λ) and we assume without loss of generality that ct = 0 for all

t � s.

The vector space Va(λ − ωi) ⊗ Va(ωi) has a basis given by the elements favλ−ωi ⊗
fbvωi , a ∈ S(λ − ωi), b ∈ S(ωi). For all t ∈ S(λ) such that ct �= 0 in (4.1) we express f t(vλ−ωi ⊗
vωi ) as a linear combination of these basis elements, that is, we will write

f t(vλ−ωi ⊗ vωi ) =
∑

a∈S(λ−ωi)
b∈S(ωi)

Kt
a,b favλ−ωi ⊗ fbvωi .

In the next step, we show that Kt
s−ms

i ,m
s
i
= 0 for all t �= s and Ks

s−ms
i ,m

s
i
�= 0.

Using the rules for the action on a tensor product we see:

fs(vλ−ωi ⊗ vωi ) = C fs−ms
i vλ−ωi ⊗ fms

i vωi +
∑

r1+r2=s

pr1,r2 fr1vλ−ωi ⊗ fr2vωi , (4.2)

where C is a nontrivial constant (a product of binomial coefficients) and r1 �= s − ms
i ,

r2 �= ms
i . The elements fr1vλ−ωi , fr2vωi need not be basis elements, we discuss the sev-

eral possible cases separately. First assume that r2 ∈ S(ωi) \ {ms
i }. Then fr1vλ−ωi ⊗ fr2vωi

is a sum of basis elements of the form favλ−ωi ⊗ fr2vωi , where (a, r2) �= (s − ms
i , ms

i ).

For the same reason, if r1 ∈ S(λ − ωi) \ {s − ms
i }, then fr1vλ−ωi ⊗ fr2vωi is a sum of basis

elements of the form fr1vλ−ωi ⊗ fbvωi where (r1, b) �= (s − ms
i , ms

i ). If r1 /∈ S(λ − ωi) and
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r2 /∈ S(ωi), then

fr1vλ−ωi =
∑
r1�a

a∈S(λ−ωi)

ea favλ−ωi and fr2vωi =
∑
r2�b

b∈S(ωi)

db fbvωi

with some constants ea and db. But among the pairs (a, b) the pair (s − ms
i , ms

i ) cannot

appear, because

(s − ms
i ) + ms

i = s = r1 + r2 � a + b.

Therefore, the expression of fs(vλ−ωi ⊗ vωi ) as a sum of the basis elements is of the form

C fs−ms
i vλ−ωi ⊗ fms

i vωi +
∑

a∈S(λ−ωi),b∈S(ωi)
(a,b)�=(s−ms

i ,m
s
i )

pa,b favλ−ωi ⊗ fbvωi

and hence Ks
s−ms

i ,m
s
i
�= 0.

Now let us consider a term f t(vλ−ωi ⊗ vωi ), t �= s, such that ct �= 0 in (4.1). We write

again

f t(vλ−ωi ⊗ vωi ) =
∑

r1+r2=t

pr1,r2 fr1vλ−ωi ⊗ fr2vωi , (4.3)

and express each of the terms fr1vλ−ωi ⊗ fr2vωi as a sum of the basis elements

fr1vλ−ωi ⊗ fr2vωi =
∑

a∈S(λ−ωi),b∈S(ωi)

qa,b favλ−ωi ⊗ fbvωi .

Recall that a is less than or equal to r1, and b is less than or equal to r2. We claim

that none of the couples (a, b) occurring with a nonzero coefficient qa,b is equal to

(s − ms
i , ms

i ). The proof is by contradiction: If (a, b) = (s − ms
i , ms

i ), then r1 + r2 = t is

greater than or equal to a + b = s − ms
i + ms

i = s, which is not possible, because ct = 0

if t � s. Hence Kt
s−ms

i ,m
s
i
= 0 for all t �= s.

It follows that if we express each of the summands in (4.1) as a linear com-

bination of the basis elements favλ−ωi ⊗ fbvωi , a ∈ S(λ − ωi), b ∈ S(ωi), then the term

fs−ms
i vλ−ωi ⊗ fms

i vωi occurs only once with a nonzero coefficient, which is not possible

unless cs = 0 in (4.1). Hence all coefficients vanish in the expression in (4.1), proving the

linear independence.
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To prove the second part of the proposition recall the degree filtration U(n−)s on

U(n−):

U(n−)s = span{x1 · · · xl : xi ∈ n−, l ≤ s},

and recall that for a dominant weight μ we set

V(μ)s = U(n−)svμ.

Then Va(μ) is the associated graded S(n−)-module. The tensor product Va(λ − ωi) ⊗
Va(ωi) of the graded modules with grading

Va(λ − ωi) ⊗ Va(ωi) =
⊕
k≥0

(⊕k=�+m(Va(λ − ωi))� ⊗ (Va(ωi))m)

is the associated graded module for the filtration

(V(λ − ωi) ⊗ V(ωi))k =
∑

k=�+m

V(λ − ωi)� ⊗ V(ωi)m.

Recall the total order on the set of positive roots. We write fs ∈ U (n−) for s ∈ S(λ) for

the ordered product of the corresponding root vectors. The linear independence of the

vectors fs(vλ−ωi ⊗ vωi ), s ∈ S(λ), in Va(λ − ωi) ⊗ Va(ωi) implies the linear independence

of the vectors fs(vλ−ωi ⊗ vωi ), s ∈ S(λ), in V(λ − ωi) ⊗ V(ωi). Since these vectors are all

contained in the Cartan component V(λ) ↪→ V(λ − ωi) ⊗ V(ωi), we obtain the inequality

|S(λ)| ≤ dim V(λ). We know already that the vectors fs(vλ), s ∈ S(λ), span Va(λ) (Section 3,

the straightening law), so |S(λ)| ≥ dim Va(λ) = dim V(λ) and hence:

|S(λ)| = dim Va(λ).

It follows that the vectors fs(vλ), s ∈ S(λ), are in fact a basis for Va(λ). �

Using the straightening law in Section 3 we get as an immediate consequence.

Corollary 4.8. Let Va(λ) = S(n−)/I (λ). Then I (λ) = S(n−)(U(n+) ◦ R), where

R= span{ f
mi+···+mj+1
αi, j , 1 ≤ i ≤ j ≤ n− 1, fmi+···+mn+1

αi,i
, 1 ≤ i ≤ n}. �
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Using the defining relations for Va(λ), it is easy to see that we have a canonical

surjective map Va(λ) → Va(λ − ωi, ωi) sending vλ to vλ−ωi ⊗ vωi . By Proposition 4.7, we

know that the image of basis { fs(vλ), s ∈ S(λ)} ⊂ Va(λ) remains linearly independent and

hence:

Corollary 4.9. The S(n−) modules Va(λ − ωi, ωi) and Va(λ) are isomorphic. �

Proof of Theorem 4.6. The first and second parts of the theorem follow from Proposi-

tion 4.7 and Corollary 4.8. It remains to prove the third part. As above, it is easy to see

that we have a canonical surjective map Va(λ + μ) → Va(λ, μ) sending vλ+μ to vλ ⊗ vμ.

The corollary above says that our theorem holds if μ = ωi. Iterating, we obtain

that both Va(λ, μ) and Va(λ + μ) sit inside the tensor product

Va(ω1)
⊗(λ+μ,α1) ⊗ · · · ⊗ Va(ωn)

⊗(λ+μ,αn)

as highest components (generated from the tensor product of highest weight vectors).

This proves the theorem. �
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