A LARGE DEVIATIONS BOUND FOR THE TEICHMÜLLER FLOW ON THE MODULI SPACE OF ABELIAN DIFFERENTIALS

VÍTOR ARAÚJO AND ALEXANDER I. BUFETOV

Abstract. Large deviation rates are obtained for suspension flows over symbolic dynamical systems with a countable alphabet. The method is that of the first author [1] and follows that of Young [23]. A corollary of the main results is a large deviation bound for the Teichmüller flow on the moduli space of abelian differentials, which extends earlier work of J. Athreya [2].

1. Introduction

1.1. The Teichmüller flow. Let \(g \geq 2 \) be an integer. Take an arbitrary integer vector \(\kappa = (k_1, \ldots, k_\sigma) \) such that \(k_i > 0, k_1 + \cdots + k_\sigma = 2g - 2 \).

Let \(\mathcal{M}_\kappa \) be the moduli space of abelian differentials with singularities prescribed by \(\kappa \), or, in other words, the moduli space of pairs \((M, \omega)\) such that \(M \) is a compact oriented Riemann surface of genus \(g \) and \(\omega \) is a holomorphic one-form on \(M \) whose zeros have orders \(k_1, \ldots, k_\sigma \). We impose the additional normalization requirement

\[
\frac{1}{2i} \int_M \omega \wedge \bar{\omega} = 1.
\]

(in other words, the surface \(M \) has area 1 with respect to the area form induced by \(\omega \)). The space \(\mathcal{M}_\kappa \) need not be connected and we denote by \(\mathcal{H} \) a connected component of \(\mathcal{M}_\kappa \). The Teichmüller flow \(g_t \) on \(\mathcal{H} \) is defined by the formula

\[
g_t(M, \omega) = (M', \omega'), \quad \text{where} \quad \omega' = e^{t \Re(\omega)} + i e^{-t \Im(\omega)},
\]

and the complex structure on \(M' \) is uniquely determined by the requirement that the form \(\omega' \) be holomorphic.

The flow \(g_t \) preserves a natural “smooth” probability measure on \(\mathcal{H} \) (Masur [15], Veech [19]), which we denote by \(\mu_\kappa \) (see, e.g., [13] for a

Date: February 1, 2010.

2000 Mathematics Subject Classification. 37D25, 37A50, 37B40, 37C40.

Key words and phrases. suspension flows, moduli spaces, large deviations, Gibbs equilibrium states, countable shifts.
precise definition of the smooth measure; informally, the construction of \(\mu_\kappa \) can be explained as follows: by the Hubbard-Masur Theorem \cite{11}, the relative periods of \(\omega \) with respect to its zeros yield a local system of coordinates on \(\mathcal{H} \); up to a scalar multiple, the measure \(\mu_\kappa \) is simply the Lebesgue measure in the Hubbard-Masur coordinates).

Veech \cite{20} proved that the Teichmüller flow is a Kolmogorov flow with respect to \(\mu_\kappa \). Furthermore, \(\mu_\kappa \) is the unique measure of maximal entropy for the flow \(g_t \) \cite{5}.

In fact, the Teichmüller flow preserves a pair of infinitely smooth stable and unstable foliations on \(\mathcal{H} \), the measure \(\mu_\kappa \) admits globally defined conditional measures on the stable and unstable leaves, and the flow \(g_t \) expands and contracts the conditional measures uniformly. Informally, \(\mu_\kappa \) is the Bowen-Margulis measure for \(g_t \).

Veech \cite{20} showed that the flow \(g_t \) admits no zero Lyapunov exponents with respect to the smooth measure (and all ergodic measures satisfying a technical condition). Forni \cite{9} showed that the expansion on the unstable leaves (as well as contraction on stable leaves) is uniform on compact sets (whence, in particular, absence of zero exponents for the flow follows for all ergodic measures).

Furthermore, the Teichmüller flow satisfies the following exponential estimate for visits into compact sets. Let \(K \subset \mathcal{H} \) be a compact set with nonempty interior.

For \(X \in \mathcal{H} \) set

\[\tau_K(X) = \{ \inf t : g_t X \in K \}. \]

Then there exists \(\alpha > 0 \) such that

\[\int_{\mathcal{H}} \exp(\alpha \tau_K(X))d\mu_\kappa(X) < +\infty. \] (1.1)

J. Athreya established the estimate (1.1) for a special family of “large” compact sets \(K \). For arbitrary compact sets with nonempty interior (in fact, it suffices to require for some \(t_0 > 0 \) that the interior of the set \(\bigcup_{0 \leq t \leq t_0} g_t K \) be nonempty) the exponential estimate was proved in \cite{6} and independently by Avila, Gouëzel and Yoccoz in \cite{3}.

The uniform hyperbolicity of the Teichmüller flow on compact sets in combination with the estimate (1.1) allow one to carry over to the Teichmüller flow a number of facts known about geodesic flows on compact manifolds of negative curvature. In particular, in \cite{6} it is shown that the Teichmüller flow satisfies the Central Limit Theorem with respect to \(\mu_\kappa \), while Avila, Gouëzel and Yoccoz in \cite{3} have shown that the time correlations of the Teichmüller flow decay exponentially. This paper is devoted to large deviations for the Teichmüller flow.
Take $\delta > 0$, let $\varphi : \mathcal{H} \to \mathbb{R}$ have average zero and consider the set

$$B_{\delta,T}(\varphi) = \{X \in \mathcal{H} : \int_0^T \varphi(g_tX)dt > \delta T\}.$$

If φ is the characteristic function of a specially chosen large compact set, then J. Athreya [2] showed that for any $\delta > 0$ the measure $\mu_\kappa(B_{\delta,T}(\varphi))$ decays exponentially as $T \to \infty$.

Our aim in this paper (see Theorem A below) is to extend the result of Athreya and to establish exponential decay of $\mu_\kappa(B_{\delta,T}(\varphi))$ for a larger class of functions φ: namely, for functions, which, following [6], we call Hölder in the sense of Veech (the formal definition is given in [6] and repeated below).

It is essential for our proof that μ_κ is the measure of maximal entropy and that the exponential estimate (1.1) holds for μ_κ.

Unlike Athreya’s proof, which relies on the study of the action of the special linear group on \mathcal{H}, our argument only uses the symbolic coding for the Teichmüller flow on \mathcal{H}, or, more precisely, for its finite cover — the Teichmüller flow on Veech’s space of zippered rectangles.

1.2. Zippered rectangles. Here we briefly recall the construction of the Veech space of zippered rectangles. We use the notation of [6], [5].

Let π be a permutation of m symbols, which will always be assumed irreducible in the sense that $\pi\{1, \ldots, k\} = \{1, \ldots, k\}$ implies $k = m$. The Rauzy operations a and b are defined by the formulas

$$a\pi(j) = \begin{cases}
\pi j, & \text{if } j \leq \pi^{-1}m, \\
\pi m, & \text{if } j = \pi^{-1}m + 1, \\
\pi(j - 1), & \text{if } \pi^{-1}m + 1 < j \leq m;
\end{cases}$$

$$b\pi(j) = \begin{cases}
\pi j, & \text{if } \pi j \leq \pi m, \\
\pi j + 1, & \text{if } \pi m < \pi j < m, \\
\pi m + 1, & \text{if } \pi j = m.
\end{cases}$$

These operations preserve irreducibility. The Rauzy class $\mathcal{R}(\pi)$ is defined as the set of all permutations that can be obtained from π by application of the transformation group generated by a and b. From now on we fix a Rauzy class \mathcal{R} and assume that it consists of irreducible permutations.

For $i, j = 1, \ldots, m$, denote by E_{ij} the $m \times m$ matrix whose $(i, j)th$ entry is 1, while all others are zeros. Let E be the identity $m \times m$-matrix.
Following Veech [19], introduce the unimodular matrices

\[A(\pi, a) = \sum_{i=1}^{\pi^{-1}m} E_{ii} + E_{m, \pi^{-1}m+1} + \sum_{i=r}^{m-1} E_{i,i+1}, \quad (1.2) \]

\[A(\pi, b) = E + E_{m, \pi^{-1}m}, \quad (1.3) \]

Let \(\Delta_{m-1} = \{ \lambda \in \mathbb{R}^m : |\lambda| = 1, \lambda_i > 0 \text{ for } i = 1, \ldots, m \}. \)

Denote \(\Delta_{m-1}^+ = \{ \lambda \in \Delta_{m-1} | \lambda_{\pi^{-1}m} > \lambda_m \}, \quad \Delta_{m-1}^- = \{ \lambda \in \Delta_{m-1} | \lambda_m > \lambda_{\pi^{-1}m} \}, \)

Let \(\mathcal{R} \) be a Rauzy class of irreducible permutations. A **zippered rectangle** associated to the Rauzy class \(\mathcal{R} \) is a triple \((\lambda, \pi, \delta) \), where \(\lambda \in \Delta_{m-1}^+ \), \(\delta \in K(\pi) \), \(\pi \in \mathcal{R} \), and the vector \(\delta \) satisfies the following inequalities:

\[\delta_1 + \cdots + \delta_i \leq 0, \quad i = 1, \ldots, m - 1. \quad (1.4) \]

\[\delta_{\pi^{-1}1} + \cdots + \delta_{\pi^{-1}i} \geq 0, \quad i = 1, \ldots, m - 1. \quad (1.5) \]

The set of all \(\delta \) satisfying the above inequalities is a cone in \(\mathbb{R}^m \); we shall denote this cone by \(K(\pi) \).

The area of a zippered rectangle is given by the expression

\[\text{Area}(\lambda, \pi, \delta) = \sum_{r=1}^{m} \lambda_r h_r = \sum_{r=1}^{m} \lambda_r (-\sum_{i=1}^{r-1} \delta_i + \sum_{i=1}^{\pi(r)-1} \delta_{\pi^{-1}i}) = \sum_{i=1}^{m} \delta_i (-% \sum_{r=1}^{m} \lambda_r + \sum_{r=\pi(i)+1}^{m} \lambda_{\pi^{-1}r}). \quad (1.6) \]

(again, our convention is that \(\sum_{i=0}^{m+1}(...) = 0 \) and \(\sum_{i=1}^{0}(...) = 0 \).)

Consider the set

\[\mathcal{V}(\mathcal{R}) = \{ (\lambda, \pi, \delta) : \pi \in \mathcal{R}, \lambda \in \mathbb{R}^m_+, \delta \in K(\pi) \}. \]

In other words, \(\mathcal{V}(\mathcal{R}) \) is the space of all possible zippered rectangles corresponding to the Rauzy class \(\mathcal{R} \).

The Teichmüller flow \(P^t \) acts on \(\mathcal{V}(\mathcal{R}) \) by the formula

\[P^t(\lambda, \pi, \delta) = (e^t \lambda, \pi, e^{-t} \delta). \]

Veech also introduces a map \(U \) acting on \(\mathcal{V}(\mathcal{R}) \) by the formula

\[U(\lambda, \pi, \delta) = \begin{cases} (A(\pi, b)^{-1} \lambda, b \pi, A(\pi, b)^{-1} \delta), & \text{if } \lambda \in \Delta_{m}^+; \\ (A(\pi, a)^{-1} \lambda), a \pi, A(\pi, a)^{-1} \delta), & \text{if } \lambda \in \Delta_{m}^-; \\ \end{cases} \]

The map \(U \) and the flow \(P^t \) commute ([19]).
The volume form $\text{Vol} = d\lambda_1 \ldots d\lambda_m d\delta_1 \ldots d\delta_m$ on $\mathcal{V}(\mathbb{R})$ is preserved under the action of the flow P^t and of the map \mathcal{U}. Now consider the subset

$$\mathcal{V}^{(1)}(\mathbb{R}) = \{(\lambda, \pi, \delta) : \text{Area}(\lambda, \pi, \delta) = 1\},$$

i.e., the subset of zippered rectangles of area 1; observe that both P^t and \mathcal{U} preserve the area of a zippered rectangle and therefore the set $\mathcal{V}^{(1)}(\mathbb{R})$ is invariant under P^t and \mathcal{U}.

Denote

$$\tau(\lambda, \pi) = (\log(|\lambda| - \min(\lambda_m, \lambda_{\pi^{-1}m})),$$

and for $x \in \mathcal{V}(\mathbb{R})$, $x = (\lambda, \delta, \pi)$, write

$$\tau(x) = \tau(\lambda, \pi).$$

Now define

$$\mathcal{Y}(\mathbb{R}) = \{x \in \mathcal{V}(\mathbb{R}) : |\lambda| = 1\}.$$

and

$$\mathcal{V}^{(1)}_0(\mathbb{R}) = \bigcup_{x \in \mathcal{Y}(\mathbb{R}), 0 \leq t \leq \tau(x)} P^t x.$$

The set $\mathcal{V}^{(1)}_0(\mathbb{R})$ is a fundamental domain for \mathcal{U} and, identifying the points x and $\mathcal{U}x$ in $\mathcal{V}^{(1)}_0(\mathbb{R})$, we obtain a natural flow, also denoted by P^t, on $\mathcal{V}^{(1)}_0(\mathbb{R})$.

The restriction of the measure given by the volume form Vol onto the set $\mathcal{V}^{(1)}_0(\mathbb{R})$ will be denoted by μ_R. By a theorem, proven independently and simultaneously by W.Veech [19] and H. Masur [15], $\mu_R(\mathcal{V}^{(1)}_0(\mathbb{R})) < \infty$, and we shall in what follows assume that μ_R is normalized to have total mass 1.

Now introduce the vectors h and a by the formulas:

$$h_i = -\sum_{i=1}^{r-1} \delta_i + \sum_{l=1}^{\pi(r)-1} \delta_{\pi^{-1}l},$$

$$a_i = -\delta_1 - \cdots - \delta_{i-1}.$$ \hspace{1cm} (1.7)

$$a_i = -\delta_1 - \cdots - \delta_{i-1}.$$ \hspace{1cm} (1.8)

The data (λ, h, a, π) determine the zippered rectangle (λ, π, δ) uniquely. We now metrize the space of zippered rectangles as follows.

Take two zippered rectangles $x = (\lambda, h, a, \pi)$ and $x' = (\lambda', h', a', \pi')$. Write

$$d((\lambda, h, a), (\lambda', h', a')) = \log \frac{\max_{i,j,k,l} \frac{h_i}{h_j} \frac{h_k}{h_l}}{\min_{i,j,k,l} \frac{h_i}{h_j} \frac{h_k}{h_l}}.$$
and define the metric on $\Omega(\mathcal{R})$ by

$$d(x, x') = \begin{cases} d((\lambda, h, a), (\lambda', h', a')) & \text{if } \pi = \pi' \text{ and } \frac{d\pi}{ds} > 0; \\ 2 + d((\lambda, h, a), (\lambda', h', a')), & \text{otherwise.} \end{cases}$$

We say that a function f on the space of zippered rectangles is Hölder if it is Hölder with respect to the Hilbert metric introduced above.

1.3. Zippered rectangles and abelian differentials. Veech [19] established the following connection between zippered rectangles and moduli of abelian differentials. A detailed description of this connection is given in [14].

A zippered rectangle naturally defines a Riemann surface endowed with a holomorphic differential. This correspondence preserves area. The orders of the singularities of ω are uniquely defined by the Rauzy class of the permutation π ([19]). For any \mathcal{R} we thus have a map

$$\pi_{\mathcal{R}} : \mathcal{V}_{0}^{(1)}(\mathcal{R}) \to \mathcal{M}_\kappa,$$

where κ is uniquely defined by \mathcal{R}.

Veech [19] proved

Theorem 1.1 (Veech). (1) Up to a set of measure zero, $\pi_{\mathcal{R}}(\mathcal{V}_{0}^{(1)}(\mathcal{R}))$ is a connected component of \mathcal{M}_κ. Any connected component of any \mathcal{M}_κ has the form $\pi_{\mathcal{R}}(\mathcal{V}_{0}^{(1)}(\mathcal{R}))$ for some \mathcal{R}.

(2) The map $\pi_{\mathcal{R}}$ is finite-to-one and almost everywhere locally bijective.

(3) $\pi_{\mathcal{R}}(\text{int}x) = \pi_{\mathcal{R}}(x)$.

(4) The flow P^t on $\mathcal{V}_{0}^{(1)}(\mathcal{R})$ projects under $\pi_{\mathcal{R}}$ to the Teichmüller flow g_t on the corresponding connected component of \mathcal{M}_κ.

(5) $(\pi_{\mathcal{R}})_* \mu_\kappa = \mu_{\mathcal{R}}$.

(6) $m = 2g - 1 + \sigma$.

A function φ on \mathcal{M}_κ is called Hölder in the sense of Veech if if there exists a Hölder function $\theta : \mathcal{V}_{0}^{(1)}(\mathcal{R}) \to \mathbb{R}$ such that $\varphi \circ \pi_{\mathcal{R}} = \theta$. In particular if a function $\varphi : \mathcal{H} \to \mathbb{R}$ is a lift of a smooth function from the underlying moduli space \mathcal{M}_g of compact surfaces of genus g, then φ is Hölder in the sense of Veech (see Remark 3 on p.587 in [6]).

The main result of this paper is

Theorem A. Let \mathcal{H} be a connected component of the moduli space \mathcal{M}_κ of abelian differentials with prescribed singularities, let g_t be the Teichmüller flow, and let μ_κ be the smooth measure. Let $\varphi : \mathcal{H} \to \mathbb{R}$ be bounded and
Hölder in the sense of Veech. If \(\mu_\kappa(\varphi) = 0 \) and \(\int_0^\tau \varphi(g_t z) dt \neq 0 \) for some periodic point \(z \) with period \(\tau > 0 \), then for any \(\varepsilon > 0 \) the limit superior

\[
\lim \sup_{T \to +\infty} \frac{1}{T} \log \mu_\kappa \left\{ x \in \mathcal{H} : \left| \int_0^T \varphi(g_t x) dt \right| \geq T \varepsilon \right\}
\]

is strictly negative.

1.4. **Symbolic coding for the Teichmüller flow.** The Teichmüller flow on Veech’s space of zippered rectangles admits a representation as a suspension flow over the natural extension of the Rauzy-Veech-Zorich induction map on Veech’s space of zippered rectangles [19, 20, 24]. The Rauzy-Veech-Zorich induction has a natural symbolic coding, and the Teichmüller flow can thus be represented as a suspension flow over a topological Markov chain with a countable alphabet. The roof function in this representation depends only on the past; on the other hand, it is neither Hölder nor bounded away from zero or infinity.

It is therefore convenient to modify the coding by considering first returns of the Teichmüller flow to an appropriately chosen subset. It turns out that the induced symbolic representation has much nicer properties; the method goes back to Veech’s 1982 paper [19].

There is a certain freedom in choosing the subset for inducing, and thus we obtain a countable family of symbolic flows over the countable full shift which code the Teichmüller flow and whose roof functions are Hölder and bounded away from zero; for any Teichmüller-invariant probability measure at least one of them codes a set of probability 1.

We summarize these facts in the following Proposition, essentially due to Veech [19]; a detailed exposition of the proof may be found in [5].

Let \(X = \mathbb{Z}^\mathbb{Z} \) be the space of all bi-infinite sequences over a countable alphabet, and let \(\sigma : X \to X \) be the full right shift. The Hölder structure on \(X \) is chosen in the usual way: we say that a function \(\varphi : X \to \mathbb{R}_+ \) is Hölder if there exists a non-negative \(\alpha < 1 \) such that if sequences \(\omega, \tilde{\omega} \in X \) coincide at all indices not exceeding \(N \) in absolute value, then

\[
\left| \varphi(\omega) - \varphi(\tilde{\omega}) \right| \leq C \alpha^N.
\]

If a function \(r : X \to \mathbb{R}_+ \) is bounded away from zero, then we denote by \(f_t^r \) the suspension flow over \(\sigma \) with roof function \(r \) (or just \(f_t \) when the roof function is clear from the context); by \(X_r \) the phase space of the flow \(f_t^r \).
Given a bounded measurable function φ on X_r, we define a function φ_r on X by the formula

$$\varphi_r(\omega) := \int_0^{\omega(r)} \varphi(\omega, t) dt. \tag{1.9}$$

We have then the following Proposition (see [5] and [6]):

Proposition 1.2. Let \mathcal{R} be a Rauzy class of irreducible permutations. There exists a countable family of Hölder functions r_n, $n \in \mathbb{N}$, bounded away from zero and such that the following holds. For any n there exists an injective map $i_n : X_{r_n} \to \mathcal{V}_0^1(\mathcal{R})$ such that

1. the diagram

$$
\begin{array}{ccc}
X_{r_n} & \xrightarrow{i_n} & \mathcal{V}_0^1(\mathcal{R}) \\
\downarrow f^* & & \downarrow \rho_l \\
X_{r_n} & \xrightarrow{i_n} & \mathcal{V}_0^1(\mathcal{R})
\end{array}
$$

is commutative;

2. for the Masur-Veech smooth measure $\mu_\mathcal{R}$ and all n we have

$$\mu_\mathcal{R}(i_n(X_{r_n})) = 1;$$

furthermore, the measure $(i_n)_*^{-1}\mu_\mathcal{R}$ is the unique measure of maximal entropy for the flow $f_{t_l}^*$ on X_{r_n};

3. for any P^l-invariant probability measure μ on $\mathcal{V}_0^1(\mathcal{R})$, there exists n such that $\mu(i_n(X_{r_n})) = 1$.

4. if a function $\psi : \mathcal{V}_0^1(\mathcal{R}) \to \mathbb{R}$ is Hölder in the sense of Veech, then the function $(\psi \circ i_n)_r$ is Hölder on Ω.

This Proposition reduces the problem of large deviations for the Teichmüller flow to that of large deviations for suspension flows over the full countable shift. We now proceed to a study of such suspension flows. Our approach is based on the work of the first author in [1] which is an adaptation of the work of Young [23].

1.5. **Suspension Flows over the Countable Shift.** In what follows we present the notation for symbolic dynamics found in the papers by Buzzi and Sarig [18, 7] (see also the survey of Gurevich and Savchenko [10]) which we use in this text.

Let $\sigma : X \to X$ be the shift on the space X of bi-infinite words on an infinite countable alphabet. Denote by M_σ the family of all σ-invariant Borel probability measures on X.
We write \([x]_n\) to denote the cylinder of points in \(X\) with the same coordinates as \(x\) in the positions \(0, \pm 1, \ldots, \pm (n-1)\), i.e.
\[
[x]_n := \{y \in X : y_i = x_i, i \in \mathbb{Z}, |i| < n\}.
\]
We say that a function \(\phi : X \to \mathbb{R}\) is \((A, \alpha)\)-Hölder-continuous if \(A > 0, 0 < \alpha < 1\) are such that \(\text{var}_k(\phi) \leq A \alpha^k\) for all \(k \geq 1\), where
\[
\text{var}_k(\phi) = \sup \{|\phi(x) - \phi(y)| : x, y \in X, y \in [x]_k\}.
\]
We also use the notion of summable variation: a function \(\phi : X \to \mathbb{R}\) is of summable variation if \(\sum_{k \geq 1} \text{var}_k(\phi) < \infty\).
We say that a \(\phi : X \to \mathbb{R}\) is log-Hölder if there exist \(C, \alpha > 0\) such that for all \(k \in \mathbb{N}\) and \(x \in X\)
\[
1 - Ce^{-\alpha k} \leq \frac{\phi(y)}{\phi(x)} \leq 1 + Ce^{-\alpha k} \quad \text{for all } y \in X \text{ with } y \in [x]_k.
\]
We note that any of these conditions allows \(\phi\) to be unbounded and implies the continuity of \(\phi\). For Hölder and summable variation we get uniform continuity. Moreover, denoting
\[
\text{var}_k(\phi, x) = \sup \{|\phi(x) - \phi(y)| : y \in X, x_i = y_i \text{ for all } |i| < k\}
\]
we see that \(\text{var}_k(\phi, x) \leq \text{var}_k(\phi)\) for all \(k \geq 1\) if \(\phi\) is of summable variation, and that for a log-Hölder \(\phi\) we get \(\text{var}_k(\phi, x) \leq Ce^{-\alpha k}\), which now depends on \(\phi(x)\). Hence a log-Hölder observable never has summable variation, unless \(\phi\) is bounded. In fact, it is easy to see that

Lemma 1.3. If \(\phi\) is Hölder, then \(\phi\) is of summable variation. If \(\phi\) is bounded and log-Hölder, then \(\phi\) is Hölder.

We also say that an observable \(\phi : X \to \mathbb{R}\) is cohomologous to the zero function if there exists a uniformly continuous function \(\chi : X \to \mathbb{R}\) such that \(\phi = \chi \circ \sigma - \chi\).
We use the following standard notation for Birkhoff sums of a function \(\phi : X \to \mathbb{R}\) with respect to a transformation \(f : X \cup \sigma\) on a space \(X\): \(S_k^f \phi := \sum_{i=0}^{k-1} \phi \circ f^i\). We just write \(S_k \phi\) if the dynamics is clear from the context.
We recall that a Gibbs equilibrium state with respect to a potential \(\psi : X \to \mathbb{R}\) is, according to Bowen [4] and Sarig [18], a probability measure \(\mu = \mu_\psi\) on \(X\) such that there exists \(P = P_\mu(\psi) \in \mathbb{R}\) and \(K = K_\psi > 0\) satisfying
\[
\frac{1}{K} \leq \frac{\mu([x]_k)}{e^{-Pk + S_k \psi(x)}} \leq K, \quad \text{for every } x \in X \text{ and all } k \geq 0.
\]
It is well known that in this case we have
\[P = \sup_{\nu \in \mathcal{M}_{\sigma}} \left(h_{\nu}(\sigma) + \int \psi \, d\nu \right) = h_{\mu}(\sigma) + \int \psi \, d\mu \] (1.10)
so that \(\mu \) achieves the supremum above.

Theorem B. Let \(\sigma : X \to X \) be a countable full shift and \(\psi : X \to \mathbb{R} \) be a log-Hölder function. We assume that \(\mu = \mu_\psi \) is the unique Gibbs equilibrium state with respect to \(\psi \). Then for every observable \(\phi : X \to \mathbb{R} \) of summable variation with mean zero \(\mu(\phi) = 0 \) which is not cohomologous to the zero function, we have

\[
\lim \sup_{n \to +\infty} \frac{1}{n} \log \mu \{ x \in X : |S_n \phi(x)| \geq n\varepsilon \} \leq \sup \left\{ h_{\nu}(\sigma) - \int \psi \, d\nu : |\nu(\phi)| \geq \varepsilon, \nu \in \mathcal{M}_{\sigma}, \psi \in L^1(\nu) \right\},
\]
and

\[
\lim \inf_{n \to +\infty} \frac{1}{n} \log \mu \{ x \in X : |S_n \phi(x)| > n\varepsilon \} \geq \sup \left\{ h_{\nu}(\sigma) - \int \psi \, d\nu : |\nu(\phi)| > \varepsilon, \nu \in \mathcal{M}_{\sigma}, \psi \in L^1(\nu) \right\}
\]
for every \(\varepsilon > 0 \). In addition the supremum above is strictly negative.

Based on this result we are able to obtain the following large deviation law for a suspension flow over a full countable shift with respect to the measure naturally induced by the Gibbs measure in the setting of Theorem B.

Let \(r : X \to [r_0, +\infty) \) be a log-Hölder roof function with \(r_0 > 0 \) a constant, and denote by \(X_r \) the space
\[
\left\{ (x, t) \in X \times [0, +\infty) : 0 \leq t < r(x) \right\}.
\]
Let \(f_t : X_r \to X_r, t \geq 0 \) be the special flow over the shift \(\sigma \) with roof function \(r \) (see e.g. [8]).

We say that an observable \(\phi : X \to \mathbb{R} \) has exponential tail if there exist \(\varepsilon_0 > 0 \) such that \(\int e^{\varepsilon_0 |\phi|} \, d\mu < \infty \).

It is well known that given a \(\sigma \)-invariant probability \(\mu \) there exists a naturally induced \(f_t \)-invariant measure \(\mu_r \), on \(X_r \) (see e.g. [8]).

Theorem C. Let \(\sigma : X \to X \) be a countable full shift and \(r : X \to [r_0, +\infty) \) be a log-Hölder function with exponential tail and \(r_0 > 0 \). We assume that \(\mu \) is the unique Gibbs equilibrium state with respect to \(\psi = -h \cdot r \) for some fixed constant \(h > 0 \), and let \(f_t : X_r \to X_r \) be the flow under \(r \) with induced \(f_t \)-invariant measure \(\mu_r \). For every bounded observable \(\phi : X_r \to \mathbb{R} \) with
mean zero (i.e. \(\mu_r(\varphi) = 0 \)) we denote \(\varphi_r(x) := \int_0^{\varphi(x)} \varphi(f_t(x, 0)) \, dt \) for \(x \in X \) and assume that

- \(\varphi_r : X \to \mathbb{R} \) is Hölder, and
- there exists a periodic point \(z = f_\tau(z) \) with some period \(\tau > 0 \), such that \(\int_0^{\tau} \varphi(f_t(z)) \, dt \neq 0 \).

Then we have, denoting for simplicity \(\bar{\tau} = \mu(r) \)

\[
\limsup_{T \to +\infty} \frac{1}{T} \log \mu_r \{ z \in X_r : \left| \int_0^{\varphi_r(z)} \varphi(f_t(z)) \, dt \right| \geq \varepsilon T \} \\
\leq \sup \{ h_\nu(\sigma) - \int \psi \, d\nu : |\nu(\varphi_r)| \geq \varepsilon \bar{\tau}, \nu \in \mathcal{M}_\sigma, \psi \in L^1(\nu) \}.
\]

In addition the supremum above is strictly negative.

Moreover, in the same conditions above if, in addition, the observable \(\varphi \) has compact support, then we have

\[
\liminf_{T \to +\infty} \frac{1}{T} \log \mu_r \{ z \in X_r : \left| \int_0^{\varphi_r(z)} \varphi(f_t(x, 0)) \, dt \right| \leq \varepsilon T \} \\
\geq \frac{1}{r_0} \sup \{ h_\nu(\sigma) - \int \psi \, d\nu : |\nu(\varphi_r)| > \frac{\varepsilon \bar{\tau}}{r_0}, \nu \in \mathcal{M}_\sigma, \psi \in L^1(\nu) \}.
\]

The fact that the lower bound for the rate in Theorem C is different from the upper bound seems to be a limitation of the method of proof. The authors believe an adaptation of the methods of Waddington [21] to this setting should provide sharper results.

1.6. **Organization of the paper.** In the next Section 2 we prove Theorem B adapting the arguments from Young in [23] to a full countable shift. In Section 3 we prove Theorem C after reducing the estimates of large deviation for the semiflow to estimates of certain sets of deviations for adequate observables on the base transformation, to which we apply Theorem B. Finally, in the last Section 4 we use Theorem C to complete the proof of Theorem A.

Acknowledgements. We are deeply grateful to Boris M.Gurevich, Amir Dembo and Dmitry Dolgopyat for useful discussions. Part of this work was done while V.A. was visiting Rice University, and another part while A.I.B. was visiting the IMPA. We would like to thank the respective host institutions for their warm hospitality. V.A. was partially supported by CNPq, FAPERJ and PRONEX (Brazil). A.I.B. is supported in part by the National Science Foundation under
grant DMS 0604386, by the Edgar Odell Lovett Fund at Rice University and by the Programme on Mathematical Control Theory of the Presidium of the Russian Academy of Sciences.

2. Large deviations for a Gibbs measure on the full countable shift

Here the dynamics is given by \(\sigma : X \to X \), the full countable shift. We assume that \(\varphi : X \to \mathbb{R} \) is of summable variation, \(\psi \) is log-Hölder with exponential tail (which ensures that \(\psi \in L^1(\mu) \) in particular). Without loss of generality, we assume also that \(\mu(\varphi) = 0 \) and \(\varphi \neq 0 \) in what follows. For a given \(\varepsilon > 0 \) we consider

\[
D^\varepsilon_n = \{ x \in X : S_n \varphi(x) \geq n \varepsilon \}.
\]

The following lemmas are useful tools during the proof.

Lemma 2.1. Let \(g : X \to \mathbb{R} \) be a summable variation function and \(A_0 = \sum_{k \geq 1} \text{var}_k(g) \). Suppose \(y \) differs from \(x \in X \) is a single coordinate \(0 \leq |i| < n \). Then

\[
|S_n g(x) - S_n g(y)| \leq \sum_{k=0}^{n-1} \text{var}_k(g) \leq A_0
\]

Moreover for given \(\varepsilon > 0 \) let \(n \) be such that

\[
\varepsilon - A_0/n < \varepsilon/2
\]

and let \(x \in X \) be such that \(|S_n g(x)| > n \varepsilon \). For any \(y \in X \) with \(x_i = y_i \) for all \(|i| < n \), then

\[
|S_n g(y)| \geq n \varepsilon/2.
\]

Proof. Just observe that if \(x, y \in X \) share the same coordinates except the \(i \)-th one with \(|i| < n \), then \(\sigma^k x, \sigma^k y \) share the same coordinates except the \((i-k) \)-th one, thus

\[
|g(\sigma^k x) - g(\sigma^k y)| \leq \text{var}_{|i|-k}(\varphi)
\]

and the first statement follows. For the second just note that

\[
|S_n g(y)| \geq |S_n g(x)| - |S_n g(x) + S_n g(y)| \geq n \varepsilon - A_0 = n(\varepsilon - A_0/n) \geq n \varepsilon/2.
\]

\(\square \)

From Lemma 2.1 we deduce that, if we fix a symbol \(a \) and define \((\cdot)^a : X \to X, x \mapsto x^a \) where \(x^a_i = x_i \) for \(i \neq j \) and \(x^a_j = a \), and also \(x^a \) for \(x^0 \), we have

\[
x \in D^\varepsilon_n \implies x^a \in D^{\varepsilon/2}_n.
\]
Lemma 2.2. Let $\varphi : X \to \mathbb{R}$ be of summable variation (Hölder). Assume that $S_p \varphi(z) = 0$ for every σ-periodic point z with period $p \in \mathbb{N}$. Then there exists a uniformly continuous function (respectively, Hölder) $\chi : X \to \mathbb{R}$ so that $\varphi = \chi \circ \sigma - \chi$.

This lemma says that if a summable variation observable sums to zero over every periodic orbit, then this observable is cohomologous to the zero function.

Proof. We just follow the usual proof ofLivsic’s Theorem: since X is the full countable shift, let $\omega \in X$ be a point with dense positive σ-orbit and define $\chi(\omega) := 0$ and $\chi(\sigma^n \omega) := \sum_{i=0}^{n-1} \varphi(\sigma^i \omega)$.

Then, for any $l \in \mathbb{Z}^+$, if $x^z = \sigma^n \omega$ and $m > n$ satisfy $x^m \in [x^n]_l$, we define $z := x^0_0 \ldots x^m_{m-n-1}$ the σ-periodic point with period $m - n$ closest to x^z, i.e. z is periodic with period $m - n$ and $z \in [x^n]_l$. By construction we have that the jth coordinate of x^z and z coincide for $j = 0, \ldots, l + m - n$ and by assumption $S_{m-n} \varphi(z) = 0$. Thus

$$\text{var}_j(\chi) \leq |\chi(x^m) - \chi(x^n)| = \left| \sum_{j=n}^{m-1} \varphi(x^j) \right| = \left| \sum_{j=n}^{m-1} [\varphi(x^j) - \varphi(\sigma^j z)] \right| \leq \sum_{j=n}^{m-1} |\varphi(x^j) - \varphi(\sigma^j z)| \leq \sum_{j=n}^{m-1} \text{var}_j(\varphi) \leq \sum_{j=1}^{m-n} \text{var}_j(\varphi).$$

This shows that $\text{var}_j(\chi) \to 0$ as $l \to +\infty$ and so χ is a uniformly continuous function. For each $n \in \mathbb{Z}^+$ it is easy to see that $\varphi(x^n) = \chi(x^{n+1}) - \chi(x^n)$ and since $\{x^n\}_{n \in \mathbb{Z}^+}$ is dense in X and φ, χ are continuous, we get that $\varphi = \chi \circ \sigma - \chi$ as stated.

Hence from Lemma 2.2 if we assume that φ is not cohomologous to the zero function, then the following is true

(G) there exists a periodic point $z \in X$ such that $S_p \varphi(z) > 0$ where p is the (minimal) period of z. Then there exists $\varepsilon_1 > 0$ such that for all $0 < \varepsilon < \varepsilon_1$ and for all big enough $n > 0$ we have $|S_n \varphi(z)| > 2\varepsilon n$.

Indeed, there exists a periodic point z with period $p \in \mathbb{Z}^+$ such that $|S_p \varphi(z)| \neq 0$ and so we can find $\varepsilon_0 > 1$ so that $|S_{kp} \varphi(z)| > 3\varepsilon kp$ for all $k \in \mathbb{Z}^+$ and $0 < \varepsilon < \varepsilon_1$. Therefore, for every $0 \leq l < p$ and $k > p \max\{|S_i \varphi(z)| : 0 \leq i < p\}$

$$|S_{kp+l} \varphi(z)| = |S_{kp} \varphi(z) + S_l(z)| \geq (kp + l) \left(\frac{3\varepsilon kp}{kp + l} - \frac{S_p \varphi(z)}{kp + l} \right) \geq 2\varepsilon (kp + l),$$

proving the (G) property.

The following lemma enable us to choose a good cover for D^n_{ε}.
Lemma 2.3. Fix a finite subset A_0 of the alphabet A. Given a finite family of functions of summable variation $\varphi_1, \ldots, \varphi_k : X \to \mathbb{R}$ and of real numbers $\alpha_1, \ldots, \alpha_k$, consider

$$D = \{ x \in X : \varphi_i(x) > \alpha_i, i = 1, \ldots, k \}$$

and assume D has positive μ-measure.

Then there exists a periodic point $z \in D$ and, for any given big integer $n > 0$, there is an integer $m > n$ and a finite family C_n of m-separated points in D such that, for

$$A_n = \{ a \in A : a \text{ is a letter in the first } n \text{ coordinates of some element } x \in C_n \}$$

we get

1. for all $x \in C_n$ we have $[x]_m \subset D$;
2. $\sum_{x \in C_n} \mu([x]_m) \geq \frac{\alpha - 1}{n} \cdot \mu(D)$;
3. the projection $\pi_{n,m} : X \to A^{m-n}$ onto the coordinates $n, \ldots, m-1$ of C_n contains only letters from A_0, i.e. $\pi_{n,m}(C_n) \subset A^{m-n}$;
4. $z^a_j \in C_n$ for all $0 \leq j \leq n$ and $a \in A_n$.

Remark 2.4. The periodic point z from (G) belongs to D^{2n} for all sufficiently small $\varepsilon > 0$ and big enough $n \in \mathbb{Z}^+$. In addition, for n such that $2A_0/n < \varepsilon$, we have that D^{2n}_n contains z^a_j for every symbol a in A_0 and for each $0 \leq j \leq n$, by Lemma 2.3.

Proof. Let \overline{C}_n be a maximal n-separated set in D, that is, we choose one point in each non-empty intersection $[a_0, a_1, \ldots, a_{n-1}] \cap D$ for $a_0, a_1, \ldots, a_{n-1} \in A$. We observe that this set might be infinite and that $\{ [x] : x \in \overline{C}_n \}$ forms a disjoint open cover of D.

Now we choose a convenient finite approximation: let C_n be a finite subset of \overline{C}_n such that

$$\sum_{x \in C_n \setminus \overline{C}_n} \mu([x]_m) \leq \frac{1}{n} \mu(D). \quad (2.1)$$

In this way we obtain that

$$\mu(D) \leq \mu \left(\bigcup_{x \in \overline{C}_n \setminus C_n} [x]_m \right) + \mu \left(\bigcup_{x \in C_n} [x]_m \right) \leq \frac{1}{n} \mu(D) + \mu \left(\bigcup_{x \in C_n} [x]_m \right)$$

which implies item (2) of the statement for any $m > n$.

We can at this point add finitely many elements of D to C_n according to our convenience. We first define A_n as the set of all letters at the first n coordinates of the points of C_n. Then we take the periodic point $z \in D$ given by property (G). Finally we redefine C_n to equal the union $C_n \cup \{ z^a_j : a \in A_n, 0 \leq j \leq n \}$.
This keeps the above properties and the new set \(C_n \) satisfies item (4) of the statement. Since \(\varphi_i \) is of summable variation, for each \(x \in C_n \) we can find \(y \in X \) and \(m = m(x) > n \) such that

(a) \(y_j = x_j \) for \(|j| \leq m \), in particular \(y \in [x]_n \);

(b) \(|\varphi_i(y) - \varphi_i(x)| \leq \sum_{k > m - n} \text{var}_k(\varphi) < \alpha_i - \varphi_i(x) \) so that \(\varphi_i(y) > \alpha_i \) for all \(i = 1, \ldots, k \), and \(y \in D \).

Now let \(L_0 = \#A_0 \). Since \(C_n^\varepsilon \) is finite we can consider \(m_n = \max\{m(x) : x \in C_n^\varepsilon\} \) and then take an integer \(l_n \geq \log \frac{\#C_n}{\log L_0} \). For \(M_n = m_n + l_n \) replace each \(x \in C_n^\varepsilon \) by \(y \) satisfying in addition to (a)-(b) above also

(c) \((y_{m_n + 1}, \ldots, y_{m_n + l_n}) \) are distinct points in \(A_0^{l_n} \).

Observe that this ensures the new elements of \(C_n \) are still distinct points but can be separated in the \(\ell_n \) coordinates following \(m_n \). Note also that the choice of \(l_n \) was made to have "enough room" in \(\ell_n \) coordinates to write \(\#C_n \) distinct words in \(A_0 \) letters. The proof is complete. \(\square\)

2.1. The upper bound. Here we give the main step of the proof of the upper bound for the limit superior in the statement of Theorem B.

From now on we take \(C_n \) to be the cover of \(D_n^\varepsilon \) provided by Lemma 2.3, where we take \(i = 1 \) and \(\alpha_1 = n\varepsilon - \omega = n(\varepsilon - \omega/n) \) for some small \(\omega > 0 \). We also set \(\tilde{\psi} := P - \psi \), where \(P = P_\mu(\psi) \) from (1.10).

2.1.1. Choose a good sequence of probability measures from the covering. We consider the families of probability measures

\[
\eta_n := \frac{1}{Z_n} \sum_{x \in C_n} e^{-S_n \tilde{\psi}(x)} \cdot \delta_x \text{ where } Z_n := \sum_{x \in C_n} e^{-S_n \tilde{\psi}(x)} \text{ and }
\]

\[
\nu_n := \frac{1}{n} \sum_{j=0}^{n-1} \sigma_j^N(\eta_n).
\]

Note that from the assumption that \(\mu \) is a Gibbs equilibrium measure for \(\tilde{\psi} \) we get

\[
Z_n \leq \frac{1}{K} \sum_{x \in C_n} \mu([x]_n) \leq \frac{1}{K}
\]

(2.2)

since, by the definition of \(C_n \), the cylinders \([x]_n, [y]_n\) with distinct \(x, y \in C_n \) must be disjoint.
2.1.2. **Tightness of the sequence** \(\nu_n \). The following simple argument shows that we can assume \(\eta_n(\sigma^{-1}[a]) > 0 \) for every letter \(a \) in \(A_n \).

Remark 2.5. The probability measure \(\eta_n \), defined above for the set \(D_n^\epsilon \), satisfies \(\eta_n([a]) \geq e^{-S_n\hat{\psi}(z)} / Z_n > 0 \) since \(D_n^\epsilon \) contains \(z^\alpha \) for every symbol \(a \) in \(A_n \), from Remark 2.4. The same argument with \(z^\alpha \) for \(0 \leq j \leq n \) in the place of \(z^\alpha \) shows that \(\eta_n(\sigma^{-1}[a]) > 0 \) for every letter \(a \) in \(A_n \).

Lemma 2.6. Let us define for each letter \(b \) of \(A_n \) and each \(0 \leq j < n \)

\[
\zeta_n^b(j) := \sum_{x \in \mathcal{C}_n \cap \sigma^{-1}[b]} e^{-S_n \hat{\psi}(x) + \hat{\psi}(a^j x)}.
\]

There exists a constant \(L > 0 \) such that \(\zeta_n^b(j) \geq L \) for every \(a \in A_n \), all \(n > 0 \) and each \(0 \leq j < n \).

Proof. Fix some symbol \(a \in A_n \). For \(n \in \mathbb{Z}^+ \) big enough so that property (G) holds and for \(0 \leq j < n \) write

\[
\zeta_n^b(j) = \sum_{b_0, \ldots, b_{j-1}, b_{j+1}} \sum_{x_0 = b_{j-1}, \ldots, x_{n-1} = b_{j+1}} e^{-S_n \hat{\psi}(x) - S_{n-j-1} \hat{\psi}(a^j x)}
\]

\[
\geq \sum_{b_0, \ldots, b_{j-1}, b_{n-1}} K^2 \mu([b_0, \ldots, b_{j-1}]) \mu([b_{j+1}, \ldots, b_{n-1}]) \sum_{x_0 = b_0, \ldots, x_j = a_j, \ldots, x_{n-1} = b_{n-1}} e^{-\hat{\psi}(a^j x)},
\]

where we have used the Gibbs property only and write \(\hat{b}_j \) to denote the absence of \(b_j \) in the index of the sum above. Now using the fact that \(z^\alpha_j \) belongs to \(\mathcal{C}_n \cap \sigma^{-1}[a] \) and that \(\hat{\psi} \) is log-Hölder, we bound the last summand as follows

\[
\sum_{x \in \mathcal{C}_n} e^{-\hat{\psi}(a^j x)} \geq e^{-\hat{\psi}(a^j z)} \geq e^{-\hat{\psi}(a^j z) - \text{var}(\hat{\psi}, z)}.
\]

Since this bound does not depend on the choice of \(b_{j+1}, \ldots, b_{n-1} \) we conclude that \(\zeta_n^b(j) \geq K^2 e^{-\hat{\psi}(a^j z) - \text{var}(\hat{\psi}, z)} \). To obtain the statement of the lemma we set

\[
L = \min\{K^2 e^{-\hat{\psi}(a^j z) - \text{var}(\hat{\psi}, z)} : 0 \leq j < n, a \in A_n\}
\]

\[
= \min\{K^2 e^{-\hat{\psi}(a^j z) - \text{var}(\hat{\psi}, z)} : 0 \leq j < p\}
\]

since, for all big enough \(n \), the period \(p \) of \(z \) is smaller than \(n \), and \(\text{var}(\hat{\psi}, z) \leq C|\hat{\psi}(z)|e^{-a_j} \to 0 \). The lower bound does not depend either on \(n \) or on \(A_n \). \(\square \)
Consider now the sequence of measures \(\nu_n \) and \(\eta_n \) defined above for \(D_n^\varepsilon \).

Proposition 2.7. There exists a constant \(C_2 > 0 \) such that for every symbol \(a \) in \(A_n \) we have \(\nu_n([a]) \leq C_2 \mu([a]) \) for all \(n \) sufficiently big.

This shows in particular that the sequence \((\nu_n)_{n \geq 1} \) is tight.

Proof. We need the following lemma.

Lemma 2.8. There exists \(C_2 > 0 \) such that \(\eta_n(\sigma^{-j}[a]) \leq C_2 \mu([a]) \) for every \(n \in \mathbb{Z}^+ \), each \(0 \leq j < n \) and for every symbol \(a \in A_n \).

Proof. Fix a symbol \(a \in A_n \) and \(0 \leq j < n \). We have

\[
\eta_n(\sigma^{-j}[a]) = \frac{1}{Z_n} \sum_{x \in C_n \cap \sigma^{-j}[a]} e^{-S_j \hat{\psi}(x)} e^{-S_{n-j-1} \hat{\psi}(\sigma^{j+1}x)} \leq K \mu([a]) \cdot \frac{\zeta_n^a(j)}{Z_n}
\]

since \(e^{-\hat{\psi}(\sigma^{j}x)} \leq e^{-\inf(\hat{\psi}([a]))} \leq K \mu([a]) \) by the Gibbs property of \(\mu \). We can bound \(Z_n \) using Lemma 2.6 as follows

\[
Z_n = \sum_b \sum_{x \in C_n \cap [b]} e^{-\hat{\psi}(x)} e^{-S_{n-1} \hat{\psi}(\sigma x)} \geq \sum_b \frac{\mu([b])}{K} \sum_{x \in C_n \cap [b]} e^{-S_{n-1} \hat{\psi}(\sigma x)} \\
\geq \sum_b \frac{\mu([b])}{K} \cdot \zeta_b^a \geq \frac{L}{K}.
\]

Finally we find an upper bound for \(\zeta_n^a \) using again the Gibbs property of \(\mu \)

\[
\zeta_n^a(j) \leq \sum_{x \in C_n \cap \sigma^{-j}[a]} K \mu([x]) \cdot K \mu([\sigma^{j+1}x]) \leq K^2
\]

since \(C_n \) is a \(n \)-separated subset.

This shows that \(\eta_n(\sigma^{-j}[a]) \leq K \mu([a]) \cdot K^2 / (L/K) = (K^4 / L) \cdot \mu([a]) \) and concludes the proof.

Now since the bounds in Lemmas 2.6 and 2.8 do not depend on \(0 \leq j < n \) for all big enough \(n \), we see that for any given \(a \in A_n \) and sufficiently big \(n \) we have

\[
\frac{1}{n} \sum_{j=0}^{n-1} \eta_n(\sigma^{-j}[a]) = \nu_n([a]) \leq C_2 \mu([a])
\]

concluding the proof of Proposition 2.7.
2.1.3. Upper bound for large deviations on the base dynamics. Using the definition of \(\nu_n \) and \(Z_n \) and observing that for all \(n > 0 \)

\[
v_n(\varphi) = \frac{1}{n} \sum_{j=0}^{n-1} \eta_n(\varphi \circ \sigma^j) = \frac{1}{Z_n} \sum_{x \in C_n} e^{-S_n \hat{\psi}(x)} \cdot \frac{1}{n} \sum_{j=0}^{n-1} \varphi(\sigma^j x) > \varepsilon - \frac{\omega}{n}
\]

we see that any weak* accumulation point \(\nu \) of the sequence \(\nu_n \) satisfies \(\nu(\varphi) \geq \varepsilon \). In what follows we assume without loss of generality that \(\nu_n \) converges to \(\nu \) when \(n \to \infty \) in the weak* topology.

On the one hand since \(\{[x]_n : x \in C_n\} \) is an approximate cover of \(D_n^\varepsilon \) from Lemma 2.3 and the Gibbs property we have

\[
\limsup_{n \to +\infty} \frac{1}{n} \log \mu(D_n^\varepsilon) \leq \limsup_{n \to +\infty} \frac{1}{n} \log K \frac{n}{n-1} \sum_{x \in C_n} e^{-S_n \hat{\psi}(x)}
\]

\[
= \limsup_{n \to +\infty} \frac{1}{n} \log Z_n.
\]

On the other hand, considering the following partition\(^1\) of \(X \)

\[
P = \{[a] : a \in A_0\} \cup \{x \in X : x_0 \notin A_0\},
\]

we note that by the choice of the points in \(C_n \) the refined partition

\[
P_{M_n} := \bigvee_{|i|<M_n} \sigma^i P
\]

separates the elements of \(C_n \); there is at most one element of \(C_n \) in each atom of \(P_n \). From [22, Lemma 9.9] we have

\[
H_{\nu_n}(P_{M_n}) = \int S_n \hat{\psi}(x) \, d\nu_n(x) = \log \sum_{x \in C_n} e^{-S_n \hat{\psi}(x)}.
\]

From this we deduce following standard arguments (see e.g. [22, pag. 220]) that for every \(1 < q < n \), denoting by \(\#P \) the number of elements of the partition \(P \)

\[
\frac{1}{n} \log Z_n \leq \frac{1}{q} H_{\nu_n}(P^q) + \frac{2q}{n} \log \#P - \int \hat{\psi} \, d\nu_n.
\]

(2.3)

Now for the final step we need the following.

Lemma 2.9. We have \(\nu_n(\hat{\psi}) \to \nu(\hat{\psi}) \) when \(n \to \infty \).

\(^1\)The complicated choice of the covering in Lemma 2.3 was to be able to choose a finite partition here.
Proof. Using the log-Hölder property and \(\mu \)-integrability of \(\hat{\psi} \) we get, for any given fixed \(x \in X \)
\[
\infty > \mu(\hat{\psi}) = \sum_a \mu(|\hat{\psi}| \chi_{[a]}) \geq \sum_a (|\hat{\psi}(x^a)| - \text{var}_1(\hat{\psi}, x^a)) \mu([a])
\]
thus \(\sum_a |\hat{\psi}(x^a)| \mu([a]) \leq \mu(|\hat{\psi}|) + \text{var}_1(\hat{\psi}, x^a) < \infty. \)

Given a function \(g : X \rightarrow \mathbb{R}^{+} \) define for each \(L > 0 \) the function \(g_L \)
to equal \(g \) if \(g > L \) and 0 otherwise.

Now from the log-Hölder property of \(\hat{\psi} \) and the \(\mu \)-integrability \(\hat{\psi} \), together with Proposition 2.7, we obtain for every big enough \(n \) and for positive \(\nu \n(\hat{\psi}) \) is a uniformly convergent sequence of integrals.

From inequality (2.3) and Lemma 2.9 we conclude
\[
\limsup_{n \rightarrow +\infty} \frac{1}{n} \log Z_n \leq \frac{1}{q} \limsup_{n \rightarrow +\infty} H_{v_n}(P^q) + \limsup_{n \rightarrow +\infty} \int -\hat{\psi} \, d\nu_n \leq h_\sigma(\sigma, P) - \int \hat{\psi} \, d\nu \leq h_\sigma(\sigma) - \nu(\hat{\psi}). \tag{2.4}
\]

Finally we note that as a consequence of the assumption that \(\mu \) is the unique Gibbs measure associated to \(\psi \), we have for all \(\nu \in M_\mu \setminus \{\mu\} \)
\[
h_\mu(\sigma) - \mu(P - \psi) = 0 > h_\sigma(\sigma) - \nu(P - \psi).
\]
This shows that (2.4) is negative.

\footnote{The same argument shows in fact that \(\psi \in L^1(\mu) \iff \sum_{a \in A} |\psi(x^a)| < \infty \) for any given fixed \(a \in A \).}
2.2. The lower bound. Let ν be a σ-invariant probability measure satisfying $\varphi, \psi \in L^1(\nu)$ and $|\nu(\varphi)| > \varepsilon$, for a fixed small $\varepsilon > 0$. We define

$$\widehat{D}_n^\varepsilon = \{x \in X : S_n \varphi(x) > n \varepsilon\}.$$

We will find a sequence ν_n of invariant measures converging to ν such that

$$\lim_{k \to +\infty} \frac{1}{n_k} \log \mu(\widehat{D}_{n_k}^\varepsilon) \geq h_{\nu} - \int \hat{\psi} \, d\nu - 4 \delta,$$

(2.5)

Following the ideas in [23] we approximate ν by a finite convex combination of σ-ergodic measures and then use their ergodicity and a weak form of specification to build the separated set which will provide the estimates for $\mu(\widehat{D}_n^\varepsilon)$.

2.2.1. Approximating by ergodic measures. We use the Ergodic Decomposition Theorem [16, 17] for the measure preserving endomorphism σ of the Lebesgue space (X, \mathcal{B}, ν), where \mathcal{B} is the Borel σ-algebra of X.

Theorem 2.10. There exists a smallest σ-invariant measurable partition \mathbb{J} of X except a set of ν-null measure. Let $\{\nu_\xi \}_{\xi \in \mathbb{J}}$ be the disintegration of ν into conditional probability measures and $\hat{\nu}$ be the probability measure induced in the quotient space X/\mathbb{J}. Then

1. ν_ξ are σ-invariant ergodic probability measures for $\hat{\nu}$-a.e. $\xi \in \mathbb{J}$;
2. for each $n \geq 1$ and every ν-integrable function $g : X \to \mathbb{R}^n$
 (a) $\xi \in \mathcal{B} \mapsto \nu_\xi(g)$ is $\hat{\nu}$-integrable;
 (b) $\nu(g) = \int \nu_\xi(g) \, d\hat{\nu}(\xi)$;
3. $h_\nu(\sigma) = \int h_{\nu_\xi}(\sigma | \xi) \, d\hat{\nu}(\xi)$.

Now we use this to build a finite linear convex combination of ergodic measures which approximates ν.

Lemma 2.11. Define $g : X/\mathbb{J} \to \mathbb{R}^3$ by $g(\xi) = (\nu_\xi(\varphi), \nu_\xi(\hat{\psi}), h_{\nu_\xi})$ (which is $\hat{\nu}$-integrable) and let $0 < \delta < (\nu(\varphi) - \varepsilon)/4$.

Then there exists a finite linear convex combination ν_0 of ergodic measures such that $||\nu(g) - \nu_0(g)|| < \delta$, where $|| \cdot ||$ denotes the Euclidean norm in \mathbb{R}^3.

Proof. Choose $\zeta > 0$ so that $\zeta/(1 - \zeta) < \delta/(2 + ||\nu(g)||)$. Let Q be a denumerable partition of \mathbb{R}^3 into cubes whose diameter is smaller than ζ. Let also $Q_0 \subset Q$ be the family of such cubes bounded by a cube $[-L, L]^3$, where $L > 0$ is big enough so that...
\[
\begin{align*}
\bullet \ q &= \hat{\nu}(g^{-1}(\mathcal{U} \cup \mathcal{O}_0)) > 1 - \zeta; \\
\bullet \ s &= \sum_{R \in \mathcal{O}_Q} (|\nu_{\xi}(\varphi)| + |\nu_{\xi}(\hat{\psi})| + h_{\nu_{\xi}}) \cdot \hat{\nu}(g^{-1}R) < \zeta.
\end{align*}
\]

We can now define a probability measure
\[
\nu_0 = \frac{1}{q} \sum_{R \in \mathcal{O}_Q} \hat{\nu}(g^{-1}R) \cdot \nu_{\xi,R},
\]
where \(\nu_{\xi,R}\) is an ergodic measure chosen in \(g^{-1}(R)\) for each \(R \in \mathcal{O}_Q\).

Hence \(\nu_0\) is a finite convex linear combination of \(\sigma\)-ergodic measures.

Analogously we define a tail measure
\[
\nu_1 = \sum_{R \in \mathcal{O}_Q \setminus \mathcal{O}_0} \hat{\nu}(g^{-1}R) \cdot \nu_{\xi,R},
\]
and note that \(|\nu_1(\varphi)| \leq s < \zeta\).

Now we check that \(\nu_0\) is an approximation of \(\nu\):
\[
\begin{align*}
|\nu(\varphi) - \nu_0(\varphi)| &= q^{-1}|q \nu(\varphi) - q \nu_0(\varphi)| \\
&= q^{-1}|q \nu(\varphi) - (q \nu_0 + \nu_1)g + \nu_1(\varphi)| \\
&\leq \frac{1}{q} \|(q - 1)\nu(\varphi)\| + \frac{1}{q} \|\nu(g) - (q \nu_0 + \nu_1)g\| + \frac{|\nu_1(\varphi)|}{q} \\
&\leq \frac{1 - q}{q} \|\nu(g)\| + \frac{\zeta}{q} + \frac{\zeta}{q} \leq (2 + \|\nu(g)\|) \frac{\zeta}{1 - \zeta} \leq \delta.
\end{align*}
\]

The proof is complete. \(\square\)

Write \(\nu_0 = \sum_{i=1}^{k} a_i \eta_i\), where \(a_i > 0\), \(\sum_i a_i = 1\) and \(\eta_i\) are \(\sigma\)-ergodic probability measures.

2.2.2. Build a good cover using ergodicity and a form of specification. Now we strongly use the fact that we have approximated \(\nu\) by a combination of ergodic measures. As in Lemma 2.6 let \(A_0 = \sum_{k \geq 1} \text{var}(\hat{\psi})\). Let \(N > 1\) be such that
\[
\frac{A_0}{N - k} \leq \frac{\delta}{4} \quad \text{and} \quad \left| \frac{1}{N} \eta_i(\varphi) \right| + \frac{\delta}{8k} \leq \frac{\delta}{N}.
\]

In addition, choose \(N\) big enough so that for \(n > N\) and each \(i = 1, \ldots, k\), the subset of \(X\)
\[
Y^i_n = \left\{ \frac{1}{[a,n]} \mathcal{S}_{[a,n]} \hat{\theta} \leq \eta_i(\hat{\psi}) + \delta \quad \& \quad \frac{1}{[a,n]} \mathcal{S}_{[a,n]} \varphi \geq \eta_i(\varphi) - \delta \right\},
\]
satisfies \(\eta_i(Y^i_n) > 1 - \delta\) (where \([a] = \max\{j \in \mathbb{Z} : j \leq a\}\) is the biggest integer less or equal to \(a \in \mathbb{R}\)). Assume also that \(N\) is big enough so that \(\text{var}_{[a,n]}(\varphi) < \delta/k\) for all \(i = 1, \ldots, k\) and \(n > N\).
Using a result from Katok\(^3\) [12, Theorem 1.1] we have that there exists a \([a,n]\)-separated set \(E^i_n \subset Y^i_n\) with at least \(\exp\left(\lfloor a/n \rfloor (h - \delta)\right)\) points. Number the elements of \(E^i_n\) as \(x^i_1, \ldots, x^i_{m_i}\).

Consider a \(k\)-tuple \((j_1, \ldots, j_k)\) with \(1 \leq j_i \leq m_i\) for \(i = 1, \ldots, k\). There corresponds a point \(y = y_{j_1, \ldots, j_k} \in X\) (not uniquely defined) so that its positive orbit shadows the orbit segments

\[
(\sigma^{\lfloor a/n \rfloor} x^1_{j_1}, \ldots, \sigma x^1_{j_1}), \ldots, (\sigma^{\lfloor a/n \rfloor} x^k_{j_k}, \ldots, \sigma x^k_{j_k}).
\]

Let \(E\) be the family of points obtained in this manner and fix \(y \in E\).

By the summable variation of \(\varphi\), for \(m = \sum_i [a/n]\) and \(n_0 = \min_i [a,n]\)

we have

\[
\left| S_m \varphi(y) - \sum_{i=1}^k S_{[a,n]} \varphi(x^i_{j_i}) \right| \leq \sum_{i=1}^k \text{var}_{[a,n]}(\varphi) \leq \delta.
\]

Now we can write because \(a,n - 1 \leq [a,n] \leq a,n\)

\[
\frac{1}{m} S_m \varphi(y) \geq \frac{1}{m} \sum_{i=1}^k S_{[a,n]} \varphi(x^i_{j_i}) - \delta \geq \frac{1}{m} \sum_{i=1}^k \frac{[a,n]}{m} (\eta_i(\varphi) - \delta) - \delta
\]

\[
\geq \frac{1}{m} \sum_{i=1}^k a,n \cdot (\eta_i(\varphi) - \delta) - \frac{1}{m} \sum_{i} (\eta_i(\varphi) - \delta)^+ - \delta,
\]

since we must take the sign of \(\eta_i(\varphi) - \delta\) into account, where \(a^+ = \max[0,a]\). Note that by the choice of \(\delta\) in Lemma 2.11 and because \(m \leq \sum_i a,n = n\) we have

\[
\sum_{i=1}^k a,n \cdot (\eta_i(\varphi) - \delta) = n \cdot \left(\nu(\varphi) - \delta\right) \geq n \cdot \left(\nu(\varphi) - 2\delta\right) > 0.
\]

Together with the choice of \(N\) we obtain

\[
\frac{1}{m} S_m \varphi(y) \geq \frac{n}{m} \cdot \left(\nu(\varphi) - 2\delta\right) - \frac{\delta}{8} - \delta \geq \nu(\varphi) - \frac{25}{8} \delta > \varepsilon.
\]

This means that \(y \in \hat{D}_m\).

In addition, note that for different choices of the \(k\)-tuples we get distinct points \(y, y' \in \mathcal{E}\) which are \(m\)-separated, that is \([y]_m \cap [y']_m = \emptyset\) by construction.

\(^3\)Stated only for homeomorphisms of compact spaces, but the proof does not use this assumption!
Finally observe that for \(w \in [y]_m \) we have, by Lemma 2.1
\[
S_m \phi(w) \geq S_m \phi(y) - 2A_0 \geq \left(\nu(\phi) - \frac{25}{8}\delta - \frac{\delta}{4} \right) \cdot m - 2A_0
\]
\[
\geq \left(\nu(\phi) - \frac{27\delta}{8} - \frac{2A_0}{m} \right) \cdot m \geq \left(\nu(\phi) - \frac{31}{8}\delta \right) \cdot m > m \cdot \epsilon,
\]
where we have used that \(m = \sum_{i=1}^{k}[a_in] \geq \sum_{i=1}^{k}(a_in - 1) = n - k \). Thus \([y]_m \}_{y \in \mathcal{E}}\) is a family of \(m \)-separated subsets inside \(D^\varepsilon_m \).

2.2.3. Estimating the measure of \(\hat{D}^\varepsilon_m \). Finally by the previous arguments we can bound the measure of \(\hat{D}^\varepsilon_m \) from below. Since \(\mathcal{E} \subset \bigcup_i Y^i_n \) and \(\mu \) is Gibbs
\[
\mu(\hat{D}^\varepsilon_m) \geq \sum_{y \in \mathcal{E}} \mu([y]_m) \geq \sum_{y \in \mathcal{E}} \frac{1}{K} \cdot e^{-S_m \hat{\psi}(y)}
\]
\[
\geq \frac{1}{K} \sum_{y \in \mathcal{E}} \exp \left(- \sum_i [a_in] \cdot (\eta_i(\hat{\psi}) + \delta) \right).
\]
We also know that \(\#E^i_n \geq \exp \left([a_in](h_{\eta_i} - \delta) \right) \) and from this we get
\[
\mu(\hat{D}^\varepsilon_m) \geq \frac{1}{K} \cdot \exp \left(\sum_i [a_in] \cdot (h_{\eta_i} - \eta_i(\hat{\psi}) - 2\delta) \right).
\]
Hence for any given \(\delta > 0 \) there exists a big \(N \) so that for all \(n > N \) we can find \(m \geq n - k \) satisfying
\[
\frac{1}{m} \log \mu(\hat{D}^\varepsilon_m) \geq - \frac{1}{m} \log K + \frac{1}{m} \sum_{i=1}^{k} [a_in] \cdot (h_{\eta_i} - \eta_i(\hat{\psi}) - 2\delta).
\]
By the upper bound on large deviations already obtained, we know that \(h_{\eta_i} - \eta_i(\hat{\psi}) - 2\delta \leq 0 \) and hence
\[
\frac{1}{m} \log \mu(\hat{D}^\varepsilon_m) \geq - \frac{1}{m} \log K + \frac{n}{m} \sum_{i=1}^{k} a_i \cdot (h_{\eta_i} - \eta_i(\hat{\psi}) - 2\delta)
\]
\[
\geq - \frac{1}{m} \log K + (h_v - \delta) - (\nu(\phi) + \delta) - 2\delta.
\]
This completes the proof of (2.5).
2.3. The rates. Now we obtain explicit expressions for the rates of decay of the measure of the deviation set. On the one hand, in Section 2.1 we showed that there exists a σ-invariant probability ν such that $|\nu(\phi)| \geq \epsilon$, ψ is ν-integrable and inequality (2.4) is true, i.e.

$$\limsup_{n \to +\infty} \frac{1}{n} \log \mu(D^C_n) \leq h\nu(\sigma) - \int \hat{\psi} d\nu < 0. \quad (2.6)$$

On the other hand, in Section 2.2 it was proved that for every given σ-invariant probability ν such that $|\nu(\phi)| > \epsilon$, ψ is ν-integrable, and given $\delta > 0$ there exists a sequence n_k tending to $+\infty$ such that (2.5) is true, that is

$$\liminf_{n \to +\infty} \frac{1}{n} \log \mu(D^C_n) \geq \sup_{\nu \in \mathcal{M}_\sigma} \left\{h\nu(\sigma) - \int \hat{\psi} d\nu : |\nu(\phi)| > \epsilon, \nu(\hat{\psi}) < \infty \right\}. \quad (2.7)$$

From (2.6) and (2.7) we deduce that the supremo above is also an upper bound for the limit superior and it is strictly negative. This completes the proof of Theorem B.

3. LARGE DEVIATIONS FOR MAXIMAL ENTROPY MEASURES FOR SPECIAL FLOWS OVER A FULL COUNTABLE SHIFT

Here we prove Theorem C. We assume that μ is a σ-ergodic probability on the full countable shift X which is a Gibbs measure and the unique equilibrium state with respect to $\psi = -h \cdot r$, where h is the topological entropy of the flow $f_t : X \rightrightarrows$ built over σ with roof function $r : X \to [r_0, +\infty)$, with some $r_0 > 0$. In particular r (and ψ) is μ-integrable.

This means that the induced f_t-invariant probability measure μ_r on X_r is the measure of maximal entropy of the flow.

We assume further that r is log-Hölder with exponential tail.

3.1. Reduction to the base dynamics. Here we describe how to pass from the deviation set for the suspension flow with respect to a bounded observable with summable variation, to another deviation set for the base dynamics with respect to another observable, now unbounded.

Consider a continuous observable $\phi : X_r \to \mathbb{R}$ and note that we may write the time average of ϕ under the action of the semiflow on
the point \(z = (x, s) \in X_r \) as
\[
\int_0^T \varphi (f_t(z)) \, dt = \sum_{j=1}^{n-1} \int_0^{\phi(x)} \varphi (f_t(\sigma^j(x), 0)) \, dt + \int_s^{\sigma(x)} \varphi (f_t(x, 0)) \, dt
+ \int_0^{T+S_n r(x)} \varphi (f_t(\sigma^n(x), 0)) \, dt,
\]
where \(n = n(x, s, T) \in \mathbb{N} \) is such that \(S_n r(x) \leq s + T < S_{n+1} r(x) \).

Recalling that \(\varphi_r(x) := \int_0^{\sigma(x)} \varphi (f_t(x, 0)) \, dt \) for \(x \in X \) we obtain
\[
\int_0^T \varphi (f_t(z)) \, dt = S_n \varphi_r(x) + I_T(x, s),
\]
where
\[
I_T(x, s) = \int_0^{T+S_n r(x)} \varphi (f_t(\sigma^n(x), 0)) \, dt - \int_0^{\sigma(x)} \varphi (f_t(x, 0)) \, dt.
\]
Assume now that \(\varphi : X_r \to \mathbb{R} \) is bounded and that \(\varphi_r : X \to \mathbb{R} \) is Hölder.

Note that \(\varphi_r \) is not necessarily bounded. Recall also that \(\mu_r(\varphi) = \mu(\varphi_r)/\mu(r) \). We assume without loss of generality that \(\mu(\varphi_r) = 0 \). Moreover we also assume that there exists some \(\sigma \)-periodic point \(z \in X \), with period \(p \in \mathbb{Z}^+ \), such that
\[
S_p \varphi_r(z) = \int_0^p \varphi (f_t(z, 0)) \, dt \neq 0 \quad \text{where} \quad \tau := S_p r(z).
\]

3.2. The limit superior. From now on all Birkhoff sums are taken with respect to \(\sigma \). The previous discussion showed that for \(\varepsilon > 0 \)
\[
\{ z \in X_r : \left| \int_0^T \varphi (f_t(z)) \, dt \right| \geq \varepsilon T \} = \left\{ (x, s) \in X_r : |S_n \varphi_r(x) + I_T(x, s)| \geq \varepsilon T \right\},
\]
where \(n = n(x, s, T) \) as before. Hence because
\[
|S_n \varphi_r(x)| + |I_T(x, s)| \geq |S_n \varphi_r(x) + I_T(x, s)| \geq \varepsilon T
\]
we have that for every \(0 < \xi < 1 \) the deviation set is contained in
\[
\{ (x, s) \in X_r : |S_n \varphi_r(x)| \geq \xi (1 - \xi) T \} \cup \{ (x, s) \in X_r : |I_T(x, s)| \geq \varepsilon \xi T \},
\]
(3.3)

Observe first that by the exponential tail of \(r \) the following subset \(R_L := \{ x \in X : r(x) > L \} \) for \(L > 0 \) satisfies
\[
C_0 := \int e^{\varepsilon \varphi} \, d\mu \geq \int_{R_L} e^{\varepsilon \varphi} \, d\mu \geq e^{\varepsilon \alpha L} \mu(R_L) \quad \text{thus} \quad \mu(R_L) \leq C_0 e^{-\varepsilon \alpha L}.
\]
Now taking $L > 0$ big enough so that $(n + 1)e^{-\varepsilon_0 n/2} < 1$ for all $n > L$

$$\int_{R_L} r \, d\mu \leq \sum_{i \geq L} \int_i^{i+1} r \, d\mu \leq C_0 \sum_{i \geq L} (i + 1)e^{-\varepsilon_0 i} \leq C_0 \sum_{i \geq L} e^{-\varepsilon_0 i/2} \leq C_0 e^{-\varepsilon_0 L/2} \frac{1}{1 - e^{-\varepsilon_0/2}}. \tag{3.4}$$

Now we deduce an upper bound for the measure of each set in (3.3). On the one hand, writing $||\varphi||$ for $\sup |\varphi|$, since

$$|I_T(x, s)| \leq \left(s + S_{n+1}r(x) - S_nr(x)\right) \cdot ||\varphi|| = (s + (r \circ \sigma^n)(x)) \cdot ||\varphi||$$

we obtain, using that μ is σ-invariant and (3.4)

$$\mu_r((x, s) \in X_r : |I_T(x, s)| \geq \varepsilon \xi T) \leq \mu_r\{((x, s) \in X_r : s \geq \frac{\varepsilon \xi T}{2||\varphi||}) \cup \mu_r\{(x, s) \in X_r : (r \circ \sigma^n)(x) \geq \frac{\varepsilon \xi T}{2||\varphi||}\} \leq \frac{1}{\tilde{r}} \left(\int_{\{x \in X_r : s \geq \frac{\varepsilon \xi T}{2||\varphi||}\}} r \, d\mu + \int_{\{x \in X_r : (r \circ \sigma^n)(x) \geq \frac{\varepsilon \xi T}{2||\varphi||}\}} r \, d\mu \right) = \frac{1}{\tilde{r}} \left(\int_{R_{\xi T/(2||\varphi||)}} r \, d\mu + \int_{|d^{-n}R_{\xi T/(2||\varphi||)}|} r \, d\mu \right) \leq \frac{2C_0}{\tilde{r}} \cdot \frac{e^{-\varepsilon_0 \xi T/(2||\varphi||)}}{1 - e^{-\varepsilon_0/2}}. \tag{3.5}$$

On the other hand, there is a relation between $n(x, s, T)$ and T for μ_r almost all points, where we write \tilde{r} for $\mu(r) = \int r \, d\mu$

$$S_nr(x) \leq \frac{T + s}{n} < \frac{S_{n+1}r(x)}{n} \quad \text{so} \quad \frac{n}{T} = \frac{n(x, s, T)}{T} \xrightarrow{T \to \infty} \frac{1}{\tilde{r}}. \tag{3.6}$$

Note that the left hand side subset in (3.3) is contained in the following union for all sufficiently small $a > 0$

$$\left\{(x, s) \in X_r : \frac{T}{n} \leq (1 - a)\tilde{r}\right\} \cup \left\{(x, s) \in X_r : |S_n\varphi_r(x)| \geq n\varepsilon(1 - \xi)(1 - a)\tilde{r}\right\}, \tag{3.7}$$

where we are omitting the dependence of n on (x, s, T) for simplicity. Again given $\omega > 0$ the right hand subset in (3.7) is contained in

$$\left(X \setminus R_{\omega T}\right) \cap \left\{(x, s) \in X_r : |S_n\varphi_r(x)| \geq n\varepsilon(1 - \xi)(1 - a)\tilde{r} \& \frac{T}{n} \leq (1 + a)\tilde{r}\right\} \cup R_{\omega T} \cup \left\{(x, s) \in X_r : \frac{T}{n} > (1 + a)\tilde{r}\right\}. \tag{3.8}$$

For the first subset in (3.8) we can use Theorem B (since we have a σ-periodic point z such that $S_n\varphi_r(z) \neq 0$ from condition (3.2) and from Lemma 2.2 we know that φ_r is not cohomologous to the zero
for some small $\delta > 0$, where $\beta = \beta(a, \xi) < 0$ is given by Theorem B

$$\beta = \sup_{\nu \in \mathcal{M}} \{ h_\nu(\sigma) - \int \psi d\nu : |\nu(\varphi_r)| \geq \varepsilon(1 - \xi)(1 - a) \sigma \}.$$

For the middle subset in (3.8) we can use the bound (3.4) to get

$$\mu_r(R_{cT}) \leq C_0 e^{-\varepsilon_0 \omega T / 2 \frac{1}{1 - e^{-\varepsilon_0 / 2}}}.$$

(3.10)

Now we only need an upper large deviation estimate on $n(x,s,T)/T$ to finish.

3.2.1. The lap number versus flow time. From (3.6) we consider the measure of the following subsets of X_r for any given $0 < \zeta < 1 / \bar{r}$

$$\mu_r \left\{ \left| \frac{n(x,s,T)}{T} - \frac{1}{\bar{r}} \right| \geq \zeta \right\} = \mu_r \left\{ \frac{n}{T} - \frac{1}{\bar{r}} \geq \zeta \right\} + \mu_r \left\{ \frac{n}{T} - \frac{1}{\bar{r}} \leq -\zeta \right\}$$

(by inequality (3.6)) = \mu_r \left\{ T \leq \frac{n \bar{r}}{1 + \zeta \bar{r}} \& \frac{n}{\bar{r}} \right\} + \mu_r \left\{ \frac{n}{T} \geq \frac{\bar{r}}{1 - \zeta \bar{r}} \right\}.

(3.11)

Since r itself can be taken as an observable in Theorem B, for n so big that

$$1 - \frac{s}{S_n r(x)} \geq 1 - \frac{s}{n \rho_0} \geq 1 - \xi > 0 \quad \text{with} \quad \frac{\bar{r}}{1 - \xi} < \bar{r}$$

we can bound the first summand in (3.11) by

$$\mu_r \left\{ T \leq \frac{n \bar{r}}{1 + \zeta \bar{r}} \& \frac{n}{\bar{r}} \right\} \leq \mu_r \left\{ n \geq T \frac{1 + \zeta \bar{r}}{\bar{r}} \& \frac{n}{\bar{r}} \leq \frac{\bar{r}}{1 - \xi} \right\}.$$
Now we split into pieces that are easier to estimate, for $\omega > 0$ small and T big we have, from (3.4) and Theorem B

\[
\mu_r(A_n) = \mu_r(A_n \cap R_{\omega T}) + \mu_r(A_n \setminus R_{\omega T})
\]

\[
\leq \mu_r(R_{\omega T}) + \frac{\omega T}{\bar{r}} \mu\left\{ x \in X : n \geq T \frac{1 + \zeta \bar{r}}{\bar{r}} \quad \& \quad \frac{1}{n} S_n r \leq \frac{\bar{r}}{(1 - \xi)(1 + \zeta \bar{r})} \right\}
\]

\[
\leq C_0 \frac{e^{-c_0 T/2}}{1 - e^{-c_0/2}} + \frac{\omega T}{\bar{r}} e^{(\gamma + \delta)(1 + \zeta \bar{r})/\bar{r}},
\]

(3.12)

because $(\gamma + \delta)n < (\gamma + \delta)(1 + \zeta \bar{r})T/\bar{r}$, where $\delta > 0$ is small and $\gamma = \gamma(\xi, \zeta) < 0$ is given by

\[
\sup_{\nu \in \mathcal{M}_\sigma} \left\{ h_{\nu}(\sigma) - \int \psi \, d\nu : |\nu(r) - \bar{r}| \geq \bar{r} \left(1 - \frac{1}{(1 - \xi)(1 + \zeta \bar{r})}\right), \psi \in L^1(\nu) \right\}.
\]

For the second summand in (3.11) observe that, using the relation (3.6) and considering the position of $n\bar{r}/(1 - \zeta \bar{r})$ on the real line with respect to $S_n r(x)$ (see Figure 1), we have either

\[
\begin{align*}
 r(\sigma^n(x)) &= S_{n+1} r(x) - S_n r(x) \geq D/2, \quad \text{or} \\
 r(\sigma^{n-1}(x)) &= S_n r(x) - S_{n-1} r(x) \geq D/2,
\end{align*}
\]

where $D = T + s - n\bar{r}/(1 - \zeta \bar{r})$.

\[\begin{diagram}
 \node{S_{n-1} r} \arrow{e} \node{S_n r} \arrow{e} \node{T + s} \node{S_{n+1} r}
 \arrow{se, bend right=45} \node{D}
 \node{n\bar{r}/(1 - \zeta \bar{r})}
\end{diagram}\]

Figure 1. Relative positions on the real line of $T + s$ and $n\bar{r}/(1 - \zeta \bar{r})$.

Then setting $\tau := T/n > \bar{r}/(1 - \zeta \bar{r}) > \bar{r} > r_0$ we can write, by the σ-invariance of μ together with the tail estimate (3.4) and the bound
Let $T \geq r_0n$ (recall that $n = n(x, s, T)$)
\[
\mu_r (x, s) \in X_r : \frac{T}{n(x, s, T)} \geq \frac{\tau}{1 - \zeta \tau} \geq \frac{\tau}{1 - \xi} \geq \frac{T}{n(x, s, T)} \geq \frac{\tau}{1 - \xi} \geq \frac{T}{n(x, s, T)} \geq \frac{\tau}{1 - \xi} \geq \frac{T}{n(x, s, T)} \geq \frac{\tau}{1 - \xi}
\]
\[
\mu_r \{ \eta^{\alpha - 1} \geq \tau \} \geq \frac{T}{n(x, s, T)} \geq \frac{\tau}{1 - \xi} \geq \frac{T}{n(x, s, T)} \geq \frac{\tau}{1 - \xi} \geq \frac{T}{n(x, s, T)} \geq \frac{\tau}{1 - \xi} \geq \frac{T}{n(x, s, T)} \geq \frac{\tau}{1 - \xi}
\]
\[
= \mu_r \{(x, s) \in X_r : x \in \sigma^{-n} R_{T(G)} \} + \mu_r \{(x, s) \in X_r : x \in \sigma^{-n} R_{T(G)} \}
\]
\[
\leq \sum_{k=0}^{[T/n]+1} \mu_r \{(x, s) \in X_r : x \in \sigma^{-k} R_{T(G)} \}.
\]

Now we split the set in two parts as in (3.12) and use the σ-invariance of μ
\[
\sum_{k=0}^{[T/n]+1} \left(\mu_r (B_k \cap R_{\omega T}) + \mu_r (B_k \setminus R_{\omega T}) \right)
\]
\[
\leq C_0 \left(\left\lfloor \frac{T}{r_0} \right\rfloor + 2 \right) \frac{\epsilon \log \frac{T}{r_0}}{1 - e^{-\epsilon \log 2}} + \frac{\omega T}{r} \sum_{k=0}^{[T/n]+1} \mu (R_{T(G)})
\]
\[
\leq C_0 \epsilon \log \frac{T}{r_0} + \frac{\omega T}{r} \left(\left\lfloor \frac{T}{r_0} \right\rfloor + 2 \right) \frac{\epsilon \log \frac{T}{r_0}}{1 - e^{-\epsilon \log 2}}.
\]

(3.13)

Putting (3.12) and (3.13) together and letting $\omega, \delta > 0$ be arbitrarily small we get
\[
\limsup_{T \to +\infty} \frac{1}{T} \log \mu_r \left\{ \frac{n}{T} - \frac{1}{T} \right\} \geq \zeta \leq \max \left\{ \gamma \frac{1 + \zeta \tau}{\tau}, \frac{\epsilon \log \frac{T}{r_0}}{2} \right\}.
\]

(3.14)

3.2.2. Exponentially small tail. Finally, comparing the right hand subset in (3.8) with the usage of ζ in (3.11) of Subsection 3.2.1, we see that $a + 1 = (1 - \zeta) \frac{T}{r_0}$ and $\frac{1}{\alpha + 1} = \frac{1}{\alpha + 1} \cdot \alpha$; so that putting (3.5), (3.8), (3.9), (3.10) and (3.14) together we arrive at (letting again $\omega, \delta > 0$ be arbitrarily
small)

\[
\limsup_{T \to +\infty} \frac{1}{T} \log \mu_{T} \{ z \in X_{r} : \int_{0}^{T} \varphi(f_{t}(z)) \, dt \geq \varepsilon T \}
\]

\[
\leq \max \left\{ \frac{\beta}{(1 + a)^{\gamma}} \cdot \frac{\gamma \cdot 2 + a}{1 + a}, \frac{\varepsilon_{0} \gamma}{2} \left(1 - \frac{\bar{r}}{r_{0}(1 - \bar{C})} \right) - \frac{\varepsilon_{0} \varepsilon \bar{r}}{2\| \varphi \|^{'}} - \varepsilon_{0} \omega \right\}.
\]

for all small enough \(a, \zeta > 0 \) and also \(\xi, \varepsilon, \omega > 0 \). Observe that \(\varepsilon_{0} \) does not depend on \(\varepsilon \) and by the assumptions on \(\mu \) (i.e. \(\mu \) is the unique equilibrium state for the potential \(\psi \)) we have \(\gamma(\xi, \zeta) \xrightarrow{\xi, \zeta \to 0} 0 \).

Thus we can take \(\varepsilon, \xi, \zeta > 0 \) so small that \(\beta/((1 + a)\bar{r}) \) is the maximum value above. Then letting \(a \) be very small we obtain the statement of Theorem C.

3.3. The limit inferior.

For the limit inferior we need to restrict the class of observables to consider. We assume that \(\varphi : X_{r} \to \mathbb{R} \) is continuous and bounded, with \(\mu_{r}(\varphi) = 0 \) and \(\varphi_{r} : X \to \mathbb{R} \) an Hölder function and, in addition, that \(\varphi \) has compact support: there exists a compact subset \(K \subset X_{r} \) such that \(\varphi \equiv 0 \) on \(X_{r} \setminus K \). Let \(r_{1} = \max_{X} r \geq r_{0} \) in what follows. We now show that any deviation set for \(\varphi \) under the flow \(f_{t} \) can be related to a specific deviation set for \(\varphi_{r} \) under the shift map, in such a way that we can apply the lower bound for the rate of large deviations provided by Theorem B.

We start by noting that the function

\[
\varrho(x, s) := \varphi(x, s) - \varphi_{r}(x)
\]

is bounded and satisfies

\[
\varrho_{r}(x) = \int_{0}^{\varrho(x,s)} \left(\varphi(x, t) - \varphi_{r}(x) \right) \, dt = \int_{0}^{\varrho(x,s)} \left(\varphi(x, t) - \varphi_{r}(x) \right) \, dt = 0
\]

and

\[
\| \varrho \| := \sup_{(x, s) \in X_{r}} \left| \varphi(x, s) - \int_{0}^{\varrho(x,s)} \varphi(x, t) \, dt \right| \leq \| \varphi \| + r_{1} \| \varphi \| = (1 + r_{1}) \| \varphi \|.
\]

Now from relation (3.1) applied with \(\varrho \) in the place of \(\varphi \), for all \((x, s) \in X_{r} \) and \(T > 0 \), with \(n = n(x, s, T) \)

\[
\int_{0}^{T} \varrho(f_{t}(x, s)) \, dt = S_{n} \varrho_{r}(x) + I_{T}(x, s) = I_{T}(x, s)
\]

and

\[
|I_{T}(x, s)| \leq \left| \int_{0}^{T + s - S_{n}r(x)} \varrho(f_{t}(0^{n}(x), 0)) \, dt \right| + \left| \int_{0}^{s} \varrho(f_{t}(x, 0)) \, dt \right| \leq C_{1} := 2r_{1} \| \varrho \| \leq 2r_{1}(1 + r_{1}) \| \varphi \|.
\]
Therefore, by the definition of ϱ, for each $(x,s) \in X_r$ and all $T > 0$

$$\left| \int_0^T \varphi(f_t(x,s)) \, dt \right| \geq \left| \int_0^T \varphi_r(\pi \circ f_t(x,s)) \, dt \right| - C_1, \quad (3.16)$$

where $\pi : X_r \to X$ is the projection on the first coordinate.

We observe that, because φ has compact support, using the relation (3.1), for the purpose of calculating $\int_0^T \varphi(f_t(x,s)) \, dt$ with given $(x,s) \in X_r$ and $T > 0$, we may assume without loss of generality that both $s < r_1$ and $T + s - S_n r(x) < r_1$, since $\varphi(y,t) = 0$ for all $y \in X$ and $t \geq r_1$. In other words, any value of the Birkhoff integral of φ for the flow f_t always coincides with the value of the Birkhoff integral for some $(x,s) \in X_r$ and $T > 0$ satisfying the conditions stated above.

Now we use again the relation (3.1) with φ_r in the place of φ to get

$$\left| \int_0^T \varphi_r(\pi \circ f_t(x,s)) \, dt \right| = \left| \sum_{i=0}^{n-1} \int_0^{\varphi(r(x))} \varphi_r(\sigma^i(x)) \, dt - s \varphi_r(x) \right|$$

$$+ \left(T - r(\sigma^{n-1}(x))\right)\varphi_r(\sigma^{n-1}(x))$$

$$\geq \left| S_n (r \cdot \varphi_r)(x) - 2r_1 ||\varphi|| \right|$$

$$\geq r_0 \cdot \left| S_n \varphi_r(x) \right| - 2r_1^2 ||\varphi||. \quad (3.17)$$

This implies that if $\left| S_n \varphi_r(x) \right| > \epsilon (1 + \xi) T / r_0$, then

$$\left| \int_0^T \varphi(f_t(x,s)) \, dt \right| \geq r_0 \cdot \frac{\epsilon (1 + \xi) T}{r_0} - 2r_1^2 ||\varphi|| - C_1$$

$$= \left(\epsilon (1 + \xi) - \frac{2r_1^2 + 2r_1 (1 + r_1)}{T} ||\varphi|| \right) T > \epsilon T$$

for all $\xi, \epsilon > 0$ and $T > (4r_1^2 + 2r_1 ||\varphi|| / (\xi \epsilon))$. Therefore for $\epsilon, \xi, \zeta > 0$ we can write

$$\mu_r \{ x, s \} : \left| \int_0^T \varphi(f_t(x,s)) \, dt \right| > \epsilon T \geq \mu_r \{ x, s \} : \left| S_n \varphi_r(x) \right| > \epsilon (1 + \xi) T / r_0 \}$$

$$\geq \mu_r \{ (x,s) \in X_r : \left| S_n \varphi_r(x) \right| > \epsilon (1 + \xi) \frac{T}{r_0} \& \frac{T}{n} \leq \frac{r}{1 - \zeta^T} \}.$$

Finally, since $r \geq r_0$, we have the following (crude) lower bound for the last expression

$$r_0 \cdot \mu \{ x \in X : \left| S_n \varphi_r(x) \right| > \frac{\epsilon (1 + \xi) T}{r_0 (1 - \zeta^T) n} \}.$$
From Theorem B we obtain for all big enough \(n \) and \(T > 0 \) (recall that \(T \geq nr_0 \))
\[
\mu_r \{ (x, s) \in X_r : \left| \int_0^T \varphi(f_t(x, s)) \, dt \right| > \varepsilon T \} \geq r_0 \cdot e^{(\omega + \delta)n} \geq r_0 \cdot e^{(\omega + \delta)T/r_0}
\]
where \(\delta > 0 \) can be taken arbitrarily small and \(\omega = \omega(\varepsilon, \xi, \zeta) < 0 \) is given by Theorem B
\[
\omega = \sup \{ h_\nu(\sigma) - \int \psi \, d\nu : |\nu(\varphi_r)| > \frac{\varepsilon}{r_0 (1 - \xi)} \nu \in M_\sigma, \psi \in L^1(\nu) \}.
\]
Since \(\xi, \zeta, \delta > 0 \) are arbitrary, we see that the exponential decay rate of the measure is bounded below by
\[
\liminf_{T \to +\infty} \frac{1}{T} \log \mu_r \{ \left| \int_0^T \varphi(f_t(x, s)) \, dt \right| > \varepsilon T \} \geq \frac{\omega(\varepsilon, 0, 0)}{r_0}.
\]
The proof of Theorem C is complete.

4. Application to the Teichmüller flow

In this short section we apply Theorem C to the coding of the Teichmüller flow on the moduli space of abelian differentials.

The applications of these results to systems admitting a coding through flows over countable full shifts are consequences of the following simple observation.

We recall that a measure preserving dynamical system \((Y, g_t, \mathcal{B}, \nu)\) (where \(g_t\) is a \(\mathcal{B}\)-measurable flow) is a factor of the system \((X, f_t, \mathcal{A}, \mu)\) (where \(f_t\) is a \(\mathcal{A}\)-measurable flow) if:

- there exists a measurable map \(i : Y \to X\) which commutes with the actions of the dynamical systems: \(i(g_t y) = f_t(i y)\) for all \(y \in Y\) and all \(t\);
- \(i(Y) = X\) and the induced measure \(\nu(i^{-1} A), A \in \mathcal{A}\) equals \(\mu\).

Lemma 4.1. Let us assume that \((Y, g_t, A, \nu)\) is a factor of \((X, f_t, \mathcal{A}, \mu)\) with a factor map \(i : Y \to X\).

Then for any observable \(\varphi : X \to \mathbb{R}\) with \(\mu(\varphi) = 0\) we have that the deviation sets
\[
D_X(\varphi, \varepsilon) = \left\{ z \in X : \left| \int_0^T \varphi(f_t(z)) \, dt \right| > \varepsilon T \right\}
\]
and
\[
D_Y(\varphi \circ i, \varepsilon) = \left\{ z \in Y : \left| \int_0^T (\varphi \circ i)(f_t(z)) \, dt \right| > \varepsilon T \right\}
\]
are related as follows:

\[D_X(\varphi, \varepsilon) = h\left(D_Y(\varphi \circ i, \varepsilon)\right) \]

So if we can relate two flows as above and identify the class of functions \(\psi \) such that there exists \(\varphi : X \to \mathbb{R} \) satisfying \(\psi = \varphi \circ i \) and a large deviation estimate for the system \((X, f_t, B, \mu)\), then we can pass the same estimates for that class of functions on the system \((Y, g_t, A, \nu)\).

Remark 4.2. However if the given isomorphism does not respect other measures, then we may not be able to interpret the deviation rates for the system \((Z, Y', m)\) as the variational bounds in Theorems B and C. See item (3) of Proposition 1.2.

We note that the roof functions \(r_n : X \to \mathbb{R}_+ \) in Proposition 1.2 are Hölder and bounded away from zero, so they are automatically log-Hölder as well: if \(r_n(\omega) \geq b_n > 0 \) for all \(\omega \in X \), then for \(N \in \mathbb{N}, \omega, \omega' \in X \) with \(\omega' \in [\omega]_N \)

\[1 - \frac{r_n(\omega)}{r_n(\omega')} = \frac{|r_n(\omega) - r_n(\omega')|}{|r_n(\omega')|} \leq \frac{C\alpha^N}{b_n}. \]

Moreover, fixing \(n \in \mathbb{N} \) and connected component \(\mathcal{H} \) of \(\mathcal{M}_\kappa \), a function \(\varphi : \mathcal{H} \to \mathbb{R} \) which is bounded and Hölder in the sense of Veech induces a function \(\theta : \mathcal{V}_0^{(1)}(\mathbb{R}) \to \mathbb{R} \) so that \(\varphi \circ \pi_R = \theta \), and then the function \(\psi = \theta \circ i_n : X_{r_n} \to \mathbb{R} \) is such that \(\psi_{r_n} : X \to \mathbb{R} \) is Hölder.

Finally, each roof function \(r_n \) has exponential tail (with respect to \(\mu_\kappa \)) since \(\tau_K \geq c \) for some positive constant \(c \) for the compact \(K \subset \mathcal{H} \) in (1.1).

Hence, we can use Theorem C with \(\psi \) as the observable to estimate the rate of decay of the deviation sets for \(\varphi \).

References

Vítor Araújo, Instituto de Matemática, Universidade Federal do Rio de Janeiro, C. P. 68.530, 21.945-970 Rio de Janeiro, RJ-Brazil
E-mail address: vitor.araujo@im.ufrj.br

Alexander I. Bufetov, Department of Mathematics, Rice University, MS 136, 6100 Main Street, Houston, Texas 77251-1892 and The Steklov Institute of Mathematics, Russian Academy of Sciences, Gubkina str. 8, 119991, Moscow, Russia
E-mail address: aib1@rice.edu and bufetov@mi.ras.ru