Agency, Firm Growth, and Managerial Turnover

Ron Anderson, M. Cecilia Bustamante, Stéphane Guibaud
London School of Economics

Second International Moscow Finance Conference
ICEF, November 2012
Motivation: Firm growth and managerial change

- Firm growth sometimes involves major changes.
 - In technology/ product market/ organization/ ownership structure.

- The incumbent manager may not have the skills that are needed to implement value-enhancing transformations of the firm.

- A change of management is sometimes required to create value.
 - We bring this idea into a dynamic moral hazard model of the firm.
This paper

- We analyze:
 - how growth prospects affect incentive provision;
 - how agency problem affects realized firm growth.

- We introduce exogenous, stochastic growth opportunities in a standard dynamic moral hazard model.

- Baseline assumption: taking up a growth opportunity entails a change of management.

- Extension: the firm can either grow with the incumbent or with a new manager, possibly at different costs.
Main results from the baseline model

- **Turnover**: to provide incentives or to grow.
 - Turnover rate increases with the severity of moral hazard, and with the likelihood of growth opportunities.

- **Compensation**: optimal scheme can be implemented with a system of deferred compensation credit and bonuses.
 - Compensation is more front-loaded when the agency problem is less severe, and when growth opportunities are more frequent.
 - Role for severance pay depends on the contractibility of growth opportunities.

- **Realized growth**: depends both on exogenous growth potential and severity of moral hazard.
 - Valuable growth opportunities may be forsaken following periods of good performance.

- **Inefficiency**: Each contract is designed ignoring its impact on future managers.
Related literature

- Managerial economics
 - Penrose (1959), Roberts (2004)

- Matching between executives and firm characteristics
 - Gabaix & Landier (2008), Pan (2010), Eisfeldt & Kuhnen (2012)

- Evidence on growth-induced turnover
 - Murphy and Zimmerman (1993), Kaplan et al. (2009), Jenter and Lewellen (2012)

- Dynamic agency literature
 - Non-contractible growth: He (2008)
Model

- Firm owned by outside investor (principal), and run by a sequence of managers (agents).

- Firm generates stream of risky cashflows Y_t over $t = 1, \ldots, T$.
 - We will focus on the stationary limit as $T \to \infty$.

- The manager can underreport cashflows.
 - He gets $\lambda \leq 1$ per unit of diverted cashflow.

- Principal and agents are risk neutral.
 - Discount rates r and $\rho > r$, respectively.
Cashflows proportional to the current scale of the firm

\[Y_t = \Phi_t y_t. \]

Scaled cashflows \(\{y_t\} \) i.i.d., \(\mathbb{E}(y_t) = \mu. \)

Stochastic arrival of growth opportunities.
 - Each period, with probability \(q \) the firm gets an opportunity to increase its scale \(\Phi \) by a factor \((1 + \gamma) \).
 - Proportional cost \(\chi \geq 0 \).

Growth opportunities are observable, verifiable and contractible.
 - Notation: \(\theta = G \) if growth opportunity available, otherwise \(\theta = N \).
Managerial replacement

- In every period, the incumbent manager can be fired and replaced by a new one.
 - Proportional replacement cost $\kappa > 0$.
 - Manager’s continuation value upon dismissal normalized to zero.

- Firm must change its management in order to grow.
 - We relax this assumption in the extension.

- One possible interpretation of growth opportunities:
 - With probability q, the firm finds a new manager who could generate a permanent increase in productivity.
First best

- Retain manager when $\theta = N$.
 - $\kappa > 0 \rightarrow$ termination is inefficient.

- Replace and grow when $\theta = G$.
 - We assume growth-cum-replacement is efficient.
Second-best contracting

- **Sequence of contracts:** A new contract is established each time a new manager is hired.

- **Standard assumptions:**
 - Investor has deep pockets, agents have limited liability.
 - Full commitment.
 - No private saving by the agent.
Intra-period timing

Cashflow realization y_t

Agent reports cashflow

$\theta_t \in \{G, N\}$

Dismissal/growth/severance

Compensation
Recursive approach

- History up to time t summarized by
 - Firm scale Φ_t;
 - Agent’s expected discounted payoff W_t.

- Let $B(\Phi_t, W_t)$ the principal’s value under the optimal contract.

- Homogeneity:

\[B(\Phi, W) = \Phi B(1, w) \equiv \Phi b(w), \quad \text{for } w \equiv W/\Phi. \]

Key state variable: agent’s scale-adjusted expected payoff w.
Intra-period value functions

Cashflow realization y_t

Agent reports cashflow

$\theta_t \in \{G, N\}$

Dimissal/growth/severance

Compensation

$by(.)$ $bq(.)$ $b^\ell(\cdot)$ $bc(.)$ $be(.)$ $by(.)$
Preview of the optimal contract

- The agent’s “promise” w is adjusted in response to
 - Cashflow shocks;
 - Growth opportunity realizations.

- Three threshold values:
 - Dismissal thresholds w_N and w_G;
 - Bonus threshold \overline{w}.
Cashflow sensitivity

- Adjustment of agent’s promise to cashflow realization:

\[\tilde{w}(y) = w + \lambda(y - \mu). \]

This guarantees that the agent reports cashflows truthfully.

- Limited liability constraint \(\tilde{w}(y) \geq 0 \) requires \(w \geq \lambda(\mu - y_{\text{min}}) \).
 - An agent cannot start a period with a promise that is too small.
 - This will lead to inefficient replacement after poor performance.
On-the-job compensation

- Simple tradeoff between present vs. deferred compensation.
 - Benefit from deferred compensation: avoid inefficient turnover;
 - Cost of deferred compensation: agent is more impatient.

- This tradeoff pins down the bonus threshold \(\overline{w} \).
 - When the agent’s promise \(w \) at the compensation stage is above \(\overline{w} \), he receives \(w - \overline{w} \).
 - In line with the use of performance milestones and bonuses documented by Murphy (2001).

- Bonus threshold is decreasing with respect to \(q \).
 - Increasing \(q \) is like making the agent more impatient.
Principal’s continuation values upon replacement
Principal’s continuation values upon replacement

- In the absence of a growth opportunity

\[\ell_N = e^{-r} b^y (w_0) - \kappa. \]
Principal’s continuation values upon replacement

- In the absence of a growth opportunity

\[\ell_N = e^{-r} b^y(w_0) - \kappa. \]

- When a growth opportunity is available

\[\ell_G = e^{-r}(1 + \gamma)b^y(w_0) - (\kappa + \chi). \quad (> \ell_N) \]
Replacement decision

The graph shows the relationship between the Agent's promise and the Principal's value. The graph plots two functions: ℓ_G and ℓ_N. The function ℓ_G is represented by the line b^c.

- ℓ_G reaches a maximum value of approximately 220 at an Agent's promise of around 10.
- ℓ_N starts at a higher value and decreases as the Agent's promise increases, approaching a value of approximately 150 at the maximum Agent's promise.

The point \bar{w} on the graph indicates a specific value of the Agent's promise where the Principal's values intersect.
Inefficient turnover

\[\text{Agent's promise} \]

\[\text{Principal's value} \]

\[b^\ell_N \]

\[b^c \]

\[w_N \]

\[\ell_N \]

\[w \]
Efficient turnover — High growth firms
Efficient turnover — Low growth firms

\[\ell_N, \ell_G \]

Agent's promise vs. Principal's value

- Green line: \(b^\ell_N \)
- Red line: \(b^c \)

Critical points:
- \(w_N \)
- \(w \)
Efficient turnover — Low growth firms

![Graph showing the relationship between the agent's promise and the principal's value.]
Efficient turnover — Low growth firms

![Graph showing principal's value and agent's promise]
High growth vs. Low growth firms
What does it take for managerial entrenchment not to arise and impede growth?

- High growth firms have a steady flow of good opportunities for expanding and improving productivity (high q and γ).

- They manage transitions well (low κ and χ).

- They keep agency problems under control (low λ).
 - Better monitoring can resolve the entrenchment problem.
Adjustment in response to growth opportunity realization

- For a given post-cashflow promise w, the contract specifies contingent continuation promises w_G and w_N.
 - Must satisfy $q w_G + (1 - q) w_N = w$, and $w_G, w_N \geq 0$.

- High growth firms set $w_G = 0$ and $w_N = w/(1 - q)$.
 - Better reduce the probability of inefficient turnover than give cash to a departing agent.
 - Corollary: High growth firms pay zero severance.

- In low growth firms, the choice of (w_G, w_N) affects both the probability of inefficient and efficient turnover.
Growth-contingent promises in low growth firms

\[(1 - q)w_G \]

\[w_G(w) \]

\[w_N(w) \]
When growth opportunities are non-contractible

- When the manager privately observes the arrival of growth opportunities, positive severance can arise.

- Truth telling requires

 \[w_G \geq w_N. \]

 The principal optimally sets

 \[w_G = w_N = w. \]

⇒ High growth firms give severance pay upon growth \(s_G(w) = w. \)

 - Severance indexed on past performance.
 - Potential explanation for the finding of Yermack (2006), who documents widespread use of severance for departing CEOs.
Takeaways

- **Managerial turnover.**
 - Used to provide incentives or to grow.

- **Managerial compensation.**
 - More front-loading when growth-induced turnover is more likely.
 - Severance: not used, unless if required to incentivize manager to reveal private information about arrival of growth opportunity.

- **Firm growth.**
 - Firms may pass up value-enhancing opportunities after periods of good performance.
 - Better monitoring can alleviate the entrenchment problem.

- **Another inefficiency.**
 - The design of each contract ignores its impact on future managers.