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An interpretation on graphs 1s suggested of a2 search for patterns by the
JSM method of automatlc hypothesis generation. The interpretation establishes
a connectlon between a search for JSM-hypotheses and a study cof classical com-
blnatoric objJects {(bipartite graphs and complete bilpartite subgraphs in them}.
A relationshlp 1s thus established wifh other pattern search systems. Algo-
rithmlie complexity (polynomial caleulability, NP-completeness, and #P-complete-
ness) of certaln pattern search problems is described (this also refers to a
search for subgraphs of a certaln type in bipartite graphs.

By 1ndroducing an operatilon of "l1solating the common part”" of several ob-
Jects, one can specify a simllarity relation between objects as a basis for
finding patterns in a data set. Thils interpretation of similarity is utilized
in varlous systems of artific¢lal intelligence and pattern recognition, including
the JSM-method of automatic hypothesis generation [1-4].

When obJects are represented by sets, the aperation of intersection can
be used for this purpcse. The search for similarities is reduced to examina-
tion of all possible Intersections of the initial sets satisfying certain addi-
tional constraints according to the properties of solvers in the intelligent
system (or a recognitlon system). In particular, solvers 1in the J3M-method are
based on plausible inflerence rules formulated in a specilal language which is
an extension of the languae of first-order predicate logic.

The first questlon discussed in the paper is the graph interpretation of
the problem of finding patterrs of a certain type. Similar to geometric inter-
pretations {on Boolean cubes), minimizazicn of Boolean functions [5] helps in
certain situations to find answers to special questions; a graph interpretation
of the search for patterns provides answers to questicns for construction of
effective algorithms capable of finding such patterns.

The study ls based on a simplified concept of the JSM-hypothesis (pattern).
It operates excluslvely with examples of obJects that have a specific property
(in absence of counterexamples) of the one-element set of properties and an
elementary decislon predicate: the simple similarity predicate Mat. This sim-
plification is introduced for two reasons.

First, it reveals the relationship between the search for JSM-hypotheses
and the search for hypotheses in other systems (see [6] and references in that
book). The simplification reveals the combinatoric core of certain intelligent
systems and pattern recognition systems. It allows interpreting results with
respect to the algorithmic complexity of problems in the J3M-method as results
© 1989 by Allerton Press, Inc,
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in regard to algorithmic characteristics of classical combinatorlic objects: bl-
partite graphs and binary matrilices.

Secondly, negative results (concerning NP- and #P-completeness of certaln
problems), In & simplified statement, lead to similar results 1ln more general
statements, and more complex data structures.

We assume that finilte sets Ul and a=2 ™. A pair (U, 9@ will be called the

input data of a JSM-problem (the set Ul represents structural elements; the set

@ represents chjects with a certain property A). The JSM-hypothesls with regard
to the causes of the property A) 1s a palr (H{X.....X:}», where He=Xn..0X, Xea for
i=1,T , and for any X: Xed\{X,...,X:} we have HNI+H,

We also dencte h = |H|.
1

@ to a bipartite graph G(Uln): in the right part each

node corresponds uniquely to a certaln element from Ul; in the left part 1t cor-
responds tc a set from §. Nodes 1 and § are linked in G by &n edge 1f and only
1f the set e contalns an element selt.

We assign the sets U

Example:

ARC
:[4)
ADE

8F

TmE O 0 M

U'ma {4, B, C, D, E, F}u
Q== {ABC, BCD, ADE, BF}.

# 13 the set of all hypotheses: M={¢BC, {ABC, BCD})Y, (A, {ABC, ADE)), (B, {ABC, BCD, 8F}).

It can readlly be seen that each hypothesls corresponds to an embedding-
maximal complete blpartite subgraph R of the graph G, which has at least two
nodes 1n 1ts left part, l.e., & subgraph of the form (VUWV. E), E=VIXI¥, |V|>»2, such
that if one adds to any V., l&{t, 2} a2 node v from the same part of G, the subgraph
induced on the nodes VU{GIUV will not be complete, 1l.e., for the respective

set E:Ec(MU{ehxV? (if for vz one takes Vl).

A subgraph Ilnduced by nodes ABC, BCD, B, and C is an embedding-maximal
complete bipartite subgraph of the graph G from the example: 1f any other node
1s added, its completeness 1s violated (for example, 1f we add the node BF, the
node C 1s not connected with BF). Conversely, suppose that there 1s arbitrary
bipartite graph B=(V|j¥*, E), V={l, ...s} Vi={b, ..., ). We assign the right part B (the

nodes from V2) to the set yl and the left part (the nodes V2) to the set § of

a problem of JSM-hypotheses. TFor each node 1 from Vl
add 1t to the set V2; we connect 1t by an edge only with ay {which 1s necessary

to avoid dupllcate sets in @). Each node 1 from Vl is now assigned a set Wy o=
= {an by .. bul, where {b,....0) as precisely the set of those nodes from V2 connected
with the node 1. The bipartite graph (MI¥Ula,..., &} EUl(L, a)...., ( 8)}} now corresponds
to the initial c¢ondltions of the problem of JSM-hypotheses wlith W={a,...,8,, b;,...,0)
and Q={w,....m}; each embedding-maximal complete bipartite subgraph R of the graph
B with at least two nodes 1n the left part corresponds to a JSM-hypothesls for

we form a new node @y and
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input data Ul, . Reductilion in both directions is accomplished within a linear
time. The following lemma is therefore satisfiled.

Lemma 1. From the input data (U, @ of a JSM-problem 1t is possible to con-
struct, within a time linear with respect to U], maximal embedding-complete
blpartite subgraphs {with at least two nodes in one part)} which correspond
uniquely to hypotheses of a JSM-problem. Conversely, from any blpartite graph
B=(WJW, E), within linear time, one can construct a blpartite graph F=({(VuViyv: &
from which, in turn, it i1s posslible te construct the input data (W), Q&) of %he
JSM-problem The hypotheses arein a one-to-one correspondence with embedding-
maximal bipartite graphs containing at least two nodes from v?

A more comprehensive statement of the problem cof finding JSM-hypotheses,
which presumes that the data base includes obJects having a given property
(plus-examples) and object not having it (minus-examples} and allows one to
consider not only elementary properties but also sets of different elementary
propertles but alse sets of different elementary properties, can be Interpreted
as searching for certalin subgraphs in a tetrapartite graph Q of the following
form:

Set of structursl slements {U'}

NS NN

----------- srepadeanaa

e SKLRK& PO f""

-----------

Sets of slementary properties {U%}

with a set of edges EsUx@HyuixQ-puixa+yl*XQd~ More specifically, the exlstence of
a hypothesis concerning the properties W=W In this case (for example, for a
situation where a simple similarity predicate Met is used [1]) corresponds to
the existence in the graph @ of the embedding-maximal complete bipartite sub-
graph induced by nodes from U, @ (let this be  a subgraph on the set of nodes

V% and W, Vicl, WeQ+), such that all the nodes from Vu are connected by edges
with all neodes from W. In this case, @ should not contain any embedding-maxinal
complete bipartite subgraphs lnduced by nodes from u, Q- (let this be a subgraph
on the sets of nodes V® and W VU, VWe=g-), such that all the nodes from V® are
connected by edges with all the nodes from W.

We will new return to a simplified statement of JSM-problem.

An alternative interpretation of the problem of finding JSM-hypotheses 1is
cne of finding extreme unit submatrices of binary matrices. That this problem
is equivalent to finding complete bipartite subgraphs of a blpartite graph has
been mentioned, for example, in monograph [7] in connectlon with the Carankiewicsa
problem* (see alsc [6]).

We wlll now consider aspects associated with the complexlity of hypothesils
generation. We wlll show how 1lnterpretation on a graph helps solve some of
them. Even under the ahove constraints, the problem of generating all hypo-
theses can be of an exponential complexity. Indeed, at Psfs,...,z) and Qe(W,...,Wa),
where WimUN {a}, the number of all possible nonzero intersections of sets from

¥The Carankiewicz problem 1s one of evaluating a number k for which any
n x n binary matrix contalning k unit elements comprises the unit submatrix of
glze a x g.
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0 1s 2% = n - 2 [8]. This is the exact upper estimate of the number of inter-
sections. Subsequently, the condltlons of the problem of finding J3M-hypotheses
formulated in @ and Q@ will be called n-basis, denoted #(U)). The exponential
upper estimate of the number of hypotheses 1ndicates that, in general, finding
2ll hypotheses may be difflcult. One should then censider a way of finding
"quickly" only the "good" hypotheses. The quality of a hypethesis @&, (X, .... X
can be measured, for example, by the following funectionals:

1: h = the cardinality of H (as a measure of informativity of the hypo-
thesis);

2: 1 -:the number of sets forming a hypothesis as an intersection (a hypo-
thesls rellability measure);

3: h + T - iIntegral informativity and reliability measure,

In connection with the choice of the'quality functional f, the following
problems are posed (for functlonals 1 and 2, they have been discussed in [8]):

Problem 1. Does there exist a hypecthesils for which the value of the func-
tilonal Ff is not less than k (f 2 k)7

Problem 2. Does there exist a hypothesils for which the value of the func-
tional f 1s net greater than k (f < k)?

Problem 3. Does there exlst a hypothesis where the value of the functional
1s exactly k (Ff = k)?

On bipartite graphs, problems 1-3 are Interpreted as problems of finding
embedding-maximum complete subgraphs with constralnts on the size of the left
part {functiocnal 1), the right part (functional h), and the entire subgraph
{(the functional h + 1)}.

In [8] 1t was shown that groblems 1 and 2 for the functionals h and I can
be solved within a2 time of 0(n?).

Interpretation of the probtlem of a search for JSM-hypotheses on graphs
immediately allows establishing an algeorithmic equivalence of problems 1-3 and
the functional I (this duality was established in [8]). Indeed, the algorithm
of finding extremal complete bipartite subgraphs 1s not affected by whether a
constraint is imposed on the size of the left part or the right part (within a

correction in O(nz) 1n time, the test for extremal complete subgraphs with a
unlque node in one of the parts does not permlt mere than two sets to be members
of an intersection).

The complexity of solving problem 3 for the functlonals h, I was unknown;

the complexity of solutiocn of problems 1-3 for the functicnal h'+ I has not been
studled previously.

We will first show that problem 3 with functional h {(and therefore also
with functional 1) is NP-complete. We will prove the polynomial reducibillity
of "three-dimensional combination™ (3-C) problem to problem 3 [9]. We will
recall the formulation of (3-C): a set MeWXXXY is given, where W, X, and ¥
are noneverlapping sets consisting of an equal number of elements q. Is 1%
true that ¥ contains a three-dimensional combination, l1.e., a subset M'sM such
that [M'|=¢ and no two different elements of M' have an equal coordinate?
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Theorem 2%*. Problem 3 with functional h is NP-complete.

Proof. Suppose we have an individual problem from (3-C) with parameters
M ([M|md), W XY (|7 ma|X|=|Y|=g)., We willl ceonstruct the following binary matrix #:

') Iyt )
——— a

In the right-hand side of the matrix - eq of right-hand positions - each
row corresponds to an element méM such that a zero in ccoclumns Wy s xj, Ty indi-

cates the presence of the respective component and a one indicates 1ts absence.
In the left-hand side of the matrix - N{3q + 1l)-left positions in the i-th row -
zeros are in positions with {~1){¥+1)4+! to 1(3q + 1); the remaining positlions are
filled with ones. If problem (3-C) has a solution, then the matrix ® contains
g rows such that in the right-hand side of the matrix, columns contain one zero
each, and the product of all q rows 1s a row containing exactly ¢(3¢+l)+3¢ zeros
and, hence, ¥N{(3¢+1)+3g—(9:3¢+1)+3¢gm (N—g)-(3¢+1) ones (3g zeros are contributed by the
right-hand side; ¢«(3¢+)) zeros by the left-hand side). Each solution of problem
{(3-C) with parameters q, N corresponds to a solution of problem 1 with matrix
of the form of # and parameters N@e+1)+3¢ (maximal row length) and N (the number
of rows), ¢(3¢+i)+3¢ (the number of ones in a Booclean vector, which is a product
of a certain subset of rows).

Conversely, assume that in the matrix @ constructed, the product of a cer-
tain number of rows of M2 contains ¢8¢+1)+3¢ zeros. The number of rows in M2 can-

not be less than q, because 1f that were so, the left-hand side of the matrix
would yleld at most (#~1)-(3¢+1), while the right-hand side could not exceed 3q,
s0 the sum would be (9—1)-(3¢+1)+3<9{3¢+1}+3%. The number of rows in M2 cannot be

greater than q, because if that were so, the left-hand side of the matrix would
yleld in the product at least (¢+1){(3¢+1) zeros, while (¢+1)(3g+1)>¢(B¢+1}+3¢. Thus, the
number of rows 1n My, 1s g, and the number of zeros in the left-hand side of the

sum of rows from M2 must be q(3q + 1). Therefore, the number of zeros in the

right-hand side of the product of rows 1s g(3¢+1)+3¢~¢(@3¢+1), which 1Is possible 1if
each column of the right-hand side of the matrix #P corresponding to rows from
M2 contains exactly zero, i.e., W contains a three-~dimensional combination cor-

respending to the set of right-hand sides of rows from ME‘

Corollary. Problem 3 with the functional I is NP-complete. By reducing

{3-C) to Problem 3, we wlll show for the functicnal h + 1 that the following
theorem 1s true. .

Theorem 3. Problem 3 for the functional h + I is NP-complete.

Proof. We construct from the individual Problem {(3-C) the matrix P, which
1s similar to the matrix # with the sole difference that each portion of the

¥A proof of Theorem 2 was constructed simultaneously and independently by
A. A. Razborov. Subsequently, an additional proof was offered by M. I. Zabezhailc.
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left submatrix with zercs 1in a certaln row 1 of a wldth ﬁot 3g + 1 but q3 + 1.

If Problem {3-C) represented by the matrix # has a solutlon, i.e., a three-
dimenslonal comblnation W', then the product of the respective g rows in the
right-hand side (3g positions) will contaln no ones, and the left-hand side
wlll contain N(@+1)—¢(+1) ones. The sum of the number of rows and the number of
cnes in their product wlll be ¢+(¥N—g) - (¢*+D).

Conversely, suppose that for a certain subset M3 of the set of all rows

of the matrix #’, the sum of the number of rows and the number of ones in their
product 1s ¢+(N—g)-(¢*+1) . The number of rows k = |M3| cannot be smaller than g,

‘because, otherwlse, the number of ones in the product of rows would not be less
than (N—¢+1}{@+1): since k £ g = 1 therefore 4+ (N=~k):(¢+1)3(N—g+ 1} (P41} >+ (N—9) (P+1).

The number of rows k cannot be larger than q because otherwlse the number of
ones in the product of rows would not be greater than (¥——1){@+i); since HICAINSH,
therefore r+{(N—g~D(PF]) & A (N—g—1)+ (41} m (k—P—1} 4 (N—g) - (P + 1) <q+ (N—q) - (¢*+1) ,

In any case (at k¥ > q or k < g) the sum could not coincide wlth ¢+(¥—g-(+1)-
Therefore, the sum can only have that value if there are g rows. In this case,
{N—¢)-(#+1) ones should be in the left-hand side (N-(¢+!) positlons) of the product
of rows; the sum of the number of rows k and the number of ones n, in the right-
hand side of the product (3g positions) 1s k + ng. Since k = q, therefore n, =
= 0. Thils is possible only if the columns in the right-hand side of the sub-
matrix @ corresponding to the rows from M3 contaln one zero each. Hence, ME

corresponds to a three-dimenslional combination.

The constructlion of an algeorithm fer solution of problem 1 for the funec-
tilonal h + I is reduced to constructing an algorithm which estimates the size
of the (maximal in the number of nodes) complete bipartite subgraph of a bi-
partite graph.

We will gefine a weak completion of a bipartite graph G as a blpartite
graph G whose nodes colncide with those of G and a pair of nodes from different
parts 1s connected by an edge Iif and only I1f 1t 1s not connected by an edge in
the graph G. The complete bipartite subgraph (with maximal numbers of nodes)
in the graph G corresponds to the maximal independent {unconnected) set of
nodes in G. One corollary of the theorem [10, p. 119], proved by Koenig, is
the assertlon that the sum of the number of edges in maximal paired combinatio:
in an arbitrary blpartite graph G_and the size of maxlmal independent set equa
the number of nodes in the graph G.

The maximum paired combinaticn Iin a bhipartite graph can be found within
2 time of O(s™) by the Karp and Hoperoft algorithm (see {[13] and also, e.g., [12
p. 512]). Hence, an answer to problem 1 with functional h + I will be found
with a polynomial speed. An indlcation that the problem of the size of maxims
complete bipartite subgraph of a hipartite graph can be solved fast by reducir
it to a problem of maximal paired comblnation has been glven in [¢, p. 2447,

A description of a polynomlal of O(n3) algorithm of finding maximal complete
bipartite subgraph of a bipartite graph can be found in [111; 1t allows findil:
rapidly the hypotheses that are the best 1n the sense of the functional h + [

In conventional statements of the recognition problem which invelve fin
ing a functlcnal optimal in & certaln sense and "covering" the set of initial
values, 1t may be sufficlent to find just one suech funetlon (hypothesls). Th
J5M-method seeks possibly elther all hypotheses or those which satisfy constr
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on values of certain funeticnals. An Important question in a study of the algo-
rithmiec properties of the JSM-method is the number of hypotheses and the com-
plexity of the algorithm that can evaluate it. Until recently, no one succeeded
in obtalning a nontrivlial estimate of thils number for z given U, Q cf a general
type. We wish to prove the #P-completeness of this problem and thus demonstrate
the difficulty of obtaining nontrivial estimates of this kind.

The notion of #P-completeness was 1lntroduced in [14,15] in cocnnection with
a study of the difficulty of enumerative problems, l.e., those where one has to
specify the number of soluticns of a recognition problem [9]. We wlll operate
with a definitlon which makes use of the notlion of a nondeterministlic Turing's
machine, as is done in [14].

Definition. A counting Turing machine (CMT) 1is a nondeterministic Turing
machline which prints on a separate tape a binary notation cf the number of soclu-
tions of an individual problem T. The time complexity of CMT is g(n) if the
longest reciplent calculatlon of CMT for a proglem T on all individual problems
of size n is g(n).

Definition. #P 1s the class of enumerative problems calculated by CMT
within a polynomial time.

Definition. An enumerative problem is #P-complete if any problem of the
class #P 1s reducible to 1t in Turing's terms.

In [16] the #P-completeness has been proved of a large number of enumera-
tive problems corresponding tc the familiar NP-complete problems.  In particu-
lar, the problems cf a cllque, a Hamiltonlan cycle iImplementability of 3-KNF 3-
combination, etc. In [16] the so=called "conservative" reducibility o, was
used, where A«p,8 implles that each solution of the problem A corresponds one-
to-one to solution of problem B; the number of solutions thus colineldes and the
problems of estimating these numbérs are polynomially equivalent. In [14] the
#P-completeness was proved of the prablem of ¢alculatling the permanent of a
matrix. This made 1t possible to prove the #P-completeness of a series of
enumerative preblems for which the respective recognition problems are soluble
within polynomial time.

In JSM-methed, the problem of the number of all JSM-hypoctheses for the 1n-
put datsa Ul and @ belongs to this group.

The polynomiality of the algorlthm of the recognition problem, "Does there
exist a hypothesls for a given U.Q)," can be proved trivlially (see, e.g., [8]).

We will prove the #P-completeness of the problem of the number of all
hypotheses by reducing tec it the problem of implementabllity of a monotone 2-=-KNF;
the #P-completeness of the latter problem has been proved in [15]. We will
state the problem of 2-KNF.

Given: A set of variables Yee{p....'m} and conjunction &F(¥)mCA...AC,, where Cy
satisfies Cimln,va,) 467

Find the number of Boolean ensembles implementing &(¥).

Theorem 4. The problem, "Find the number of all hypotheses," 1s #P-com-
plete.

Proof. We will show that i1f we can determine the number of hypotheses, we
then can estimate the number of Boolean ensembles that implement AF()x IFY) =
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= UCiA-. . ACHmIC V...V IC,mad, V.., Vd,=D(V), where &=y -y, We assign to the set of vari-
ables Y the set Um{a,....as}, where each variable yj corresponds uniquely to an

element aJ. & disJunctive term di of the disjunetion D(&) 1s assigned the set

., =U\(a,a,}. We will show that each Ilmplementing set of the function D(Y) can
be put into¢ one-to-one correspondence with a set which is the product of pairs
of indleces corresponding to the indlces of varilables in the conjunctlon &),
Let us take an arbltrary ensemble aw(a,....zsq implementing D(Y). We assume that
A, ={a;6lt |a, =1}, Obviously, Aa belongs to the set of intersectlions generated by
U‘""lﬂeg(5(.#;,¢.)U{.a¢,,,,})-n. Conversely, suppose a set AB is generated by a product

of sets from @, and that for certaln fu...tp Ag=UN\{d;,...q, %, TIsolate a set Hp =

= (%, 1 4S5 ). Form a Boolean esemble which has zero in the i-th position if
i€ftyeenn by, The other positions have ones. The ensemble wlll Implement those
disjunctive terms of the disjunction D(Y) which include pairs of literals with
the same pairs of indlces as In the set &4, from Xp. We have established the
cne-to-one correspondence of implementing ensembles of the functlon 2() and

the sets generated by the product of sets from 2. Therefore, #{aD{e)=1} equals
the number of sets generated by the product of sets from {; the number of im-
plementing ensembles of the function F(I equals & M/F(5)m)mi—mi{e/De) ]}, The
problem of defining the number of solutions of the problem of "implementability
of a monotone 2-KNF" has thus been reduced to one of counting the number of all
possible products of a famlly of sets, l.e., tc the problem of the number of
JSM-hypotheses. In reducing one problem to the other, one has to construct r
sets #,, and for each @, one has to construct at most (n - 2) sets from (=)
The reducibility is thus polynomial {(of order @(r-a%); the problem "find the
number of all hypotheses™ is #P-complete.

Corollary. Enumeration problems corresponding to problems 1-3 with func-
tionals h, I, h + I are gP-complete.

Opvicusly, these problems beleng to the class #P. On the other hand, if
we can determlne the number of solutions of problem 3, we can solve the problem
of "deflning the number of -all hypotheses" by taking the sum of the number of
solutions of problem 3 with respect to k for iVt (for the functional h), for
lsk<|Q| (for the funetional 1), and Ises|U+|2t (for the functlonal h + Z). The
enumeration problem correspondlng t¢ problem 2 1is more general than one of
"finding)the total number of all hypotheses" (which is obtalned from the former
at k = 1).

In the proof of Theorem 4, we could have immersed Ul in the set U.)t, which
1s of 2 cardinality greater by a polynomial number of times; we could then
elther add to each of the elements from #(#y an equal subset from U' or avoild
doing so and still not violate the polynomiallty of the reducibility. 1In view
of thls fact, we .can formulate a theorem that 1s stronger than Thecrem 4,

Theorem 5.

1. The problem of "determining the number of all hypotheses"™ with the
functional h not greater than «.|UN (0<a<l, 0<pg!) 1s #P-complete.

2. The problem of "determining the number of all hypotheses" whose values
of the funetional h are not less than «|U4* (0<a<l], 0gPx!) 1s #P-complete.

3imilar theorems can be stated for the functional 7, h + I (substituting
for ju| in the statement |0] and |v}+[Q], respectively).

In conclusion, the author thanks A. Yu. Kogan and D. P. Skvortsov for use-
ful comments, suggestions, and thoughtful guldance.
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