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a b s t r a c t

An incremental algorithm to construct a lattice from a collection of sets is derived, refined,
analyzed, and related to a similar previously published algorithm for constructing concept
lattices. The lattice constructed by the algorithm is the one obtained by closing the
collection of sets with respect to set intersection. The analysis explains the empirical
efficiency of the related concept lattice construction algorithm that had been observed
in previous studies. The derivation highlights the effectiveness of a correctness-by-
construction approach to algorithm development.
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1. Introduction

Potentially, graphs that represent concept lattices [1–3] can be a rich source of information about the inter-relationship
between a set of arbitrary objects that share certain discrete attributes. In recent years, concept lattices have been used
extensively as a knowledge representation andmanagement framework in various domains. These include domains such as
linguistics [4], social network analysis [5,6], ontology building [7], and information retrieval [8]. Concept lattices also play an
important role in some machine learning methods [9] and data mining techniques [10]. Another major area of application
is software construction and engineering. (See, for example, [11–16] and a survey in [17]).
However, algorithms to set up these graphs are notoriously inefficient, having exponential worst-case complexity (which

is due to the exponential size of the output in the worst case). Here, a correctness-by-construction approach that relies on
the guarded command language for notation is used to derive an algorithm that has been shown to perform dramatically
better than others when applied to live data.
In Section 2, a number of definitions are provided, and the notation that is used is introduced. This is followed by the

derivation of the root algorithm in Section 3. Two variants of this algorithm are derived in Section 4. In Section 5, the worst-
case bound of one of the algorithms is derived, using reasoning that is similar to what has been used for other concept lattice
construction algorithms [18]. A conclusion follows in Section 6.

2. Preliminaries

2.1. Lattices

First, we recall basic definitions from lattice theory [19,20].
Definition 2.1. A lattice is a partially ordered set denoted by (L,≤) in which, for every pair of elements, there exists the least
upper bound (or supremum) and the greatest lower bound (or infimum). A lattice is complete if suprema and infima exist
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Fig. 1. Example line diagram of a lattice.

for every one of its subsets. Infimum and supremum are often called meet and join, respectively. X ∧ Y and X ∨ Y denote
the meet and join of X and Y , respectively.

All (non-empty) finite lattices are complete. In what follows, lattices are always assumed finite.
Where the ordering relation≤ is clear from the context, the lattice is simply indicated by L. Themaximum andminimum

elements of a non-empty lattice L are denoted by>L and⊥L respectively.
As with any partially ordered set, a lattice L can be represented visually by a line (or Hasse) diagram in which elements

are depicted as nodes. Suppose c, p ∈ L and c ≤ p. If there is no r ∈ L such that r 6= p, r 6= c , and c ≤ r ≤ p, then p is
depicted above c and is connected to it by an arc in the associated line diagram. In this case, we say that c is a child of p and
p is a parent of c and denote this relationship by c ≺ p. This child–parent relationship on a partially ordered set L (which is
actually the transitive reflexive reduction of the partial order in question) is called the cover relation of L. The graph (L,≺)
is called the covering graph of L. In some cases, it will be useful to explicitly indicate the partially ordered set in question;
then, we write c ≺L p.

2.2. Set Intersection-closed Lattices

Definition 2.2. A closure system C on some alphabet A is a collection of subsets of A that contains A and that is closed under
set intersection—i.e.:

C is a closure system ⇔ (A ∈ C) ∧
(
∀X ⊆ C :

⋂
X ∈ C

)
It iswell known that a closure systemorderedby set inclusion,⊆, is a complete lattice; i.e., ifC is a closure system, then (C,⊆)
is a complete lattice. We will refer to such a lattice as a set intersection-closed lattice (SICL). The meet and join operations in
a SICL (C,⊆) are given by the following expressions:

X ∧ Y = X ∩ Y ;

X ∨ Y =
⋂
{Z ∈ C | X ∪ Y ⊆ Z}.

Note that the join operation does not always coincide with the union, since if X ∈ C and Y ∈ C, it need not necessarily be
the case that X ∪ Y ∈ C.
Fig. 1 shows a line diagram of such a SICL with alphabet {a, b, c, d}. In this figure, as well as in forthcoming

examples, a set {a, b, c, d} is abbreviated to abcd, {a, b, c} to abc, etc. The SICL is the set of nodes in the diagram,
{abcd, abd, ad, bd, bc, d, b,Ø}. The line diagram represents the covering graph of this SICL, where a node p is connected
by a downward arc to a node c if c ≺ p. (For example, the fact that abd ≺ abcdmeans that, in the diagram, abcd should be
connected by the downward arc to abd, etc.).
The top element of the lattice in the figure is abcd, the bottom element is Ø and there are various other elements in

between. Note that the intersection of every pair of nodes is also a node in the figure. However, the inverse does not have
to hold: nodes abcd, abd, ad, bd, and bc are not produced by the intersection of any other nodes. Such nodes have fewer
than 2 parents in the cover relation. The join operation is different from the union: e.g., bc ∨ bd = abcd.
We can now formulate the problem to be addressed in the sections that follow:

Given a SICL L on alphabet A, its cover relation, and a set S ⊆ A, add a minimal number of elements to L and modify
its cover relation accordingly so that S ∈ L and L remains a SICL.
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The result of such update is unambiguous:Lmust be enlarged to include S and pairwise intersections of S and every element
of L. This leads us to Definition 2.3.

Definition 2.3. Let F andH be two arbitrary families of subsets of some alphabet A and let X ⊆ A. Then,H is said to be an
X-extension of F, denoted by F vX H, if

• F ⊆ H and
• ∀Y ∈ H \ F : ((X = Y ) ∨ (∃Z ∈ F : Y = (X ∩ Z))).

This means that each element in H that is not in F, aside from X itself, can be derived by intersecting some element in F

with X . IfH corresponds to the lattice in Fig. 1 and F = {abcd, abd, bd, bc, b, Ø}, then F vad H. This is because the
only element inH \ F other than ad itself is d and this element is the result of intersecting adwith an element in F, namely
bd. On the other hand, if F consisted of all elements ofH apart from b and d, then F 6vb H since d inH\F cannot be derived
by intersecting bwith any element in F. Similarly, F 6vd H.
Returning to our problem statement, the problem to be solved by the algorithm can be specified as follows:

Problem 2.4. Given:

• A graph (L0,≺L0), such that L0 is a SICL on alphabet A;
• A set S ⊆ A;

Find:

• The graph (L,≺L) such that L is a SICL on A, S ∈ L and L0 vS L.

Proposition 1. In a SICL L, if C1, C2, P ∈ L, C1 ≺ P, C2 ≺ P, and C1 6= C2, then C1 * C2 and C2 * C1.

In other words, although children of a node in the line diagram of a SICL may have non-empty intersections with one
another, one may not be a subset of the other.

Proposition 2. If T is some arbitrary element of a SICL L, it follows that the set {S ∈ L | S ⊆ T } is also a SICL whose top element
is T .

The set {S ∈ L | S ⊆ T } is known as a principal ideal in lattice theory and is often denoted by ↓ T . A principal ideal of a
lattice is always a lattice.
Thus, if L is the SICL in Fig. 1, then ↓ ad = {ad, d,Ø} is also a SICL. Nodes in ↓ T might be children, but not parents, of

nodes in L \ ↓ T .

3. The algorithm

Let F be a collection of sets over A and let S ∈ F. Assume the following for a graph whose set of nodes is F, and whose set
of edges is E, i.e. for the graph (F, E):

E(S) = {T | (S, T ) ∈ E} is the set of children of S in (F, E);
E∗ = {(S, T ) | S = T or ∃U ∈ F : ((S,U) ∈ E and (U, T ) ∈ E∗)} is the reflexive transitive closure of the
relation E;

F � S = {T | (S, T ) ∈ E∗} is the set consisting of the node S and all its descendants in (F, E);
E � S = E ∩ (F � S × F � S);
CS(F) is true iff the collection F is a closure system;

CG(F, E) is true if F is a closure system and (F, E) is its covering graph, i.e., CS(F) ∧ (E =≺F).

An incremental SICL construction algorithm called insert0((L, E), X) is derived. When describing the algorithm, we
will use the subscript (·)0 to denote the state of a variable prior to the call of the function where it occurs. For example,
(L0, E0)within the body of the function insert0((L, E), X) denotes the state of the data structure (L, E) at the entry point of
insert0((L, E), X).
The algorithm insert0((L, E), X) inserts a new set X into (L0,≺L0), the covering graph of a SICL L0, to yield (L,≺L), the

covering graph of the L that is the (unique) X-extension of L0 being a SICL and accommodating X .

3.1. Basic structure

For L to remain a closure system after X has been inserted, the resulting L must contain all intersections of X with the
other nodes in L. Therefore, a postcondition of adding X to L is {∀Y ∈ L : X ∩Y ∈ L}. It follows that the algorithmmay have
to insert nodes other than X into L. However, since new nodes should be limited to only those that are necessary, L0 vX L

is a conjunct in the postcondition of insert0((L, E), X).
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The algorithm assumes that L has at least one element,>L, and that the element to be inserted into L is a proper subset
of>L. It is trivial to adapt the algorithm for cases where this does not apply. The pre- and postconditions for the algorithm
may therefore be stated as follows.

proc insert0((L, E), X)
pre : {(L, E) = (L0, E0) ∧ CG(L, E) ∧ X ⊆ >L}

(L, E) : S
post : {L0 vX L ∧ CG(L, E) ∧ X ∈ L}

Note that the notation (L, E) : S means that the statement S is allowed to modify the variables L and E. In particular, in
the algorithm above, S inserts pairwise intersections of X , on one hand, and every element of L, on the other hand, into L,
modifying E accordingly. The following sections describe how this modification can be carried out.

3.2. The main loop

In discussing the expansion of statement S, note that, unless X is already part of L, it can have only one parent. It is
necessary to identify this parent, as well as all children of X . Let Ci, i = 1, . . . , n, be the children of>L. Recall that each such
child, Ci, is itself the top element of the principal ideal ↓ Ci (which is a SICL on alphabet Ci), and hence the top element of
(L � Ci, E � Ci), the covering graph of ↓ Ci. An orderly approach to inserting X into (L, E) is to consider the positioning of X
in relation to each such subgraph (L � Ci, E � Ci) in turn. This implies an iteration over all the original children of>L, during
which possible children of X will be identified and gathered together into a set called C.
In so doing, we make sure that, after the first k ≤ n subgraphs (L � C1, E � C1), . . . , (L � Ck, E � Ck) have been

processed, the set C contains all maximal subsets of X from these subgraphs. These maximal subsets will be children
of X in the updated graph (L, E), unless we find more suitable candidates in the yet unexplored parts of the subgraphs
(L � Ck+1, E � Ck+1), . . . , (L � Cn, E � Cn). To capture this formally, let Mi be the set of the first i children of >L and their
descendants:

Mi =

{⋃i
j=1 L � Cj if i = 1, . . . , n

Ø if i = 0.

We shall require that changes to (L, E) and C conform to the following invariant as the loop progresses. (Recall that L0
denotes the original lattice.)

Invariant , inv1 ∧ (X /∈ L⇒ inv2)
where inv1 , CG(L, E) ∧ L0 vX L

and inv2 , ∀C ∈ C : C ⊂ X ∧ ∀Y ∈ Mi : (Y ⊂ X ⇒ ∃C ∈ C : Y ⊆ C)

Thus, inv1 requires that L remains a SICL whatever happens and that it remains an X-extension of its original value.
This means that it changes minimally, while retaining all nodes that it originally had. Note, however, that inv1 does not
incorporate the requirement that X already has to be in the lattice L—it merely requires that the intersection of X with
every new node in L also has to be in L.
The second part of the invariant, inv2, relates to invariant requirements with respect to C. In particular, it requires that all

elements of C are subsets of X (first conjunct) and that, for any subset of X that is inMi, it or its superset is always an element
of C (second conjunct). This ensures that, by the timewe have processed all nodes Ci, the set Cwill contain all children of X in
the updated graph. However, C is only an auxiliary structure, and once X ∈ L becomes true, we no longer have to maintain
it. Thus, the second conjunct of the invariant is conditional: X /∈ L⇒ inv2.
In general, the incorporation of X into the graph (L, E) is left to a second phase after completing the loop over the children

of>L. Nevertheless, it will be seen that, in some cases, it is possible to terminate the construction even before all children
of >L have been considered, because X can easily and naturally become a part of L. To indicate this eventuality, we use a
flag inserted that allows for an earlier termination of the loop when X is already in the lattice. Using this flag, the invariant
can be re-stated as inv1 ∧ (¬inserted⇒ inv2).
The postcondition of the loop is therefore: Invariant ∧ ((i = n) ∨ inserted), where n is the number of children of>L0 as

above. Of course, if i = n, thenMi corresponds to all nodes in the constructed lattice, L, except>L.
The invariant is initialized by i, n, C, inserted := 0, |E0(>L)|,Ø, false. The following structure for statement S thus

suggests itself:

{(L, E) = (L0, E0) ∧ CG(L, E) ∧ X ⊆ >L}

i, n, C, inserted : = 0, |E(>L)|,Ø, false
{Invariant}
;do (i 6= n ∧ ¬inserted)→
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i : = i+ 1
; (L, E, C) : S0
{Invariant}

od
{Invariant ∧ ((i = n) ∨ inserted)}
; (L, E, C) : S1
{L0 vX L ∧ CG(L, E) ∧ X ∈ L}

Statement S0 considers the positioning of X with respect to Ci and finds possible children of X , while S1 effectively inserts X
into (L, E) and appropriately connects the new node to its children and also to its only parent. In terms of the invariant, by
the end of the main loop, Lwill contain all intersections between X and original nodes of L0, while Cwill include all nodes
to be connected to X as children.
Statement S0 should find possible children of X in L � Ci and even generate such children if they are not already there.

As a result, the updated L � Ci should include the minimum number of additional elements needed to preserve closedness
under set intersection. To do this, determine whether X coincides exactly with Ci, whether it is a superset of Ci, whether it
is a subset of Ci, or whether it is none of the foregoing. In each of these cases, statements (designated below as S00, S01, S02,
and S03) that preserve the invariant will be executed.
The structure of statement S0 is therefore as given below.

if X = Ci → {X = Ci ∧ Invariant}S00
[] Ci ⊂ X → {Ci ⊂ X ∧ Invariant}S01
[] X ⊂ Ci → {X ⊂ Ci ∧ Invariant}S02
[] ¬((X = Ci) ∨ (Ci ⊂ X) ∨ (X ⊂ Ci))→
{¬((X = Ci) ∨ (Ci ⊂ X) ∨ (X ⊂ Ci)) ∧ Invariant}S03

fi
{Invariant}

Arguments leading to the elaboration of each of the statements S00, S01, S02, and S03 will now be made. It will be evident
that the only nodes to be constructed are those necessary to preserve set intersection closedness. Thus, in the interests of
conciseness, no further reasoning about the attainment of L0 vX Lwill be given. Even though the corresponding predicates
are no longer reflected in the assertions below, it may easily be verified that they continue to hold.

3.3. The first two guards

Clearly, in the case of the first guard, nothing is to be achieved by considering more children of >L: not only is the
invariant preserved by doing nothing, but the postcondition of insert0((L, E), X) is also already established. Statement S00
thus sets inserted to true so that the loop will terminate with the inserted flag signalling the fact that nothing more needs to
be done to achieve the postcondition of insert0((L, E), X).

{Ci = X ∧ Invariant}
inserted : = true
{Invariant ∧ inserted = true}

When the second guard holds, every element of L � Ci is a subset of X . Thus, no intersections have to be generated
between X and the elements of L � Ci to ensure that L remains a SICL after addition of X .
On the other hand, Ci is a child of>L in L0, but Ci ⊂ X ⊂ >L. This implies that the following holds:

@Y ∈ L : X ⊂ Y ⊂ >L

affirming that X is a child of>L in L and that the arc between these two nodes should be set up;

@Y ∈ L : Ci ⊂ Y ⊂ X1

affirming that Ci is a child of X in L and that the corresponding arc should be set up; and

∃Y ∈ L : Ci ⊂ Y ⊂ >L

1 It is easy to check that this statement will also hold after all the children of the top node have been considered, making Ci a child of X in the final lattice.
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indicating that Ci is no longer a child of>L in L and that the existing arc indicating a parent-child relationship between>L

and Ci should later be removed.
However, at this stage, X is not yet in L, and instead of creating and deleting these arcs, we merely include Ci in C, the set

of possible children of X . The only statement associated with S01 is therefore as follows:

{Ci ⊂ X ∧ Invariant}
C : = C ∪ {Ci}
{Invariant}

It is easily verified that this statement preserves the inv2 part of the invariant, and since L does not change, it also
preserves the inv1 part.

3.4. The third guard

The third guard implies that the following holds:

(L � Ci, E � Ci) = (L0 � Ci, E0 � Ci) ∧ CG(L � Ci, E � Ci) ∧ X ⊆ >L�Ci

This, of course, is the precondition of insert0((L � Ci, E � Ci), X). If a call to insert0((L � Ci, E � Ci), X) is made, the
corresponding postcondition that will be met after the call, is:

(L0 � Ci vX L � Ci) ∧ CG(L � Ci, E � Ci) ∧ (X ∈ L � Ci)

We argue as follows to show that this call to insert0 preserves invariant . Since the call to insert0 establishes X ∈ L � Ci, it
is also the case that X ∈ L holds. As a result, the second conjunct of invariant is true—there is not need to do anything to
establish inv2.
From the first conjunct of the above postcondition, it follows directly the last conjunct in inv1, namely L0 vX L, is

preserved as a result of this call. The question is whether the above postcondition preserves the first conjunct in inv1 of the
invariant, namely CG(L, E). To show this, we need to show that CS(L) holds, and that E =≺L holds.
First, we show that CS(L) holds, that is, that L contains all intersections involving new nodes. Let Y be an arbitrary newly

introduced element of L � Ci and let Z be an arbitrary element of L. We need to show that Y ∩ Z ∈ L.
Since Y ⊆ X ⊂ Ci, we have Y ∩ Z = Y ∩ (Z ∩ Ci). However, both nodes Y and Z ∩ Ci are part of the updated L � Ci, whose

closedness with respect to set intersection is assured by the postcondition of the recursive call to insert0((L � Ci, E � Ci), X).
Consequently, Y ∩ (Z ∩ Ci) ∈ L � Ci and therefore also Y ∩ Z ∈ L � Ci. Thus, CS(L).
To see that the E =≺L requirement also holds, note that E � Ci =≺L�Ci by the postcondition of the call to insert0((L �

Ci, E � Ci), X). Hence, we only need to consider arcs connecting nodes in L � Ci, on the one hand, and nodes outside L � Ci,
on the other hand.
Consider two nodes in L, say Y and Z , after a call to insert0((L � Ci, E � Ci), X), where Y 6∈ L � Ci and Z ∈ L � Ci. To affirm

that Y and Z are in the right relationship to one another, note that the only possible child of Y in L � Ci is Y ∩Ci and consider
the following cases:

Z = Y ∩ Ci: In this case, node Z existed prior to the recursive call. The call does not change the relationship between Y and
Z in L, and the arc between these nodes, whether or not it existed, is not affected.

Z 6= Y ∩ Ci: Since E =≺L before the call to insert0((L � Ci, E � Ci), X), there was no arc between Y and Z at that time. There
will not be an arc connecting Y and Z after the call, since the call does not set up arcs outside of L � Ci.

Hence, if insert0((L � Ci, E � Ci), X) is called, then nothing more has to be done to ensure that E =≺L and, consequently, the
call preserves the loop’s invariant.
Note though, that after this call to insert0((L � Ci, E � Ci), X) has executed, X is correctly inserted into L, i.e., the

postcondition of insert0((L, E), X) has been achieved. As in the case of the first guard, there is no point in executing further
loop iterations—the loop can therefore just as well be terminated, and this is done by setting inserted to true. We thus have
the following for S02:

{X ⊂ Ci ∧ Invariant}
{(L � Ci, E � Ci) = (L0 � Ci, E0 � Ci) ∧ CG(L � Ci, E � Ci) ∧ X ⊆ >L�Ci = Ci}
insert0((L � Ci, E � Ci), X)
{L0 � Ci vX L � Ci ∧ CG(L � Ci, E � Ci) ∧ X ∈ L}

; inserted : = true
{Invariant ∧ inserted}
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As an aside, note that no harmwould be done if the loop were allowed to execute more iterations to check the remaining
children of >L. It can easily be verified that attempts would then be made, via the fourth guard, to insert subsets of X into
L, but these nodes would already exist in L, and so Lwould not change.

3.5. The fourth guard

When the fourth guard is true then X ∩ Ci is a proper subset (possibly empty) of both Ci and X . This means that, when X
is inserted into L, X ∩ Ci also has to be inserted into L if it is not already there in order to assure set intersection closedness
of L. A call to insert0((L � Ci, E � Ci), X ∩ Ci) installs X ∩ Ci into (L � Ci, E � Ci). Inspection will show that the precondition
of insert0((L � Ci, E � Ci), X ∩ Ci) justifies this recursive call. Its postcondition guarantees the required properties for the
resulting (L � Ci, E � Ci).
Arguments similar to those made previously (in respect of the third guard’s statements) can be made to prove that these

actions result in the set intersection closedness and proper connectedness of (L � Ci, E � Ci), leaving inv1 intact. To attain
inv2, set C has to be updated with X ∩ Ci. S03 is therefore refined as follows:

{¬((X = Ci) ∨ (Ci ⊂ X) ∨ (X ⊂ Ci)) ∧ Invariant}
insert0((L � Ci, E � Ci), X ∩ Ci)
{inv1}
; C : = C ∪ {X ∩ Ci}
{inv2}
{Invariant}

In the implementation of the algorithm, the call insert0((L � Ci, E � Ci), X ∩Ci)must return the node corresponding to X ∩Ci,
either existing in L0 or newly created in L, so that this node could be added to C.

3.6. Updating arcs

After themain loop terminates,L already contains all intersections ofX and elements fromL0with the possible exception
of X itself (if the value of inserted is false). These elements are even properly connected. All that remains (if anything) is to
create node X and connect it to its parent and children.
If the value of inserted is false and we have to create node X , then neither of the first and third guards has ever been

activated. In other words, X is not a subset of any child of the top element. Hence, the top element is the only parent of X .
Children of X in the final lattice, L, have to be the maximal (with respect to set containment) subsets of X that are in

L. Obviously, every such subset is the intersection of X and a child, C , of the top element in L0; of course, this intersection
may be equal to C (in which case, C is a child of X). The set C consists of all such intersections obtained via the second and
fourth guards. It can easily be verified that not every element of C need necessarily be a maximal subset of X in L: some
may be proper subsets of others. Only the maximal subsets of X in C have to be identified and connected to X . Assume that
getMax(C) is a function that returns as a set the maximal sets in C—i.e., sets in C that are not contained in any other sets in C.
To finish the insertion of X into (L, E), we therefore have to create the node X and connect it to maximal subsets of X

in C. If these children of X were linked to >L, the corresponding arc must be removed. Statement S1 can be elaborated as
follows.

{Invariant}
if ¬inserted→
{∀Y ∈ L : X ∩ Y ∈ L}

L : = L ∪ {X}
; E : = E ∪ {(>L, X)}
; for C : getMax(C)→

E : = (E \ {(>L, C)}) ∪ {(X, C)}
rof
[] inserted→ skip
fi
{Invariant ∧ X ∈ L}

3.7. The completed algorithm

The resulting incremental algorithm to install X into L is given below. To insert node X into L, the call insert0((L, E), X)
has to be made.
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Algorithm 1.
proc insert0((L, E), X)
pre : {(L, E) = (L0, E0) ∧ CG(L, E) ∧ X ⊆ >L}

i, n, C, inserted : = 0, |E(>L)|,Ø, false
{Invariant}
;do (i 6= n ∧ ¬inserted)→
i : = i+ 1
if X = Ci → inserted : = true
[] Ci ⊂ X → C : = C ∪ {Ci}
[] X ⊂ Ci → insert0((L � Ci, E � Ci), X)
; inserted : = true
[] ¬((X = Ci) ∨ (Ci ⊂ X) ∨ (X ⊂ Ci))→ insert0((L � Ci, E � Ci), X ∩ Ci)
; C : = C ∪ {X ∩ Ci}

fi
{Invariant}

od
{Invariant ∧ ((i = n) ∨ inserted)}
if ¬inserted→
{∀Y ∈ L : X ∩ Y ∈ L}

L : = L ∪ {X}
; E : = E ∪ {(>L, X)}
; for C : getMax(C)→

E : = (E \ {(>L, C)}) ∪ {(X, C)}
rof
[] inserted→ skip
fi
post : {L0 vX L ∧ CG(L, E) ∧ X ∈ L}

The algorithm starts with the top node of the lattice and the set X that has to be inserted. The insertion is carried out by
exploring all the children of the top node. If one such child, Ci, is equal to X , then nothingmore has to be done, as X is already
in the lattice. If X is a subset of Ci, then all new nodes including X will appear below Ci; hence, a recursive call is made to
insert X under Ci. If, on the contrary, Ci is a subset of X , it must be a descendant of X in the updated graph; therefore, it is
added to C, the set of potential children of X . Lastly, if X and Ci are incomparable, we must make sure that their intersection
is in the lattice; a recursive call is made to insert X∩Ci under Ci and X∩Ci is added to C, as X∩Cimust be a descendant of X in
the updated graph. When all children of the top node have been processed in this way, the lattice contains intersections of
X with all elements of the initial lattice with the only possible exception of X itself. If X is not yet in the lattice, the algorithm
adds the corresponding node connecting it to the top node from above and to the maximal subsets in C from below. In so
doing, the algorithm also removes edges connecting the top node to the children of X if such edges were present in the old
graph.

4. Two variations

The derivation of the above algorithm was based on the intuitively appealing invariant that preserved the CG(L, E)
property of the evolving graph (L, E). It serves as a basis for deriving alternative versions of the algorithm, in particular,
by strengthening the invariant. The two versions are examined below. An analysis of the guards in the algorithm provides a
starting point for the discussion.

4.1. Guard mutual exclusivity

By Proposition 1, the children of>L cannot be equal to, supersets or subsets of one another. Thus, the first three guards
aremutually exclusive over the outer loop: if one guard applies to one child of>L, neither of the other two can apply to any
of the children of>L. The first guard can only be true for at most one child of>L, while the second and third can be true for
several. (Of course, in some contexts, none of these guards may ever be true.)
Thus, if the first guard is selected in an iteration of the outer loop, then only the fourth guard could have been selected in

prior iterations. The recursive call in the body of the fourth guarded command could not have inserted new nodes into the
lattice, since all relevant subsets of node X would be present already in the lattice by virtue of the set-intersection closedness
requirements. Thus, the work done in all previous iterations would be redundant, merely establishing that some subset of
X is already in the lattice.
Similarly, if the third guard is selected sometime after the first iteration of the outer loop, then the fourth guard would

have been selected in prior iterations. However, the recursive call in the body of the fourth guarded command would either
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recurse to a point where it established that some subset of X is already in the lattice, or it would insert a subset of X into the
lattice that would, at any rate, have been installed by the body of the third guard in the later iteration.
One line of optimization is therefore to ensure that the children of >L are offered by the outer loop in an order that

guarantees that, where applicable, either the first or the third guard is selected prior to the selection of the fourth guard.
This would come at the cost of searching for a child of>L, say C , such that X ⊆ C . Such a search can be done in O(mn) time,
where O(m) is the cost of the set-containment test (i.e.,m can be regarded as the size of the alphabet,m = |A|) and n is the
number of child nodes of>L.

4.2. Strengthening the invariant

Another way of implementing a similar optimization is now described. It is possible to remove the first guard from
the loop altogether and to do its work ahead of the loop. This amounts to strengthening the invariant to require that
∀C ∈ E(>L) : C 6= X . The main loop would be preceded by a new one that scans the children of >L for equality with
X and only falls into the main loop if equality is not found. This would eliminate the redundant work carried out when the
fourth guard is selected at the cost of |E(T )| set-equality tests per recursive call, where T is the top element of the current
subgraph.
Assuming that ∀C ∈ E(>L) : C 6= X , yet a further optimization is to remove the third guard from themain loop, and to do

itswork ahead of the loop. Thismeans preceding the loopwith a focussed search over the children of C and their descendants
until a node is reached that is a superset of X , but that does not have a child that is a superset of X . Such a search therefore
identifies the uniquely determined node in L which is to become the parent of X . Call this node P . The original loop, with
the third guard removed, now has a strengthened invariant that incorporates X ≺ P as a conjunct—a predicate that asserts
that X must be a child of P in the resulting cover relation. Again, the loop iterates over the children of P , installing X as a
sibling.
The search for the parent of X proceeds as follows. The variable P is initialized by>L, and the children of P are examined.

If no child, C , of P is found such that X ⊆ C , then the search terminates with P indicated as the parent of X . Otherwise, if
such a C is found, then P is reset to C , and the children of the new P are probed in like manner, etc. In the extreme case, the
search would end up offering ⊥L as a parent of X . Clearly, then, the search does not need to probe all nodes in (L, E), but
only those found on the search path that it follows from parent to children to grandchildren of one (and only one) child, to
great-grandchildren of one (and only one) grandchild, etc. Guard mutual exclusivity points to an additional enhancement
when checking each child, C of P: the loop could terminate immediately if it is found that C ⊆ X , returning the parent of C
as the required parent of X . Below, a method called getP((L, E), X) that carries out such a search is assumed to be available.
Although complexity issues are more comprehensively treated in Section 5, it is instructive to note that getP((L, E), X)

effectively follows the same search path that is followed via the recursions through guard three in the original algorithm.
Nevertheless, such a strengthening of the invariant and its resulting elimination of guards one and threewill lead, on average,
to efficiency gains. By locating the parent of X beforehand, the insertion of subsets of X that are initiated by the recursive
calls in the fourth guarded commandwill tend to bemore efficient. Moreover, reasoning about the proper links in the graph
is simplified.

4.3. A refactored algorithm: Invariant strengthened

The algorithm below, insert1((L, E), X), is a refactoring of insert0((L, E), X) in which the invariant has been strengthened
in the manner outlined above. It does not rely on children of>L in sorted order.
The conditional statement of Algorithm 1 is used in which the bodies of the second and fourth guards are left intact, but

the first and third guards disappear. Their work is carried out by invoking P : = getP((L, E), X) before entering the main
loop. The postcondition of this statement is that X is determined to either correspond identically to P or X is destined to be
installed in L as a child of P .
Note that whereas previously Ci was used to denote the children of>L, in the algorithm below, Ci refers to children of P .

Algorithm 2.
proc insert1((L, E), X)
pre : {(L, E) = (L0, E0) ∧ CG(L, E) ∧ X ⊆ >L}

P : = getP((L, E), X)
{(P = X) ∨ X ≺ P)}
; if P = X → skip
[] P 6= X →
i, n, C : = 0, |E0(P)|,Ø
{Invariant ∧ X ≺ P}
;do (i 6= n)→
i : = i+ 1
if Ci ⊂ X → C : = C ∪ {Ci}
[] ¬(Ci ⊂ X)→ insert1((L � Ci, E � Ci), X ∩ Ci)
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; C : = C ∪ {X ∩ Ci}
fi
{Invariant ∧ X ≺ P}

od
{Invariant ∧ X ≺ P ∧ (i = n)}
L : = L ∪ {X}
; E : = E ∪ {(P, X)}
; for C : getMax(C)→

E : = (E \ {(P, C)}) ∪ {(X, C)}
rof

fi
post : {L0 vX L ∧ CG(L, E) ∧ X ∈ L}

Note that several variants of Algorithms 1 and 2 are possible. It will be convenient to rely on Algorithm 2 to analyze the
complexity of this class of algorithms. Before doing so, another variant is derived in the next section. It splits the set of
possible children of X , C, into two parts.

4.4. Splitting the children into two groups

A further refinement is to maintain two separate sets, say C and D, of children of X . The first, C, stores nodes that have
definitively been established to be children of X . They correspond to children of X identified by the second guard. The second
set, D, stores nodes that can only tentatively claim to be children of X . They are indeed subsets of X , but they may also turn
out to be subsets of X ’s children. They correspond to intersections generated by the fourth guard.
Below, methods called updateC(C) and updateD(C) are assumed to be available. The first inserts a child of X , C , into set C

and eliminates from setD any elements that, as a consequence of this new insertion into set C, can no longer be regarded as
children of X . The second inserts C as a potential child of X into set D, provided that C is not a subset of any element in C or
D. updateD(C) also eliminates from set D any elements that, as a consequence of this new insertion in set D, can no longer
be regarded as children of X . Thus, updateC involves a loop that iterates over elements of D, while updateD requires a loop
that iterates over elements of C ∪ D. The improvement, as compared with using getMax is that we do not have to check if
sets in C are subsets of those inD. This may provide average case improvements, but does not alter the essential worst-case
behavior of the initial algorithm.
Since we now have two sets for keeping track of children of X , the corresponding conjuncts in the invariant must be

modified:

Invariant2 , inv1 ∧ (X /∈ L⇒ inv22)
where inv22 , ∀Y , Z ∈ C ∪ D : ((Y ⊂ X) ∧ (Y 6⊂ Z)) ∧

∀Y ∈ Mi : (Y ⊂ X ⇒ ∃Z ∈ C ∪ D : Y ⊆ Z) ∧
CS(Mi ∪ {X})

4.5. A refactored algorithm: Children split into two groups

The algorithm below, insert2((L, E), X), is a refactoring of insert1((L, E), X) in which the set C has been split in two parts
in the manner outlined above. After the main loop, the set C ∪ D contains exactly all children of X in L. Thus, there is no
need to use the getMax function.

Algorithm 3.
proc insert2((L, E), X)
pre : {(L, E) = (L0, E0) ∧ CG(L, E) ∧ X ⊆ >L}

P : = getP((L, E), X)
{(P = X) ∨ X ≺ P)}
; if P = X → skip
[] P 6= X →
i, n, C,D : = 0, |E0(P)|,Ø,Ø
{Invariant2 ∧ X ≺ P}
;do (i 6= n)→
i : = i+ 1
if Ci ⊂ X → updateC(Ci)
[] ¬(Ci ⊂ X)→ insert2((L � Ci, E � Ci), X)
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; updateD(X ∩ Ci)
fi
{Invariant2 ∧ X ≺ P}

od
{Invariant2 ∧ X ≺ P ∧ (i = n)}
L : = L ∪ {X}
; E : = E ∪ {(P, X)}
{getMax(C ∪ D) = C ∪ D}

; for C : C ∪ D→

E : = (E \ {(P, C)}) ∪ {(X, C)}
rof

fi
post : {L0 vX L ∧ CG(L, E) ∧ X ∈ L}

Other refactorings are of course possible. For example, if Ci∩X ⊂ ⊥L then a recursive call to install Ci∩X is unnecessary—the
nodemay simply be installed below the bottom element. Similar shortcircuiting is possible if Ci∩X = ⊥L. However, details
of such refactorings are left for future research.

5. Efficiency

In this section, we derive a theoretical worst case upper bound complexity of the algorithm proposed above and also
discuss the algorithm’s practical performance. In so doing, we will use formal concept analysis (FCA) [2] notation to align
our complexity arguments with those used in deriving complexity estimates for other FCA algorithms [18].
Concept lattices (also referred to as Galois lattices or formal concept lattices) are used in machine learning, data and text

mining, and other domains. A recent and comprehensive introduction to concept lattices and, especially, its applications
in computer science is provided in [3]. Essentially, a concept lattice is built from a set, M , of attributes, subsets of which
characterize each element in a set, G, of objects. Each node in a concept lattice is characterized by two sets: a subset of G,
say, A, and a subset ofM , say, B, such that A consists of all those objects that possess (at least) all the attributes in B and B is
exactly the intersection of objects from A. Such a pair (A, B) is called a concept.
The concept (A, B) is said to have an extent of A and an intent of B. The sets of extents and intents of a concept lattice are

closure systems on G andM , respectively. Thus, if two subsets of G (orM), say, A and B, are the extents (respectively, intents)
of nodes in a concept lattice, then A ∩ B also has to be the extent (intent) of some node in the lattice.
By FCA convention, concepts are assumed to be ordered by set-containment of their intents. Thus, for concepts (A, B) and

(C,D), we have (A, B) ≤ (C,D) iff B ⊆ D. (It can easily be shown that, alternatively, (A, B) ≤ (C,D) iff C ⊆ A.) The relation
≺ is defined as above.
One may say that the lattice of concept extents and the lattice of concept intents are actually SICLs. Hence, one way of

constructing a graph data-structure for a concept lattice by using one of the algorithms discussed in the paper, making slight
adaptations for keeping track of the extent if a SICL based on intents is constructed, or vice-versa if a SICL based on extents
is constructed.
For at least the last two decades, many different algorithms for constructing concept lattices have been proposed, e.g.,

[21–23]. See [18] for a review and comparison. To date, the algorithm reported in [24] appears to have the best theoretical
worst-case complexity estimate, namely O(|L|(|G| + |M|)|G|), where |L| is the number of concepts in the resulting lattice.
Note that this is the complexity of constructing the lattice from scratch rather than updating an existing lattice by inserting
a new object.
We shall now derive the worst-case complexity estimate for constructing the lattice of concept intents and its cover

relation using Algorithm 2. Such construction starts by initializing the graph structure with a single node, M , which forms
the top node of a singleton lattice, and remains the top node in all subsequently generated lattices. The construction then
proceeds by successively calling Algorithm2 for every object fromG, where the set to be inserted into the lattice corresponds
to the set of attributes that characterize the particular object, and the lattice generated by each call is used as the starting
lattice for the next call. Although our algorithm generates only concept intents, it can be easily adapted to generate extent–
intent pairs, i.e., concepts.
Reasoning about complexity is easier if one has inmind both extents and intents. However, when speaking about children

of a concept, we assume that concepts are ordered by set-containment of their intents: for concepts (A, B) and (C,D), we
have (A, B) ≤ (C,D) iff B ⊆ D (equivalently, C ⊆ A). The relation≺ is defined as above.

Definition 5.1. A route in the cover relation of the concept lattice is a sequence of n > 0 distinct concepts
(A1, B1), . . . , (An, Bn), such that (n > 1)⇒ Bn ⊂ B1, and:

∀j ∈ (1, n]∃i ∈ [1, j)∀k ∈ (i, j] : (Ak, Bk) ≺ (Ai, Bi)
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Thus, the immediate predecessor of concept (Aj, Bj) in a route is either its parent in the cover relation, or one of its siblings
in the cover relation. In the latter case, the common parent of these two concepts must occur earlier in the route than both
these concepts.
The length of a route (i.e., the number of elements in the sequence) cannot be greater than |G|2. To see that this is the

case, we consider two types of subsequences of a route: a chain and a segment.
By a chain of the route, we mean a subsequence of route nodes that are parents of some other route node. Note that the

extent of each concept in a chain contains all objects in the extent of the preceding concept in the chain and, at least, one
additional object. The length of the chain is therefore bounded by |G|. To bemore precise, the length of a chain corresponding
to the route (A1, B1), . . . , (An, Bn) is bounded by |An|− |A1|+1. However, for the present purposes, this more precise bound
will not be used.2
We now define a segment of a route to be a subsequence of the route whose members have the same parent. Thus, each

concept of a chain in a route marks the end of a segment of the route. Concepts within the same segment are children of
the last concept of the preceding segment. They are thus siblings of one another. (Note, however, that there may be other
siblings that are not included in the route and that are therefore not considered to be part of the segment.) The extent of
every child of a concept (Ai, Bi) contains an object from G \ Ai, and every such object is contained in the extent of at most
one child of (Ai, Bi). (If an object from G \ Ai was contained in the extent of more than one child of (Ai, Bi), the intersection
of the extents of these siblings would be a superset of Ai—which contradicts the properties of a concept lattice.) Therefore,
the concept (Ai, Bi) has at most |G| − |Ai| children. The number of concepts in a route is therefore bound by |G|2.
We call a route optimal if the intent of only the last concept of each segment is a superset of the intent of the last concept

of the route. The size of a segment of an optimal route (A1, B1), . . . , (An, Bn) is bounded by |G| − |An| + 1, as any extent that
is a subset of An has at most |G|−|An| child extents that are not subsets of An. Note that |Ai| < |An| for every i < n. Therefore,
segments in an optimal route are generally shorter than in a non-optimal route (|G| − |An| ≤ |G| − |Ai|).
The procedure getP(X) essentially visits nodes along an optimal route. Thus, the number of nodes it visits is bound by

|G|2. If the concept with the intent equal to X is already in the lattice, then getP(X) reaches that node starting from>L (or, in
the case of a recursive call, starting from the top concept of a corresponding sublattice) and following an optimal route. Even
if X is not yet in the lattice, getP(X) still follows an optimal route, visiting no more than |G|2 nodes. At each step, getP(X)
has to spend at most O(|M|) time to check whether X is a subset of the current intent. Thus, getP(X) has a worst-case upper
bound complexity O(|G|2|M|).
The bound O(|G|2|M|) is not sharp. In fact, there is no lattice where the intent-based search of a concept would involve

examination of |G|2 intents. Indeed, the number of optimal route segments and their lengths are in an inverse relationship:
when one of them approaches the number of objects, the other tends to 1. A concept whose extent is C will be found after
at most (|C | + 1)(|G| − |C | + 1) steps. Besides, the procedure getP(X) usually starts with a concept quite close to the one to
be found, which significantly narrows down the search space. It is also worth noting that |G| in the complexity estimate for
the procedure getP(X) refers to the number of objects processed at the time of the procedure call, rather than to the total
number of objects to be inserted into the lattice.
The overall complexity of the algorithm depends on the total number of invocations of the insert1((L, E), X) function.

The same intent can be passed as a parameter of insert1((L, E), X) several times, but, clearly, the execution of the algorithm
will go past the call to getP(X) at most once for every intent. Thus, for convenience, we may assume that getP(X) is called
before the invocation of the insert1((L, E), X) function, which, in its turn, is called only if the returned set P is different from
X . In this setting, insert1((L, E), X) would be called at most once for every intent of the lattice through the insertion of all
objects (possible exceptions are object intents, but they are safe to ignore).
Taking into account the above calculations, as well as the fact that the size of the set C is not greater than |G|, we estimate

the worst-case time complexity of a single invocation of the Algorithm 2 without the recursive call as O(|G|3|M|). Hence,
we may claim that the complexity of inserting one object with Algorithm 2 is O(|G|3|M|(|L| − |L0|), where |L| − |L0| is the
number of newly generated intents. The complexity of constructing the cover relation for the entire lattice from scratch is
then O(|G|3|M||L|).
The complexity estimate derived above is somewhat worse than the estimate of other competing algorithms [18], but

this is mainly due to the overestimation of the complexity of the procedure getP(X). We now show that, for some especially
large lattices of a certain kind, a better estimate can be stated.
Consider the casewhen the objects fromG are all subsets of size |M|−1 of the attribute setM , i.e.,G = {M\{m} | m ∈ M}.

Such data gives rise to a so-called Boolean lattice with 2|M| elements: every subset of M is an intersection of some objects
from G and, consequently, a part of L, the resulting lattice. In a certain sense, this is when the worst case is realized (for the
given |M|), since the lattice contains the maximal possible number of nodes.
Fig. 2 shows such a Boolean lattice, namely, the lattice of all subsets ofΣ = {a, b, c, d}. Bymarking arcs in different styles,

the figure indicates how successive calls to insert1((L, E), X) could grow the lattice from a starting SICL of abcd. Inserting
abc yields a SICL with 21 = 2 nodes; inserting abd in next yields a SICL with 22 = 4 nodes; inserting acd in next yields a
SICL of 23 = 8 nodes; and finally inserting bcd yields the full Boolean lattice of 24 = 16 nodes.

2 Note that a dual argument based on the number of attributes in the intent of a chain’s nodes, leads to the conclusion that the length of the chain is also
bound by |M|, andmore precisely, by |B1|−|Bn|+1. Thus, and evenmore precise bound on the length of a chain corresponding to route (A1, B1), . . . , (An, Bn)
is given bymin((|An| − |A1|), (|B1| − |Bn|))+ 1.
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Fig. 2. Boolean lattice.

Thus, inserting each newobject g ∈ G into a partially constructed latticeL0would result in doubling the number of nodes
in the lattice: no intent in L0 would be a subset of this object g , and no two intents would generate the same intersection
with g . Consider how getP(X)works in the context of a call to insert1((L � C, E � C), X).

(1) If this is the first time insert1 is called for the given (L � C, E � C), then C has no children that are supersets of X , and
getP(X) returns C .

(2) Otherwise, C already has a child X , and it will be returned by getP(X).

In both cases, getP(X) searches only among the children of the top node of the current subgraph never going further
down the graph. Thus, the complexity of getP(X) in this case is only O(|G||M|) and the complexity of constructing a Boolean
lattice from scratch by Algorithm 2 is O(|G|2|M||L|).
In general, for dense data, i.e., for data with a large number of attributes per object (relative to |M|) and, consequently, a

large number of concepts (relative to the theoretical maximum of 2|M|), the getP(X) function works quite fast andmakes far
fewer than |G|2 steps, since it rarely has to go deep down into the lattice. On sparse data, the getP(X) function can go a long
way down (though again never as many as |G|2 steps), but then it means that a large portion of concepts is excluded from
further consideration and no intersection is computed between their intents and the new object intent being inserted. This
explains good performance of the algorithm on both dense and sparse datasets [25], which is an unusual feature for most
known algorithms.
The foregoing emphasizes that the worst-case theoretical complexity is in this case only a rather rough indicator of

performance. It should be noted that it is indeed important that the algorithm is linear in terms of |L|. However, |L| totally
dominates the other factors (|G| and |M|) in the worst-case expressions that have been derived: the latter are in fact
exponentially smaller than |L| in the worst case. As a result, when evaluating the performance of algorithms in practice,
one cannot be strongly guided by the polynomial power of these factors within the worst-case complexity estimate.
Empirically, the experiments in [25] comparing the performance of several most efficient (according to [18]) or most

popular lattice construction algorithms: Norris [26], Ganter (a.k.a. NextClosure) [27], a version of Bordat [28] from [18],
Godin [21], andNourine [24], gave the following picture.3 Itwas found that an algorithmcalledAddIntent (first implemented
in 1996 in the context of so-called compressed pseudo-lattices [29], first described in [30] and presented in [25] in the
form very close to Algorithm 2) generally outperformed the others, except for two scenarios where it was ranked second.
Most experiments were based on randomly generated data, or on constructing Boolean lattices of various sizes. However,
when four real-world data-sets taken from the UCI repository [31] were used, AddIntent dramatically outperformed the
other algorithms as seen in Fig. 3. SPECT (Single Proton Emission Computed Tomography) is a real dataset that contains
267 objects and 23 attributes, generating a lattice with 21550 concepts. The remaining datasets (Breast Cancer,4Wisconsin
Breast Cancer, and Solar Flare databases) are given in the form of many-valued tables and the QuDA program [32] was used
to transform vector representations of objects in these datasets into attribute sets.

3 Algorithms were implemented in C++ on the same codesbase. Tests were performed on a Pentium 4–2 GHz computer with 1 GB RAM running under
Windows XP.
4 This breast cancer domain was obtained from the University Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia. Thanks go to M. Zwitter and
M. Soklic for providing the data.
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Fig. 3. Performance of AddIntent and other algorithms using empirical data (based on data from [25]).

6. Conclusion

Correctness-by-construction argumentation led naturally to the evolution of Algorithm 1, which turned out to be an
underlying root in a taxonomy of lattice construction algorithms: Algorithms 2 and 3 result from strengthening the invariant
and introducing some other changes. Theoretical complexity of the algorithms has been studied, and empirical evidence has
been adduced for the improved efficiency of these algorithms in relation to rivals. Moreover, there would appear to be scope
for further refinement of these algorithms. In particular, when inserting an attribute set, the current version of the algorithm
can visit an existing node of the lattice more than once, since there may be more than one path to it from the top node. We
are going to investigate the possibility to replace the graph corresponding to the cover relation by its spanning tree as in
the version of Bordat’s algorithm described in [18], thus, avoiding repetitive processing of the same node within a single
iteration. This is likely to result in a better theoretical worst-case complexity as well.
To the best of our knowledge, the most closely related lattice construction algorithm among those ever published is the

one from [33] (designated Algorithm 5 in the text). It uses a similar getP(X)-style methodology, but relies on a stack and
tries as utility data structures facilitating lookup of concepts (as opposed to our usage of recursion and the cover relation
itself). Since both algorithms follow the same main strategy, one can expect that their behavior is also similar, in particular,
as compared to the behavior of other algorithms. A deeper comparison may reveal potential trade-offs between specific
issues in which the algorithms differ and may suggest further implementation improvements.
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