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MATHEMATICAL ASPECTS OF CONCEPT ANALYSIS
S. O. Kuznetsov UDC 519.716

1. Introduction

Various applied studies use binary matrices for representing objects from a domain. A row of such a
matrix is interpreted as an object and a column is interpreted as a binary attribute. An object possesses
an attribute if the corresponding element is I and does not possess it if the corresponding matrix element
is 0. The more general case, where attributes have more than two values, can be reduced to the binary
one. The following problem arises often for these “object - attribute” matrices: given the set of objects B,
determine the set of all attributes A that hold for all objects from B and furthermore, determine the set C
of all objects that possess the whole set of attributes A. In terms of binary matrices this means that the
maximal identity submatrix of the data matrix is sought, i.e., an identity submatrix such that no supermatrix
of it is an identity one. This submatrix may be associated with a concept, where the corresponding set of
objects is the extent and the set of attributes is the intent of the concept. This model is in accordance with
the traditional understanding of the notion of concept, which dates back at least to the Logique de Port-Royal
of the XVII century.

To introduce more precise definitions we will use Galois connections {8]. In accordance with the “formal
concept analysis,” we use notations from [80]. To this end, we denote by G the set of objects (from Gegenstand,
object (German)) and by M the set of attributes {from Merkmahl, attribute (German)). By [ we denote a
relation defined on G x M: for g € &G, m € M, ¢gIm holds iff the object ¢ possesses the property m (i.e., the
element of the corresponding matrix which is in the row ¢ and the column m is a unit one). In accordance
with [80], the triple K = (G, M, I) is called a contezt.

Definition 1.1. Let K = (G, M,]) be a context and A C &, B C M be arbitrary subsets. Then the
Gealois connections s : G+ M and ¢ : M +— (5 are given in the following way:

s(A) = {m € MlgIm for all g € A},

H{B) = {g € GigIiM for all m € B}.

Following [80], we will also write A! and B’ instead of s{ A} and #(B) or just A’ and B’ when the relation
[ is fixed. When it does not lead to confusion, we will also use the notation A” as an abbreviation for both
t{s{A)) and (s(¢(A)) (depending on whether A C M or A C ().

The mappings A — A" and B — B, which define Galois conunections over the sets P(G) and P(M)
(P(X) denotes the power set of X)), possess the {ollowing properties (see [8], for example):

(1) Ay € A, implies that 4} D A} for arbitrary A,, 4; € G,

(1') B, € B, implies that B} D B; for arbitrary By, B; T M,

(2) A C A" and A" = A™ hold for arbitrary A C G,

(2) B C B" and B' = B" hold {or arbitrary BC M.

[t is easy to see that the operation ” {the double application of the operation
closure operation, since the following properties hold for all X,Y C G or X,Y C M:

- extension: X € X",

- idempotency: X" = X" and

- isotonicity: X C Y implies X" C Y".

Assume that I is a binary matrix that corresponds to the context K = (G, M, ). It is easy to show that

‘,ie,sotortos)isa

an identitv submatrix of D), maximal by inclusion. corresponds to a pair (A, B), where AC G, BC M, A’ =
B. B’ = A. In the sequel, we will speak about pairs of this form in terms of the formal concept analysis [80).
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Fig. 1. Bipartite graph corresponding to the context given in Table 1.

Definition 1.2 ([80}). Let K = (G, M,I) be a context. A pair (A, B) is a concept of the context K iff
ACG, BCMand A = B, B'= A. A and B are called the eztent and the :ntent of the concept (A, B),
respectively. .

Contexts and their concepts can also be easily described in graph-theoretic language. Let K = (G, M, )
be a context. Consider a bipartite graph Z2 = (V, U V2, E), E € V] x V3. The vertices of the first part
are in one-to-one correspondence with objects from G and the vertices of the second part are in one-to-one
correspondence with attributes from M. For arbitrary vertices v; € V; and v; € V,, (v, v;) € E iff the object
from G that corresponds to the vertex v; possesses the attribute from M that corresponds to the vertex v;.
The concepts of the context K correspond to complete bipartite subgraphs of the graph Z maximal with
respect to inclusion, i.e., to graphs of the form (W, UW,, W, x W;), where all vertices of such a subgraph that
belong to a common part are adjacent to all vertices of the other part, and no supergraph of this subgraph is
a complete bipartite subgraph of the graph Z.

Example. Consider the context {G, M, I) represented by Table 1 taken from [9].

Table 1
G\M
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This context can be represented by the bipartite graph shown in Fig. 1. By way of exampie, the complete
bipartite subgraphs ({a,b} U {2,3}, {a,b} x {2,3}), ({d,e} U {1,4}, {d,e} x {1,4}) of this graph correspond
to the concepts {{a, b}, {2,3}), ({d,e}, {l,4}) of the context (G, M,]).

In this survey we consider the papers related to mathematical aspects of concept analysis. On the one
hand, these are algebraic problems that arise from the lattice nature of the set of all concepts (Sec. 2). Here,
the decomposition of concept lattices into smaller ones seems to be one of the most important problems. On
the other hand, we will dweil on applications of concepts in data analysis, in particular, on methods of search
for dependences between attributes {Sec. 3). Third, we will consider resuits related to algorithmic problems
of concept generation (Sec. 4). And, finally, we will consider problems of different nature related to concepts,
including the Zarankiewicz problem, where conditions for a concept of a given size are to be found (Sec. 5).
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We assume that the reader is familiar with some elementary notions of the theory of sets, the lattice theory
[8. 35], and the theory of computational complexity [1, 34].

2. Algebraic Aspects of Concept Analysis
2.1. The Main Theorem of Formal Concept Analysis

The concepts of a context (G, M, I) are partially ordered in the following way:
(A1, B)) (A2, By) = AL C Ay (B1 2 By).

The pair (A, B) is called a subconcept of the concept (A3, By} and (A3, B;) is called a superconcept of the
concept (A;, By).

Following {80], by L(G, M, I) we denote the set of all concepts of the context (G, M, I} and by B(G, M, I)
the partially ordered set {L(G, M, I}, <) (from Begriff, concept (German}).

Definition 2.1.1. A set D of a lattice L is called infimum-dense (supremum-dense) if

L= {/\ z|X C D} (= {\/ z| X C D}, respec_tively).

X reX
Haralick [42] found that the set of concepts is closed with respect to certain operations, which define
idempotent, commutative, and associative operations (i.e., form semilattices or “idempotent commutative
monoids,” as Haralick {42] called them). In [80], a more general result was proved.

Theorem 2.1.1 ([80)). Let (G, M, T} be a context. Then B(G,M,I) is a complete lattice called the
concept lattice of (G, M, I); its infima and suprema can be described as follows:

AA4;,B;) = (") A ([T A,

1eJ ijed JjEJ
V4, 8) =[] B;).[) By
JjEeJ JEJ jeJ

Conversely, if L is a complete lattice, then L = B(G, M, I) iff there are mappings v : G — L and
g2 M L such that vG is supremum-dense in L, puM is infimum-dense in L, and gIm is equivalent to
yg < um forall g € G andm € M, in particular, L = B(L, L, <).

In some papers, for example, in [7], the lattice B(G, M, I) is called a “Galois lattice.”

Example. The Hasse diagram of the concept lattice, which corresponds to the context (G, M, ) from
Sec. 1, is given in Fig. 2. Recall that in the Hasse diagram of a lattice, the vertices correspond to the
elements of the lattice, the bottom-up direction corresponds to the order relation of the lattice, and two
vertices are joined by an edge if the higher of these two vertices corresponds to an element of the lattice
which is immediately superior to the element that corresponds to the other vertex. The diagram illustrates
the well-known reciprocal relation between the intent and the extent of concepts (the greater the intent, the
less the extent).

Let J(L) be the set of all v-irreducible elements of the lattice L and M(L) be the set of all A-irreducible
elements of L, i.e., elements that cannot be represented as suprema (respectively, infima) of some other
elements of the lattice. Then, by Theorem 2.1.1., L = 8(J(L), M(L), ). The context (J{L), M{L), <) is the
least context with the property that its concept lattice is isomorphic to L.

The Dedekind-MacNeille completion of a partial order to a latiice (see, e.g., {8, 77]) can be easily
described in terms of concept lattices. By way of example, consider a set G of graphs with labeled vertices.
The graphs from G are ordered with respect to the subgraph isomorphism relation <: (for F, G € G,
F < G iff F is isomorphic *o a subgraph of ). Infimum and supremum operations corresponding to the
partial order < cannot be defined for graphs. At the same time, these operations can be defined on the
Dedekind-MacNeille completion of the partially ordered set (G, <}. The elements of this completion are
sets of pairwise incomparable (in the sense of <) graphs [50]. The mapping of the partially ordered set
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Fig. 2. Hasse diagram for the concept lattice of the context {G, M, ) from Sec. 1.

(P, <} into its Dedekind~-MacNeille completion B(P, P, <) is given by the function :::2 = ((z],(z}), where
€ P, (z] = {yly <z}, [2) = {yly > =}.

Theorem 2.1.2 ([80]). The mapping iz = ((z],[z)) is an order-preserving one-to-one mapping of (P, <)
into B(P, P, <). If for X C P infimum AX and supremum VP can be defined in (P, <), then ((AX) = A(X)
and «(VX) = V(eX). If X s a one-to-one order-preserving mapping of (P, <) in a complete lattice L, then
there exists an order-preserving mapping & of the lattice B(P, P, <) into L such that A = xot.

2.2. Many-Valued Contexts

The situation of non-binary attributes is frequently encountered in many applied problems of data anal-
ysis. Many-valued contexts were proposed in [80] to represent situations of this kind.

Definition 2.2.1 ([80]). A many-valued contezt is a quadruple (G, M, W, I} such that G, M, and W are
sets and [ is a binary relation between G and M x W (I C G x M x W), where gI(m,w,) and g/ (m,w,)
imply w; = w, for-arbitrary g € G, m e M, w,w; CTW. If gJ(m,w) for g € G,m € M,w € W, then the

object ¢ 1s sald to take the value w for the attribute m. If |W| = n, then (G, M, W, [} is called an n-valued
contexd,

In the case where the attribute values are understood as nominal data, a many-valued context (G, M, W, [}
can be represented by the binary {or “one-valued”) context (G, M x W, I). In this case, the context (G, M, W, ])
is called nominal. The lattice B(G, M x W,I) is called the concept lattice of (G,M,W,[). A context
(G, M, W,I) is said to be complete if for any ¢ € G,m € M there exists w € W such that gl{m,w).

For a characterization of the concept lattice of a complete n-valued nominal context the foliowing definition
is used.

Definition 2.2.2 ([80]). An element d of a complete lattice L has valence n if n is the smallest cardinality
of a subset D of L\{0} containing d, which is maximal with respect to the property that + A y = 0 for all

z.y € D such that £ # y. Recall that a lattice is atomistic if each lattice element is either 0, or an atom, or
a supremum of some atoms.

Theorem 2.2.1 ([80]). A complete lattice L is isomorphic to a concept lattice of a complete n-valued
rnominal context iff L is atomistic and has an infimum-dense subset of elements of valence < n.

Corollary 2.2.2 ({80]). A finite lattice L is isomorphic to a concept lattice of a finite complete n-valued
rnominal context iff L is atomistic and every A-irreducible element of L has valence < n.

Corollary 2.2.3 ([80]). A finite lattice L ts isomorphic to a concept lattice of a finite complete 2-valued
nominal context iff L is atomistic and every N-irreducible element of L has a pseudocomplement.

2.3. Fusion of Contexts
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In a series of papers on formal concept analysis, the problems arising from “fusion” of several contexts
are studied. From the data analysis standpoint, this problem is interesting in view of data aggregation. In
the closely related papers {81, 83] Wille considers the subdirect products studied earlier by him for general
complete lattices in {78, 79]. In particular, a relation between the subdirect products of concept lattices and
closed relations defined on the sums of the corresponding contexts is established in {84] (see Sec. 2.4). Results
from {80] concerning the decomposition of lattices into direct products are found in Secs. 2.5 and 2.6. Before
introducing the notion of fusion of contexts, we present some auxiliary definitions and results.

Definition 2.3.1. Let L, = (T, As, V1), L2 = (T3, A, V2) be lattices on sets Ty, T5. Let f be a mapping
f:Ty = T, a1, b be any elements of T}, and <y, <, be order relations induced by A;, V;, and Aq, V4. If
a; <y by — flay) <3 f(by), then f is called an order-preserving mapping from L, to L,. If f is one-to-one,
then it is called an order-preserving homemorphism. If f(a; V1 b)) = f(ay) Vi f(b1), then f is called V-
homomorphism from L, into L,. If f is one-to-one, then it is called a V-embedding of L, into L, (analogously
for a A-homomorphism and a A-embedding). A mapping from L, into L, that is a A- and V-homomorphism
is called a homomorphism of L, into L,. A mapping from L, into L, that is a V- and A- embedding is called
an embedding of L, into L;. An embedding of L; into L; is an isomorphism if it is a mapping of L, onto Lj.

Definition 2.3.2 ([6]). A lattice L is called a subdirect product of a family of lattices (L,},cs if there
exists an embedding f: L — X,esL, such that for each s € S, the mapping p, o f: L ++ L, is onto (where p,
is the projection of x,csl, onto L,).

Definition 2.3.3 ([81]). Let K = (G, M, I) be a context. Relation J C G x M is called a closed relation
of the context K if every concept of (G, M, J) is a concept of K.

Let & be a complete sublattice of B(G,M,J). Then C(6)})= |J AxB.
(A.B)e6

Theorem 2.3.1 {{81]}. C is a bijuction from the set of all complete sublattices of B(G, M, I) onto the set
of all closed relations of (G, M, I), in particular, C~'(J) = B(G, M, J) for each closed relation J of (G, M, I).

The following characterization of closed relations of a context was proposed by B. Ganter.

Theorem 2.3.2 ([81]}. J is a closed relation of a contezt (G, M, I) iff J C I and satisfies the following
property: (g,m) € I\J implies that there exists b € G such that {¢}’ C {h}’ and (h,m) & I and there ezist
n € M such that {m}’ C {n}’ and (g,n) ¢ J.

Definition 2.3.4 The disjunctive union of sets X,,s € S, denoted by X; U ... U Xig is the set
Uees X, X {s}

Thus, the disjunctive union retains all exemplars of the element z € Xi,...,z € X, by using indices of
the sets X;,s € S.

Definition 2.3.5 ([81]). The sum of a family of contexts (G, My, I})ier is defined by

Z(Gn M, 1)= (utET GhUtET M, U:e‘r Lu U G Mt) .

teT 21€T, st

Definition 2.3.6 ([81]). A bond from a context (G,, M,, I,) to a context (G, My, I,) (denoted by J,) is
aset J C G, x M, for which {g}’ is an intent of (G, My, I,) and m” is an extent of {G,, M,, I,) for arbitrary
g € G, and m € M, i.e, the extents of (G,, M,, J) are extents of (G,, M,, I,) and the intents of {(G,, My, J)
are intents of (Gy, My, I;). In the sequel we will write X* instead of X7+ and Y* instead of Y.

Lemma 2.3.3 ([81]}. Let J,, be a bond from {(G,, M., I,) to (G,, M,, I,) and let J,, be a bond from
(Gs. My, 1) o (G, M 1), Then Jos0Jy = {(g,m) € G, x M[{g}** C {m}*} is a bond from (G, , M, 1) to
(G, My, 1).

Corollary. If J., 15 a bond from (G, M., I.} to (G, My, 1)), then the following conditions are equivalent:

(1)Jre C Jry 0 Sy,

(2Mg}* C {9} for all g € G,

(3{m} C {m}* forallme M,
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Proposition 2.3.4 (|83]). Let K, = (G\, M, 1), Ky = (G, Ma, 1) be contezts, and A, B be arbitrary
sels such that AC Gy, BC M,, and

A* = {m € MylgIm for all g € A},
B? = {g € Gylgim for all m € B}.

Then for I C GGy x M, the following conditions coincide:

{1) I is a bond from (G, My, I} to (G2, My, I3),

(2) the mapping o1: (A, B) — (A%, A?) for all (A, B) € B(K;) is a V-embedding of the lattice B(K,) into
the lattice B(K;) and {g}''? = {g}? for every g € G,

(3) the mapping o': (A, B} — (B, B'Y) is a A-embedding of the lattice B(K,) into B(K,) for (A, B) €
B(K;) and {m}?' = {m}! for any m € M,.

Theorem 2.3.5 ((81]). Let (G, My, I,)ier be a family of contezts and ¢ be an isomorphism from

XeeTB(G, My, 1) onto _‘Q(EteT(Gt, M, 1)) given as (A, By)|t € T) = (Uter At, Urer By). Furthermore, let

J CUierGex Uier My and Jo, = I NG, x M,. Then the following conditions are equivalent:
(1) e 1C~YJ) is a complete subdirect product of the B(G(, My, I e,
(2) J is a closed relation of 3_, p(Gy, My, 1) with Jy = I, fort e T,
(3) the Ju are bonds from {G,, M,,1,) to (G,, My, L) with J, = I,, and J., C Jrs0 5 forr,s,t T,

Theorem 2.3.6 {[83]). Let (G x S, M x S, |J 1,,) be the fusion of contexts K, = {(G,M,1,), s € S.
r3ES

Then for cach s € 5, (g,8}(m,s) <> gl,m and for every pair r,s € S the relation [, is the least {by
inclusion) bond from the context (G x {r}, M x {r}, I.) to the context (G x {s}, M x {s}, [;s} that satisfies
the condition (g,r}(m,s) iff gI,m or gl,m.

Definition 2.3.7 ([83]). Let P be a partially ordered set and « be an isotone mapping from P to the
complete lattice T, which preserves suprema and infima of P. If aP is a set of generators of the lattice T,
then the pair (T, a) is called a complete P-lattice. If P = {1,2,...,n}, then the P-lattice is also called an
n-lattice.

Definition 2.3.8 ([83]). Let (Ty, ) and (T2, 1) be complete P-lattices. A homomorphism ¢ from T,
e Tp is a P-morphism if pay = 3. The P-lattices (T1, o) and (T, o) are called isomorphic if there ezists
¢ P-morphism from Ty into T, that is an isomorphism.

Definition 2.3.9 ([81]). A P-lattice (L,a} is called a P-product of complete P-lattices {L.a¢) if ap =
{auplt € T) € XyerLy for p € P and L is a complete lattice which is a subdirect product of lattices L,,t € T,
generated by ap, p € P.

Definition 2.3.10 ([83]). Let £ be a class of complete lattices and L, be a class of complete P-lattices
from £. Then (ﬁ) is the class of P-lattices from L, isomorphic to (T, a), E; is the set of all (T, a) such
that (T, &) € £,. By definition, (T1,n) > (Th,xa) if there exists a P-embedding from {Ty, ar) into {Ty, o).

It can be easily seen that > is a partial order on E;.

Theorem 2.3.7 ([83]). Let £ be the class of complete lattices closed with respect to the subdirect product
of factors with indices from a set I. For (T, o) and (T}, ai)ies from £, the following conditions are equivalent:

(1) there exists an isomorphism ¢ from T onto the dircct product of T;,1 € I, such that pap = (cip)es
forallp e P,

(2) (m} is the supremum of(ﬁ?&),i € 1, in the partial order {£,, <).

This theorem characterizes the subdirect product as the “minimal fusion” of the factors, but does not
give an effective way for constructing this fusion.

Definition 2.3.11 ([83]). Let T) and T3 be two complete lattices and 7 be a surjective A-homomorphism
from T, into T;. Then 7 is a mapping from T, into T} defined as 7 == A7~ 1y.
It is easy to show that r is an injective V-homomorphism from T3 into T;.
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Let T, ¢ € I, be a complete lattice and r;;: T; — T; (3,) € [) be A-homomorphisms satisfying the
following conditions:

(1) 7y is the identity mapping,

(2) Tii 2 7,7 for an arbitrary triple £, 5,4 € 1.

Proposition 2.3.8 ([83]). The set G{r;li,j € I) = {(7ix)jerlz € T}, i € IW\{0} is supremum-dense in
the subdirect product of S{rli,j € I) of the complete lattices T;, t € I.

Theorem 2.3.9 ([83]). Let r: (T,a) — (T;,a;), t € I be P-morphisms of complete P-lattices. If (ﬂ)
s the supremum of {m), then, for i,j € I, 157 is the greatest V-homomorphism o: T; — T; such that
oop Sa;p forallpe P (1,j € 1).

Now, the process of generation of the subdirect product by means of supremum operation can only be
represented in the following way [83}:; Let (T}, ay);es be complete P-lattices.

1. For all 1, € I define 7,, as the greatest A-embeddings: 7; — T such that ca;p < a;pforall pe P.

2. Construct the set G(r;lt,7 € I) = {{(rjz);erlz € Ty, 1 € T},

3. Generate T := {VX|X C G(7;{,j € I} and define a: P — T as ap = (a;p)ics for all p € P.

Then (T, ) is a complete P-lattice and (T'::-(;:] is the supremum of (m), i € I,i1.e., T is the subdirect
product of T}, i € /I, generated by aP.
Let K, = (G,M,1,), s € S, be contexts. For arbitrary 4, B such that A C G, B C M define
A’ ={m € M|gl,m for all g € A},
B* = {g € G|gI,m for all m € B}.

Let P = GUM and a9 = ({g}*, {g}°), asm = ({m}*, {m}*) for g € G,m € M,s € S. Construct
the fusion of the lattices B(K,), a}, where B(K,),cs are concept lattices for contexts K,. To this end, Wille
[83] uses vV-homomorphisms &, : B( K, ) — B(K,), r,s € §, where o,, are the greatest homomorphisms from
B(K,) into B{XK,) such that o, a.p < a,p for all p € P. For each pair r,s € § define the relation ., between
G x {r} and M x {s} as (g,r)1.,(m,s) <> o.,0.9 < a,m. If r = s, then o,, is the identity homomorphism
and (gs)l,s(m,s) <> gl,m.

Definition 2.3.12 ([83]). The fusion of contexts A,, s € S, denoted by ® is a triple (G x S, M x

S, U L), where for all g € G the object ag is a concept of the context @ with the extent {(g,s)[s € S}",
r8€8

and for all m € M the object am is a concept of the context ® with the intent {{m, s)js € S}".
Theorem 2.3.10 ([83]). (B(®),a) is a complete P-lattice, which is a representative of the supremum

of classes [_‘B_(}a,_}-:as}, s € S; if 1, is @ P-morphism of the lattice (B(O), o) into (B(K,),a,) and 7,(A, B) =
(C,D), then AN(G x {r})=C x{r} and BN(M x {r}) =D x {r}.

Wille [83] points out that the use of concept lattices B(K,) and B(K,) in the definition of relation [,
of the fusion of contexts is rather inconvenient. In order to avoid this obstacle, the definition of a bond
(Definition 2.3.6) is proposed in [83].

Theorem 2.3.11 ([81]). Let (L, ) be a P-product of lattices (B(Gy, My, It), au)ier and let ¢ be an
embedding of B(Y . ,cr(Gr, My, 1)} given as

(A B))ier) = (Urer Ay Uier By)).

Then C(1L) is the relation J C (UwerGy) x (UeTM,), for which Jy = [y and J, is the least (by inclusion)
bond from (G, M,, 1.} o (G, M, I,) that includes all pairs from A? x B} for every pair p € P such that a,p =
(A?, B?) and app = (A}, BY). where st € T, s # t.

Definition 2.3.13 ({81]). A pair ((G. M. ), a) is called a P-context if (B{G, M, I}, a) is a complete
P-lattice.

Theorems 2.3.6 and 2.3.11 allow one to define the P-fusion of contexts ((Gi, M\, I;), a)ieT as a P-context

((Uter Gy, Uer My, J)a) satisfving the following conditions:
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{1) Jgg = !g for ¢ S T,
(2} Js¢e is the least bond from (G,, M., 1,) and (G, My, ;) that contains A% x BF for all a,p = (A%, B?)
and ayp = (A}, BY), s, t € T, s # t,

(3) ap = (UIET AI,O;E-;- Btp) for all pE F.

2.4. Tensor Products of Concept Lattices

In this section we consider some results concerning the tensor product of concept lattices and the cor-
responding product of contexts. These results are related mainly to establishing relations between concept
lattices and some interesting objects, as well as to the decomposition of concept lattices into “primitives.” In
this section we will restrict our consideration mainly to the problems related to products of concept lattices.
Results of this kind concerning general lattices are found in [84] and in the papers cited therein.

Definition 2.4.1 ([84]). Let L; and L, be complete lattices. Then the tensor product of lattices L,
and Ly is L1 @ Ly = B(Ly x L, L) x Ly, V), where (z1,22)V(y1, 32} = o1 < 31 or 73 < yg for (21, z3).
(y1,y2) € Ly x Lj.

Definition 2.4.2 ([84]). The direct product of contexts K, = (G, M, 1) and K; = (G5, My, L) is
the context Ky x K, = (G x Gz, My x M3, V), where (g1,92)V(my, mz) == g1 [ym; or g.lom, for (g1,¢92) €
Gy x G, (my,mq) € My x M,.

Theorem 2.4.1 ([84]). For arbitrary contexts K| and K; B(K,) ® B(K,) = B(K, x K,).

A corollary of this theorem asserts the independence of the lattice product of a particular form of contexts,
le., each of the contexts K,, K, can be replaced by a context isomorphic to the concept lattice, e.g., the
context (J(B(K;)), M(B(K;)}), £), where J(B(K)), M(B(K)) are the sets of A-irreducible or V-irreducible
elements of the concept lattice B(Kj;), ¢ € {1,2}, respectively.

Definition 2.4.3 ([84]}. Let K = (G, M, I} be an arbitrary context, m,n € M, g,h € G, and (k,m) & I.
Then m N\, % if yh is minimal in the set {vk|k € {g}" and (k,m) & I}, ¢ / n,iff gn is maximal in the set
{uplp € {m}" and (g,p) ¢ I}.

Definition 2.4.4 ([84]). A context K = (G, M, 1) is called doubly founded if for arbitrary m € M and
g € G such that (¢,m) & [ thereexist h€ Gandn e M: m\ hand g /' n.

The relations \, and ,* allow one to study the concept lattice B(G, M, /) in terms of the digraph

(GU M,/ UN)}) The set of vertices of this graph (denoted by C} is called closed if g € G and ¢ /" m
imply m € C and m \, ¢ and m € M imply ¢ € C. The closed subsets of the digraph (G U M, U \} form

a complete sublattice of the complete lattice of all subsets of G U M. To specify a correspondence between
the concept lattice and the introduced digraph, we introduce the following sets for every complete congruence
relation # of the concept lattice B(G, M, I):

G(#) = {g € G|vg is the smallest element of the #-class},

M(8) = {m € M|um is the greatest element of the #-class.}

Theorem 2.4.2 ([84]). The mapping 8 — G(8) U M(8) gives an antiisomorphism of the lattice of
all complete congruence relations of the lattice B(G, M, I} to the lattice of all closed subsets of the digraph
(GUM, U\

This result generalizes the result of [81] that establishes an isomorphism from the lattice of all complete
congruence relations onto the lattice of subcontexts of a reduced context (see Section 5.3) (G, M, I'} closed with
respect to relations similar to /" and \,. The isomorphism established in Theorem 2.4.2 takes A-irreducible
elements of the lattice B(G. M. 1) to U-irreducible closed subsets of vertices of the graph (G U M. /U\),
which are the least closed subsets containing a given element g (these sets are denoted by {g}). The latter
facts imply

Theorem 2.4.3 ([84]). The mapping (A.B) — (AN {g), BN {g)),ec describes an isomorphism from
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Fig. 3. The context Ny = ({1,2,3,4},{1,2,3,4},=) and the Hasse diagram of its concept lattice.

B(G, M, I) onto a subdirect product of the completely subdirectly irreducible concept lattices B({g} " G, (g} N
M, 10{g)")sec-

This result, as well as the following theorem, allows one to decompose complex concept lattices into
products of elementary ones.

Theorem 2.4.4 ([84]). Let Ky = (Gy, My, I1), K3 = (G, My, 1) be irreducible doubly founded contexts.
Then
B((g1,92)) NG x Gz, {(g1,92)) N My x M3,V (1 {{g1,92)%) =
B({91) NG, () N My, L0 (1)) © B({g2) 0 G, {g2) N Mz, [, N {g3)?)
for any (g1, ¢2) € Gy x Ga.

2.5. Scaling of Concept Lattices

In a series of papers [80, 31, 33] on formal concept analysis, the authors considered the idea of the
conceptual measurement of concept lattices. As opposed to quantitative measurements, the qualitative ones
are based on the notion of order. Therefore, the main notion of conceptual measurement is the notion of
an (ordered) scale. A scale is a standard context (see examples below} with a clear concept structure. An
original context is interpreted in a scale by means of some measure. In [33] the following four examples of
finite scales are considered.

(1) Norninal scaies N, = ({1,2,...,n},{1,2,...,n},=). For n = 4, the corresponding contexts and Hasse
diagram are given in Fig. 3, where a, b, ¢, d, € denote the concepts ({1,2,3,4}, 2), ({1}, {1}), ({2}, {2}),
({3}, {3}), ({4}, {4}), (2, {1,2,3,4}), respectively.

(2) Directed ordinal scales D, = ({1,2,...,nr},{1,2,."..,n},<). For n = 4, the corresponding coantext
and the Hasse diagram are given in Fig. 4, where @, b, ¢, d, e denote the concepts {{1,2, 3,4}, @), ({1,2,3},
{41, ({1,2}, {3,4}), ({1}, {2}), (=,{1,2,3,4}), respectively.

(3) Undirected ordinal scales U, = ({1,2,....,n},{< 2,<3,...,<n,>1,>2,...,>n—1,} €), where
< k denotes the set {1,...,k — 1}, and > & denotes the set {k + 1,...,n}. For n = 4, the corresponding
context and the Hasse diagram are given in Fig. 5, where ¢, b, ¢, d, ¢, f, g, h, 1, 7, k denote the concepts
({1,2,3,4}, o), ({1,2,3}, {< 4}), (23,4}, {> 1}, ({12}, {< 3)), ({23}, {< 4> 1}), ({34}, (> 2}),
({1}, {< 2}), ({2}.{< 3,> 1}), ({3}, {< 4,> 2}), ({4}, {> 3}), (@, {< 2,> 3}), respectively.

{4) Boolean scales B, = ({1,2,...,n},{1,2,...,n},#). For n = 4, the corresponding context and
the Hasse diagram are given in Fig. 6, where a, b. ¢, d, e, f, g, h, 2, j, k, I, m, n, 0, p denote the concepts
(11,2,3,4), @), ({1,2,3), {41), ({1,2.4}. (3}, ({1,3,4}, {2), ({2,3,4}, {1}), (41,2}, {3,4}), (11,3}, {2.4)),
({1,4},{2,3}), ({2,3}, {1, 4}), ({2,4}, {1,3}), ({3,4}, {1, 2}), ({1}, {2,3,4}), ({2}, {1,3,4}), ({3}, {1,2,4}),
({4}, {1.2.3}). respectively.

Other examples of scales are the real ordinal scale ¥, : (R, Mo, €), where Mp = {{—o0o,r]|r € R}, the
interval real scale £; = (R, My, €}, where M; = Mp U {{r — s,r,7 + s}|r € R,s € R", the real ratio scale
Tr = (R, Mg, €), where Mg = My U {{r:s,r,r-s}{r € R,s € R}, and their many-dimensional analogs.
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Fig. 5. The context Ug = ({1,2,3,4},{< 2,< 3,< 4,> |,> 2,> 3},€}) and the Hasse diagram of

its concept lattice.

Definition 2.5.1 ([80]). Let K = (G, M, I) be a context and § = (Gs, Ms, Is) be a scale. An (partial)
S-measure of K is a (partial) map o from G into Gs such that for any extent A of a context & o 1A is an
extent of the context K. A S-measure o is called full if ¢~! defines an isomorphism between concept lattices
E(JG,Ms, IsNo x Ms) and E(K)

The following two problems are essential for a context K and a scale $: is a given (partial) map a
(partial) S-measure of &, and what (partial) S-measures are possible for a given context K and a scale 87
We will deal these problems at first for a particular case of scaling, namely for directed ordinal scales.

Definition 2.5.2 ([80]). Let {Q.):cr be a family of complete chains, and @ = x,e70Q:. Then Q¢ : (2,8, <)
is called an ordinal scale of dimension |T)|.

Since £ is a complete lattice, the map = — ((z],[z)) gives an isomorphism from (I onto B by the Main
Theorem of concept lattices (Theorem 2.1.1.}. The {ollowing proposition allows one to study ordinal scaling
in terms of lattice theory.

Proposition 2.5.1 {[80]). For a full Qc-measure y of a context (G, M,I), let i(A, B) = VpA for all
(A,B) € B(G,M,I). Then the mapping given by y — T is a bijection from the set of all full Qc-measures
of (G, M, ) onto the set of all V-embeddings of B(G, M, I) into Q; in particular, pg = B({g}",{g}’) for all
geG.

The following theorem allows us to obtain a criterion of existence of an ordinal measure of a context.

Theorem 2.5.2 {[80]). Let L be a finite lattice and x = {C\|t € T'} be a partition of the set M(L) into
chains. Then : L — x,er{C, U {1.}) defined as Ya = (a;)ier, where a, = min{c € C, U {1}le < ¢}, s
a V-embedding. If i: L — Q is a V-embedding into a direct product of complete chains, then there exists a
partition x = {Ci|t € T} of the set M(L)} into chains and a V-homomeorphism & from 1 into Xwer(CrU {1.})
such that & maps M{Q)YU {1q} onto M{Xeer(C,U{LL)U{L xCi} and Y =k o0
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Fig. 6. The context By = ({1,2,3,4},{1,2,3,4},+#) and the Hasse diagram of its concept lattice.

Corollary 1 ([80]). For a finite lattice L, V-dimension of L equals the width of M(L), and V-rank of L
equals to the cardinality of M(L).

Corollary 2 ([80]). For a finite context (G, M, I) there exzists a complete Qe -measure: L = X7l iff
there exists exactly one partition {Cy|t € T} of the set M(L) into chains such that the length of 1y equals the
cardinality of Cy for all t € T'. In particular, the dimension and the length of the ordinal scale (1< are equal
to the width and the cardinality of M{B(G, M, I)).

Some properties of the tensor product allowed Wille {84] to prove the following theorem (which is close
to Theorem 2.7.2 on dimension from [92]).

Theorem 2.5.3 ([84]). Let S = (C,C, £} be a scale, where C is a finite chain, and o be a complete S™-
measure of the context (G, M, I} (where S™ is a direct product of n contexts S). Then the context (G, M, ) is
isomorphic to (P, P, L) for a finite ordered set P and the lattice B(G, M, I) is isomorphic to a finite distributive
lattice of all order-preserving maps from P into a chain of length 2.

Corollary ([84]). For a finite partially ordered set P, the minimal number n such that there exists a
complete S*-measure of the context (P, P, €) coincides with the order dimension of P.

A criterion for existence of an S-measure for the scale S of an arbitrary form iz given in [47].

Proposition 2.5.4 ([31]). Let K = (G, M,I) be a context with a scale § = (Gs,Ms,Is) and o be a

(partial) map from G into Gs, and K7 = (G,M U Ms, %), vhere for g€ G, gl°m <= m € M and gIm or
m € Mg and oglsm. The map o is a (partial} S-measure of the context K iff for every m € Mg there ezists
a set B C M such that {m} = Myen{b}’. Moreover, the S-measure o of the context K is full iff for every
n € M, there exists a set D C Ms such that {n} = Ngep{d}’.

Using Proposition 2.5.4, we can show that the identity map is a measure of Uy in Ny and in Dy, but not
in By.

Proposition 2.5.5 ([31]). Let S be a scale of K such that {g} # {h} forallgh € Gs:g# k. Ifc is
a {partial) S-measure of K, then a V-homomorphism & of (a principal ideal of ) B(K) into B(S5) is defined
by 7(A, B) = ((cA)", Yo AY}. The mapping o — @ is a bijection from the set of all {partial) &-measures
of K onto the set of all v-homomorphisms o of (a principal} ideal A of ) B(K) into B(S) with the property
that for every {{g}". {g}") in (ANYB(K) there ezists an h € G5 with (a({g}”, {g})} = ({R}", {h}) (c0 #£ 0 is
admitted). Moreover, an §-measure o of K is full iff & is injective. (From here on conditions that correspond
to partial maps are given in brackets.)

It is obvious that the proposition dual to Proposition 2.5.5 {where ¢~! specifies a V-homomorphism from
B(S) into B(A') injective on the image of 7) is also valid.

For finite contexts from .he example above, the problem of the existence of corresponding scales can be
solved by means of the following:

Proposition 2.5.6 ([31]). The contezt K admits a (partial) S-measure
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(1) & = N, iff the objects of (some extent of )} K can be partitioned into n extents.

(2) S = D, iff there ezists a chain of n+1 extents of K including the empty set.

{3) & = U, iff there exists a chain of n non-emply extents of K so that their complements (intersected
with the largest extent of the chain) are again extents.

{4) & = B. iff there exists an independent set of n extents of K (these are eztents A,,..., A, with
NP Ai =0 and A; € NigjAi for j = 1,...,n). whose union is the sel of all objects of (some extent of) K.

In [31] the scaling of many-valued contexts {see Sec. 2.2) is considered. For a many-valued attribute m
the scale Sy = (G, My, Iin), where M,, CT W is the set of values of the attribute m, gl 1w <= (g,m)Iw.
Thus, the atiribute m € M corresponds to a (partial) measure v with respect to the context for the scale
Sm = (G, Mm, I). The product operator x:8 = X478 = (X1e7Ge, N, J) is used for composition of scales,
where the product can be a direct product or a semiproduct, defined in [33].

Definition 2.5.3 ([78]). Let K; = (G, M, I;), i € {1,...,n}, be contexts. Then the context {(7; x
X Goy My x {1} UL UM, % {n}, V), where (g1,...,9.)V(m, J) <= g;1;m, is called a semiproduct of the
contexts K,..., K, and is denoted by K, o ...0 K.

The next definition is a trivial generalization of Definition 2.4.2.

Definition 2.5.4. Let K; = (Gi, M., [;), 1 € {1,...,n} be contexts. Then the context (G, x ... x G,
M) x ... x M., V), where (91,...,9:)V(my,...,my,) iff g;I;m; for some j € {1,...,n}, is called a direct
product of contexts K,..., K, and is denoted by K; x ... x K.

As shown in [80], the direct product of lattices B(Gy, My, 1) and B(G,, M., ), where (G, M, 1)),
(G, My, I3), are contexts such that Gy NGy = 0, My NM; =2, G; = 2, M| = o for i € {1,2}, is isomorphic
to the lattice B(G) U G2, My U M,, U L UGy x My U Gy x My). Definitions of other possible operations
over contexts are found, for example, in [33].

A many-valued context with the scale & = [] . cp Sm is called a scaled context and is denoted by
(K, HmeM Sm). Then its derived context {denoted by K = {G,N, J?)) is a context with the set of objects
K, the set of attributes that coincides with the set of attributes of & and relation J defined as gJn =
(m(g))memJn for the context S. If the mapping m(g) {we will also write mg) is defined not for all m and g,
then gJn = hJn for all objects 2 = (A )men from S such that k., = m(g) if m(g) is defined.

We set, for example, K= (G, Umerm Mn, f), where gfn if n € M,, and mgl,n for some m € M,,. For
h € G we denote by v,k the concept {{h}", {A}') of the context S, = (G, M, In).

Proposition 2.5.7 ([31]). Let (G, N, J) be a contezt for which m is a partial S,,-measure forallm e M.
Then the identity map of G is a K -measure of the context (G,N,J).

The next proposition provides a means for constructing of B{K).

Proposition 2.5.8 ([31]). There is an isomorphism ¢ of B(K') onto the V-semilattice of XpepnB(Sm)
generated by the elements

"'({9}"! {g}f) = (YmMg)meM
wth g € G.
Proposition 2.5.9 ([33]). Let o be an S-measure of a context K = (G,M,I). Then the map
(A, A") = (a7 (A), 07 (A))
describes @ A-homomorphism from the lattice B(S) into the lattice B{K). This homomorphism is injective if
o is surjeclive.

Proposition 2.5.10 ([33]). Let § be a scale in which v # w implies {v} # {w} for all v,w € Gs.

Then, for an S-measure ¢ of a context K = (G, M, I),

(A A = a4, 4 = (o( AV o (A))

describes ¢ V-preserving map & from B(K) into B(S); in particular, o(vg) = yso(g) for all g € G. Conversely,
if v s a V-homomorphism from B(K) into B(S) such that for each g € G there is a plg) € Gs with
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2(vg) = y55(g). then B is a S-measure of K. There is a one-to-one correspondence between the S-measures
o {respectively p) and the specific V-preserving maps o (respectively ). The map o is full iff & 1s injective.

Proposition 2.5.11 ([33]). Let K = (G, M, I) be a finite context. If: {1,... ,n} — M is a bijection of
the set of first n natural numbers onto the set M, then a full B, -measure of K is given by

a(g) = {I.....nN\e({g})

forge .

Definition 2.5.5 ([33]). A dichotomic scale is a context of the form ({0,1}, {0,1},=). A k-dimensional
dichotomic scale is a semiproduct of & dichotomic scales: Dy 0...0 Dy,

Proposition 2.5.12 ([33]). A finite context K = (G, M,I) admits a full scale measure into the k-
dimensional dichotomic scale iff K is atomistic (i.e., ({9}, {9}") is an atom of B(K)} for any g € G}. K
admits a full scale measure into the k-dimensional dichotomic seale iff K is atomistic and there are at most
k pairs of complementary extents, to which all the extents of A-irreducible concepts of B(K'} belong.

2.6. Tolerance and Congruence on Concept Lattices

Another way of representing concept lattices as compositions of smaller lattices is based on the use of a
tolerance relation defined on lattice elements.

Definition 2.6.1. A binary relation ¢ on elements of a complete lattice L is called a complete tolerance
relation if 8 is reflexive, symmetric, and agrees with the lattice operations A and Vv, i.e., z.8y, for all t of a set
T, where 1., y. € L for all t € T implies that {Aere )@ Aery:) and {(Vierz ) VieTyt)-

A complete tolerance relation is called complete congruence relation if it is transitive (i.e., is an equivalence
relation).

Complete congruence relations were studied in detail for general complete lattices (see, for example, {8]).
Results concerning complete tolerance relations for general complete lattices are found, e.g., in [84]. In this
section, we present only the results on general lattices that will be used in the discussion of tolerances and
congruences on concept lattices. Using Lemma 2 from {84}, we give a simple definition of a block of tolerance

relation.
Definition 2.6.2 {[84]}. Let L be a complete lattice. A set S of elements of L is called a block of

tolerance relation 8 if it is maximal by inclusion among subsets of L such that for any pair of elements z, y of
this subset zfy. The set of all blocks of # is denoted by L/4.

The blocks of a tolerance relation can also be defined as intervals of the form [a]s = [ag, {as)’] or [b]® =
[(8%)q. b%], where ay = A{z € Llafz} and o = V{z € L|afr} and a,b are arbitrary elements of L. The
equivalence of the two definitions is proved, e.g., in [86]. _

Theorem 2.6.1 ([86]). The set L/@ of all blocks of 6 becomes a complete lattice {called the complete
factor lattice of L with respect to 8) by defining

Bl S Bg - AB; S ABQ(: VB] S VB-;) fO?‘ Bl,Bz = L/g‘
in particular,

Alzd’ = (A =]’

teT teT
and

\/[It]g = [\/ T4)e for z, < L.

teT teT

By Theorem 2.6.1, complete tolerance allows one to decompose a lattice I into a set of intervals, which
is itsell a lattice. Objects of this kind are studied, for example, in [86] as Q-atlases.

Definition 2.6.3 ([86]). Let @ and L, (¢ € L;) be complete lattices. The family (L,),eq, together with
the V-morphism @7: L, — L, (in particular, ©70; = 0,) and a A-morphism ¢] : L, — L, (in particular,
Wyl = 1,) for each ¢ <r in Q is called a Q-atlas if the following conditions are satisfied:
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(1} LN L, is a filter of L, and an ideal of L, for all ¢ £ rin Q.

(2} {¢ € @z € L;} is an interval [z min,z max] in @ for all z € | L,.
9€Q

(3) @2 and 7 are the identities of L,.

(4) ppz S yiff z < Yy

(5) wrwr = @) and YIy¥l = ¢

) plr =¥z forall r € LN Ly, and wiy =9y forally e L;N L.
T q ? ]

gvs SAY
ymin

The pair ({J L, C), where £ C y = zmin < zmax and @2~z < y for all #,y € {J L, is called a sum
9€Q 9€Q
of a Q-atlas.
As shown in Theorem 6 from [86], the sum of the Q-atlas is a complete lattice with blocks of complete
tolerance isomorphic to the lattices of L,.

Thus, the construction of a Q-atlas allows one to represent a lattice diagram as the sum of parts with a
nonempty intersection in the same way as a geographic map is represented by an atlas.

In [86), for an arbitrary context K = (G, M, I) a relation between complete tolerance of the lattice B(K)
and the so-called block relations of the context A, i.e., the relations J: I C J C G x M, for which {g} is
an intent of the context A, and {m}’ is an extent of the context A for an arbitrary ¢ € G,m € M, is
established. Thus, every extent and every intent of the context (G, M, J) is, respectively, an extent and an
intent of the context (G, M, I). The set of all block relations of a context is a complete lattice with respect

to the set-theoretic intersection.
Theorem 2.6.2 ({86]). For a context K = (G, M, I), there ezists an isomorphism 3 from the lattice of
all complete tolerance relations of the lattice B(K'} onto the lattice of all block relations K given by

98(0)m <==> vg8(vg A pm)(&== (g V pm)fum).

Furthermore, (A, B)8~Y(J)(C, D)<= Ax DUB x C C J.

As noted in [86}], the blocks of a complete tolerance of a context (G, M, I') correspond to the concepts of
the context given by the block relation, i.e., (G, M, J). If the concept lattice of a context (G, M, ) can be
represented by a 0-1 matrix, where every concept corresponds to a unit submatrix maximal by inclusion, then
for a block relation J, every concept (H, N) of the context (G, M, J) corresponds to the set of all maximal
unit submatrices of the matrix 7N H x N.

A particular case of @-atlases and Q-sums are the so-called @Q-tied atlases and @Q-tied sums [86] encoun-
tered in the case where # is a congruence relation. It is interesting that in this case every congruence is also
associated with a context. To describe this result in detail, we present some auxiliary results that allow one
to understand the meaning of subcontexts.

Definition 2.6.4 {[29]). Let (G, M,]) be a context and H C G, N C M. Then (A, M, I N H x N} is
called a subcontext of {G, M, I}.

In the general case, the concept lattice of a subcontext of the context (G, M, I} is not a sublattice of the
lattice B(G, M, I). We can only expect that B(G, M, I) contains B(H, N, 1 H x N) as a suborder.

Theorem 2.6.3 ({29]). For arbitrary N C M the mapping

B(GC, M INGx N)—B(G M, I}
given by {A, B) — (A", A") is an order-embedding and so is the mapping given by (A, B} — (B!, B").
Theorem 2.6.4 (129]). For arbitrary N C M, the mapping
BG.NING < N)— B{(G M)
given by
(A, B} — (A, 4D
is an infimum-preserving order-embedding. Dually, for any N C M the mapping
BH N INHXN)—BG M)

1667



given by
{A,B) (B, B)

is a supremum-preserving order-embedding.

Definition 2.6.5 {[29]). A subcontext (H,N,I N H x N) of a context (G, M, ) is called compatible if
(AN H, BN N) is a concept of (H, N, I\ H x N} whenever (A, B} is a concept of {G, M, I).

Proposition 2.6.5 ([80]). Let (G, M, I) be a context, {G,|j € J} be a partition of G, and { M,k € K}
be a partition of M. Then the A-embedding of the lattice B(G, M, I) into the direct product of lattices of
subcontezts B(G,, M, I N G; x M) is given by the mapping (A, B) — (AN G;, (AN G;) )es, and the v-
embedding of the lattice B(G, M, I} into the direct preduct of subcontexts B(G, My, I NG x M) is given by
the mapping (A, BY e (BN MY, B0 My)kek -

Theorem 2.6.6 ([29]). If (H,N,In H x N) is a compatible subcontext of (G, M, I), then the mapping

My : B(G, M, [} = B(H,N, [0 H x N)

qiven by _
(A, B)— (AN H, BN N}

is a surjective complete lattice homomorphism. If (G, M,[) is finite, then, conversely, for every complete
congruence relation 8 of B(G, M, I) there exists a complete subcontext (H, N, I N H x N) such that 8 is the
kernel of the homomorphism Iy N.

Consider another special type of @Q-atlases, where B; N B, # @ holds for every covering pair of blocks
B, < B; of the tolerance @ (i.e., blocks such that By £ B; and there is no B": By < B' < B;) The
corresponding tolerance relation is called a glued tolerance. An L/f-atlas of a glued tolerance is completely
determined by the blocks of 8 and their intersections. Thus, the definition of the mappings v and ¢ from the
definition of a @-atlas (Definition 2.6.3) is not needed.

Theorem 2.6.7 ([86]). Let L be a lattice of finite length and let £(L) be the smallest tolerance relation
containing all covering pairs of elements in L. Then L(L) is the smallest glued tolerance relation of L.

Theorem 2.6.8 ([86]). Let (G, M,I) be a context such that B(G, M, I} has finite length. Then J =
B(E(L) (where (L) is defined in the preceding theorem) is the smallest block relation of (G, M, I) containing
all pairs (g,m) such that {g} is mazimal in {{h}'|h € G and (h,m) € I} or {m} is mazrimal in {{n}|n €
M and (g,n) & I}, especially, an isomorphism from B(G,M,I) onto LY is given by (H,N) — {(A,B) €
I{A C H and B C N}. .

Definition 2.6.6 {[93]). Let L(Z) be the least glued complete tolerance relation of a lattice L. Then the
complete lattice S{L} = L/¥(L} is the skeleton of L. This construction may be iterated as follows: So(L) = L
and S.(L) = S(S,_1{L)) for R =1,2,3,...; S.(L)} is called the rth skeleton of L.

In [92], the notion of skeleton is used in the study of free complete distributive lattices.

Definition 2.6.7 ([6]). A lattice L is {&, 8) A-distributive if it satisfies the following condition D:

If (zs¢)sesuer is a family of elements in L satisfying the conditions

(1)0<|S) <a 0< |T] < B,

(2) Ve ¥ exists for each s € 5,

(3) A,es Vier s exists,

{4) N,es Tse(s) €Xists for each function p € T% {the set of functions from § into T},
then Vi ers Ases Zsots) exists and A s Vier 2ot = Viers Aves Zsutsy-

Definition 2.6.8 ({6]). A lattice L is {«, J) V-distributive if it satisfies the condition dual to D (i.e., the
condition where the sums and products are interchanged).

Definition 2.6.9 ([6]}. A lattice L is completely A-distributive if it is {a, 3) A-distributive for all a and
B (the same for complete V-distributivity).

Definition 2.6.10 ([6]). A lattice L is completely distributive if 1t i1s completely A- and V-distributive.
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Thus, the join and meet operations of a completely distributive lattice (in contrast to complete distributive
lattices) are defined for countable subsets oaly.

Theorem 2.6.9 ([84]). A concept lattice B(G, M, ) is completely disiributive iff for any ¢ € G and
m € M such that (g,m) ¢ I there exists h € G and n € M such that (g,n) ¢ I, (h,m) & I, and h € {k}" for
al k € G\ {n}'.

A free completely distributive laitice FCD(S) generated by a set S is specified up to an isomorphism by
the fact that every mapping ¢ from § into a completely distributive complete lattice L can be extended up
to the compiete homomorphism from FCD(S) into L.

Definition 2.6.11 {[93]). Let P(S) denote the power set of S and X,Y € S. Then

XAY = XNY #92
and forr € N
X3V = iS\(XuY)<r-1,

where } g = A.
Theorem 2.6.10 ([93]). For en arbitrary FCD(S)
FCD(S) = B(P(5), P(5),A),

S.(FCD(S) = B(P(S), P(S),AU i).

Definition 2.6.12 ({93]). Let S be a finite set; then

XZ:Y:lX[+|YI2|s]+I—r.

Definition 2.6.13 ([93]). Let X,Y,T be sets; then
XA7Y = XAV AT # 0.

Theorem 2.6.11 ([93]). For a finite set § and T C S the lattice B(P(S), P(S), ArUY.") is ¢ complete
sublattice of the lattice B(P(S), P(S), AUT ).
Theorem 2.6.12 ([93]). For a finite set S and any T,U C S the following equation holds:

(P(S),P(5),A7U Y ) nB(P(S), P(S), Ay U Y )

BP(S). P(S), Az U Y ).

i

12

Definition 2.6.14 ([93]). For a finite set § a bicover of degrec r with bound K is a pair {X,)) with
X, Y € P(S) such that, for every R C S with |R| = r, there are Xg € X and Ygr € )V with XgNYgr C R and
[ Xpl+ Y| € kandfor X e Y and Y € Y, XNY # @ or | X|+|V]| > k. Let bic,{S) be the smallest number
k for which S admits a bicover of degree r with bound k.

Theorem 2.6.13 ([93}). For a non-empty finite set S and forr = 1,2,3,..., |S], B(P(S), P(5), AUT®
with |T) = |S]| — r i |S] — r < bic, (S).

A tolerance relation defined only on the set of objects G of a context (G, M, [) is studied in [37-39)].

Thus, the lattice nature of the set of all concepts is not taken into account. Therefore, we consider results
from {37-39] in a separate section {Sec. 5.4.)

2.7. Decompositivn of Concept Lattices and Automatic Drawing of Their Diagrams

Various techniques based on the results of formal concept analysis were proposed in the paper [92] as a
means for the automatic drawing of Hasse diagrams of lattices.
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By finding chains in a concept lattice, we can determine a minimal grid, where the lattice can be em-
bedded: if there are n independent chains, the diagram can be embedded in an n-dimensional grid that is
the product of the chains. To determine the minimal number of chains that allows embedding of a concept
lattice in their product, Wille 92} proposed the use of the notion of Ferrers dimension.

Definition 2.7.1. Let G and M be finite sets. Then a relation F € G x M 1s called a Ferrers relation
if B(G,M,F) is a chain. The Ferrers dimension of a context (G, M,I) is the smallest number of Ferrers
relations on G x M whose intersection is / (or the minimal number of Ferrers relations on ' x M whose union
is G x M\I).

Theorem 2.7.1 (Dimension Theorem [92]). The Ferrers dimension of a contezt (G, M, [) is equal to
the order dimension of B(G, M, [), i.e., the smallest number of chains which admits an order-embedding of
B(G, M, [} into their direct product.

Since the order dimension of a partially ordered set (P, <) is equal to the order dimension of its Dedekind-
MacNeille closure (i.e., B(F, P, <}, see Sec. 2.1) the order dimension of an ordered set { P, <) is equal to the
Ferrers dimeansion of (P, P, <).

Another way to embed a lattice B(G, M, ) into a product of chains is to use the V-dimension of the
lattice, i.e., the smallest number of chains whose product admits the embedding of the lattice B(G, M, ).

Theorem 2.7.2 (on V-dimension [80]). The V-dimension of a finite lattice L is equal to the width of the
set of all A-irreducible elements of L.

A computer program based on the theorem on V-dimension is reported in [92] to construct concept
lattices. First, the program finds all attributes m € M such that {m}’ are not intersections of other extents
{n}, n € M. Then the attributes are ordered in the following way: m; < my; <= {m;} C {m;}’. Thus, a
partially ordered set isomorphic to M(B(G, M, I}) is constructed. The partially ordered set obtained inthis
way is decomposed into the smallest number of chains by a specialization of the Ford-Fulkerson algorithm,
and thus the dimension of the grid is established. Then the operator can choose a basis of the grid. Thereafter
the program locates the elements of the lattice in the nodes of the grid and joins them by line segments. Then
the projection of the grid that ensures the best appearance of the diagram is sought interactively [35]. A
diagram of a lattice constructed by a computer program is usually quite acceptable if the lattice does not
differ much from a distributive one ([92}).

A standard way of automatic drawing of lattices in formal concept analysis is based on the decomposition
of lattices into products of simpler lattices. Products of this kind include the tensor product [86] (see Sec.
2.4) as well as the substitution product, which corresponds to the substitution sum of contexts (see [56, 84]).

Definition 2.7.2 ([56]). Let K; = (G, My, 51), K; = (G2, Mz, [,) be contexts. Let for any X C G;
and Y C M; (j € {1,2}), X? = {m € M;lgl;m for every g € X}, Y’ = {g € C;|g;m for all m € Y}.
Let {g,m) € Gy x Mi\I;. Then G1{g)G: = (G1\{g}) U G2, Mi(m)M; = (M1\{m})U M, and fi(g,m)[; =
{(thynye hlh#gorn# m}UGs x {g}' U{m}' x My U I,. The context (G1(g9)G2z, Mi{m)M,, I,(g,m)13) is
called the substitution sum of K, with K, over (¢,m) and is denoted by Ki{g, m)K,.

This construction can be understood as substituting K, into K at the spot {g,m}. For lattices, the
counterpart of the substitution sum is the substitution product.

Definition 2.7.3 ([56]). Let L be a lattice and M be a bounded lattice (with 0 and 1) and let a # b
in L. Then (a] * [b) = {{u,v) € {a] x [b)|lu = ¢ A v and u V b = v} is an order-isomorphism between a A [b)
and {a] vV b. An element (u,v,y) from ((a] * [b)) (M\{0,1})} is denoted by u[y]v. Furthermore, u[0lv = u
and u[ljv = v for (u,v) € (a] % [b), where 0 and | are the bounds of M (always assume 0 < 1}. On
(a] * M % {b) = {u[ylv|(v.v) € (a] * [b) and y € M} we define the relation of partial order by means of the
relation ufylv < wiz]r = v € w, y € z, v < 1. 1t is obvious that the partially ordered set (a] * M = [b) is
isomorphic to (a A [b)) x M and to M x {{a] v b). LU (a]* M x[b) together with the transitive closure of the
order relation on L and on {a]+ .M = [b} is a lattice called the substitution product of L with M over (a,b) and

is denoted by L{a,b)M.
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(Substitution)Theorem 2.7.3 ({56]). Let {h}* # M, and {n}* # G, for all h € G; and n € Mz. Then
B(K1(g,m}K2) ¥ B(K1) (pam, mg)B(K2).

The program [55] that uses the substitution theorem decomposes sequentially the lattice B(G, M, ) into
substitution sums of indecomposable lattices with diagrams from some library. When the program construct
the diagrams of all indecomposable factor lattices, it constructs the diagram of their product. The following
theorem establishes the independence of the result of substitution decomposition of the decomposition order.

(Decomposition) Theorem 2.7.4 ([56]). Two substitution decompositions of a complete lattice into
substitutionally indecomposable factors have the same length and pairwise isomorphic factors.

Diagrams of large lattices often become illegible when various vertices and edges fuse. The idea of using a
nested line diagram [81] consists in distinguishing a part of the diagram and substituting it by a vertex, where
the vertex in the new diagram is connected to all vertices from the neighborhood of the removed part of the
diagram, The removed parts of the diagram correspond to the vertices of the resulting diagram. Formally, the
decomposition of a lattice diagram corresponds to the decomposition of a concept lattice into direct products
according to theorems from [80] (Sec. 2.3).

Finally, a representation of lattice diagrams by means of smaller diagrams can be carried out by using
the properties of congruence and tolerance relations, as well as their atlases (see Sec. 2.7).

In various studies, different conditions for embedding diagrams in grids are used (see [91]). These condi-
tions, for example, can take into account the rank function (an example of the insufliciency of this condition
is presented in [91}} or the minimality of the number of intersections of the resulting diagram. In the studies
on automatic drawing of lattice diagrams based on formal concept analysis, it is required (see [91]) that
the lines of the diagram which correspond to the (“covering”) relation < be straight and as steep as possi-
ble. In [71], a method of drawing diagrams is studied where every 4-tuple of elements (g, b, ¢, d) such that
g <b a~<c b<d c~<disdepicted as a parallelogram. It was shown that a local-distributive lattice
can be represented by such a diagram (a lattice L is called locally distributive if, for an arbitrary a € L, the
distributive law holds for the interval [a,V{b € L]a < b}]).

3. Concepts and Dependences of Attributes
3.1. Main Definition

The search for dependences in data is a frequently encountered problem of computer science. This problem
was studied within the framework of formal concept analysis, starting from [85, 15], where the definition of
dependence in data was given. A similar definition of dependence was introduced earlier in the JSM-method
[19, 20] and in [25, 26|, but the definitions were given there in other terms. For the sake of uniformity, in this
section we will also speak in terms of forrial concept analysis. The following definition of dependence was
given in [31, 16] {in French and German papers the term implication (Implikation) is used, but we prefer to
use the term dependence in line with the English and Russian terminology).

Definition 3.1. Let K = (G, M,]) be a context and A C M, B C M be arbitrary subsets of attributes.
The set of attributes B depends on the set of attributes A (denoted by A — B) if all objects from G that
possess the set of attributes A also possess the set of attributes B, i.e., A’ C B’ (or B" 2 A").

Thus, the dependence of the set of attributes B on the set of attributes A corresponds to the fact that
in the Hasse diagram of the lattice B(G, M, I) the concept (A", A) lies below the concept {(B”, B').

3.2. Search for Dependences in the JSM-Method

The first version of the JSM-method of automatic hypothesis generation (named so after John Stuart
Mill) was proposed in {19]. In this method, hypotheses concerning the causes of properties are sought among
the concepts of the context determined by a set of objects and a set of structural and functional properties
(or attributes} of these objects (see the recent papers [22-24] and reviews [48, 50], where a complete list of
published papers about the JSM-method is found, including papers about applied studies in pharmacelogy
and technical diagnostics).
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Assume that W is a property of objects from a domain under study. Then the input data for the JSM-
method can be represented by the sets of positive, negative, and undefined examples. Positive examples are
objects that are known to possess the property W, and negative examples are objects that are known not
to possess this property. Undefined examples are those that are neither known to possess the property nor
known not to possess the property.

In terms of formal concept analysis, this means that three contexts are considered: the positive context
K¢ = (G4, My, 1;), the negative context K_ = (G_,M_,/_), and the undefined one K, = (G, M,,[,).
Here (7, (G_, and G, are the sets of positive, negative, and undefined examples, respectively; M is the set of
“structural” attributes (that does not contain the “functional” property W); I; C G; x M, j € {+,—,7}, are
relations that specify the structural attributes of positive, negative, and undefined examples. In what follows,
we will use X’ instead of X7+, X/, X!r when it does not cause ambiguity.

Now, the JSM-hypotheses can be defined in the following way. If the intent i, of a positive concept
(e4,14), 1.€., of & concept of a positive context, does not coincide with the intent of a negative concept, then
the concept (e.,:_} is called a positive hypothesis with respect to the property W. Negative hypotheses are
defined dually.

Further requirements (called conditions or empirical dependences) on the form of the hypotheses are pro-
posed in the JSM-method. These requirements are lattice-ordered with respect to their logical strength. The
stronger the condition satisfied, the more plausible the hypothesis. For example, a positive “counterexample
forbidding” condition requires for a positive hypothesis (e, ¢, ) that no negative example possess all properties
from iy, t.e., Vg € G_, iy € {g} (analogously for negative hypotheses). The “counterexample forbidding"
condition is quite natural and is used in various systems of machine learning and pattern recognition (see, for
example, [60]). This condition can be formulated as the requirement that “generalization of positive examples
should not cover any negative example.” Note that if (e4,i}) is a positive JSM-hypothesis that satisfies the
“counterexample forbidding” condition with respect to the property W, then i, — W is the dependence in
the sense of Definition 3.1 for the context K- = (G UG- M U {W}, L UI_ UG, x {W}).

Whereas a graph-theoretic interpretation of a concept for the context (G, M,I) is the maximal-by-
inclusion complete bipartite subgraph of a bipartite graph, the interpretation of a hypothesis requires a
tripartite graph. The vertices of the first and third parts of this graph (we denote it by T') correspond to the
positive and negative examples from the sets G, and G_, and the vertices of the second part correspond to
the attributes of the set M U {W} [50, 51]. The vertex that corresponds to the object g, € G is connected
with all vertices that correspond to the attributes from {g,}' and only with them. For negative examples
the converse holds: the vertex that corresponds to the object g_ € G_ is adjacent only to the vertices that
correspond to the attributes not included in {g.}’. Then, a hypothesis that satisfies the “counterexample
forbidding” condition corresponds to the tripartite subgraph of T, where the vertices of the third and second
parts constitute a maximal bipartite subgraph (say, the subgraph D), and the vertices of the second part of
this subgraph dominate the vertices of the first part (i.e., every vertex of the third part is adjacent to a vertex
of the second part of D).

Example. Consider the graph T in Fig. 7, where the vertices of the second (middle) part are labeled
A, B.C.D,E,F,G. Then the sets of positive and negative examples of the corresponding problem on hy-
potheses will be G, = {X, X3, X3, X4, X5}, G- = {¥1, V3, V3, Ya}, where X = {A, B,C}, X} = {A, B,D},
X, ={AE F}, X, = {A,CG}, Xy = {A,C.GY, Y] = {AFG}, Y, = {A D F}, Y, = {B EFG},
Y, ={B.D. F}.

Positive concepts (i.e., concepts of the positive context (G4, M,I.)) are ({ Xy, X2, X3, X4, X5}, {A}),
({X1, Xz}, {A.B}), ({X1. X4, X5}, {A.C}), ({ X4, X5}, {A,C,G}). The second, third, and fourth pairs
correspond to the hypotheses satisfying the “counterexample forbidding” condition, i.e., conditions of the
form X — W for the context A, = (G, UG_. MU {W}LL I, UI_UG; x {W}). In the case of the first pair,
the vertex of the middle part that has the label A is not adjacent to the first and second vertices of the right
(third) part. Therefore. {A} ~— W is not a positive hypothesis that satisfies the “counterexample forbidding
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Fig. 7. Tripartite graph corresponding to the problem of hypothesis generation.

condition.”

We can propose another description of hypotheses that satisfy the “counterexample forbidding” condition.
This condition is especially convenient when we study not a single property W, but a subset of properties
of a set of properties Mp. Consider two contexts: K, = (G, M,,[,) and K; = (G, My, I;), where M, and
M; are interpreted as the sets of “structural” and “functional” properties of objects from G, respectively (for
example, the structural properties of a molecule and the biological properties of the corresponding chemical
compound). Then a hypothesis that satisfies the “counterexample forbidding” condition and is about the
dependence of the set of functional properties £ C M, on the set of structural properties § C M, {i.e., the
dependence § — F') corresponds to the triple (§%, (§%)%, (8%)%, where (§%}7 = F.

Hypotheses can be used for classification of undefined examples from G, (i.e., for establishing whether
they possess the property W or not). If an undefined example g, € G, possesses all attributes from the intent
14 of a positive hypothesis (ey,24) (i.e., {¢-}' 2 4} and does not possess all attributes from the intent of any
negative hypothesis, then we can infer that {g.} is likely to possess the property W. The pair (e, ;) is called
a hypothesis in favor of a positive forecast for g,. If an undefined example g. € G, possesses all attributes
from the intent i_ of a negative hypothesis (e_,i_) (i.e., {g,}' D i_) and does not possess all attributes from
the intent of any positive hypothesis, then we infer that {g,} is likely not to possess the property W. The
pair (e-,2-) is called a hypothesis in favor of a negative forecast for g,. If {g.} does not include an intent

of any negative or positive hypothesis, or includes intents of hypotheses of different signs, then no forecast 1s
produced.

The following graph-theoretic interpretation of a forecast was proposed in [51].

Definition 3.2.1. The following problem is called the problem on “domination by the parts of complete
bipartite graphs” (DPCBG):

INSTANCE. Tetrapartite graph G = (ViU V,UWB UV, E), EC(V, x V) U (Vo x V3) U (V5 x V). The
graphs By, B;, B; are the subgraphs of the graph G induced by the sets of vertices (Vi UV;), (VoUV3}, (V3UVL),
respectively.

QUESTION. Does there exist a complete bipartite subgraph C' = (W, U W3, W3 x W3) of the graph B;
such that it is maximal by inclusion, Wy C V;, W3 C V4, the set of vertices W, dominates V;, and the set of
vertices W5 dominates V,?

Definition 3.2.2. The following problem is called the “problem on a hypothesis in favor of a positive
forecast™ (HFPF):

INSTANCE. Input data: contexts A, = (G. UG MU{W}L I UI_ UG, x {W}), K, =(G., M, I},
and the objects g, € G,. where M = VLUV, . Gy =V, o = |J {0} x {v1,...,v ), and {vi,..., v} is the

viel,

union of the set of all vertices of V5 adjacent to the vertex v? € V, and the set of all vertices of V| not adjacent
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V. Ve Vs Ve

Fig. 8. Tetrapartite graph corresponding to the problem of a forecast from the example.

to the vertex v2 € V3, G_ =V, [_ = U {vl} x {w1,...,w,}, where v} € Vj and {wy,...,w,} is the set of
vieV,

all vertices of Vs not adjacent to the vertex vy € V.

QUESTION. Does there exist a hypothesis (e,,:;) with respect to the property W that satisfies the
“counterexample forbidding” condition and is a hypothesis in favor of a positive forecast for g;, ie.,i4y - W
is the dependence for the context K,_ = (G, UG_ MU{W} LUl UG, x {W})and i, C {g,}'7

Lemma 3.2.1 ([51]). The problem DPCBG for the tetrapartite graph G given in Definition 3.1 has a
solution iff the corresponding problem of HFPF has a solution.

Example. Consider the graph in Fig. 8, where the vertices of the first part are labeled C, F, G, and the
vertices of the third part are labeled A, B, D, E. Then the sets of positive and negative examples in the corre-
sponding HFPF problem for the undefined example ¢.: {¢.} = {A, B, D, E} will be G, = { X;, Xy, X3, X4}.
G. = {Y1,11, Y3, Y}, where X{ = {A,B,C}, X; ={A,B,D}, X; ={A,E,F}, X; = {A,C,G}: Y{ = {A},
Yy ={A,D}, Yy ={B,E}, Y] = {B, D} The pairs ({Xy, Xz, X3, Xa},{A}), ({X1, X2}, {4, B}), ({ Xy, X4},
{A,C}) are the concepis for the positive context Ky = (G4, M, I,). Only the second pair is in favor of a
positive forecast for g, since in the case of the first pair the first and second vertices of the fourth part are
not dominated and in the case of the third pair the vertex with label C' does not lie in the third part.

Finn [22] proposed the so-called “generalized JSM-method.” Each “generalized” hypothesis concerning
the property W is a triple of the form ({e4,i4), B,W}, where (e,,i}) is the concept of the positive context
Ky = (G4, M, 1), W is the property under study, and B is the family of all “specific obstacles” (different
from (-)-hypotheses): the sets of form H’, where H C G. and H' is minimal by inclusion among all sets
of the form {Y'|Y C G_, 14 C Y'}. i.e., among intersections of the attributes of negative examples that
possess properties from i,). The generalized hypothesis {(e4,i+}, B, W) means that “W depends on i, in
the absence of the sets of attributes from the family B.” Contrary to the case of hypotheses that satisfy
the “counterexample forbidding” condition, i, can coincide with an intent i. of the negative context K_ =
(G-, M, ). Many applications can justify the introduction of generalized hypotheses, for example, the
pharmacological one, where the “structural causes™ of a biological activity of a chemical compound, i.e., some
parts of the corresponding molecule, can be suppressed by specific parts of the same molecule.

The JSM-method was defined above in terms of formal concept analysis. It can also be formulated
for a more general case, namely, for the case where a semi-lattice operation M is used instead of the set-
theoretic intersection N in the definition of ' and ” operations (and therefore, for the generation of concepts
and hypotheses). In [50] a semi-lattice operation was defined for sets of graphs and numerical intervals and
in {97} for data with numerical parameters. The description of a special logical language used for formulation
of the JSM-theory can be found in [2-3]. Section 3.1 contains some results concerning the relation of concepts
to tolerance relations. In Sec. 3.6 we present results concerning the stability of hypotheses, and in Sec. 4.6
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we consider algorithmic complexity issues of hypothesis generation.

3.3. Bases of Dependences

The problem of generation of a minimal set of dependences that can reproduce the whole set of depen-
dences is considered in {83, 16] (dependences are called implications there).

Definition 3.3.1 ([16]). A dependence A — B is called informative dependence (ID) if B ¢ A.

Definition 3.3.2 {{16]). A dependence A — B is called a mazimal informative dependence (MID) if for
all X and Y such that X,Y C G, the conditions (X C A),(BC Y),(X — Y} imply (X = A) and (Y = B).

Proposition 3.3.1 ([16]). Let A C M. The dependence A — A” is ¢ mazimal informative one iff
X" C A holds for an arbitrary X C A,

Definition 3.3.3 ({16]). A set A C M is called a gap {lacune} if A # A", i.e., the set A is not closed.
The gap A is called irreducible if the dependence A — A" is maximal.

Note that if 4 is an irreducible gap, then the whole interval { A, A”) consists of reducible gaps. Proposition
3.3.1 allows one to establish a one-t0-one correspondence between irreducible gaps and maximal dependences.

As noted in {15, 16}, the following relations hold for dependences (as well as for ID from [i6]).

(1) IfA— Band C — D, then AUC - BU D,

(2) fA— Band B C,then A — C,

(3) If A— B, then AUC — B, where AUC — B can be not an 1D.

In [16}, relations (1)-(3) are called inference rules. The set 7' of ID is said to be deduced from 7 {denoted
by JF J") if J' can be obtained from J by a sequence of applications of rules (1}-{3).

Definition 3.3.4 ([16]). Let J be a set of ID. A dependence ¢ € J is called redundant if J\{:} F {i}.

The following notion was introduced in [16] as a means of distinguishing minimal non-redundant subsets
of ID that can generate the whole set of ID.

Definition 3.3.5 ([16]). Let A C M; then the set A= AU {B"|B C A, B € J, B" # A"} is called the
presaturation (pré-sature) of A with respect to the set of gaps J.

It can be easily seen that the ID A — A is redundant with respect to the set of ID {B — B"|B C A,B €
J}.

Duquenne and Guigues {16] showed that the presaturation operation (taking A to A) has the following
properties:

(4) the inclusions A € A € A" hold for arbitrary A C G,

(5) if I is the set of irreducible gaps, then A = AU {B"|B C A, B € I, B" # A"} holds for an arbitrary
ACG,

(6) the operator A+ A is a monotonic one, i.e., B C C implies (AU B) C (AU (),

(7)Y if A= A", then A —» A" is a J-redundant dependence, where J is the set of all MID. The converse
does not hold, in general,

(8) if A € I and A = A, then the dependence A — A" is not J-redundant (where 7 is the set of all
MID).

Definition 3.3.6 ([16]). Let A C G. We define a sequence of the form Ag = A, Arp1 = Ag, k € N. Then
A = U{Aklk € N} is called J-saturation of A.

It is easy to see that the tilde (7) denotes a closure operation and that property (9) (see [16}} holds:

(9) If A = A, then the dependence A — A" is redundant with respect to the set of all MID.

Definition 3.3.7 ({16]). A set A C M is called a node of non-redundancy (NR) if A= A and A # A".

Proposition 3.3.2 ([16]). A set AC M isan NR if A = A and A # A"

Definition 3.3.8 ([16]). A set A C M is called a minimal NR (MNR) if (C* = A") and (C = C) imply
" = A for an arbitrary C C A,

Note that if Ais a MNR and B € A C B". then A = B. Denote by N the set of all NR and by N the
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set of all MNR. For sets X,Y by | X,Y] denote the set {Z|X CZC Y},

Proposition 3.3.3 ([16]). Let B be a gap and J be a family of dependences; then

(1) the dependence B — B” is J-redundant if [B,B"|N\ N = o;

(2) the dependence B — B" is J\Ju-irredundant if B € Ja, where A € Ny and Jy = {B C M|B C
AC B"} = {BC M|B=A}.

Define the equivalence relation ~ for objects from M: A BC M A~ B = A=B Proposition 3.3.3
implies the following:

Theorem 3.3.4 ([16]). Let A = (G, M, ) be a contezt and J be a family of ID of this context. Then an
arbitrary minimal subfamily J™, such that one can deduce J from it, has the form J™ = {A — A"|A € R},
where R is a representation system of equivalence classes of MNR.

Wille [85] proposed a different means of deriving 2 minimal subset of the set of dependences.

Definition 3.3.9 ([85]). Let K = (G, M, I) be a context. A set of attributes A C M is called a proper
premise {echte Prdmisse) if A £ A” # U{{A\{n}"|n € A}. A dependence A — B is called proper if 4 is a
proper premise and B = A"\ U {(A\{n})"|n € A}.

If we have a list L of all proper dependences of the context K = (G, M, ), then the set of all concepts
of B(K) can be obtained by the use of the fact that A" = AU{Y|(X = Y)e L, X C A}.

The following recursive definition of a dependence base was proposed in [77].

Definition 3.3.10. Let &’ = (G, M, [) be a context. A set P C M is called a psevdointent if P* = P
and @” C P for all pseudointents ¢} such that Q C P.

Then the set of all base dependences is {P — (P"\P)|P is a pseudointent}.

3.4. Dependences in Many-Valued contexts

In [31, 80, 94] various types of dependences in many-valued coniexts are considered. It can be easily
shown that certain 0-1 contexts can be introduced such that dependences therein are naturally related to
dependences in initial many-valued contexts.

Definition 3.4.1. Let K = (G, M, W, ) be a many-valued context (see Sec. 2.2). For Y, Z C M, Z is
called functionally dependent on Y if, for all g,k € G, y(g) = y(h) for all y € Y, implies z(g) = z{k) for all
z € Z,i.e. there is a function f: WY — W72 such that f(y(g))yer = (2(g)):cz for all g € G.

Definition 3.4.2. Let K = (G, M,W,I) be a many-valued context, then K; = (G x G, M, I} isa
context such that (g,h)Iym < m(g) = m(h) for g h€e G,me M.

Proposiition 3.4.1 ([94]). For a many-valued context K = (G.M,W, 1) Y, Z C M, Z is functionally
dependent on Y in K iff Y — Z is a dependence in Ky, te., Y C Z' for Ky.

Definition 3.4.3. Let K = (G, M, W, I) be a many-valued context, Y, Z C M, 6 € R, é > 0. Z is called
§-dependent on YV if for all g, h € G, |ylg) — y(H)| < 4§, for all y € Y, implies |2(g) — z(h)| < d for all 2 € Z.

Definition 3.4.4. Let K = (G. M, W, ) be a many-valued context, then Ks; = (G x G. M, [;), where
for g,h € G, me M {(g,h)sm iff |m(g) — m(h)]| < 6.

Proposition 3.4.2 ({94]). For a many-valued context K = (GM, W, 1), Y,Z C M, Z is §-dependent
onY f Y = Z i5 a dependence in Ky, ie., Y' C 2/ in K.

Definition 3.4.5. Let K = (G, M, W, )} be a many-valued context and < be a relation of partial order
on W. For Y, Z C M, Z is called ordinally dependent on Y if, for all g, € G, y(g} < y(h} implies z(g) < z(h)
forall z € 2.

Definition 3.4.6 Let K = (G, M,W.J) be a many-valued context. Then Ko = {G x G, M, lp), where,

for g, hc G.mée M, (g.MYlpom < m(g) < m(h).
Proposition 3.4.3 ((94]). Z functionally depends on'Y in K = (G .M. W,I) forY.Z C M if Y - Z

s n dependence in Wy, e, Y' ' C Z' in Kg.
3.5. Dependences and Scaling
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In papers |88, 33| the relationships between dependences in contexts and dependences in their scales are
studied.

Definition 3.5.1 {[88]). Let (K, ]],.cps Sm) be a scaled context, where K = (G, M, [} and RC M be a
subset of attributes. Then the context (G, N, Jr) is called the derived contezt for the set B, where Ng is the
set of all attributes n € N such that (g )memJn <= (Am)memJn for all elements of X,eps such that ¢ = k,
for all 7 € R (thus. Ng is the set of attributes determined by components from R}, Jp = J NG x Np.

Several definitions of dependences in scaled contexts were considered in [88].

Definition 3.5.2 ([88]). Let (K,]],.cs Sm) be a scaled context. A set of attributes Y C M depends
on a set of attributes X C M, if every intent of the derived context for (K, [],.cxo y Sm) is an intent of the
derived context for (K, [],.cx Sm)-

Definition 3.5.3 ([88]). A set of attributes of a scaled context (K, [],,c3s Sm) weakly depends on the set
attributes X if every intent cf the context (K, [],,cy Sm) is an intent of the context (K, [],.cx Sm)-

Proposition 3.5.1 ([88]). Let (K,[], cys Bm) be a Boolean-scaled context of a complete many-valued

contezt K, where K is a direct product of scales. Then, for every X,Y C M, the following conditions are
equivalent:

(1) Y depends on X in (K,[],.cp Bm),

(2} Y weakly depends on X in (K, [], crr B )

(3) Y functionally depends on X in (K,[],,cpr Bm)-

Definition 3.5.4 ([88]}). Let K be a field. Then the relation L of the context (K, K, L) is defined as
h L k= hk = 0. The fusion of such contexts is defined as [, .y Sm = (KM, K™ 1) whered@ L b= ab=0.
This context is called a linearly scaled context.

Proposition 3.5.2 ([88]). Let (G, M.[]) be a linearly scaled context with respect to the field K of e
complete many-valued contert. For arbitrary X, Y C M the set Y depends on X in (G, M, []) iff every tuple
(¥(g))geq, where y € Y, linearly depends on {(x(g),eclz € X} in K19,

Definition 3.5.5 {{33]). Let P be a partially ordered set with the order relation >; then the context
(P, P,>) is called an ordinal scale and is denoted by Op.

Definition 3.5.6 ([33]). Let A = (G, M, W, I) be a complete many-valued context with partial order <
on W x W. Then [z,y,z] denotes that s <y < zorz >y > z,ie., y lies between z and z. Aset Y C M

weakly depends on X C M if, for all g, & € G the fact {2(g), z(R), (k)] for all z € X implies [y(g), y(h),y(k)]
forallyeY.

Proposition 3.5.3 ([33]). Let K = (G, M, W,I) be a complete many-valued context scaled by the direct
product X ,epmOp so that the values of each attribute m € K comprise the partially ordered set P,,. Then for
XY C M the following conditions are equivalent:

(1} Y ordinally depends on X in K,

(2) Y depends on X in (K; XmemOp.,),

(3) Y weakly depends on X in (K; XmemOp,.).

Proposition 3.5.4 {[33]). Let K = (G, M, ) be a complete many-valued context with partially ordered
set of attribute values M. Let K, = (G x G, M, I,) be a context such that (g,h)I,m = m(g) < m(h) and let
Ky, = (G x G x G, M, I,) be a context such that (g, h, k) ;;m <= [m(g), m(h),m(k)]. Then for X,Y C M:

()Y ordinally depends on X iff X' C Y’ for the context K,;

{2) Y interordinally depends on X iff X' C Y’ for the contezt K,,.

Definition 3.5.7 {[33]). Let K, and K; be contexts: K, = (G, M, I,), K; = (G, M3, 1;). The context
(G.M, U My, I, U ) is denoted by K {A.

Proposition 3.5.5 {[33]). Let N be a complete many-valued context (G. M W, I) scaled by the apposition

X meMOP,| Xmerm Op,

so that the values of each attribute m € K constitute the ordered set P,. The following conditions are
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equivalent for XY C M:
(1} Y interordinally depends on X in K,
(2) Y depends on X in (K XmemOp,.| Xmem Op,, ),
(3) Y weakly depends on X in (K XmemOp,| Xmem Op,).

3.6. Stability of Dependences

Definition 3.1 of the dependence on attributes of the form X — W assumes that the property W is
caused by common properties of objects from X' that have the property W. All attributes that do not hold
for these objects are considered implicitly inessential for the dependence X — W. It is reasonable to consider
that the greater the set of examples X', the more plausible the dependence X — W. However, in a case of,
say, the dependence X; — W), the examples can be “too similar” as obtained, for instance, in a single series
of experiments. In another case, say of the dependence X; — W;, the examples can be “more independent”
and, therefore, can vary from each other considerably, except for the attributes from X. This means, in
particular, that the second dependence can be obtained starting from a lesser number of examples, i.e., for a
subcontext (G, M, I) of the initial context (G, M, 1), G C G, I = ING x M, since the independence of data
allows one to separate faster and more reliably the essential data from the inessential data. This means, in
turn, that the second dependence holds for a greater number of subcontexts of the context (G, M, I} induced
by subsets of the set of objects G, i.e., this dependence is more “stable” with respect to the randomness of
selecting data that correspond to the context (G, M, [}). The fewer the number of hypotheses, the greater the
average stability of the hypotheses.

The idea of stability was used for analysis of the plausibility of dependences of different nature, for
example, in methods of nonparametric statistics, namely, in that of the jackknife and bootstrap methods [17].
In {49], the notion of the stability of JSM-hypotheses was introduced. Here we present the main results from
{49] in terms of formal concept analysis.

Let A = (G, M, I) be a context and H : (X — W) be a dependence over the attributes of this context.
We introduce the following notation:

(), ={Y CGlY C X, |[Y| =k, Y' = X},
n-i

(s = (),
i=2

7(31H) = ](H)Jl! 7(EvH) = !(H)Eia n= |X{|

In the cases where a fixed dependence is treated, we will omit the arguments j and H of the function +,
i.e., we will simply write -; or ~g.
Definition 3.6.1 ({49]}). Let K = (G, M, I) be a context. Then for a dependence X — W of the context
K stability indices are defined as follows:
(1) the stability index of the jth level (2 < 7 < n — 1) has the form
Ti
gy =
)
(2) the integral stability index has the form
TE
il —

(3) the averaged stability index has the form

n-1
1
J‘I

The stability indices of the dependence X — W are related to X in the same way as the sample variance
{computed by the jackknife method, see {17]) is related to the sample mean in statistics.
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The following property of stability indices follows from a simple property of monotone Boolean functions:
the relative amount of units of a monotone Boolean function in the {j + 1)st layer of a Boolean hypercube is
greater than that in the jth layer.

Lemma 3.6.1 ([49]). Let K = (G, M, I} be a contezt. Then for a dependence X — W of the contezt K,
the following inequalities hold: J; < ... < J,_,.

We will see now how the stability indices change as the set of objects G is updated by new objects.

After the arrival of k new objects the stability indices of dependences after will be supplied by the
superscript &, e.g., J;‘. We also set, for the sake of convenience,

Jo =1,
J,=0for y € Z\{2....,n}.

Theorem 3.6.2 ([49]). Let K = (G, M,[) be a context. Let the set G be updated with k new objects,
then the stability indices are within the following bounds:

k £ . F*

k k . -jk
Iy € Jg < Jg,

.1 k k

;= ) N frte T ik s ]
—k l n n+k—1

ChlCy (’”*(;‘—1)*”*( -1 ))

g 2t

—5_2n+k_(n+k+2)’
jk_’rz+2“(nk—l)—k
EToontk _ (n+ k4 2)

where

Consider now the limits of the upper and lower bounds of stability indices as £ — oo. The behavior of
the lower bounds of the layered indices differs, namely, the indices of the higher levels tend to 1, while the
indices of the lower levels tend to 0. In fact, by Theorem 3.6.2, we have

1 : k .
J:+k—1 2 m‘i (“fn-1 + (k . 1)) and J‘_ﬂ;‘o J:+k—l =L

ntk-1

On the other hand,

JE = ‘72 and lim JE=0.

1
n+k
("2
The question concerning behavior of the lower bounds of the middle layer indices and of the averaged

index remains open. The limit of the lower bound of the integral stability index is strictly positive and less
than 1:
1
lim Ji(k) = 2515

kmeoo an =

The upper bounds of the stability indices behave uniformly: they increase monotonically and tend to 1
as k — oo.

The analysis of the asymptotic behavior allows one to advance conjectures only about the integral index
Je: most likely, it will grow since it has small “decreasing reserve.” Now, if we consider a set of objects X'
that “support” the dependence X — W as having arisen from updating an initial set of size r < [X’|, then
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we can conclude that dependences with greater [z are likely to have greater Js than dependences with lesser
|X’|. A “soft” dependence of Jx on the number of examples allows one to prefer the integral stability index
as the most informative one. On the one hand, it reflects explicitly the stability of a dependence and, on the
other hand, it reflects implicitly the number of objects that “support” the dependence, i.e., | X'|.

The idea of stability can be realized in different stability indices. In certain situations some of them
are preferable to others. Consider the index Jr based on the stability of forecast. Let K, = (G, M., I,),
K. =(G_,M,I_), K. = (K,,M, .} be a positive, a negative, and an undefined context, relative to the
property W & M, respectively (see Sec. 3.2}. Let Fy, F_ be sets of all positive and negative forecasts
obtained on the basis of dependences for A, and K_. Then Jr is defined as the fraction of all subsets of the
set (G, UG _ for which the sets of all forecasts coincide with the forecasts generated from the whole set of
objects G, U G_. Examples of other definitions can be found in [49],

3.7. Partial Dependences on Attributes
The notion of partial dependence was introduced in [53] (under the name of implication partielle). On
the one hand, this notion generalizes the notion of dependence; on the other hand, it “inverts” the latter.

since a dependence A — B corresponds to the partial dependence B %, A, where p is a measure of partial
dependence.
Let K = (G,M,I) be a context, B C M, and |B| denote the number of objects that have the set of

attributes B. Then the “probability” of B is defined as P(B) = I%l and the “conditional probability” of the

set of properties B, with respect to the set of attributes By is defined as
{BinBz| -
P(B3|By) = { 15! i 154 ?éo'
1 otherwise.
Definition 3.7.1 ([59]). A partial dependence (PD) B, -2, B, is a triple of the form (B, B;, p), where
Bl| Bz g M, and P= P(leBl)
Definition 3.7.2 ({59]). The set J(B(K)) = {4 > B|A, B C M,p = P(B|A)} is the set of PD for the
lattice generated by the context K = (G, M, ).
Theorem 3.7.1 ([59]). Let My, My, M3, My C M be some intents, where M; C M, C My, M; C M, C
M,. Then
P(leMl)P(M4|M2) = P(M3|M1)P(M4|M3) = P(MqlMl)

The transitivity of a partial dependence {i.e., A == B, B /5 C = A X5 C) does not hold for intents
that are not contained in each other as in Theorem 3.7.1.

Definition 3.7.3 {[59]). Let 7 C {A £ BJAC BC M, p <€ @Qn[0,1]} {(where Q is the set of rational
numbers) be a set of partial dependences. Then the context &' = {G, M, ) such that 7 C J(B(K)) (i.e.,
(A5 B) € J implies P(B|A) = p for the context K} is called a realization of J.

Definition 3.7.4 ([59]). Two realizations (G, M, I) and (H, M, J) of the set of partial dependences are
called equivalent

HgeGlglbforallbc B}
{g € HlgJbfor allbe B}

if for an arbitrary B C M.

The following theorem from [59] establishes a criterion of realization of sets of PD.

Theorem 3.7.2. A set of PD J C {A 5 BIAC BC M, p€ @Qn{0,1]} can be realized iff the following
system is solvable for variables pp € QN 0,1}, AC BC M:

Y (=M >0 for all S C M, (1)
{NCM|NDQ}

const
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pg =0 = py=1lforall ACBCNCM, (2)
pgzpi-pgforaHSQAngM, (3)
ps =pif (A B)e J, (4)

where p is the variable that corresponds to P(B|K).

The problem of the search for a minimal set of partial dependences that allows one to reconstruct the
whole set of PD (in a way similar to that in the case of dependences, see {16, 77, 85} and Sec. 3.3) is stated
in {58].

Definition 3.7.5 ([59]). A partial dependence A £ B is derived from the set of PD J (denoted by
J F A -5 B) iff the system of equations from Theorem 3.7.2 for the set 7 has a unique solution such that
P = p-

Definition 3.7.6 ([59]). The set 7<'8(K) = {A > B|A C B}, where A is a set of intents of the
concepts from B(K), is called a set of proper PD (PPD).

Definition 3.7.7 ([59]). A set of PPD J C J<!(B(K)) is called a set of generating elements for
J<HB(K)) iff 7F 7<Y(8B(K)). A minimal-by-inclusion set of generating elements is called a base.

The following theorem on the size of a base holds.

Theorem 3.7.3 ([59]). If 7 C T<YB(K)) is a base of T(B(K)), then | T} < [B(K)] - 1.

The following theorem establishes the type of lattices, where the upper bound from Theorem 3.7.3 is

sharp. Therefore, the construction of a minimal base does not always lead to the resuit desired, i.e., to a
considerable reduction of the size of PPD.

Theorem 3.7.4 ([59]). Let £ be a finite lattice with the set J(L) of A-irreducible elements such that
|IL| = |J(L)|] < 2. Then the relation |J| = |L]| — 1 holds for an arbitrary base

J € T(B(K))

and an arbitrary context K such that B(K) = L.

4. Algorithmic Problems of Concept Generation
4.1. Crucial Problems. Main Algorithms for Concept Generation

In this section we dwell upon the problems of the algorithmic generation of concepts. These problems
are essential for applications, where algorithmic efficiency is one of the main issues.

It is easy to show that for some contexts the number of all concepts can be exponential with respect to
the size of the context. Consider, e.g., the context K = (G, G, #), where {G| = n (i.e., the Boolean scale of
dimension n, see Sec. 2.5.). The number of all concepts is 2® — 1. An additional difficulty is the intractability
of the problem of determining the number of all concepts (Theorem 4.1.1.). Knowledge of this number could
be helpful in effective resources allocation. In [74] the following definitions were introduce to capture the
notion of a “hard” enumeration problem.

Definition 4.1.1 {[74]). Let a counting Turing machine {CTM) be a nondeterministic Turing machine
(TM) (for the definition of TM see [34]) with an auxiliary output device that prints the number of accepting
computations induced by the input in binary notation on a special tape. A CTM has polynomial-time
complexity if the longest accepting computation induced by the set of all inputs of size n takes pol(n) steps,
where pol{n) is some polynomial of n. #P is the class of functions that can be computed by counting Turing
machines of polynomiai-time complexity. A problem II; from #P is #P-complete if an arbitrary problem
I, from #P can be polynomially reduced by Turing to II; (i.e., if there is a polynomial-time algorithm that
solves [1; using an oracle that outputs solutions for instances of I1; in unit time).

In the cases known so far, the counting problems that correspond to NP-complete problems are #P-

complete. Some examples of #P-complete problems that correspond to polynomial-time decision problems
are found in [75).
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Theorem 4.1.1 ([47]). The following problem “number of all concepts” is # P-complete:

INPUT. Context K = (G, M, I}.

OUTPUT. The number of all concepts from B(A').

The theorem makes us either use the most effective algorithms for the generation of concepts or generate
the sets of the “most interesting” concepts. The second way is considered in more detail in Secs. 4.3 and 4.4.
In this section we consider some algorithms for concept generation.

An estimate of the time and space complexities of algorithms that generate the set of all concepts must,
of course, be a function of |G| = n and |M| = n. Moreover, since the size of B(K) can be exponential in |G}
and [M|, and the problem of determining |B(K')| is #P-complete, |B( /)| = H should be taken as a parameter
of an algorithmic complexity estimate.

A review of several algorithms for the generation of the set of all concept lattices for a given context can
be found in [36]. A comparative study of four algorithms presented there shows that the upper complexity
bound of all algorithms is quadratic in the number of concepts generated, except for the algorithm of B.
Ganter [27]. For the algorithm of Ganter this bound is linear. In [36] the results of an experimental study
are presented (unfortunately, the author of [36] did not give a description of the input data used therein).
The algorithm of Norris {62] proved to be the fastest in the experiments of the author of [36]; the algorithm
of Ganter was a bit slower. The algorithm of Bordat [33] was two times slower than that of Norris, and the
algorithm of Chein [12] was two times slower than that of Bordat. Below, we present two of the algorithms
from {50] and the CbO algorithm from [52] similar to that of Ganter.

The Algorithm of Chein ([12]).

Suppose we are given a context X' = (G, M,I}. The input of the algorithm is the set of all pairs
of the form {{g},{g}’), ¢ € G. This set is called the set of objects of the first level or L;. Let the set
Ly = {{X,Y1),....{Xn,Ya)} of the kth level be generated; then the set Liy; can be generated in the
following way. For all 1 < 7 the set Y;; = ¥; 0 Y, is computed.

If Y}, is not contained in a pair (X,Y;;) from Liy, then (X;N Y}, ¥,) is put in Ly

IfY;; = Y, then {X;,Y;) is removed from L.

IfY,; = Y;, then {X,, X;) is removed from L.

The process is iterated until |Lg| < 2 at a step K. The union of Ly for all &: 1 < & < K comprises the
set of all concepts.

The Algorithm of Norris ([62}).

Let the objects from G be numbered, i.e., G = {g1,...,9m}. Suppose that Ly = {({a:1},{s1}’)} and
the sets Ly,..., L, £ < m are already constructed. Then the set L4, is constructed in the following way.
Consider a pair ({gk+1}. {gks,}) and all objects from Lyy, of the form (X, Y;). fY; C {ggs1}, then (X, Y)) is
replaced by (X; U {ge1}, Yi). Y. € {ges1 )}, but ¥iN{gk+1} # o, then the object (X;U {grs1}, YiN{ges1})
is added to Ly. Now, if {gr}’ C Y;, then the pair ({gi+1}, {gr+1}’) is also added to L. The resulting set
comprises Lgyy. The set L{K) is obtained as L,, for m = |G|.

Close-by-One Algorithm ({52])

The algorithm called “Close-by-One” (CbO), which seems to be quite close to the algorithm of Ganter,
was proposed in [52]. An analog of the CbO algorithm, which did not make use of lexicographical ordering,
was proposed in [96] for the top-down strategy.

We assume that all objects from (G are numbered, and therefore a set X C G can be represented by a
respectively ordered tuple. The numbering of objects from G induces lexicographical ordering of sets from
P(G). For the sake of convenience, we can represent the process of constructing intersections as a top-down
one, which generates some tree whose vertices correspond to concepts. During this process, the objects from
(i can be labeled or remain unlabeled in each vertex independently. The following procedure is based upon
the “depth-first” strategy, though other strategies are possible as well. ¥ denotes the extent of a current
concept. _

Step 0. There is only one root vertex where all objects are unlabeled, ¥ := 2.
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Step 1. The current vertex corresponds to the concept with the extent Y. The first unlabeled element
of G, say X;, is taken, (Y U {X;}) and (Y U {X;})"” are computed. (In doing so we say that Y is closed by
X;.) Thus, a new vertex that corresponds to (Y U {X;})"” is generated and connected to the vertex associated
with Y.

Step 2. If (Y U {X,}) contains objects with numbers less than those of the objects from Y or the
number of X;, then the concept with the extent (Y U { X;})" has already been generated. All elements of G
are labeled at the vertex (Y U {X;})” (thus, the branch wiil not be extended). If (Y U {X;})” has not yet
been generated, we label additionally the element X; at the vertex ¥ and all elements of (¥ U {X,})" at the
vertex (Y U {X;})".

Step 3. If all elements of G are labeled at (Y U {X,})", we go to Step 4. Otherwise, Y:= (Y U {X;})",
and we return to Step 1.

Step 4. We backtrack the tree upwards to the nearest vertex with unlabeled elements of G. If such a
vertex exists and corresponds, say, to the object Z, then ¥: = Z and we have to go to step 1. If such a vertex
does not exist, then this means that all concepts have been generated and the algorithm halts.

Consider the top-down strategy in the case where M = {ay,...,a.}, G = {X1,..., X, Xos1}, and
X{ = M\{a;},1 <i<n, X],, ={a.} (recall that the top-down and the bottom-up directions are specified
with respect to the order on concepts). In the case of the top-down strategy, the process begins with the
generation of the concept (h, Par(k)} with the greatest (by inclusion) intent and proceeds then to concepts

with smaller intents. Then the intent ({a.}, {Xi,...,Xn-1,Xn+1}} can be generated from an arbitrarily
greater concept {h, Par(h}} as the closure (A U {X,41}). Since there are 2® — | concepts of this kind, the
number of ways in which {{a,},{X1,..., X5 }) can be generated is the same.

Notwithstanding the pessimistic implications of the consideration above, we can state that the number of
concepts generated exponentially many times and the number of all concept generations are not really great.
This is substantiated by the following theorem, which is a particular case of the theorem from [52] on the
algorithm generating all elements of a semilattice from a given set of generators.

Theorem 4.1.2. Let K = {G,M,I) be a context. Then the set of all elements of the laitice B{K) can
be generated with the use of O(mnH) of space and O((m + n)nH) of time.

The MI algorithm from {96] can be obtained from the CbO algorithm by changing the provisions of Step
1, so that at each vertex only those X; are chosen for which (Y U { X;})” are maximal by inclusion among all
(YU{X,})". These are the only vertices, where the tree is generated further. The M1 algorithm was proposed
by O. M. Anshakov and K. P. Khazanovskii in {96] for the bottom-up strategy as the “Minimal Intersection’
algorithm.

The upper bound of the memory needed for the MI algorithm is also linear with respect to the number
of concepts. In fact, the space required is less than that required by the CbO algorithm because only minimal
(maximal) intersections are stored. The time complexity of the MI algorithm is worse because testing the
uniqueness of a concept generation (i.e.. verifying whether it was not generated before) cannot be accomplished
in the way it was done in the CbO algorithm (Step 2). The uniqueness of a concept generation is tested with
the use of the MI algorithm by comparing the concept generated to all concepts generated earlier. This leads
to O(A?) time complexity of the MI algorithm.

The algorithm of Bordat {9] is similar to the MI algorithm in computing at each step for a concept
constructed the least concept that majorizes it (in the sense of partial order on concepts). The advantage of
the algorithm of Bordat consists in the quick test for uniqueness of a current intersection (i.e., in veryifying
whether it corresponds to a concept already generated). This test is accomplished by means of the “trie”
data structure, which allows a logarithmic-time uniqueness test and/or insertion of a new concept in the
data structure. Thus, the time complexity of the algorithm of Bordat is linear with respect to the size of
the concept lattice generated. as in the case of the Ganter algorithm and that of CbQ. Moreover, the “trie”
structure allows the algorithm from [9] to obtain the Hasse diagram of a concept lattice as a by-product,
However. the creation of the “trie” structure is essentially a serial one (since it demands the solution of hard
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sequencing problems in realizing the evolution of the “trie” for parallel processors), unlike the algorithms from
(52, 531] and [27], where tests for uniqueness can be accomplished locally for every new intersection generated.

In [96, 25], other algorithms can be found that construct the set of all concepts of a given context.
However, unlike the algorithms from [52, 53, 9, 27), these algorithms have complexity estimates worse than
linear (with respect to the size of the set of concepts generated). '

4.2, Complexity of Some Problems of Enuvmeration and Decision Concerning Concepts

In the case where dependences are sought for sets of attributes, the pessimistic result of Theorem 4.1.1
warrants a statement of the problem of generating a subset of the most interesting dependences.

Assume that we study dependences of the form ¥V — W with respect to a fixed property W, which does
not contain the set of attributes M, and all objects from G are partitioned into sets of positive G, negative
(G- and undefined G, examples with respect to the property W (see Sec. 3.2.) Thus, dependences of the type
Y - W, Y C M are sought for the context (G4 UG, MU {W}, I, UI_UG x {W}). Then dependences
of the form X — W such that X is minimal by inclusion among all ¥V such that ¥ — W (these dependences
are called minimal) can be considered the most interesting ones, since they are “supported” by a greater
number of examples than dependences with greater antecedents (X' is maximal among those Y": Y’ — W).
At the same time, minimal dependences are more “decisive” or more informative, since they can lead to more
forecasts (see Sec. 3.2).

In the case where there are no negative examples, there can be no more than |M} minimal dependences,
and they can be generated in time which is no more than cubic in | M| (see [95, 96]). However, in the general
case, where G, # 9,(G_ # @, Theorem 4.2.1 leaves us no hope for fast generation of all minimal dependences
{unless P = #P).

Theorem 4.2.1. The following problem s # P-comnplete.

INPUT. Contexts K = (G4, M, 1), K. = (G, M, 1), Ki_ ={(G,UG_, MUu{W}, [LUI.UG, x{W}.

QUTPUT. The number of minimal dependences of the context K, _.

The #P-completeness of the problem of generation of minimal dependences in the particular case of the
context K,_ implies the #P-completeness of the problem concerning the number of minimal dependences
with W: |W| > 1.

When W is fixed, the following functionals, depending on the sizes of the intent and extent of a dependence
X — W, can be proposed as measures of the “quality” of a hypothesis:

(1) 1X],

(2) 1X"],

3) 1X1+ X',

(4) gl X[ +[X", 0 < g <1,
(5) X[ + gl X", 0 < g < 1,

(6) 1X] - X"}

Generation of dependences satisfying conditions with the above functionals is similar to the inductive
biases proposed in various settings of machine learning (e.g., in the INDUCE system [60] or in the GUHA-
method [66]).

Obviously, Theorem 4.1.1 implies that the problems of determining the numbers of dependences such
that f < C, f 2 C (where f is one of the functionals above and C is a parameter) are #P-complete. At
the same time, the results concerning the corresponding decision problems are not always NP-complete, even
when sets of positive and negative examples are both not empty.

In Table 2, we present results from [47, 51, 53, 54, 95] on the complexity of decision problems concerning
concepts with restrictions on the sizes of the intents and extents.
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Table 2

< = >
H P NP P
e} P NP P
lej+ [i{| [ NP NP P

Here, t and e denote the intent and the extent of a concept, respectively; P symbolizes that there exists a
polynomial algorithm, and NP denotes NP-completeness of the problem. For instance, the upper left element
of the table means that the problem “does there exist a concept such that [t} £ C?7” can be solved by a
polynomial algorithm. The element in the bottom line and the middle column is indicative of the fact that
the problem “does there exist 2 concept such that |e] 4 |{] = C” is an NP-complete one.

Results from [51] on decision problems concerning dependences of the form X — W for a context
Kie = (G UG MU{W}, I, Ul UG, x {W} are presented in Table 3.

Table 3
< = 2z
1X| NP NP P
LX| P NP NP
| X|+ X'} | NP NP NP

For example, the element in the third column and the third row of the table denctes that the decision
problem concerning dependence of the form X — W, where [X| + |X’'| = C, is NP-complete. It is obvious
that the NP-completeness of a problem from Table 2 implies NP-completeness of the corresponding problem
from Table 3 (since a context of the form K,_ degenerates into a context of the form K, when G_ = 2).

The lower row of Table 2 may seem paradoxical; in fact, for positive examples only the problem of
generating a minimal hypothesis is very unlikely to be polynomial-time solvable, whereas there exists a
polynomial algorithm for the search for a maximal hypothesis. Graph interpretation of hypotheses may
clarify such a situation: as shown in [47, 54] a hypothesis maximal in an [X| + |X’| functional corresponds to
a maximal-size complete bipartite subgraph of a bipartite graph. Such a subgraph can be found in polynomial
time, e.g., after reducing it to the maximal matching problem [34]. The NP-completeness of the problem of
the minimal (with respect to the functional |X| + [X’|) hypothesis was proved [50] by reducing it to the
problem of the inclusion-maximal matching of minimal size [34].

4.3. Complexity of the Forecast (Classification) Problems

Here, we present some results concerning computational problems of generating forecasts {classification}
for objects from &, of a context K = ((4,, M, I,) in the sense of the definitions from Sec. 3.2. In the general
case, the problem of the existence of a hypothesis in favor of a positive forecast is intractable. To be more
exact, the following theorem holds.

Theorem 4.3.1 ([51]). The following problem is NP-complete:

INSTANCE. Input data: contexts K. = (G, UG_,Mu {W}H I, ul_ Ul {W}), K. = (G, M, 1,),
and an object g, € G-.

QUESTION. Does there exist a hypothesis {e;,7,) concerning the property W and satisfying the “coun-
terexample forbidding” condition in favor of a positive forecast for g,, i.e., i, — W is a dependence for the
context (G, UG_, MU {W}L I, UI_UG.{W})and iy C {g,}.

In the case whore G = @, the problem has a trivial algorithm running in time polynomial with respect
to the input size. This algorithm computes {m}* for every m € M. If there exists m € M such that
{m}/+1+ C {g,}", then the forecast for g, will be positive; otherwise it will be undefined.
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A forecast problem can be solved in polynomiai time for one of the following cases:
M = {g.}' (Vi = o),

Gy = {g:} (Va = VW3),
G-=o(Vi=o),

(where V;, V,, V4, V| are sets of vertices of the graph from Definition 3.2.2), i.e., when the tetrapartite graph
from Definition 3.2.1 degenerates into a tripartite one. The problem is polynomial-time solvable also in the
case where |{g,}'| is constant (see [51]).

4.4. Algorithmic Complexity of the Problem of Computing Stability Indices

Theorem 4.4.1 ([49]). Let K = (G, M, I} be a context. Then the problem of determining the stability
indez Jr of a dependence X — W of the contezt K (see Sec. 3.6} as well as the problem of determining J,
{where 2 < j < |X'|) is # P-complete.

Theorem 4.4.2 ([49]). The stability indices J; = 5{7 Jort <k <n-1 of a dependence X —» W can

1
be computed in time linear with respect to 211;13,25 %i. The integral stability indez Jx = ;72— of a dependence
X — W can be computed in time linear with respect to vs (where n = | X'|).

This result, together with the result concerning the #P-completeness of the determination of stability
indices, means that the algorithm presented in [49] for the proof of Theorem 4.6.2 is optimal modulo some
polynomial of n (see [75]).

We can propose computation of the upper and lower bounds of The integral Jz and average J, stability
indices on the basis of the following:

Theorem 4.4.3 ([49]). The following inequalities hold for the integral and average stability indices of a
dependence X — W (wheren = |X|, 2<k,r<n-1}

MA . w I P
Ty S de S Y
3+ +G) {am) + (1)

1 1 n—r n—
5(1_2+...+gigu) <! ('*“ boa )
(2) (k) r (n—r) (n—l)
Thus, these algorithms for approximate computation of Jy and J, have polynomial time compiexity with
respect to the numbers of the levels up to which the summation is carried out (i.e., & and r).

5. Miscellaneous
5.1. The Origin of Contexts

In [73] the following model of the context origin was studied. Let there be given a set V', whose elements
are called preconcepts. Some objects from V are interpreted as objects (the set of objects is denoted by G),
other objects from V' are interpreted as attributes (the set of objects is denoted by M). Now, the relation
A C G x M is defined in the following way: forany X € G, Y €¢ M, XAY = X NY # . Then the context
is defined as a triple (G, M, A).

By way of example, Stahl and Wille [73] describe a study of the use of the conjunction “et” (“and”.
French) in the book Le Petit Prince by A. de Saint-Exupéry. A list consisting of 206 occurrences of “et” was
considered as the set V of preconcepts. 38 subsets of V' are formed as a result of finding out which occurrences
of “et” can be replaced by paraphrases such as “alors.” “de meéme que,” “c’est pourquoi,” etc.; these subsets
are interpreted as objects. Meanings of the conjunctions are grasped by 14 properties such as “additive,”
“comparative.” “temporal,” etc., whereby subsets of V' come into existence, which represent attributes.

Stahl and Wille [73] explore how a given context can be derived from an appropriate set of preconcepts.
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Definition 5.1.1 {{73}). Let there be given a context K = (G, M, ) and a set V. A pair of injective
mappings a: G +— P(V} and 8: M — P(V) is called a representation of a context K on the set V if gIm iff
ag N fm # @ (i.e., K is isomorphic to (aG, M, A}

Definition 5.1.2 {{73]). A pair (A, B) is called a preconcept of a context K = (G,M, 1) if ACG,BC
MACB ,BCA.

Definition 5.1.3 ([73]). A predomain of a context K = (G, M, I) is a set H of preconcepts of K that
satisfies the following conditions: '

(1) for g, h € G, g # h, there exists a pair (A, B) € H such that
{g,h}NA=1,

(2) for m,n € M, m # n, there exists a pair (A, B} € H such that
[{m,n} N B} =1,

(3} for gIm there exists a pair (A, B) such that
ge Aand m € B.

The following theorem establishes a relationship between the predomains and representations of a context.
Theorem 5.1.1 ([73]). Let H be a predomain of a context K = (G,M,I). Forge G and me M,

H, = {(A,B) € ng € A};

Hm = {(A, B) € H|m € B}.
Then the mappings g — H, and m — H,, yield a representation of K 0= H. Conversely, let (a,3) be any
representation of K on the set V. Forve V, A, = {9 € G|v € ag} and B, = {m € M|v € 8m}. Then

H = {(A,, B,)lve V}

is a predomain of K such that
Hy = {(Ay, Bu)|v € ag},
Hm = {{Ay, B))|v € Bm}.

An example of a predomain is the set {{{g},{9})lg € G} U {{{m},{m})im € M} and the set
{({g},{m}}lgfm}, where {g} # @ and {m}' = @ for all g € G, m € M. It is natural that the set of
all concepts of a context is also a predomain.

It is useful to have a means for finding a predomain of the least size for a context. However, there are no
hopes for finding a fast algorithm for computing such a predomain, since the problem is NP-complete even in
the case where preconcepts are sought among the set of concepts.

The following example of a search for the least predomain is considered in [73]. Let the digit descriptions

U ledH56 185,

be objects, and the seven line segments of the figure

&
alf
elels
be attributes (with labels standing at the corresponding segments). The relation / between objects from the

set G and attributes from the set M are given in a natural way: for ¢ € G and m € M, gim iff the description
of the object g has the attribute m. K has a natural representation on the set of seven line segments. The
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question as to whether A can have representations of less size is answered positively. In fact, consider the
predomain which consists of the following six concepts:

=({0,2,3,7,8,9},{a,f}), B=({0,2,3,5,8},{a,c}},

({0,2,6,8}, {c.e}), D =({2,3.4.5,6.8,9}, {b}),
({0,4,5.6,8,9}, {d,g}). F =({0.1.3,4,7,9}.{f.q}).

o

A
C
E
The intents of these concepts correspond to the following six figures:

R
_ |
A B CDEF

which can give all ten digits.

5.2. Concept Analysis of Paired Comparisons

In [57] the means of formal concept analysis were used in the study of preference relations. Let A be a
set of alternatives and £ C A x A a preference relation: K7 means that the subject prefers alternative ; to
alternative i. A pair (A, R) is called a tournament if for any pair ¢, j € A either tBj or jRi. Luksch and Wille
[59] studied subsets of A, whose elements are in the same preference relation with any alternative not in the
set. These subsets can be interpreted as clusters given by the relation R. Here are precise definitions.

Definition 5.2.1 ({57]). A set S: S C Ais called a superalternative of a tournament { A, R) if for every
a € A\S either afls for all s € § or sRa for all s € §. '

Proposition 5.2.1 ([57]). A nonempty subset S of a tournament (A, R) is a superalternative iff

5={06A|/\p5’/\\/'}'5<7a§\/'}«3}:
_—_{aeAf/\pSSpa</\pSV\/7S}

and

A\S = {a € Ajya < AuS or ga > v4§5}.

Here, A uS stays for A . 1S, analogously for \/ and . For the definitions of 4 and -y see Sec. 2.1.

Proposition 5.2.2 ([57]). Let Si,...,S, be pairwise disjoint alternatives of a tournament (A, R) and
let (A, R) be the tournament with A = {S5y,..., S, }U{{a}la € A\(UL,S;) and for S,T € A, SRT iff sRt for
all s€ S andt € T. Then B(A, A, R) is isomorphic to the sublattice of B(A, A, R) consisting of all concepts
(X,Y) with 5, C X or ;N X =0 for each .

Proposition 5.2.3 ([57]). Let S be a superalternative of a tournament (A, R). Then the mapping
(X,Y) — (X NS Y NS) defines an isomorphism from each of the intervals [A pS A\ S,V +S)] and
IAuS, A unSVVAS] of B(A, A, R) onto the concept laitice B(S,S5,RN S x §).

Proposition 5.2.4 ({57]). Let S and T be superalternatives of a tournament (A, R) for which S0T, S\T.
and T\S are not empty. Then SUT, SNT, S\T, and T\S are superalternatives of (A, R) and either sfi
foralise Sandt €T, ortRs forallt €T ands e S.

In [57], a sketch of an algorithm for computing superalternatives of a given tournament is considered,
Suppose that a superalternative S has been found; then other superalternatives are sought for the tournaments
(S,RN S x S) and (A/S, R/S), where A/S = A\S U {S}, R/S = {RN(A\S) x (A\S)) U {{qa, S)|aRs for
s € SYU{(S,a)|sRa for s € §}. Since the set A is finite, the algorithm terminates after finitely many steps

and yields a sequence 5y,...,5, of indecomposable superalternatives, which is called a decomposition into
indecomposables of the underlying tournament.

Proposition 5.2.5 ({57]). Two arbitrary decompositions inlo indecomposable of a tournament have equal
lengths and consist of pairwise isomorphic superalternatives.
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A decomposition of a tournament (A, R) can be used for construction of the Hasse diagram of the lattice
B(A. A. R). The program mentioned in [57] has a library of standard diagrams of indecomposable tournaments
of sizes not exceeding a certain value. Having constructed a decomposition of a tournament, the program
constructs the diagram of B(A. A, R) in the inverse order.

5.3. Characterization of “Good” Contexts

Novotny and Pawlak [63-65] introduced the notion of a “good” context whose definition was based on
the notions of a “black box™ and a “rough top equality.” Since we will not deal with these two notions in
our paper, we will present a definition of a good context that was given in [14] on the basis of Theorem 4.6
from [64]. The “goodness” of a context means that each attribute corresponds to a certain set of objects,
and, therefore, the representation by the context is adequate.

Definition 5.3.1 ([14]). Let K = (G, M, I) be a context and

§={(z,9)l(z,y) € M x M:{z}' = {y}'}

be an equivalence relation defined on pairs of attributes. Then for z € M, {z]s = {y|(z,y) € 8} and
(X]o = Uzex[x)o for X € M. The context K = (G, M, ) is called good if X' = Y” implies [X]s = [Y]s for any
XYCcMm

It was shown in [14] that the relation 8 from Definition 5.3.1 is a congruence on the semilattice (P(M),u).

A context such that (z,y) € 8 iff z = y is called reduced in [14]. Thus, a reduced good context is a
context where each attribute is in one-to-one correspondence with a set of objects.

Theorem 5.3.1 ([14]). Let K = (G, M.I) be a context; then the following conditions are equivalent:

(1) K is a reduced good context,

(2) the mapping t: P(M) — P(G) taking an arbitrary set Y C M into Y' is injective,

(3) {m} 2 (M\{m}) holds for an arbitrarym € M.

(4) A set of attributes X C M depends on a set of attributes Y C M (ie., Y - X)if X CVY.

Corollary. Let K = (G, M, 1) be a reduced good context. Then for any sets H 2 G, NC M, N # 2,
the following assertions hold:

(1) the subcontext (G,M,I NG x N) of the context (G, M, I) is a good reduced contezxt;

(2) supercontezt (H, M, J), where ING x M = J, is a good reduced context.

Definition 5.3.2 ([14]). Let S be a nonempty set and k a natural number. A family of sets X; C 5,2 =
1,...,k, is an irredundant subset system in S whenever X; € Uf=l‘ X foreveryi=1,... k.

It is easy to see that for every irredundant subset system we can introduce a representative set, i.e., a
subset {z,,1 < k} of S such that z; € X; iff i=jfori, 7€ {1,.. ., k}.

Theorem 5.3.2 ([14]). Let K = (G, M,I) be a reduced good context, {X;,1 < n} an irredundant subsei
system in M, and {yi,: < n} an arbitrary n-element set. Then the contest C = (G, {yi,i < n},J) defined by
the relation tc({y:}) = tx(Xi), t = 1,....n, is a reduced good context.

Theorem 5.3.3 ([14]). Let K = (G, M,I) be a reduced good context. Then there exists a uniguely
determined irredundant subset system {X,,,m € M} in G such that GAM = {m}’ for anyme M.

Corollary. For a context K ={G, M, [) we have

(1) if |G| < |M], then K is not a reduced good context,

(2) tf |G| = |M|, then K is a reduced good context iff K = (G,G,#).

Theorem 5.3.4 ([14]). Let K = (G, M. ) be a context. Then the following assertions are equivalent:

(1) & is ¢ reduced good coniext,

(2) the mapping s: P(G) — P{M) taking a set X C (G {0 X' is surjective,

(3) there is a subset H C (& such that (H. M. IOH x M) = (M, M. #).

It is obvious that the dual assertion holds too.

Corollary. Let k' = (G. M. ) be a context. Then the following assertions are equivalent:

(1) the mappings 5.t are injective,
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(2) the mappings st are surjective,
(3) the mapping s is bijective,
(4} the mapping t is bijective,
(5) |G) = |M| and B(K) = 29 (= 2M]),
(6) IGl = |M] and K = (G, G, #) (= (M. M, #),
(7) the mappings s and ¢ are mutually inverse, i.e., sot = lp and tos = Ipn.
We present one more similar result from [14].
Theorem 5.3.5 ([14]). Let A = (G. M, 1) be a contezt and n a positive integer. Then the following
conditions are equivalent:

(1) B(K) = 2,
(2) there is a set N C M such that

(a) [N] =n,

(b) (G, N, ING x N) is a reduced good contest,

(c) {h} = P’ for any h € M\N, where P is a uniquely determined subset of N,
(2') there is a set H C G such that

(a) |H| = n,

{(b) (M,H,INM x H) is a reduced good contezt,

(c}) {f} = F' for any f € G\H, where F is a uniquely determined subset of G,
(3) there exist sets N C M and H C G such that

(a) |N] = {H]| = n,

(b (H,N,INH x N)=(N,N,#),

(c) for any A € M\N, f € G\H there are uniquely determined sets M C N, F C H such that
(Y = M {f} = P,

5.4, Tolerance on the Set of Objects (G)

The tolerance relation defined on objects from the set G of a context K = (G, M, I) was studied in
(37-39]. For X,Y C G the tolerance was defined as XOY = X'GY’ # @. In particular, the following problem
was studied: what sets M allow one to define tolerance in such a way. Various generalizations of tolerance
were studied. Contrary to [86], the tolerance is not extended to the set of concepts of the context K. A
condition of coincidence of the sets of all intents with the family of blocks of tolerance on & was obtained.
This condition is shown in the following theorem from [39].

Theorem 5.4.1. Let K = (G,M,I) be a context, and C' = {{e,41),..., {€n,ta)} be the set of all
concepts for K. The set of all intents E = {e1,...,¢e,} cotncides with the set of blocks of © iff the following
two conditions are satisfied:

(1Y e; L e; forall e, e; € E.

(2) Leté C G and € ¢ E. Then the existence of e;,,...,e;, € £ such that é C Uf_,e;, implies the existence
of x1,...,Zn € G such that {z1,...,2,} C é and for all ;(1 <1 < k) either {zy,...,2,} €L €;, or Nf_e;, C &.

Theorem 5.4.1 is valid not only for a binary tolerance, but for n-ary tolerance as well (in this case it is
defined as ©(X,,..., X,) = XjN...N X] # o). If the set of all intents of the context is represented by an
n-ary tolerance (in the sense of Theorem 5.4.1), it can be also represented by an m-ary tolerance defined in
the same way on G for an arbitrary m: znelg les] > n = m.

5.5. The Zarankiewicz Problem

The Zarankiewicz problem consists in determination of the number k{a, b, m,n} such that an arbitrary
binary m x n matrix (i.e.. a context (G, M, [) such that |G| = m, |M| = n) with k(a, b, m,n) units (i.e..
l{]| = k({a.b,m,n)} contains an identity submatrix of the size a x b, where 2 < a < m, 2 < b < n (Zarankiewicz
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himself stated the problem for @ = b = 2 |35]). The problem was extensively studied in the fifties and sixties.
We present the main results concerning the estimates of & (k(e,a) denotes k{a,a,n,n}).
[n [46] it was proved that

2,2, +p.p ) =p +p° + 1
for the case where p is prime.
Hartman et al. [43] proved that

011’1”3 < k(2.n) < anyz,

where C; and C, are constants. The following result was obtained in [13] for } < b < mand n > (e~ 1)(}):

k(a,b,m,n) = (b= )n + (a - 1)(’:) +1

The following upper bound was obtained in [67]:

k(2,2,m,n) < %(n +ny/n+dma(m —1)) + 1.

When n = m, the latter inequality gives
k{2,n) < %(n +nvin —3) + L.

This bound is sharper than the bound
k(2,n) <1420+ 2%

given in [46]. The above inequality from [67] was shown there to turn into the equality in infinitely many
cases. Moreover,

k(2,2,p°+p+ 1,02 +p+1)=p"+2p° +2p + 2,

where p is a power of a prime.
The following results were proved in [44, 40, 41];

lim k(2,3,n,n)n"2 =2,

fi— 00

[5/2]'* < lim inf k(2,b,n,7)n"%? < lim sup &(2,b,n,n)n"¥2 < (k — 1)/? [44];

i

{a? —n+ (b~ 1)(’:)

a

kla,b,m,n) = l +1

for
(b— 1)(’“) F1>n>m,ab),
{a
where {(m, a, b) equals approximately
-7 )/ta 1) 0]

{exact values of {(m, a,b) for small a are given in [40]);
k(a,b,m,n) <1+ [ny], for3<a<m,3<b<n, ngm’

and
1
u:v+;(a—1).

. a*—1) (e =1)(a* -9 (a®-1){a® - 4)(a® - 25)
b=t ot T 0 T 1147225 :

nz =(b—m{m—1)...(m—a+1) [41].
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The results of |99] were improved in [100] as follows:
k(a,n) < [1/2n(a = 1) + (& — )Y (n — 3/8(a — 1)171/°,
kia.n) < [n{a —1}/e + {(a — 1)1fan?—lfa]‘
where

&= (2n(a - 1)V = D{(nfla —1))/* 1),

The second estimate is better than the first only in the case where @ = 2 or @ = 3, as well as for
considerably small n when a > 4.

Erdés and Spenser [18] consider the function B(e,b,m,n,e) defined as the least number of concepts of
the size @ x b of a context (G, M, f) with |G| = m, {M]| = n, and |/| = e. It is obvious that B(a, b, m,n,€) >
0 <= k(a,b,m,n) < e. The following estimate of B(a, b, m,n, e} was obtained in [18]:

()6 o= ()

This estimates of B(a, b, m,n.e) allowed Erdos and Spenser [18] to obtain the following bounds for k{a,n):

(@)= n? 7221 — 0(1)) < k(a.n) < (a — 1)/*n?712(1 4 o(1)).

In [69] the upper bound

k(a,b,m,n) < 61 (m) +(—FL1)(av—l)n+l

(2 \a a

was proved for all integers p > a — 1.
Let 7,11 me-1 be the maximal number of subsets of size @ — 1 that can be packed in a set of size m in a

way such that no subset of the size a is in more than b — 1 subsets. In [69] it was proved that

— 2 _
kia,b,m,n} = [b 1(m) + 2 1n] +1

a a a

max [2;1 (’:),(5 - 1)(’:) - Ta+1_m_5_1] <n<(b- 1](":).

The paper [61] generalizes the result from [44]: the author proved that
im k(2,b,n,7)n"%2% = (b — 1)'/2

n—od

for

for an arbitrary b > 2.
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