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Abs t rac t .  Lattices are mathematical structures which are frequently 
used for the representation of data. Several authors have considered the 
problem of incremental construction of lattices. We show that with a 
rather general approach, this problem becomes well-structured. We give 
simple algorithms with satisfactory complexity bounds. 

For a subset A C_ P of an ordered set (P, <) let A t denote the set of all upper 
bounds. Tha t  is, 

A t := {p C P I a < p for all a E A}. 

The set A; of lower bound is defined dually. A c u t  of (P, <) is a pair (A, B) 
with A, B C P,  A t = B, and A = B $. It is well known that  these cuts, ordered 
by 

(A1, B1) <~ (A2, B2) :  ~ A1 C A2 ( -' ~. B2 C B1) 

form a complete lattice, the D e d e k i n d - M a c N e i l l e  c o m p l e t i o n  (or short com-  
p l e t i o n )  of (P, <). It is the smallest complete lattice containing a subset order- 
isomorphic with (P, <). 

The size of the completion may be exponential in [PI. The completion can 
be computed in steps: first complete a small part of (P, <), then add another 
element, complete again, et cetera. Each such step increases the size of the com- 
pletion only moderately and is moreover easy to perform. We shall demonstrate 
this by describing an elementary algorithm that,  given a (finite) ordered set 
(P, <) and its completion (L, <), constructs the completion of any one-element 
extension of (P, <) in 

O(ILI. IP[. w(P)) 
steps, where w(P) denotes the width of (P, <). The special case that  (P, <) is 
itself a complete lattice and thus isomorphic to its completion, has been con- 
sidered as the problem of m i n i m a l  i n s e r t i o n  of an element into a lattice, see 
e.g. Valtchev [4]. We obtain that  the complexity of inserting an element into a 
lattice (L, <) and then forming its completion is bounded by 

O(ILI .,,(L)). 
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The elementary considerations on the incidence matrix of (P, <), which we 
use in the proof, do not utilize any of the order properties. Our result therefore 
generalizes to arbitrary incidence matrices. In the language of Formal Concept 
Analysis this may be interpreted as inserting a preconcept into a concept lattice. 

1 C o m p u t i n g  the  c o m p l e t i o n  

Let us define a p r e c u t  of an ordered set to be a pair (S, T), where S is an 
order filter and T is an order ideal such that  S C_ T ~, T C_ S t. We consider the 
following construction problem: 

INSTANCE: A finite ordered set (P,_~), its completion, and a precut (S,T) of 
(P, _).  

OUTPUT: The completion of (P U {x}, ~), where x ~ P is some new element 
with p~_x ~ p E S  and x~_p .'. '.. p E T  f o r a l l p E P .  1 

(P, _~) may be given by its incidence matrix (of size O(]PI2)). The completion 
may be represented as a list of cuts, that  is, of pairs of subsets of P.  

With a simple case analysis we show how the cuts of (P U {x}, ~) can be 
obtained from those of (P, <). 

Proposition 1. Each cut of (P U {x}, <), except (S U {x}, T U {x}), is of the 
form 

(C,D), ( C U { x } , D n T ) ,  or (CNS ,  DU{x} )  

for some cut (C, D) of (P, ~). IS (C, D) is a cut of (P, ~) then 

1. ( C U { x } , D N T )  is a cut of ( P U { x } , _ )  iff S c C = ( D n T )  4, 
2. ( C N S ,  DU{x})  i s a c u t  o f ( P U { x } , ~ )  i f f T  C D = ( C N S )  t ,  
3. (C,D) i s a c u t o f ( P U { x } , ~ _ )  i f f C ~ : S  a n d n ~ : T .  

For a p r o o f  of this result and of the following see the next section. 

Proposition 2. The number of cuts of (P U {x}, _<) does not exceed twice the 
number of cuts of ( P, ~_), plus two. 

i natural embedding of the completion of (P, _~) into that  of (P U {x}, _~) is 
given by the next proposition: 

Proposition 3. For each cut (C, D) of (P, ~_) exactly one of 

(C,D),  ( C U { x } , n ) ,  (c,  n u { x } ) ,  ( C U { x } , n u { x } )  

is a cut of (P U {x}, <). 

These cuts can be considered to be the "old" cuts, up to a modification. 
"New" cuts are obtained only from cuts (C, D) that  satisfy 3) and simultaneously 
1) or 2). An algorithm can now be given: 

1 For elements of P different from x, the order remains as it was. 
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A l g o r i t h m  to construct the completion of (P U {x}, <). Let L denote the set 
of all cuts of (P, <). 

- Output (SU {x},TU {x}). 
- For each (C, D) �9 L do: 

1. If C C_ S and D q: T then output (C, D U {x}). 
2. If C g S and D C_ T then output (C U {x}, D). 
3. I f C g S a n d D ~ T t h e n  

(a) output (C, D), 
(b) if C = (D n T)t  then output (C U {x}, D n T), 
(c) if D = (C N S) t then output (C n S, D U {x}). 

- End. 

It follows from the above propositions that  this algorithm outputs every cut 
of (P U {x}, <) exactly once. Each step of the algorithm involves operations for 
subsets of P.  The most time consuming one is the computation of (D n T) 4 and" 
of (C n S) t .  Note that  ( n  N T) ~ = (min(D n T))  "~, where min (n  n T) is the set 
of the minimal elements of n N T and can be computed in O([P I �9 w(P)) steps. 
Since I min (n  N T) I _< w (P) and, moreover, 

(min(D N T)) 4 = I p �9 min(D n T)} ,  

we conclude that  (D n T) * can be obtained with an effort of O(IPI" w(P))- The 
dual argument for (C n S) t leads to the same result. So if L is the set of cuts of 
(P, <), then the algorithm can be completed in O(ILl" IPI" ~(P))  steps. 

Let us mention that  computing an incidence matrix of the completion can be 
done in O(IL] 2) steps, once the completion has been computed, see Proposition 6. 

2 I n s e r t i n g  a p r e c o n c e p t  

A triple (G, M, I) is called a f o r m a l  c o n t e x t  if G and M are sets and I C G x M 
is a relation between G and M. For each subset A C G let 

A I := {m �9 M I (g, m) �9 I for all g �9 A}. 

Dually, we define for B C_ M 

B I : = { g � 9  � 9 1 4 9  

A formal concept of (G,M,I) is a pair (A,B) with A C C, B C_ M, 
A I = B ,  and A = B t .  The formal concepts, ordered by 

(A1,B1) _< (A2, B2):  r A1 C_ A2 ( ~ B2 C_ B1), 

form a complete lattice, the concept lattice of (G, M, I). 
Most of the arguments given below become rather obvious if one visualizes a 

formal context as a G x M - cross table, where the crosses indicate the incidence 
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relation I. The concepts (we sometimes omit the word "formal") then correspond 
to maximal rectangles in such a table. Note that if A = B I for some set B C_ M, 
then (A, A I) automatically is a concept of (G, M, I). 

A pair (A,B) with A C_ G, B C_ M, A C_ B I, and B C_ A I is called a 
p r eeoncep t  of (G, M, I). In order to change a preconcept into a concept, one 
may extend each of the sets G and M by one element with the appropriate 
incidences. So as a straightforward generalization of the above, we consider the 
following construction problem: 

INSTANCE: A finite context (G,M,I) ,  its concept lattice, and a preconcept 
(S, T) of (G, M, I). 

OUTPUT: The concept lattice of (G U {x}, M U {x}, I+), where x ~ G U M is a 
new element and 

I + := I U  ((S U {z}) x ({x} UT)). 

The special case of section 1 is obtained by letting 

G = M : = P  and (g,m) E I : ~  g ~ m .  

P r o p o s i t i o n  4. Each formal concept of (G O {x}, M U {z}, I+), with the excep- 
tion of (S U {x}, T O {x}), is of the form 

(C,D), ( C U { x } , D N T ) ,  or (CNS,  D U { x } )  

for some formal concept (C, D) of (G, M, I). With the obvious modifications, the 
conditions given in Proposition 1 hold. 

Proof. Each formal concept (A, B) of (G U {x}, M U {x}, I +) belongs to one of 
the following cases: 

1. x E A ,  x E B .  T h e n A = S U { x } , B = T U { x } .  
2. x E A,x ~ B. Then B C_ T and B I = A \ { x } .  Therefore (C,D) := 

(A \ {x}, (A \ {x}) I) is a formal concept of (G, M, I) satisfying 

S C C = (DNT)  I. (1) 

Conversely if (C, D) is a formal concept of (G, M, I) satisfying (1), then 

(A,B) := (CO { x } , D n T )  

is a formal concept of (G O {x}, M U {x}, I+). 
3. x ~ A, x E B, dual to 2. Then (C, D) := ((B \ {x}) I, B \ {x}) is a concept 

of (GU { x } , U U  {x},I  +) with 

T C n = (CNS)  z. (2) 

Conversely each formal concept (C, D) with (2) yields a formal concept 

(A, B) := (C n S, D U {x}) 

of (G U {x}, M U {x}, I+).  
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4. x • A, x r B. Then (C, D) := (A, B) is a formal concept also of (G, M, I), 
satisfying 

C~:S,  D~:T.  (3) 

Conversely is each pair with (3) also a concept of (G U {x}, U U {x}, I+).  

If both (C U {x}, D N T) and (C N S ,D U {x}) happen to be concepts, then 
S C_ C and T C_ D, which implies C U {z} = T I, D U {x} = S z. Thus apart 
from perhaps one exceptional case these two possibilities exclude each other. 
From each concept of (G, M,I ) ,  we therefore obtain at most two concepts of 
(G U {x}, M U {z}, I+), except in a single exceptional case, which may lead to 
three solutions. On the other hand, each concept of (G U {x}, U U {x}, I+),  
except (S U {x}, TU {x}), is obtained in this manner. This proves Proposition 2. 

To see that  Proposition 3 holds in the general case, note that  each formal 
concept (C, D) of (g,  M, I) belongs to one of the following cases: 

1. C = S, D = T. Then (CU{x}, DU{x}) is a concept of (GU{x}, MU{x}, I+). 
2. C C_ S, T C D. Then D = C I and condition (2) (from the proof of Proposi- 

tion 4) is fulfilled. Thus (C, D U {z}) is a concept of (G U {z}, M U {z}, I+).  
3. S C C, D C_ T. Then C = D x and condition (1) is satisfied. Therefore 

(C U {x}, D) is a concept of (G U {x}, M U {x}, I+). 
4. C ~: S, D q~ T. Then (C, D) is a concept of (G U {x}, M U {x}, I+). 

It is clear that  each of the possible outcomes determines (C, D), and that  there- 
fore the possibilities are mutually exclusive. 

It is a routine matter  to check that  these formal concepts are ordered in the 
same way than those of (G, M, I). The construction thus yields a canonical order 
embedding of the small concept lattice into that  of the enlarged context. 

Since all details have carried over to the more general case, we may resume: 

P r o p o s i t i o n  5. The algorithm given in section 1, when applied to the concept 
lattice L of (G, M, I), computes the concept lattice of (G U {x}, M U {x}, I+) .  

The abovementioned complexity considerations apply as well, but it is help- 
ful to introduce a parameter for contexts that corresponds to the width. The 
incidence relation induces a quasiorder relation on G by 

gl  <: g2 : ~ {g2} I C__ {g2} I .  

Let w(G) be the width of this quasiorder, and let w(M) denote the width of the 
corresponding quasiorder on M. Let 

r(G, M, I) := (w(a) + w(M)) �9 (ICl + IMI). 

Of course, r(G, M, I) < (IGI + IMI) 2. Provided the induced quasiorders on G 
and M are given as incidence matrices (these can be obtained in O(IGI �9 IMI �9 
(IGI + IM[)) steps), we have a better bound on the complexity of the derivation 
operators: the set A z can be computed from A with complexity O(r(G, M, I)). 
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Computing A I was the most time consuming step in the algorithm on section 1. 
Thus computing the new concept lattice can be performed with 

O(ILI �9 M, I ) )  

bit operations. 
Each concept of (GU{x}, MS{x}, I+), except (SU{x}, TU{x}), is generated 

by exactly one of the steps 1, 2, 3a, 3b, 3c of the algorithm, and precisely 3b) 
and 3c) lead to "new" concepts (other than (SU {x}, TU {x}). When performing 
the algorithm, we may note down how the concepts were obtained. These data 
can be used later to construct an incidence matrix of the new lattice: 

Proposition 6. The order relation of the new lattice can be computed in addi- 
tional O(ILI 2) steps. 

Proof. (SU {x}, TU {x}) is the largest concept containing x in its extent and the 
smallest concepts containing x in its intent. In other words, (S U {x}, T U {x}) 
is greater than all concepts generated in steps 2) and 3b) and smaller than all 
concepts generated by steps 1) and 3c). It is incomparable to the other elements. 
So we may exclude this concept from further considerations. 

The order relation between the "old" concepts, i.e. between those generated 
in steps 1), 2), and 3a), is the same as before. 

For the remaining case, we consider w.l.o.g, a concept (CU {x}, n A T ) ,  which 
was generated in step 35) from a concept (C, D) of (G, M, I). Now (CU {x}, O n  
T) < (E, F) if and only if (E, F) has been generated in steps 2) or 35) from 
some concept ( E \  {x}, ( E \  {x}) I) > (C, D) of (G, M, I). If x E E, then similarly 
(E, F) < (C U {x}, D n T) is true if and only if (E, F) has been generated in 
steps 2) or 3b) from some concept (E \ {x}, (E \ {x}) I) < (C, D) of (G, M, I). 

Suppose x r E. If (E, F) was obtained in steps 1) or 3a) of the algorithm, 
than (E, E I) is a concept of (G, M, I) and (E, F) < (CU{x}, OAT)  is equivalent 
to (E, E x) < (C, D). If (E, F) was obtained in step 3c), then S z C F, which 
implies O A T  C S x C F. So in this case (E, F) < (CU {x}, O A T )  always holds. 

Summarizing these facts, we obtain all comparabilities of a concept (C U 
{x}, D n T) of (G U {x}, M U {x}, I +) which was derived from a concept (C, D) 
of (G, M, I) in step 3b): Concepts greater than (CU{x}, b A T )  are those obtained 
in steps 2 or 3b) from concepts greater than (C, D), concepts smaller than (C U 
{x}, D n T) are those obtained in steps 1), 2), 3a) or 3b) from those smaller 
than (C, D) and all those obtained in step 3c). Thus the comparabilities of 
(C U {x}, D n T) can be obtained from those of (C, D) using only a bounded 
number of elementary operations in each case. Filling the corresponding row of 
the incidence matrix is of complexity O (ILl). The argument for concepts obtained 
by 3c) is analogous. 

The generalized algorithm may be applied to the context (P, P, ;g), obtained 
from an arbitrary ordered set (P, _<). The concept lattice is the lattice of maximal 
antichains of (P, <) (see Wille [5]). Our result therefore relates to that of Jard, 
Jourdan and Rampon [2]. 
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3 A n o n - i n c r e m e n t a l  p r o c e d u r e  m a y  be  m o r e  c o n v e n i e n t  

In practice, a strategy suggests itself that may be more time-consuming, but  is 
nevertheless simpler than the algorithm presented in section 1. Rather than pur- 
suing an incremental algorithm, it may be easier to compute the lattice "from 
scratch" (i.e. from the formal context, or, in the special case, from the ordered 
set (P, <)) each time. For this task there is an algorithm that  is remarkably 
simple (it can be  programmed in a few lines) and at the same time is not dra- 
matically slower than the incremental approach: it computes the concept lattice 
i of a formal context (G, M, I) in O(ILI. IGI 2. IMI) steps. Using the parameter  
introduced above, we can improve this to O( IL I �9 IG I �9 r( G, M, I)) .  This algorithm 
generates the formal concepts inductively and does not require a list of concepts 
to be stored. 

Let us exemplify the advantage of this by a simple calculation: A formal 
context (G, M, I) with IGI = IMI -- 50 may have as may as 250 formal concepts 
in the extreme. But even if the lattice is "small" and has only, say, 101~ elements, 
it would require almost a hundred Gigabytes of storage space. Generating such a 
lattice with the inductive algorithm appears to be time-consuming, but not out 
of reach; the storage space required would be less than one Kilobyte. Moreover, 
this algorithm admits modifications that  allow to search specific parts of the 
lattice. 

For details and proofs we refer to the literature (see [1]), but the algo- 
r i thm itself is so simple that  it can be recalled here. For simplicity assume 
G := {1 , . . . ,  n}, and define for subsets A, B C G 

A <i B :  r i E B is minimal in ( A \  B) U (B \ A). 

Then the definition 

A < B : ~  A < i B f o r s o m e i  

yields a strict linear order on the set of all subsets of G (a lexicographic or, for 
short, leetle order). 

If (A, B) is a formal concept of (G, M, I) then A is called its e x t e n t .  Since 
B = A I, the extents uniquely determine the concepts. To generate all concepts, 
it therefore suffices to generate these. This can be done in lectic order, starting 
with 0 II. The step that  constructs from a given set A the "next" extent is of 
the form 

A ~ i := ((A N {1 , . . . ,  i - 1}) U {i}) II. 

The following theorem describes how the element i must be chosen: 

T h e o r e m  1 (see [1]). Let (G, M, I) be a formal context with G := { 1 , . . . ,  n}. 
For given A C G, the smallest extent that is larger than A (with respect to the 
lectic order) is given by 

A + := A �9 i, 

where i is maximal with respect to A <i A @ i. 
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It is easy to see that  computing A• i  requires at most O(IGI. IMI) steps, using 
the induced quasiorders only O(v(G, M, I))  steps. The "next" extent therefore 
is found at an expense of O(IG] 2. IMI), or even O(IG I �9 v(G, M, I)).  

If a lattice diagram is to be generated, the inductive approach may even be 
faster than the incremental one. For a given extent A 5~ G, the extents of the 
upper covers are precisely the minimal sets of the form 

(AU{i})  H, i ~ A .  

Computing these requires O(IGI 2 �9 IMI) steps. Localizing such an upper cover 
in a linear list of extents, using a binary search algorithm, can be done with 
O(loglLI) comparisons of subsets of G. The complexity thus is O(IG I �9 IMI), 
since ILl < 2 IMI. 

Every finite lattice (L, <) is isomorphic to some concept lattice. A natural 
choice is the formal context (J(L) ,  M(L) ,  _<), where J(L)  and M(L)  denote the 
sets of join- and meet-irreducible elements of (L, <), respectively. If we denote 
the cnrdinalities of these sets by 

j (L)  := IJ(L)h re(L) := IM(L)h 

we can resume: 

C o r o l l a r y  1. The covering relation of a finite lattice (L, <) can be computed 
in O ( j ( Z )  2 �9 re(L) .  ILl) steps, provided the sets J(L)  and M(L )  of join- and of 
meet-irreducible elements are given. 

This is considerably better e.g. than the bound given by Skorsky[3]. Again, the 
bound can be refined using the width of the induced orders on G and on M. 

R e f e r e n c e s  

1. Bernhard Ganter, Rudolf Wille: Formale Begriffsanalyse - Mathematische Grund- 
lagen. Springer Verlag 1996. 

2. C. Jard, G.-V. Jourdan and J.-X. Rampon: Computing On-Line the Lattice of Max- 
imal Antichains of Posets. Order 11 (1994). 

3. Martin Skorsky: Endliche Verbiinde - Diagramme and Eigenschaften. Shaker, 1992. 
4. Petko Valtchev: An Algorithm for Minimal Insertion in a Type Lattice. Second 

International KRUSE Symposium, Vancouver, 1997. 
5. Rudolf Wille: Finite distributive lattices as concept lattices. Atti Inc. Logica Math- 

ematica, 2 (1985). 


