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Abstract In this paper we define and analyze stability of a formal concept. A stability
index is based on the idea of a dependency in a dataset that can be reconstructed from
different parts of the dataset. This idea, underlying various methods of estimating
scientific hypotheses, is used here for estimating concept-based hypotheses. Combi-
natorial properties of stability indices, algorithmic comlpexity of their computation,
as well as their dynamics with arrival of new examples are studied.
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1 Introduction

Assume that we are interested in scientific hypotheses about causes of a natural
phenomenon. We make some observations which are to certain extent “random.”
A good hypothesis about a cause of the phenomenon should be independent of this
randomness, and thus, to some extent, be independent of each particular piece of
data. This sort of independence we call stability.

The idea of stability has been used to assess plausibility of hypotheses of different
kinds. For example, this idea is implicitly used in the construction of extrapolation
polynominals. Let x1, . . . , xn be points of the space Rn and a polynominal whose
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graph contains these points is to be constructed. Generally, it is possible to construct a
polynomial of degree not greater than n that satisfies these conditions. However, if it
is possible to construct a polynominal P from a certain subset of points {xi1 , . . . , xik} ⊆
{x1, ..., xn} in such a way that all the points x1, . . . , xn lie on the curve that corresponds
to the polynomial and the degree of the polynominal will be of degree not higher than
k. Thus, P as a hypothesis for regularity in data given by {xi1 , . . . , xik} ⊆ {x1, ..., xn} is
simpler and, therefore, more reliable than the hypothesis for which the polynominal
can be constructed only from the whole set {x1, . . . , xn}.

The idea of stability underlies certain nonparametric statistical methods. In
particular, in the jackknife method the variances of arbitrary statistics (i.e., sample
functions) are estimated in the following way [2]. From an initial sample of size
n all possible subsamples of size n − 1 are composed. For the ith subsample we
calculate the value Si, of the statistic S that we wish to examine. Taking the average
S∗ of Si values, we then calculate the mean of the squares of deviations Si from S∗.
The result (within insignificant arithmetic transformation) gives the estimate of the
variance of the statistic S according to the jackknife method. This method can give
good estimates of the variance [2]. Modifications of this method that make use of
all subsamples of size n − 2, n − 3, etc, are also possible. However, they require a
considerable amount of computation. The bootstrap method evaluates the variance
of a statistic in a similar way, with the difference that new samples, also of size n, are
generated from the initial sample by n-fold selection with replacement (each element
of the initial sample can appear from zero to n times in the new sample).

Ideas similar to that of stability also underly research in probabilistic logics, which
dates back to the work of R. Carnap on inductive logic [1]. The confirmation of a
statement is evaluated by the number of universes where the statement is derivable.
In this article we shall consider a realization of the idea of stability of hypotheses
based on similarity of object descriptions. Hypotheses of this kind were introduced
in [3] and were redefined in terms of Formal Concept Analysis in [6, 9].

2 Main definitions

2.1 Concepts and hypotheses

First, we recall some basic notions from Formal Concept Analysis (FCA) [5, 14]. Let
G and M be sets, called the set of objects and attributes, respectively, and let I be a
relation I ⊆ G × M: for g ∈ G, m ∈ M, gIm holds iff the object g has the attribute m.
The triple K = (G, M, I) is called a (formal) context. If A ⊆ G, B ⊆ M are arbitrary
subsets, then the Galois connection is given by the following derivation operators:

A′ := {m ∈ M | gIm for all g ∈ A},
B′ := {g ∈ G | gIm for all m ∈ B}.

The pair (A, B), where A ⊆ G, B ⊆ M, A′ = B, and B′ = A is called a (formal)
concept (of the context K) with extent A and intent B (in this case we have also A′′ =
A and B′′ = B). For B, D ⊆ M the implication B → D holds if B′ ⊆ D′. Implications
between subsets of objects are defined similarly.
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In [6] and [9] we presented a learning model from [4] in terms of FCA. This model
complies with the common paradigm of learning from positive and negative examples
(see, e.g., [11]): given positive and negative examples of a target attribute, construct
a generalization of descriptions of the positive examples that would not “cover” any
negative example.

Assume that w �∈ M is a target attribute. Positive examples (or (+)-examples)
are objects that are known to have the property w and negative examples (or (−)-
examples) are objects that are known not to have this property. Undetermined
examples (or (τ )-examples) are those that are neither known to have the property
nor known not to have the property. The results of learning are supposed to be used
for the classification of undetermined examples (in other words, for the forecast of
property w for these examples).

In terms of formal concept analysis, this situation can be described by
three subcontexts: a positive context K+ = (G+, M, I+), a negative context K− =
(G−, M, I−), and an undetermined one Kτ = (Gτ , M, Iτ ). The derivation operators
in these contexts are denoted by (·)+, (·)−, and (·)τ , respectively. A positive hypothesis
by V.K. Finn [3, 4] (called “counterexample forbidding hypothesis” there) can be
defined in terms of FCA as a nonempty intent H ⊆ M of K+ such that |H+| ≥ 2
and H is not contained in the intent of any negative example g ∈ G−, i.e., for all
g ∈ G− H �⊆ g−. In other words, a hypothesis is an intersection of positive example
intents (i.e., their “similarity”) that is contained in no intent of a negative example
(further, for simplicity sake we say “is (not) contained in example”). Hypotheses
can be used for classification of undetermined examples from Gτ : an undetermined
example is classified positively if its intent contains a positive hypothesis and does not
contain a negative one. Similar for negative classification. Since we do not consider
classifications here, for details we refer the reader to [6, 9].

2.2 Stability indices: definition and the main properties

Definition 1 For a context K = (G, M, I) and a concept C = (A, B)

〈C〉 j = {Y ⊂ A | |Y| = j, Y ′ = B}, 〈C〉� =
n−1⋃

j=2

〈C〉 j,

γ j(C) = |〈C〉 j|, γ�(C) = |〈C〉� |, n = |A|.

The summation limits are justified by the fact that the empty set and all one-element
subsets of A cannot be extents of hypotheses by definition. Usually, when it is clear
what concept is meant, we omit the argument C and simply write γ j or γ� . Now
stability indices are defined as follows:

(1) Stability index J j(C) of the jth level (2 ≤ j ≤ n − 1):

J j(C) = γ j(C)(n
j

) ,

(2) Integral stability index J�(C):

J�(C) = γ�(C)

2n − n − 2
,
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Inverses of stability indices (i.e., values 1 − J j and 1 − J� , respectively) can be
considered as measures of “dispersion” of a concept-based hypothesis. Using the
analogy with nonparametric statistics, the inverse of a stability index is related to
the derivation operator (·)′ in the same way as the sample variance calculated by the
jackknife method is related to the sample average.

Note another aspect of stability of hypotheses defined above as positive intents not
contained in negative examples. A positive hypothesis H with H′ = {g1, . . . , gn} ⊆
G+ is the intersection of example intents (i.e., “descriptions” of examples): g′

1 ∩
· · · ∩ g′

n = H). High stability of a hypothesis means that subsets of g′
1, . . ., g′

n that
distinguish g′

1, . . ., g′
n from each other have little in common. If stability of H is small,

it is more likely that the hypothetical cause of the target attribute resides not in
H, but in some H1, . . . , Hq ⊃ H, each of which is a “common description” of some
subsets of {g1, . . . , gn}. This justification of stability holds for hypotheses defined by
arbitrary derivation operators (or, equivalently, by semilattices of “descriptions”),
such as lattices of graph sets [7, 10].

Stability indices are related to implications as follows:

Proposition 1 Let K = (G, M, I) be a context and C = (A, B) be one of its concepts,
A ⊆ G, B ⊆ M. Then 〈C〉� = {D ⊂ A | |D| > 1, D → A}

Proof By definition of 〈C〉� , one has 〈C〉� = {D ⊂ A | D′ = B} = {D ⊂ A | D′ =
A′}. If D′ = A′, then by definition of implication, one has D → A. In the other
direction, if D → A, then by definition of implication, we have D′ ⊆ A′. By the
condition D ⊂ A and antimonotonicity of the derivation operator (·)′ one has D′ ⊇
A′. Therefore, D′ = A′ and 〈C〉� = {D ⊂ A | D → A}. ��

Corollary 1 Let K = (G, M, I) be a formal context, C = (A, B) be a formal concept
of it, and |A| = n. Then

J�(C) = J2(C) = . . . = Jn−1(C) = 0 iff D → A for no D ⊂ A.

J�(C) = J2(C) = . . . = Jn−1(C) = 1 iff D → A for all D ⊂ A.

A property of stability indices given in the following proposition is related to a
property of monotone Boolean functions: the relative number of units of a monotone
Boolean function in the ( j + 1)th layer of the Boolean hypercube is greater than that
in the jth layer. For a fixed hypothesis H = (A, B), the corresponding monotone
function is

f (Y) =
{

1, if Y ⊆ A and Y ′ = B;
0, if Y ⊆ A and Y ′ �= B.

Proposition 2 Let K = (G, M, I) be a context and C = (A, B) be a concept of K, then
J2 ≤ · · · ≤ J|A|−1.

Proof We consider families 〈C〉 j, 〈C〉 j+1, and the bipartite graph induced by the
layers j and j + 1 of the line (Hasse) diagram of the Boolean lattice 2A. In this graph,
each of

( n
j+1

)
vertices of the layer ( j + 1) is connected with ( j + 1) vertices of the jth

layer; each of
(n

j

)
vertices of the jth layer is connected with n − j vertices of the ( j +

1)th layer. In this graph we isolate the vertices that correspond to the families 〈C〉 j
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and 〈C〉 j+1. Since any superset of size j + 1 of sets from 〈C〉 j is a set from 〈C〉 j+1, the
number of edges in the graph that connect vertices corresponding to sets from 〈C〉 j,
with the vertices corresponding to sets from 〈C〉 j+1, is γ j(n − j). On the other hand,
generally, not each subset of size j of a set from 〈C〉 j+1 is a set from 〈C〉 j and hence,
the number of edges is not greater than γ j+1( j + 1). Thus, γ j(n − j) ≤ γ j+1( j + 1).

Since
( n

j+1)
(n

j)
= n− j

j+1 , we have γ j

γ j+1
≤ j+1

n− j = (n
j)

( n
j+1)

and J j = γ j

(n
j)

≤ γ j+1

( n
j+1)

= J j+1. ��

The notion of stability can be captured differently, by means of other indices.
Here, we give some alternative definitions of stability indices of a concept C = (A, B)

with |A| = n:

– “Middle layer”: J j for j = [n/2].
– “Average stability”: J j averaged over j ∈ {2, . . . , n − 1}.
– “Minimal covering”: Js = J j, where j = min

2≤i≤n−1
(Ji �= 0);

– “Maximal anticovering”: Js = J j, where j = max
2≤i≤n−1

(Ji �= 1).

These indices will not be considered in this paper, because the first two are
similar to the integral stability, whereas the last two seem to be “biased,” like
level-wise indices.

3 An example

Consider a many-valued context with results of an expert analysis of 17 winter wheel
chains. This context originated from information given by a table in the ADAC
Magazin (1999, no. 11). Hypotheses and implications of this context were considered
in [6].

The initial dataset is given in Table 1. The attributes are given in bold face and are
described as follows.

The values of the type attribute substitute trade-names of the chains. The values of
the system attribute give the type of a chain system: SK – rope chain (Seilkette), SRK
– steel ring chain (Stahlringkette), SMS – quick mounting chain (Schnellmontage-
System).

The mount attribute takes the values F and F or R to denote that a chain of
particular type can be mounted either only on the front wheels or both on the
front and rear wheels. The values of price are given in DM, the values of con give
the average expert assessment of the conveniency of a particular type of chain; the
values of snow give average expert assessments of the maneuverability of a car, with
a particular kind of chain, on snow; ice means the same for ice; the values of dur give
average expert assessments of the durability of a particular kind of chain; the values
of grade give average expert assessments of the general quality of a particular chain
type. Smaller values of attributes con, snow, ice, dur, and grade correspond to better
assessments of the corresponding chain properties.

Here, we consider grade (obtained as an average expert assessment of quality) as
the target attribute. We make an assumption that the values of grade less or equal to
2.1 testify to the high quality of an item and the values of grade greater or equal to
2.6 testify to the low quality of an item. Thus, items 1–4 were treated as positive and
items 9–17 were treated as negative examples, respectively. The items with numbers
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Table 1 List of chain types described in terms of utility attributes

Type System Mount Price Con Snow Ice Dur Grade

1 SK F 206 1.9 1.4 1.8 2.7 1.8
2 SRK F or R 520 2.1 0.8 3.8 2.3 1.9
3 SK F 160 1.7 1.9 1.6 3.7 2.1
4 SK F 213 1.7 2.0 2.4 3.4 2.1
5 SMS F or R 598 1.6 2.4 2.7 2.8 2.2
6 SK F 109 2.0 1.9 2.4 3.7 2.3
7 SRK F or R 325 2.0 2.1 3.2 2.8 2.3
8 SMS F or R 498 1.5 3.3 3.5 2.0 2.4
9 SRK F or R 396 2.8 2.1 3.1 2.5 2.6

10 SRK F or R 325 2.2 2.2 4.6 3.2 2.6
11 SRK F or R 389 2.0 2.2 3.3 4.3 2.6
12 SRK F 298 2.5 2.3 3.3 2.8 2.6
13 SK F 149 1.9 2.5 4.0 3.8 2.6
14 SMS F or R 684 1.7 3.3 4.4 2.2 2.6
15 SK F 99 2.8 2.2 2.5 4.0 2.7
16 SK F 140 2.6 2.3 3.3 3.4 2.7
17 SK F 215 2.3 3.8 4.8 2.3 3.1

5–8 were neglected as those with ambiguous medium-value grades. So, the positive
context w.r.t. the target attribute grade is given in Table 2, where the values of the
grade attribute are given in brackets to indicate that this is the target attribute and its
actual values are insignificant within the positive context. Negative examples can be
read from Table 1.

We scale the original table (i.e., convert many-valued attributes to binary ones) in
the way shown in Table 3.

Table 3 is read as follows. Original many-valued attributes are listed in the first
column. Each many-valued attribute staying in the beginning of the row is replaced
by several Boolean attributes that stay in other row positions. For example, the
many-valued attribute system is scaled nominally [5]: it is replaced by Boolean
attributes SK, SRK, and SMS, so that each object has exactly one of them. The
attribute mount is also scaled nominally. The many-valued attribute price is scaled
ordinally [5]: it is replaced by four Boolean attributes ≤ 160, ≤ 215, ≤ 500, and > 500.
In contrast to the nominal attributes system and mount, the objects that have the
attribute ≤ 160, have also attributes ≤ 215 and ≤ 500 (in what follows, for brevity
sake, we do not write this explicitly in the descriptions of object intents); the objects
that have the attribute ≤ 215 have also the attribute ≤ 500. The other numerical
attributes are also scaled ordinally.

Table 2 Positive context

Type System Mount Price Con Snow Ice Dur (Grade)

1 SK F 206 1.9 1.4 1.8 2.7 (1.8)
2 SRK F or R 520 2.1 0.8 3.8 2.3 (1.9)
3 SK F 160 1.7 1.9 1.6 3.7 (2.1)
4 SK F 213 1.7 2.0 2.4 3.4 (2.1)
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Table 3 Scales of
many-valued attributes System SK SRK SMS

Mount F F or R

Price ≤ 160 ≤ 215 ≤ 500 > 500
Con ≤ 2.1 ≤ 2.5 > 2.5
Snow ≤ 2.0 > 2.0
Ice ≤ 2.4 ≤ 3.0 ≤ 4.0 > 4.0
Dur ≤ 3.0 ≤ 3.7 > 3.7

We have the following (unique) minimal positive hypothesis:

{con ≤ 2.1, snow ≤ 2.0, ice ≤ 4, dur ≤ 3.7}.
The corresponding extent is {1, 2, 3, 4}.

Other positive hypotheses are

{SK, F, price ≤ 215, con ≤ 2.1, snow ≤ 2.0, ice ≤ 4.0, dur ≤ 3.7}
with extent {1, 3, 4} and

con ≤ 2.1, snow ≤ 2.0, ice ≤ 4.0, dur ≤ 3.0}
with extent {1, 2}, and hypotheses corresponding to intents of positive examples, (i.e.,
with extents {1}, {2}, {3}, {4}).

Thus we have only two hypotheses with extents > 2, namely that with extent
{1, 2, 3, 4} (the minimal hypothesis) and that with extent {1, 3, 4}.

Consider stability indices of the minimal hypothesis. Since

{1, 2, 3, 4}′ = {1, 2, 3}′ = {1, 2, 4}′ = {2, 3, 4}′ = {2, 3}′ = {2, 4}′,
and there is no other subset of {1, 2, 3, 4} giving the same intent, we have

γ3({1, 2, 3, 4}, {1, 2, 3, 4}′) = |{{1, 2, 3}, {1, 2, 4}, {2, 3, 4}}| = 3,

J3 = 3
(4

3

) = 3

4
;

γ2({1, 2, 3, 4}, {1, 2, 3, 4}′) = |{{2, 3}, {2, 4}| = 2, J2 = 2
(4

2

) = 1

3
;

γ�({1, 2, 3, 4}) = |{{1, 2, 3}, {1, 2, 4}, {2, 3, 4}, {2, 3}, {2, 4}}|,

J�({1, 2, 3, 4}, {1, 2, 3, 4}′) = 5
(4

3

) + (4
2

) = 1

2
.

For the hypothesis with extent {1, 3, 4} we have

γ2({1, 3, 4}, {1, 3, 4}′) = γ�({1, 3, 4}, {1, 3, 4}′) =

|{{1, 3}, {1, 4}, {3, 4}| = 3,

J2({1, 3, 4}, {1, 3, 4}′) = J�({1, 3, 4}, {1, 3, 4}′) = 3
(3

2

) = 1.



108 S.O. Kuznetsov

Thus, the (minimal) hypothesis with extent {1, 2, 3, 4} has integral stability index
smaller than that of the hypothesis with extent {1, 3, 4}. This illustrates the inter-
pretation of stability indices: hypothesis with extent {1, 2, 3, 4} could not have been
obtained without example 2, whereas the hypothesis with extent {1, 3, 4} can be
obtained when any single example is missing. The set {1, 2, 3, 4} has a subset of similar
examples, whose similarity is more important as a cause of the target attribute than
the similarity of the whole set.

4 Stability dynamics with the growth of the set of examples

In this section we study the possible behavior of stability indices when a dataset is
updated with new examples. We assume that intent of a new example is a subset
of the “old” attribute set M. When it does not lead to confusions, the derivation
operator in the new context is also denoted by (·)′. For any positive hypothesis H a
new negative example with intent containing H “falsifies” H (with arrival of such an
example, H is no more a hypothesis by definition), other new negative examples do
not affect stability of H at all. Therefore, to study behavior of stability indices of a
positive hypothesis with the growth of the dataset, we can consider only the positive
context K+ = (G+, M, I+). Since negative context is ignored, for simplicity sake, we
omit subscript “+” and speak of a context K = (G, M, I). A new positive example
g can affect stability of hypothesis H, which corresponds to intent B of a concept
C = (A, B) if the intent of g is a subset of B. In this case we say that g confirms H
(or confirms B and C).

Upon arrival of k new examples stability indices of a concept C = (A, B) are
denoted by Jk

j , j ∈ {2, . . . , |A| + k − 1} and Jk
� , respectively. For the sake of

convenience, we will also set |A| = n, Jn = 1, J j = 0 for j ∈ Z \ {2, . . . , n}.

Theorem 3 Let K = (G, M, I) be a context and C = (A, B) be a concept of this
context. Let the set G be updated with k new objects, then the stability indices of the
concept C lie within the following bounds:

Jk
j ≤ Jk

j ≤ J
k
j ,

Jk
� ≤ Jk

� ≤ J
k
�,

where

Jk
j = 1

(n+k
j

)
(

γ j +
(

k
1

)
γ j−1 + . . . +

(
k

k − 1

)
γ j−k+1 + γ j−k

)
,

J
k
j = 1

(n+k
j

)
(

γ j +
(

n
j − 1

)
+ . . . +

(
n + k − 1

j − 1

))
,

Jk
� = 2k · γ� + 2k − 1

2n+k − (n + k + 2)
,

J
k
� = γ� + 2n(nk − 1) − k

2n+k − (n + k + 2)
.
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Proof Though we consider changing contexts, we shall use notation ′ to denote the
operation of taking intents of examples, both new and old. This slight misuse of
notation will not result in any trouble, since the set of attributes M does not change.
We set A = {g1, . . . , gn}.

(1) The lower bounds for indices Jk
j . The set of new examples will be denoted

by {g
1
, . . . , g

k
}. For a given initial value of the index J j, the value Jk

j is
minimal if any subset of the set of k new confirming examples yields B in the
intersection of only those sets of examples from A, which themselves give B in

the intersection. In more rigorous terms, Jk
j = γ k

j

(n+k
j )

takes the minimal value if

for any p, q 1 ≤ p < k, 1 < q < n, g′
i1

∩ · · · � g′
ip

∩ (g′
t1 ∩ · · · ∩ g′

tq) = B if

and only if g′
t1 ∩ · · · ∩ g′

tq = B. Here, {g
i1
, . . . , g

ip
} ⊆ {g

1
, . . . , g

k
}, {gt1 , . . . , gtq} ⊆

{g1, . . . , gn} = A.

Let us consider the terms that make up the value of γ k
j . The first term, i.e.,

γ j corresponds to the cardinality j of subsets of the set of initial examples
{g1, . . . , gn}. The other terms appear as γ j−s

(k
s

)
. They are obtained by virtue of

the fact that an arbitrary set {gi1 , . . . , gi j−s} from 〈C〉 j−s can be supplemented
with any new confirming examples g

r1
, . . . , g

rs
to obtain a set {g

i1
, . . . , g

i j−s
,

g
r1
, . . . , grs}, which also give B in the intersection of all its intents g′

i1 ∩ · · · ∩
g′

i j−s
∩ g′

r1
∩ · · · ∩ g′

r,s
= B. Therefore, γ k

j =
k∑

s=0
γ j−s · (k

s

)
and the lower estimate

for Jk
j has been proved.

(2) The lower bound for the index Jk
� , i.e., Jk

� . When a new confirming example
is received, each value of γ 1

i , 2 ≤ i ≤ n − 1 becomes not less than the value
indicated in 1). The entire sequence of values of γ 1

i is γ2, γ2 + γ3, . . . , γn−2 +
γn−1, γn−1 + 1. Their sum is γ 1

� = γ2 + (γ2 + γ3) + · · · + (γn−2 + γn−1) + (γn−1 +
1) = 2γ� + 1. Therefore, after receiving k new confirming examples, the value
of γ� is not less than 2k · γ� + 2k − 1 (i.e., γ k

� ≤ 2k · γ� + 2k − 1) and

Jk
� ≥ 2k · γ� + 2k − 1

2n+k − (n + k + 2)
.

(3) The upper bounds for the indices Jk
j , i.e., J

k
j , for j ∈ {2, . . . , n + k − 1} are

obtained from the analysis of the sequence of new examples g1, . . . , gk that
confirm the hypothesis H and are of the following form: gi in the intersection
with any previous example confirming H yields B. In this case, the intersection
of any set of new examples will give B. A sequence of this type will give the
upper bound of Jk

j , since we cannot affect “old” intersections (obtained by
intersecting old examples) and all “new” intersections will coincide with B.
More precisely, gi ∩ g = B for g ∈ {g1, . . . , gn, g1, . . . , gi−1}. In this case, for k =
1, γ 1

j is the sum of the number of old examples γ j and the new examples formed
from j − 1 old examples and a single new example: γ 1

j = γ j +
( n

j−1

)
. Suppose

that for k = t, γ t
j = γ j +

( n
j−1

) + · · · + (n+t−1
j−1

)
. In this case, for k = t + 1, γ t+1

j
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is the sum of the number of old examples γ t
j and new examples formed from

j − 1 old examples and a single new one:

γ t+1
j = γ t

j +
(

n + t
j − 1

)
= γ j +

(
n

j − 1

)
+ . . .

· · · +
(

n + t − 1

j − 1

)
+

(
n + t
j − 1

)
.

(4) The upper bounds for the index J� , i.e., J
k
� . The initial values of γi were

γ2, . . . , γs−1,+ γs, γs+1, . . . , γn−2, γn−1; after the arrival of g1, these values are
expressed by γ2 + (n

1

)
, . . . , γs + ( n

s−1

)
, . . . , γn−1 + ( n

n−2

)
, γn + ( n

n−1

)
, respectively,

where γn = 1. In this case,

γ 1
� = γ2 + · · · + γn−1 +

(
n
1

)
+ . . .

· · · +
(

n
s − 1

)
+ · · · +

(
n

n − 1

)
+ 1 = γ� + 2n − 1.

Hence γ k
� = γ� + 2n+k−1 + · · · + 2n − k = γ� + 2n(2k − 1) − k and

J
k
� = γ� + 2n(2k − 1) − k

2n+k − (n + k + 2)
. ��

Theorem 3 allows us to consider the limits of the upper and lower bounds of
stability indices with the growth of k. The upper bound of stability indices behave
uniformly: they increase monotonically, and, in the limit, tend to 1. The lower bounds
of the level indices behave differently: for the indices of the upper levels, they
approach 1 in the limit; for the lower levels, they tend to 0. The behaviour in the
limit of the lower bounds of the middle level indices remains unclear. The limit of
the lower bound of the integral stability index is strictly greater than zero and smaller
than one. Since lim

k→∞
Jk

�(k) = γ�+1
2n > 0, with arrival of new examples, it is more likely

that the value of J� will increase, because there is practically “no room” for its further
decrease. This observation suggests the existence of “soft dependence” between J�

and the size of extent: under natural assumptions about distributions of attributes
with example intents it is likely that a concept with large extent has stability greater
than that of a concept with small extent.

Hence, it is natural to compare stability indices with support of association rules
in data mining, which have the form X → Y, X, Y ⊆ M (see, e.g., [12]). Support is
defined as supp(X → Y) = |(X∪Y)′ |

|G| , i.e., as the relative number of examples whose
description includes both the antecedent and the consequent of the association rule.
The first difference between stability indices and support is that the former are
computed relative not to the set of all examples, but to all possible subsets of a
concept extent. The second difference is that stability indices measure support of
an exactly specified subset of M (i.e., the intent), not of any superset of it.
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5 Algorithmic complexity of computing stability indices

Unfortunately, exact computation of stability indices in general case is intractable, as
established by the following

Theorem 4 Let K = (G, M, I) be a context and C = (A, B) be one of its concepts.
Then the problem of determining the stability index J�(C) as well as the problem of
determining stability index J j for arbitrary 2 ≤ j ≤ |A| is #P-complete.

Proof We introduce the following auxiliary problems.

(1) The problem of the number of vertex coverings (NVC).
INPUT. Graph � = (V, E).
OUTPUT. The number of vertex coverings, i.e., #{V ′ ⊆ V| if (u, v) ∈ E, then
u ∈ V ′ or v ∈ V ′}.

(2) The problem of the number of implicants (NI).
INPUT. Monotone 2-CNF, i.e., the formula F = C1 ∧ · · · ∧ Cr, where

Ci = (xi1 ∨ xi2), xis ∈ X = {x1, . . . , xn}.
OUTPUT. The number of implicants, i.e., #{Y|Y ⊆ X, ∧x j∈Y x j → F}.

(3) Problem of the number of subfamilies with fixed intersection (NSFI).
INPUT. A finite set U and X ⊂ 2U , a family of different sets X = {X1, . . . , Xk},
where X1 ∩ · · · ∩ Xk = h.
OUTPUT. The number of subfamilies X ′ of the family X such that the
intersection of all members of the subfamily X is h, i.e.,

{X ′ ⊆ X |X ′ = {Xi1 , . . . , Xis} and Xi1 ∩ · · · ∩ Xis = h}. ��

Lemma 5 The NI problem is #P-complete.

Proof We will reduce to the NI problem the following one: “the number of 0-1
n-tuples that satisfy 2-CNF F =C1 ∧ C2 ∧ · · · ∧ Cs, where Ci =(yi1 ∨ yi2) and yi j ∈
X". The #P-completeness of this problem has been proved in [13]. Suppose that
|X| = n and A=(a1, . . . , an) is a 0-1 tuple that satisfies F. Let { j1, . . . , jk} be serial
numbers of single components of the 0-1 tuple A. We form a conjunction Y j =
y j1 ∧ · · · ∧ y jk , where y ji ∈ X. Obviously, Y j is the implicant of 2-CNF F. Con-
versely, each implicant Ym = ym1 ∧ · · · ∧ yms of the formula F has a corresponding
0-1 tuple Am = (am

1 , . . . , am
n ), where positions m1, . . . , ms are one-positions and the

remaining positions are zero-positions; the tuple Am satisfies F. The reducibility is
accomplished. Since the reducibility is polynomial in s and n, the lemma is proved. ��

Lemma 6 The NVC problem is #P-complete.

Proof The membership of the NVC problem in the class #P is obvious, since every
solution to the corresponding decision problem (“is there a vertex covering”) is
tested in polynomial time. We will prove the #P-completeness of the problem by
reducing to it #P-complete problem NI. As in [10], from an arbitrary 2-CNF F
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we construct a graph � = (V, E), where V = {u1, . . . , un} (each ui corresponds to
a variable xi from F) and E = {(ui, u j)|(xi ∨ x j) is included in the conjunction}. Any
vertex covering of � corresponds to the implicant of F, and conversely; any implicant
of F corresponds to a certain vertex covering of G. The reducibility is implemented
within a time linear with respect to the size of F. ��

Lemma 7 The NSFI problem is #P-complete.

Proof We will reduce by Turing the NVC problem to a special case of the NSFI
problem (when h = ∅). Suppose that we have an arbitrary graph � = (V, E) with no
isolated vertices (which does not impair the generality), where V ={a1, . . . , an}, E ⊆
V × V. For a vertex v by N(v) we denote the set of edges from E that are incident
to the vertex v; NE(v) = E \ N(v). For vi, v j ∈ V, we have N(vi) = N(v j) �= ∅ if and
only if N(vi) = N(v j) = {(vi, v j)}, i.e., vi and v j are not connected to any other vertices
from E{vi, v j}. In this case the edge (vi, v j) will be called isolated. We will calculate
the NVC of the graph as follows: Suppose that there are k isolated edges in the
graph �. The vertex covering of these edges can be executed in 3k ways (three
ways per each edge: it can be covered by either of the two vertices or by both). If
the remaining edges of the graph � can be covered in d various ways, then all the
edges of the graph have d · 3k coverings. We have only to determine the number
of vertex coverings of non-isolated edges of the graph (we will denote this set by
E1). Suppose that edges from E1 cover vertices from a set V1 ⊆ V. Now, for any
two different vertices vi, v j ∈ V, we have N(vi) �= N(v j). By definition, the vertices
v1, . . . , vr ∈ V1 form a covering of E if and only if N(v1) ∪ · · · ∪ N(vr) = E1 or, by
de Morgan’s law, NE1(v1) ∩ · · · ∩ NE1(vr) = ∅. Thus, the set {v1, . . . , vr} forms the
vertex covering of the graph � = (V1, E1) if and only if the intersection of all sets of
the family NE1(v1), . . . , NE1(vr) is empty. We have thus reduced the NVC problem
for � = (V, E) to NSFI problem with X = {NE′(a1), . . . , NE1(an)}. The reducibility
is polynomial because the size of the set X (i.e., the total number of edges in X ) is

not greater than n
((

n
2

)
− (n − 1)

)
, i.e., O(n3). ��

Theorem 4 is a simple corollary of Lemma 7. Under conditions where the
hypothesis H is not contradictory and the set of all examples that give rise to it is
X , NSFI is γ� + 1.

Corollary 2 The problem of determining J j(C) of a given concept C = (A, B) for an
arbitrary j: 2 ≤ j ≤ n − 1 is #P-complete.

Having these intractability results, we describe an algorithm for computing stabil-
ity, which can be considered optimal in the sense that its time complexity is linear
in 〈C〉� and polynomial in the size of the context. To describe an algorithm for
computing stability index J�(A, A′) of a concept (A, A′) we need to introduce the
following notions and functions. Let elements of G be in one-to-one correspondence
with natural numbers from 1 to |G|. Then each subset of A ⊆ G is represented by
an (increasingly ordered) tuple of numbers of its elements. Let ≤ be the following
order on tuples of this kind: X ≤ Y iff min(X \ Y) ∈ X)subsets of G. Let < be the
corresponding strict order and ≺ be a precedence relation (for X, Y ⊆ A X ≺ Y
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iff X ≤ Y and there is no Z ⊆ A: X < Z < Y). The functions max(X) and min(X)
return the maximal and minimal element of the set X, respectively. The function next
is defined as follows: if X = max(A), then next(X) := 0, otherwise next(X) := Y,
where X ≺ Y. The variable count counts γ�(C), i.e., the number of elements in 〈C〉� .
The function tail(X) is defined as tail(X) := {max(X), max(X) + 1, . . . , |G|} ∩ A.

Algorithm Stability Count

Input: a context (G, M, I) and a concept (A, A′) of it.
Output: Stability index γ�(A, A′).
Initialization
X:=min(A), count := 0;
1. until next(X) = 0
2. begin
3. if (A \ X)′ �= A′
4. then X:= next(X∪ tail(X)) else do
5. begin
6. count: = count +1
7. X:=next(X)
8. end
9. end
10. return count

Theorem 8 Let K = (G, M, I) be a formal context and C = (A, B) be a formal
concept of the context K. Then the integral stability index J�(C) = γ�(C)

2n−n−2 and a

stability index J j(C) = γ j(C)

(n
j)

, 1 ≤ k ≤ n − 1 are computed by Stability Count in time

O(|G|3|M|γ�) and O(|G|3|M|γ j), respectively.

Theorem 8, together with the #P-completeness of the problems of computing
stability indices (Theorem 4) indicates that this algorithm is optimal within a factor
polynomial in the input (namely, O(|M| · |G|2)), see [13].

The following result concerning upper and lower bounds of the integral J�

stability index provides some means for approximate computation of the indices
within O(|M| · |A|k+r) time, where k and r are arbitrary preset integers, k, r < n.

Theorem 9 The following inequalities hold for the integral and average stability
indices of a concept C = (A, B) (where n = |A|, 2 ≤ k, r ≤ n − 1):

γ1 + . . . + γk(n
2

) + . . . + (n
k

) ≤ J� ≤ γn−r + . . . + γn−1( n
n−r

) + . . . + ( n
n−1

) .

Proof To prove the theorem, one uses Proposition 2: J2 ≤ · · · ≤ J|A|−1 and the
following ��
Lemma 10 For arbitrary sequences (ai), (bi) such that ai ≥ 0, b i > 0 and ai

b i
≤ ai+1

bi+1
,

and for an arbitrary s ≥ 2, we have

a1 + · · · + as−1

b 1 + · · · + b s−1
≤ a1 + · · · + as

b 1 + · · · + b s
≤ a2 + · · · + as

b 2 + · · · + b s
≤ as

b s
.
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Proof The proof of the first inequality will be done by induction over s.
For s = 2 we have a1

b 1
≤ a2

b 2
. In this case, a1

b 1
≤ a1+a2

b 1+b 2
≤ a2

b 2
. Indeed,

a1 + a2

b 1 + b 2
− a1

b 1
= a1b 1 + a2b 1 − a1b 1 − a1b 2

b 1(b 1 + b 2)
≥ 0.

a1 + a2

b 1 + b 2
− a2

b 2
= a1b 2 + a2b 2 − a2b 1 − a2b 2

b 2(b 1 + b 2)
≤ 0.

Suppose that for s < m the statement has been proved and a1 + · · · + am−1 = α,
b 1 + · · · + b m−1 = β. In that case,

a1 + · · · + am

b 1 + · · · + b m
− a1 + · · · + am−1

b 1 + · · · + b m−1
= α + am

β + b m
− α

β
=

= αβ + amβ − βα − b mα

β(β + b m)
= amβ − b mα

β(β + b m)
= �.

By the inductive hypothesis we have am−1

b m−1
≥ α

β
and by the conditions of the lemma

we have am
b m

≥ am−1

b m−1
. Hence am

b m
≥ am−1

b m−1
≥ α

β
, and the numerator of � is nonnegative.

Other two inequalities of the lemma are proved similarly. ��

Stability indices were applied in the analysis of defects of polymers at “NPO
PLASTMASSY” in Moscow [8, 9]. The results of the analysis show that all hypothe-
ses about causes of defects that were accepted by experts had stability indices greater
than average values.

6 Conclusion

We proposed a definition of stability of a formal concept, which can be used as a
plausibility measure of concept-based hypotheses. Stability measures independence
of hypotheses on particular pieces of data that can be random. We showed the
interrelation of stability indices, as well as relation of the latter to implications
between attributes. The indices were illustrated by an example with a real dataset.
The behavior of indices with the increase of the number of examples was studied.
Complexity of computing stability indices was studied. On the one hand, the problem
of computing integral stability index was proved to be #P-complete. On the other
hand, an algorithm that we proposed for the solution of this problem is worst-case
optimal modulo a polynomial in the input. We also proposed a polynomial algorithm
for computing approximations of the integral index. As further research of stability
indices we intend to study their relation to different interestingness and plausibility
measures in data mining.

Acknowledgements The author thanks Oleg Gorbachev and Alexander Kogan for helpful
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