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Abstract. Several algorithms that generate the set of all formal concepts and
graphs of line (Hasse) diagrams of concept lattices are considered. Some modi-
fications of well-known algorithms are proposed. Algorithmic complexity of
the algorithms is studied both theoretically (in the worst case) and experimen-
tally. Conditions of preferable use of some algorithms are given in terms of
density/sparsity of underlying formal contexts.

1 Introduction

Concept lattices proved to be a useful tool for machine learning and knowledge dis-
covery in databases [3, 6, 9, 19, 22–24]. The problem of generating the set of all con-
cepts and the diagram graph of the concept lattice is extensively studied in the litera-
ture [2-5, 7, 10, 11, 13, 16, 18–20]. It is known that the number of concepts can be
exponential in the size of the input context (e.g., when the lattice is a Boolean one)
and the problem of determining this number is #P-complete [15]. Therefore, from the
standpoint of the worst-case complexity, an algorithm can be considered optimal if it
generates the concept lattice in time and space linear in the number of all concepts
(modulo a factor polynomial in the input size). On the other hand, “dense” contexts,
which realize the worst case by bringing about exponential number of concepts, may
occur not often in practice. Moreover, various implementation issues, such as dimen-
sion of a “typical” context, specificity of the operating system used, and so on, may
be crucial for the practical evaluation of algorithms. In this article, we consider, both
theoretically and experimentally, several algorithms that generate concept lattices for
clearly specified data sets. In most cases, it was possible to improve the original ver-
sions of the algorithms. We present modifications of some algorithms and indicate
conditions when some of them perform better than the others. Only a few known al-
gorithms generating the concept set construct the graph of the line diagram. We modi-
fied some algorithms so that they can construct graphs of line diagrams.

The first comparative study of four algorithms constructing the concept set and the
graph of the line diagram can be found in [13]. Descriptions of the algorithms are
sometimes buggy and the description of the experimental tests lacks any information
about data used for tests. The fact that the choice of an algorithm should depend on
input data is not accounted for. Besides, only one of the algorithms considered in [13],
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namely that of Bordat [2], constructs the graph of the line diagram; thus, it is hard to
compare its performance with that of the other algorithms.

A much more elaborate review can be found in [11] (where another algorithm is
proposed). The authors of [11] consider algorithms that generate the graph of the line
diagram. Algorithms that were not originally designed for this purpose are extended
by the authors. Such extensions are not always efficient: for example, the time com-
plexity of the version of the Ganter algorithm (called Ganter-Allaoui) dramatically
increases with the growth of the context size. This drawback can be cancelled by the
use of binary search in the list produced by the original Ganter algorithm. Tests were
conducted only for contexts with small number of attributes per object as compared to
the number of all attributes. Our experiments (we consider more algorithms) also
show that the algorithm proposed in [11] performs better on such contexts than the
others do [17]. However, for “dense” contexts, this algorithm performs worse than
some other algorithms (details are found in [17]).

The paper is organized as follows. In Section 2, we give main definitions and an
example. In Section 3, we give a survey of batch and incremental algorithms for con-
structing concept lattices and analyze their worst-case complexity. In Section 4, we
consider results of experimental comparison of the algorithms.

2 Main Definitions

First, we introduce standard FCA notation [8], which will be used throughout the pa-
per.

A (formal) context is a triple of sets (G, M, I), where G is called a set of objects, M
is called a set of attributes, and I ⊆ G × M. For A ⊆ G and B ⊆ M: A' = {m ∈ M |
∀g∈A (gIm)}; B' = {g ∈ G | ∀m∈B (gIm)}. '' is a closure operator, i.e., it is mono-
tone, extensive, and idempotent. A (formal) concept of a formal context (G, M, I) is a
pair (A, B), where A ⊆ G, B ⊆ M, A' = B, and B' = A. The set A is called the (formal)
extent and B the (formal) intent of the concept (A, B). For a context (G, M, I), a con-
cept X = (A, B) is less general than or equal to a concept Y = (C, D) (or X ≤ Y) if A ⊆
C or, equivalently, D ⊆ B. Suppose that X and Y are concepts, X ≤ Y, and there is no
concept Z such that Z ≠ X, Z ≠ Y, X ≤ Z ≤ Y. Then X is called a lower neighbor of Y,
and Y is called an upper neighbor of X. This relationship is denoted by X p Y. The set
of all concepts of a formal context forms a complete lattice L [8]. The graph of the
line diagram of a concept lattice (or simply a diagram graph) is the directed graph of
the relation p. The line diagram is a plane embedding of a diagram graph where each
concept vertex is always drawn above all its lower neighbors (thus, the arrows on the
arcs become superfluous and can be omitted).

Example 1. Below we present a formal context with some elementary geometric
figures and its line diagram. We shall sometimes omit parentheses and write, e.g., 12
instead of {1, 2}.



Algorithms for the Construction of Concept Lattices and Their Diagram Graphs 291

G \ M a = 4 vertices b = 3 vertices c = has a right
angle

d = all sides are
equal

1 ! ! !

2 ! !

3 ! !

4 ! !

Fig. 1. A formal context

Fig. 2. The line diagram for the context from Fig. 1

Data structures that realize concept sets and diagram graphs of concept lattices are
of great importance. Since their sizes can be exponentially large w.r.t. the input size,
some their natural representations are not polynomially equivalent, as it is in the case
of graphs. For example, the size of the incidence matrix of a diagram graph is quad-
ratic w.r.t. the size of the incidence list of the diagram graph and thus cannot be re-
duced to the latter in time polynomial w.r.t. the input. Moreover, some important op-
erations, such as find_concept, are performed for some representations (spanning
trees [2, 10], ordered lists [7], CbO trees [16], 2-3 trees [1]) in polynomial time, but
for some other representations (unordered lists) they can be performed only in expo-
nential time. A representation of a concept lattice can be considered reasonable if its
size cannot be exponentially compressed w.r.t. the input and allows the search for a
particular concept in time polynomial in the input.

All the algorithms can be divided into two categories: incremental algorithms [3, 5,
11, 20], which, at the ith step, produce the concept set or the diagram graph for i first
objects of the context, and batch ones, which build the concept set or its diagram
graph for the whole context from scratch [2, 4, 7, 16, 18, 25]. Besides, any algorithm
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typically adheres to one of the two strategies: top–down (from the maximal extent to
the minimal one) or bottom–up (from the minimal extent to the maximal one).

In many cases, we attempted to improve the efficiency of the original algorithms
presented below. Only some of the original versions of the algorithms construct the
diagram graph [2, 11, 18, 21]; it turned out that the other algorithms could be ex-
tended to construct the diagram graph within the same worst-case time complexity
bounds. Some algorithms are given the name of their authors.

In the next section, we will discuss worst-case complexity bounds of the consid-
ered algorithms. Due to the possibility of the exponential output of the algorithms, it
is reasonable to estimate their complexity not only in terms of the input and output
size, but also in terms of (cumulative) delay. Recall that an algorithm for listing a
family of combinatorial structures is said to have polynomial delay [14] if it executes
at most polynomially many computation steps before either outputting each next
structure or halting. Note that the worst-case complexity of an algorithm with poly-
nomial delay is a linear function of the output size modulo some factor polynomial in
the input size. A weaker notion of efficiency of listing algorithms was proposed in
[12]. An algorithm is said to have a cumulative delay d if it is the case that at any
point of time in any execution of the algorithm with any input p the total number of
computation steps that have been executed is at most d(p) plus the product of d(p) and
the number of structures that have been output so far. If d(p) can be bounded by a
polynomial of p, the algorithm is said to have a polynomial cumulative delay.

3 Algorithms: A Survey

Here we give a brief version of the survey found in [17]. First, we consider batch al-
gorithms. The top-down algorithm MI-tree from [25] generates the concept set, but
does not build the diagram graph. In MI-tree, every new concept is searched for in
the set of all concepts generated so far. The top-down algorithm of Bordat [2] uses a
tree (a “trie,” cf. [1]) for fast storing and retrieval of concepts. Our version of this al-
gorithm uses a technique that requires O(|M|) time to realize whether a concept is
generated for the first time without any search. An auxiliary tree, which is actually a
spanning tree of the diagram graph, is used to construct the latter. Ch((A, B)) is the set
of children of the concept (A, B) in this tree; it consists of the lower neighbors of (A,
B) generated for the first time.

Bordat
0. L := ∅
1. Process ((G, G'), G')
2. L is the concept set.

Process ((A, B), C)
1. L := L ∪ {(A, B)}
2. LN := LowerNeighbors ((A, B))
3. For each (D, E) ∈ LN

3.1. If C ∩ E = B
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3.1.1. C := C ∪ E
3.1.2. Process((D, E), C)
3.1.3. Ch((A, B)) := Ch((A, B)) ∪ {(D, E)}

3.2 Else
3.2.1. Find((G, G'), (D, E))

3.3. (A, B) is an upper neighbor of (D, E)

The full version of the algorithm can be found in [17]. The time complexity of the
algorithm is O(|G||M|2|L|); its polynomial delay is O(|G||M|2).

The well-known algorithm proposed by Ganter computes closures for only some of
subsets of G and uses an efficient canonicity test, which does not address the list of
generated concepts. The subsets are considered in lexicographic order [7, 8]. The
Ganter algorithm has polynomial delay O(|G|2|M|). Its complexity is O(|G|2|M||L|).

The Close by One (CbO) algorithm uses a notion of canonicity similar to that of
Ganter and a similar method for selecting subsets. It employs an intermediate struc-
ture that helps to compute closures more efficiently using the generated concepts.
Objects are assigned numbers; g ! h holds whenever the number of g is smaller than
that of h. The CbO algorithm obtains a new concept from a concept (A, B) generated
at a previous step by intersecting B with the intent of an object g that does not belong
to A. The generation is considered canonical if the intersection is not contained in any
object from G \ A with smaller number than that of g. The algorithm repeatedly calls
Process({g}, g, ({g}'', {g}')) for each object g.

Process(A, g, (C, D)) C = A'', D = A'
1. If {h | h ∈ C \ A & h ! g} = ∅

1.1. L := L ∪ {(C, D)}
1.2. For each f ∈ {h | h ∈ G \ C & g ! h}

1.2.1. Z := C ∪ {f}
1.2.2.Y := D ∩ {f}'
1.2.3. X := Y' (= Z ∪ {h | h ∈ G \ Z & Y ⊆ {h}'})
1.2.4. Process(Z, f, (X, Y))

The CbO algorithm has polynomial delay O(|G|3|M|) and complexity O(|G|2|M||L|).
To construct the diagram graph with the CbO algorithm, we use a tree, which is not a
spanning tree of the diagram graph, but it agrees with the concept order.

The idea of the bottom-up algorithm in [18] is to generate the bottom concept and
then, for each concept that is generated for the first time, generate all its upper
neighbors. Lindig uses a tree of concepts that allows one to check whether some con-
cept was generated earlier. The description of the tree is not detailed in [18], but it
seems to be the spanning tree of the inverted diagram graph (i.e., with the root at the
bottom of the diagram), similar to the tree from Bordat. Finding a concept in such a
tree takes O(|G||M|) time. In fact, this algorithm may be regarded as a bottom-up ver-
sion of the Bordat algorithm. The time complexity of the algorithm is O(|G|2|M||L|).
Its polynomial delay is O(|G|2|M|).

The AI-tree [25] and Chein [4] algorithms operate with extent–intent pairs and
generate each new concept intent as the intersection of intents of two generated con-
cepts. At every iteration step of the Chein algorithm, a new layer of concepts is cre-
ated by intersecting pairs of concept intents from the current layer and the new intent
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is searched for in the new layer. We introduced several modifications [17] that made
it possible to improve the performance of the algorithm. The time complexity of the
modified algorithm is O(|G|3|M||L|); its polynomial delay is O(|G|3|M|).

Now we consider incremental algorithms, which cannot have polynomial delay.
Nevertheless, all algorithms below have cumulative polynomial delay.

L. Nourine [21] proposes an algorithm for the construction of the lattice using a
lexicographic tree with the best known worst-case complexity bound O((|G| +
|M|)|G||L|). Edges of the tree are labeled with attributes, and nodes are labeled with
concepts whose intents consist of the attributes that label the edges leading from the
root to the node. Clearly, some nodes do not have labels. First, the tree is constructed
incrementally (similar to the Norris algorithm presented below). An intent of a new
concept C is created by intersecting an object intent g' and the intent of a concept D
created earlier, and the extent of C is formed by adding g to the extent of D; this takes
O(|M| + |G|) time. A new concept is searched for in the tree using the intent of the
concept as the key; this search requires O(|M|) time. When the tree is created, it is
used to construct the diagram graph. For each concept C, its parents are sought for as
follows. Counters are kept for every concept initialized to zero at the beginning of the
process. For each object, the intersection of its intent and the concept intent is pro-
duced in O(|M|) time. A concept D with the intent equal to this intersection is found in
the tree in O(|M|) time and the value in the counter increases; if the counter is equal to
the difference between the cardinalities of the concepts C and D (i.e., the intersection
of the intent of C and the intent of any object from D outside C is equal to the intent
of D), the concept D is a parent of C.

The algorithm proposed by E. Norris [20] can be considered as an incremental ana-
logue of the CbO algorithm. The concept tree (which is useful only for diagram con-
struction) can be built as follows: first, there is only the dummy root; examine objects
from G and for each concept of the tree check whether the object under consideration
has all the attributes of the concept intent; if it does, add it to the extent; otherwise,
form a new node and declare it a child node of the current one; the extent of the corre-
sponding concept equals the extent of the parent node plus the object being examined;
the intent is the intersection of this object intent and the parent intent; next, test the
new node for the canonicity; if the test fails, remove it from the tree. The original ver-
sion of the Norris algorithm from [20] does not construct the diagram graph. In this
case, Norris is preferable to CbO, as the latter has to remember how the last concept
was generated; this involves additional storage resources, as well as time expenses.
The Norris algorithm does not maintain any auxiliary structure. Besides, the closure
of an object set is never computed explicitly.

The algorithm proposed by Godin [11] has the worst-case time complexity quad-
ratic in the number of concepts. This algorithm is based on the use of an efficiently
computable hash-function f (which is actually the cardinality of an intent) defined on
the set of concepts.

C. Dowling proposed an incremental algorithm for computing knowledge spaces
[5]. A dual formulation of the algorithm allows generation of formal concepts. The
worst-case complexity of the algorithm is O(|M||G|2|L|), the constants in this upper
bound are large and in practice, the algorithm performs worse than other algorithms.
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4 Results of Experimental Tests

The algorithms were implemented in C++. The tests were run on a Pentium II–300
computer, 256 MB RAM. Here, we present a number of charts that show how the
execution time of the algorithms depends on various parameters. More charts can be
found in [17].
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Fig. 3. Concept set: |M| = 100; |g'| = 4
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Fig. 4. Diagram graph: |M| = 100; |g'| = 4.



296 S.O. Kuznetsov and S.A. Obiedkov

0

3000

6000

9000

12000

15000

10 20 30 40 50 60 70 80 90 100

|G|

T
im

e
in

m
ill

is
ec

o
n

d
s

Chein CbO Ganter Norris

Bordat GodinEx Godin Dowling

Fig. 5. Concept set: |M| = 100; |g'| = 25

0

10000

20000

30000

40000

50000

60000

70000

80000

10 20 30 40 50 60 70 80 90 100

|G|

T
im

e
in

m
ill

is
ec

o
n

d
s

CbO Ganter Norris Bordat

Godin Lindig Nourine

Fig. 6. Diagram graph: |M| = 100; |g'| = 25

The Godin algorithm (and GodinEx, which is the version of the Godin algorithm
using the cardinality of extents for the hash-function) is a good choice in the case of a
sparse context. However, when contexts become denser, its performance decreases
dramatically. The Bordat algorithm seems most suitable for large contexts, especially
if it is necessary to build the diagram graph. When |G| is small, the Bordat algorithm
runs several times slower than other algorithms, but, as |G| grows, the difference be-
tween Bordat and other algorithms becomes smaller, and, in many cases, Bordat
finally turns out to be the leader. For large and dense contexts, the fastest algorithms
are bottom-up canonicity-based algorithms (Norris, Ganter, CbO).
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Fig. 7. Concept set: |M| = 100; |g'| = 50
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Fig. 8. Diagram graph: |M| = 100; |g'| = 50

It should be noted that the Nourine algorithm with the best worst-case time com-
plexity did not show the best performance in our experiments: even when contexts of
the form (G, G, ≠) were processed (which corresponds to the worst case of Boolean
concept lattice), it was inferior to the Norris algorithm. Probably, this can be ac-
counted to the fact that we represent attribute sets by bit strings, which allows very
efficient implementation of set-theoretical operations (32 attributes per one processor
cycle); whereas searching in the Nourine-style lexicographic tree, one still should
individually consider each attribute labeling edges.
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Figures 9–10 show the execution time for the contexts of the form (G, G, ≠) with
2|G| concepts.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

10 11 12 13 14 15 16 17 18

|G| = |M|

T
im

e
in

m
ill

is
ec

o
n

d
s

Chein CbO Ganter Norris

Bordat GodinEx Godin Dowling

Fig. 9. Concept set: contexts of the form (G, G, ≠)
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Fig. 10. Diagram graph: contexts of the form (G, G, ≠)
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5 Conclusion

In this work, we attempted to compare some well-known algorithms for constructing
concept lattices and their diagram graphs. A new algorithm was proposed in [22]
quite recently, so we could not include it in our experiments. Its worst-time complex-
ity is not better than that of the algorithms described above, but the authors report on
its good practical performance for databases with very large number of objects. Com-
paring the performance of this algorithm with those considered above and testing the
algorithms on large databases, including “classical” ones, will be the subject of the
further work. We can also mention works [3, 19] where algorithms were applied for
learning and data analysis, e.g., in [19] a Bordat-type algorithm was used. The de-
scription of the algorithm in [3] does not give details about the test for uniqueness of a
generated concept, i.e., whether it is already in the list. As we have seen, this test is
crucial for the efficiency of an algorithm.

The choice of the algorithm for construction of the concept set and diagram graph
should be based on the properties of the input data. The general rule is as follows: the
Godin algorithm should be used for small and sparse contexts; for dense contexts, the
algorithms based on canonicity tests, linear in the number of output concepts, such as
Close by One, Norris, and Ganter, should be used. The Bordat performs well on
contexts of average density, especially, when the diagram graph is to be constructed.

As mentioned above, the experimental comparison of execution times of algo-
rithms is implementation-dependent. To reduce this dependence, we implemented a
program that made it possible to compare algorithms not only in the execution time,
but also in the number of operations performed. Such comparison is both more reli-
able and more helpful, as it allows choosing an algorithm based on the computational
complexity of the operations in particular implementation.
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