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Abstract. Representing concept lattices constructed from large con-
texts often results in heavy, complex diagrams that can be impractical
to handle and, eventually, to make sense of. In this respect, many con-
cepts could allegedly be dropped from the lattice without impairing its
relevance towards a taxonomy description task at a certain level of de-
tail. We propose a method where the notion of stability is introduced
to select potentially more pertinent concepts. We present some theoreti-
cal properties of stability and discuss several use cases where taxonomy
building is an issue.

1 Introduction

Formal Concept Analysis (FCA) is generally an appropriate framework for build-
ing categories defined as object sets sharing some attributes, irrespectively of a
particular domain of application. In this framework, categories are called “formal
concepts” each concept being a pair of an object set and an attribute set such
that every attribute holds for every object. This presents a convincing formal
model of the philosophical notion of a “concept” characterized extensionally by
the set of entities it covers and intensionally by the set of properties they have
in common [1]. Formal concepts, in turn, can be gathered in a lattice structure,
thus providing an overlapping taxonomy for the underlying categories.

Besides, traditional lattice operations translate properly in taxonomical and
categorical terms: on the one hand, the meet of two categories is a sub-category
holding objects belonging to both categories, along with their associated shared
attributes; on the other hand, the join of two categories is the super-category
defined by attributes shared by both categories, and the associated objects.

While formal concept lattices are theoretically robust, in practice, one often
has to face huge structures containing a prohibitive number of categories, even
for rather small datasets. Even if navigation in the structure is possible despite
large sizes [2], readability generally remains a problem as, computational issues
set apart, “even carefully constructed line diagrams lose their readability from
a certain size up” [3] (p. 75).



Solutions may consist in representing only the most meaningful portions
of the lattice by assuming that some concepts are likely to be less relevant
than others from the standpoint of taxonomy description [4–6]. To this end, we
need to filter out nodes that do not satisfy specified constraints of a certain
kind. In this paper, we develop one such pruning technique. In particular, the
notion of stability introduced in [7, 8] to discriminate irrelevant nodes seems to be
particularly appropriate and was fruitfully used in a previous attempt to prune
concept lattices in the practical case of epistemic community representation [5].

Here, we apply the method to larger datasets and other domains—other
kinds of epistemic communities, but also other kinds of data—as well as address
the dynamic description of the resulting reduced structures. While stability was
satisfactorily applied to a small sub-context consisting of agents using particular
notions, thus yielding meaningful taxonomies, it was unclear whether it could
be possible to go further in other domains and with much larger contexts.

2 Formal framework

Before proceeding, we briefly recall the FCA terminology [3]. Given a (formal)
context K = (G,M, I), where G is called a set of objects, M is called a set of
attributes, and the binary relation I ⊆ G×M specifies which objects have which
attributes, the derivation operators (·)I are defined for A ⊆ G and B ⊆ M as
follows:

AI = {m ∈M | ∀g ∈ A : gIm};

BI = {g ∈ G | ∀m ∈ B : gIm}.

Put differently, AI is the set of attributes common to all objects of A and BI is
the set of objects sharing all attributes of B.

If this does not result in ambiguity, (·)′ is used instead of (·)I . The double
application of (·)′ is a closure operator, i.e., (·)′′ is extensive, idempotent, and
monotonous. Therefore, sets A′′ and B′′ are said to be closed.

A (formal) concept of the context (G,M, I) is a pair (A,B), where A ⊆ G,
B ⊆ M , A = B′, and B = A′. In this case, we also have A = A′′ and B = B′′.
The set A is called the extent and B is called the intent of the concept (A,B). In
categorical terms, (A,B) is equivalently defined by its objects A or its attributes
B.

A concept (A,B) is a subconcept of (C,D) if A ⊆ C (equivalently, D ⊆ B).
In this case, (C,D) is called a superconcept of (A,B). We write (A,B) ≤ (C,D)
and define the relations ≥, <, and > as usual. If (A,B) < (C,D) and there is
no (E,F ) such that (A,B) < (E,F ) < (C,D), then (A,B) is a lower neighbor
of (C,D) and (C,D) is an upper neighbor of (A,B); notation: (A,B) ≺ (C,D)
and (C,D) � (A,B).

The set of all concepts ordered by ≤ forms a lattice, which is denoted by
B(K) and called the concept lattice of the context K. The relation ≺ defines
edges in the covering graph of B(K).



3 Stability

3.1 Rationale

An obvious solution to reducing the number of groups of individuals defined as
concept extents by selecting “most interesting groups” is to compute only an
upper part of the concept lattice: concepts with extents comprising at least n%
of all objects. This approach produces an order filter of a concept lattice often
called nowadays an “iceberg lattice”. There are several well-known top-down
lattice construction algorithms (see a review in [9]) and algorithms for computing
frequent itemsets [4, 10] suitable for building such iceberg lattices. The reduction
in the number of concepts, as compared to the number of concepts in the whole
lattice, can be considerable. However, one should be careful not to overlook
small but interesting groups, for example, “exotic” or “emergent” groups not
yet represented by a large number of objects, or, groups that contain objects
who are not members of any other group.

Undoubtedly, the size of the concept lattice is not only a computational
problem. The lattice may contain nodes that are just too similar to each other
because of noise in data or real minor differences yet irrelevant to a given purpose.
In this case, taking an upper part of the lattice does not solve the problem, since
this part may well contain such similar nodes.

To tackle the problem of selecting “meaningful” concept intents, the notion
of concept stability was proposed in [7, 8] and developed in [5]. The general idea
of stability is as follows: A concept is stable if its intent does not depend much
on each particular object of the extent.

3.2 Definition

In this section, we define the notion of stability of a formal concept introduced
in [7] and [8] in a slightly different form than the one we use here. The definition
given below is the one from [5].

Definition 1. Let K = (G,M, I) be a formal context and (A,B) be a formal
concept of K. The stability index, σ, of (A,B) is defined as follows:

σ(A,B) =
|{C ⊆ A | C ′ = B}|

2|A|
.

In [5], it is shown that the following proposition holds:

Proposition 1. Let K = (G,M, I) be a formal context and (A,B) be a formal
concept of K. For a set H ⊆ G, let IH = I ∩ (H ×M) and KH = (H,M, IH).
Then,

σ(A,B) =
|{KH | H ⊆ G and B = BIHIH}|

2|G|
.

Thus, the stability index of a concept is the probability of the intent B if
all subcontexts of K over the attribute set M are equally probable. Stability
indicates how much the concept intent depends on particular objects of the
extent: a stable intent is less sensitive to noise in object descriptions. Besides,
the extent of a stable concept is not “very close” to extents of its lower neighbors.



3.3 Properties

Since computing stability in general is a #P-complete problem [8], one needs
simple heuristics (easily computable sufficient conditions) to discard concepts
with low stability. The following two propositions give conditions of this sort.

Proposition 2. Given a concept (A,B) of a context (G,M, I), if there is a set
A1 ⊂ A such that A′1 6= B, then σ(A,B) ≤ 1− 1/2|A\A1|.

Proof. Since A1 ⊂ A, A′ = B, and A′1 6= B, we have B ⊂ A′1 and B ⊂ A′2 for
all A2 ⊆ A1. Therefore, |{A2 ⊆ A | A′2 = B}| ≤ 2|A| − |{A2 | A2 ⊆ A1}| =
2|A| − 2|A1| = 2|A\A1| and σ(A,B) ≤ 2|A|−2|A1|

2|A| = 1− 1/2|A\A1|.

In particular, if |A1| = |A|−1, one has σ(A,B) ≤ 1/2 and the concept (A,B)
has fairly low stability: usually, one retains concepts with stability very close to
1. Testing if A′1 6= B for some A1 with |A1| = |A| − 1 takes O(|A|2 · |M |) time.

Proposition 3. Given a concept (A,B) of a context (G,M, I), if there are
two sets A1, A2 ⊂ A such that |A1| = |A2|, A1 6= A2, and A′1, A

′
2 6= B, then

σ(A,B) ≤ 1− 3
2|A\A1|+1 .

Proof. By the condition, A1 ⊂ A, A2 ⊂ A, A′ = B, and A′1 6= B, A′2 6= B. To
obtain an upper bound of σ(A,B) we need to consider the situation where the
size of the set P(A1) ∪ P(A2) (by P(X) we denote the powerset of X) is as
small as possible. This is attained when A1 and A2 are as close as possible, i.e.,
|A1 \ A2| = |A2 \ A1| = 1. In this case (since |A1| = |A2|) we have |P(A1) ∪
P(A2)| = 2|A1| + 1/2 · 2|A1| = 2|A1| · 3/2. Therefore, σ(A,B) ≤ 2|A|−2|A1|·3/2

2|A| =
1− 3

2|A\A1|+1 .

In the same way one may obtain a condition for three, four, and so on extent
subsets that do not give rise to intent B. However, it seems hard to get a useful
general statement for an arbitrary number of such extent subsets, which is related
to the #P-completeness of computing stability.

Now we describe how stability of concepts changes with the growth of the
data sample. Consider the situation when a context (G,M, I) is updated with a
new object g to form context (G∪ {g},M, J) such that (G×M)∩ J = I. Then,
according to [11], we distinguish three possible types of concepts of the context
(G ∪ {g},M, J): an old concept that is equal to a concept in the old context,
a modified concept of the form (A ∪ {g}, B) such that (A,B) is the concept of
(G,M, I), and a new concept of the form ((A∪{g})′′, B∩{g}′) such that (A,B)
is a concept of (G,M, I) and B ∩ {g}′ is not an intent of (G,M, I). We denote
stabilities in contexts (G,M, I) and (G ∪ {g},M, J) by σI and σJ , respectively.

Proposition 4. Given a concept (A,B) of a context (G,M, I), if a new object
g is added to the set of objects to form context (G ∪ {g},M, J) (such that (G×
M)∩J = I), then for the stability of concepts of the new context (G∪{g},M, J)
there can be the following three possibilities:



1. For an old concept (A,B), we have σJ(A,B) = σI(A,B).
2. For a modified concept (A ∪ {g}, B), we have

σI(A,B) ≤ σJ(A ∪ {g}, B) ≤ 1/2 + σI(A,B)/2.

3. For a new concept (A,B), we have

σJ(A,B)
{

= 1/2, if B = {g}′;
< 1/2, otherwise.

Proof. (1) The extents of an old concept and all its subconcepts do not change,
neither does the stability.

(2) First, we prove that σI(A,B) ≤ σJ(A ∪ {g}, B). In fact, by definition of
σI(A,B) there are σI(A,B) · 2|A| subsets A1 ⊆ A (“old” subsets) such that
A′1 = B and since g′ ∩A′1 = B for every A1 such that A′1 = B, we have also
σI(A,B) · 2|A| subsets A2 such that g ∈ A2 ⊆ A ∪ {g} and A′2 = B. Since
A2 ∩A1 = ∅, we have

σJ(A ∪ {g}, B) ≥ (2|A| · σI(A,B) + 2|A| · σI(A,B))/2|A|+1 = σI(A,B).

To prove σJ(A∪{g}, B) ≤ 1/2+σI(A,B)/2, we note that the largest stability
of a modified concept (A∪{g}, B) is attained when A′2∪{g}′ = B for each of
the 2|A| subsets A2 ⊆ A. Taking into account 2|A| · σI(A,B) subsets A1 ⊆ A
with A′1 = B, we have

σJ(A ∪ {g}, B) ≤ (2|A| · σI(A,B) + 2|A|)/2|A|+1 = σI(A,B)/2 + 1/2.

(3) In the case of a new concept (A,B), we can have A′1 = B for A1 ⊆ A only if
g ∈ A1. The largest stability will be attained if A′1 = B for all such A1 ⊆ A
with g ∈ A1. Formally,

σJ(A,B) =
|{A1 ⊆ A | A′1 = B}|

|2A|
≤ |{A1 ⊆ A | g ∈ A1}|

|2A|
=
|2|A|−1|

2|A|
=

1
2
.

It is easy to see that the equality σJ(A,B) = 1/2 holds only for the object
concept of g, and only this concept has stability 1/2. All other new concepts
are less stable.

4 Applying intensional stability

As such, stability measures how much a group of attributes depends on some of
its individual members. This may thus be useful to detect unstable intents, and
therefore to build taxonomies where the aim is to represent intensional categories
in a taxonomy principally based on attributes. In particular, this notion is likely
to be relevant when investigating taxonomies of epistemic communities, i.e.,
groups of agents jointly interested in identical topics, sharing the same notions



[12, 6]. In this respect, contexts where scientists are objects and the topics on
which they work are attributes are particularly adequate: here, formal concepts
represent epistemic communities as groups of topics representative of a field
along with corresponding agents. If a field is “real”, it should not depend on
a few scientists: removing a few of them should not change the topics of the
corresponding epistemic community — “real” epistemic communities ought to
be stable in spite of noisy data. Apart from noise-resistance, a stable field does
not collapse (e.g., merge with a different field, split into several independent
subfields) when a few members stop being active or switch to another topic.

We illustrate this criterion using two case studies featuring scientists attend-
ing a particular conference and biologists working on a particular model animal.
In both cases, while stability-based lattice reduction is significant — from thou-
sands of concepts to less than 30 — we are still able to tell a meaningful “story”
with respect to what field experts may describe.

4.1 “European Complex Systems Conference”

Fig. 1. The 25 most stable concepts in the ECCS dataset

Using the database of all papers submitted to the second European Confer-
ence on Complex Systems in 20065, we build a context made of authors and
terms mentioned in article titles and abstracts. The resulting context contains
401 authors and 109 terms, which yields a lattice of 6011 concepts. The reduced
substructure featuring the 25 most stable concepts is presented in Fig. 1. Note
that the set of all stable concepts for an arbitrary threshold does not have to be
a lattice, even if it is in most of the examples used in this paper.
5 http://complexsystems.lri.fr/Portal/tiki-index.php?page=ECCS’06



From the examination of this lattice, it is possible to provide the following
desription of the community attending the ECCS:

– The notion of “network” is obviously a central issue: in addition to being a
large community, it is also a parent for several associated subtopics: “social
network” (agent-based networks), “structure network” (topological issues),
“interact network” (networks as representation of interactions), “node net-
work” (a node being a basic unit), “dynamics network” (evolution of net-
works) and “model network” (modeling of networks).

– “model” is an important topic too and is related to “agents” and “simula-
tion”, as well as “dynamics” (dynamical models in general), in addition to
“networks” — it is also worth noting that there exists a sizeable commu-
nity around “network dynamics model” which refers to scientists interested
in the modeling of network dynamics (morphogenesis). The use of models
to reconstruct distributions of any kind, is represented by the “model dis-
tribut” community. Finally, the modeling of dynamical processes (“model
dynam process”), although sensibly less significant, is an interesting field as
well in this framework.

– Some topics are more isolated as they do not form any joint epistemic com-
munity in the stabilized lattice — such as “algorithm” and “community” (to
the left). These concepts are likely to refer to minor fields focused on par-
ticular issues: community and cluster detection, or introduction and use of
novel and general algorithms to achieve empirical measurements in a variety
of cases.

In this lattice of 25 concepts it is not possible to see some fields which are
actually representative of minor yet active subcommunities — such as “network
distrib”, “algorithm network” and “algorithm model”, which are respectively the
40th, 50th and 75th most stable concepts. Nonetheless, on the whole and given
a certain (high) level of epistemological description, the above story appears to
be fairly consistent with what experts of the field would perceive as the main
topics of complex systems science at this time.

4.2 Embryologists working on the “zebrafish”

In [5], we have applied stability-based pruning to data obtained from the biblio-
graphical database of MedLine abstracts coming from a well-bounded community
of embryologists working on the zebrafish during the period 1998–2003, the goal
of the application being to build a taxonomy of this research field.6 Since the
purpose of that paper was to illustrate the proposed technique, we used a small
random sample context consisting of 25 authors and 18 words. The incidence
relation of the context indicated which authors used which words in their papers
on the subject. The lattice of this context consisted of 69 concepts, of which
we selected the 17 most stable ones (with stability ≥ 0.52). They constitute a

6 Data is obtained from a query on article abstracts containing the term “zebrafish”
at http://www.pubmed.com.



lattice shown in Fig. 2 (some of the 18 attributes are not contained in any stable
intent except for the intent of the bottom concept; they are not shown on the
diagram).

Fig. 2. The lattice of the 17 most stable concepts of a context built from 25 zebrafish
researchers and 18 words they used in their papers (taken from [5]).

Taking a larger data sample, 250 authors using the same 18 words, we get
1146 concepts. Of course, in the larger structure, stability indices are also larger
(see Section 3), which makes it impractical to use the same stability thresholds
for pruning in both cases. Hence, we simply take the same number of the most
stable concepts. Fig. 3 shows the lattice formed by the 17 most stable concepts of
this context (figures in boxes indicate the extent size of corresponding concepts).

As should be expected, the lattices in Figs. 2 and 3 are not identical, but
still share a lot of features in common. One interesting difference is that, in the
structure based on the larger data sample, “pathway” occurs as a subconcept
of “signal”, which certainly makes sense from the domain point of view (“path-
way” on its own is still a concept intent, but it is not sufficiently stable in the
larger context). Some less important communities, like “mouse, conservation” or
“signal, pathway, mouse” are missing from Fig. 3. Instead, the taxonomy result-
ing from a larger number of authors focuses on more solid associations ignoring
some particularities, which can be reintroduced by increasing the number of
stable concepts included in the taxonomy.

4.3 Improving the quality of taxonomies: linguistic processing

In our analysis of the ECCS and zebrafish data, we described authors in terms
of words they used in their papers. We removed stop words (such as “and” or
“was”), common words with no special meaning for the domain (such as ‘’size” or
“function”), as well as “paradigmatic” words, i.e., those relevant to all members
of the entire community even if they are not explicitly used by all members



Fig. 3. The lattice of the 17 most stable concepts of a context built from 250 zebrafish
researchers and 18 words they used in their papers.

(the obvious examples are “complex” and “system”). The remaining words were
stemmed using the Porter algorithm [13].

In the process, it has become clear that these techniques are certainly not
sufficient: the resulting author–word tables contain a lot of noise coming, in
particular, from homonymy and synonymy. We approached the latter by man-
ually combining synonyms—or other semantically related words that could be
considered equivalent for our purposes—into one attribute. Of course, this re-
quires some expert knowledge of the domain and cannot be done simply using a
general-purpose English thesaurus: words that are synonymous in everyday lan-
guage can be used differently in the domain to be described or, on the contrary,
there may be domain-specific associations between otherwise unrelated words.
Homonymy is even more difficult to deal with: words used on their own, without
taking the context into consideration, are not very informative; it seems more
appropriate to use word phrases.

That we still get rather meaningful taxonomies from formal contexts obtained
with such poor means suggests that the methods we use further on may, in
general, be valid, but we believe that better linguistic preprocessing will have a
significant effect on the quality of the resulting taxonomies.

5 Applying extensional stability

The stability index discussed so far relates actually to intensional stability. In a
dual manner, it is possible to define an extensional stability index, which indicates
how a concept extent depends on particular attributes: if a given extent were
to lose some attributes, would it remain the same? In other words, would the
objects of a given concept still belong to a same category if they stop sharing



some attributes? A stable extent is thus likely to indicate a group of objects
which do not depend on particular attributes.

Definition 2. The extensional stability index σe of a concept (A,B) is defined
as follows:

σe(A,B) =
|{C ⊆ B | C ′ = A}|

2|B|
.

Like intensional stability, the relevance of this index depends on the domain
and the aim of the lattice-based taxonomy. For instance, affiliation data, in
social science, defines people related to some organizations or events; in this
case, formal concept lattices represent taxonomies of agents who share identical
affiliations. Extensional stability may be helpful in this situation in measuring
how durable links between people within a community are. In this respect, it
principally relates to the social aspect of the group: if some people are together
because they have a given activity, one may wonder whether they will still be
together if they stop doing this activity. People who are also doing something else
together are more likely to belong to stable extents. Here, extensional stability
tests how much the community as a group of people depends on particular
activities. In other words, if one of the activities that unites them becomes less
appropriate, will they still survive as a separate community?

To illustrate this, we focus on data stemming from a celebrated case study
by Davis, Gardner and Gardner (DGG) [14] which features ladies attending
particular events in a small Mississippi town in the 1930s. Using a context where
objects are people and attributes are attendance to social events, it is possible
to build a concept lattice representing groups of women attending jointly some
sets of events [15]. However, even in this simple case the resulting lattice is
already rather sizeable with 65 concepts; finding cohesive subgroups in such a
structure could be uneasy. By contrast, the lattice corresponding to extensionally
stable concepts (stability index strictly above .5) contains only three concepts,
in addition to top and bottom nodes: their extents are {g14}, {g12, g13, g14}
and {g1, g3}. The stabilized lattice is shown on Fig. 4.

The identification, in this data, of subcommunities together with core and
peripheral members has already been the focus of several studies in social science.
While interview-based identification in the original DGG study suggests that
{g1, g2, g3, g4} and {g13, g14, g15} are respectively core members of two distinct
groups, a comprehensive review given in [16] reveals a collection of remarkably
diverse results, depending on whether subgroups were identified using, inter alia,
principal component analysis, matrix algebra, information theory, as well as
concept lattices — by means, in this latter case, of a relatively manual approach
[15].

Most interestingly, a study by Doreian [17] agrees particularly well with our
results: it yields the same core members as those found in our stabilized lattice,
i.e. {g1, g3} and {g12, g13, g14}. His approach relies on Q-analysis [18], whose
principles are unsurprisingly analogous to FCA: for a given context, each object
is defined as a “polyhedron” where attributes are edges. In this framework, a
formal concept can thus be seen as an intersection of polyhedra — extents and



intents are respectively defined by polyhedra-objects and edges-attributes par-
ticipating in a given intersection [19]. Additionally, Q-analysis introduces the
notion of connected paths between polyhedra, which are plausibly useful for
dealing with connection patterns between objects, yet irrespective of the actual
attributes underlying these connected paths. As Freeman underlines, “by con-
sidering subsets of women who were connected at higher levels, Doreian was
able to specify degrees of co-attendance ranging from the core to the periphery
according of each group” [16]. The idea of strong relationships between objects
independently of particular attributes is not dissimilar to our notion of exten-
sional stability, and could perhaps account for our identical results.

Fig. 4. The lattice of concepts with extensional stability above .5 for the DGG data.

More broadly, while extensional stability appears to yield a satisfying out-
come in this small case study, it is nonetheless the matter of further research to
check its adequacy on larger datasets and different domains of application.

6 Dynamic mappings

Let K1 = (G,M, I) and K2 = (H,N, J) be two contexts describing the same
domain in two different time points (or periods). How has the domain changed
between these time points? In particular, if (A,B) ∈ B(K1) is a concept of K1,
what has happened to it in K2?

Consider a concept (C,D) ∈ B(K2). If the closure of B ∩D equals B in K1

and D in K2, we may say that (A,B) and (C,D) are intensionally related. In
the case of the ECCS data, concepts intensionally related to (A,B) represent
the evolution of the field B between the two periods.

Figure 5 shows two diagrams corresponding to the ECCS conferences in 2005
and 2006. In both cases, we have selected the 15 most stable concepts. The dif-
ferences are as follows: the diagram for 2005 contains concepts with intents



{network, dynamics}, {dynamics, model, process}, {dynamics, process}, and
{information}—all missing from the 2006 diagram, which contains its own unique
intents: {interaction}, {network, social}, {model, agent}, and {simulation, model}.
The only 2006 concept intensionally related to {network, dynamics} is the one
with intent {network, dynamics, model}. This suggests that the 2005 topic de-
scribed by {network, dynamics} has merged with the topic described by {network,
dynamics, model}; at least, the difference between the two is no longer impor-
tant at the given level of detail. The other three 2005-specific communities are
intensionally related only to the bottom node of the 2006 diagram, which means
that they have disappeared or become less important. On the other hand, the
bottom node of the 2005 diagram is intensionally related to the four 2006-specific
concepts, suggesting that they correspond to new subareas of research7. Even
though {model, agent} has a parent topic, {model}, already present in the 2005
taxonomy, the “agent” aspect is new, thus, defining a new subfield, that has no
corresponding nodes in 2005, which is indicated by the fact that it is intensionally
related to the 2005 bottom node.

Fig. 5. Stabilized 15 concept lattice for ECCS 2005 and 2006

7 Again, as we deal with “stabilized” lattices, these new areas are such only at the
chosen level of detail. It would be more accurate to say that their importance has
increased.



In the above discussion, the social aspect of the communities has been com-
pletely ignored. In some contexts, it is more appropriate to describe the history
of a community in terms of what happens to its members. In this case, if all
authors dealing with topic A in 2005 switch to topic B in 2006, B should be
considered as the 2006 equivalent of the 2005 A-community, even if A is still an
active topic in 2006 (supported by newcomers, for example). Such population
moves can be captured by extensional relations between nodes defined dually to
the intentional relations.

It is worth noting that extensional and intentional relations defined in this
section originate from the mappings in nested line diagrams [3]. In the case of
intentional relations, we assume that that G ∩H = Ø (if this is not so, we can
always time-tag the objects) and define a context K3 = (G∪H,M ∪N, I ∪J). If
a nested line diagram of K3 is constructed so that G is used as the object set for
the outer diagram and H is used as the object set for the inner diagram, then
the nodes intensionally related to an outer node are the “realized” nodes of the
inner diagram inside this outer node.

Another approach to dynamic mappings could be based on the theory of
multicontexts [20], which however has to be adapted for our reduced lattice-
based structures.

7 Conclusion

We extend a previous approach based on the notion of stability to build arbi-
trarily small concept lattices from sizeable contexts. After presenting theoretical
properties for stability, introducing in particular several propositions useful for
incremental computation of stability in evolving contexts, we distinguish inten-
sional stability from extensional stability and illustrate them through selected
case studies, where one or the other could be suitable. In particular, intensional
stability appears to be useful for epistemic community taxonomy building, while
extensional stability seems to be more effective for finding cohesive subgroups in
communities of agents attending various events. These example also demonstrate
how different expectations regarding what makes a formal concept relevant for
a given taxonomical description task may call for distinct usages of stability,
extensional or intensional, which admittedly might not apply in all domains. We
eventually showed how we could make it easier to track significant taxonomical
evolutions using dynamic mappings between stability-reduced lattices.
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