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AnHOTanus

In this paper, we estimate the rate of convergence in the ergodic
theorem for Fuchsian groups discovered by Ledrappier. Using the asymptotics
of the integrals along horocycle flow in terms of finitely-additive measures
on the space of rectifiable arcs obtained by Bufetov and Forni, we modify
the argument of Ledrappier to obtain the rate of convergence. This rate
appears to depend heavily on the spectral properties of the underlying
surface. In this draft we restrict ourselves to the case of smoothened sums.

1 Introduction

In this paper, we study ergodic properties of discrete subgroups of SL(2,R). In
[1] Ledrappier formulates and proves the ergodic theorem for specific sums over
the balls in discrete subgroup I'. The main step in his proof is the translation
from such sum to the integral along the horocycle on the surface I'\SH. From
this point one may use the well-studied ergodic theory of horocycle flows. Ledrappier,
for example, applies the ergodic theorem of Dani (1982). In this paper we are
concerned with the rate of convergence to the mean in the ergodic theorem,
so we need results of [2]. In [2] Bufetov and Forni, in particular, discover
the exact asymptotics for the ergodic integral of horocycle flows in terms of
finitely-additive measures S, depending on the Casimir parameter (see the
next Section). We substitute their result to the argument of Ledrappier and get
the error term depending on the spectral properties of Laplace operator on the
surface I'\ SH.

2 Ergodic theorems
Let f : R*\{0} — R* be an even function with compact support, let T be a

discrete subgroup of SL(2,R) of finite covolume and without torsion. Following
[1] define a norm on I':

a b\l _ 2124 2 2
H(C d)H\/a + b2+ 2 +d2.

Let | - | be the standard euclidean norm on R?\{0}. The following theorem is
proved in [1]:

Theorem (Ledrappier). Assume that T-orbit of X € R?\{0} is non-discrete.

Then )
Am oz > f0X)= |X|/|Y|

YED|IVIIST
where ¢(T') = 1/4(vol(T\SL(2,R))

Corollary 1 (smoothened version). Let ¢ be a smooth function with compact
support in [0,1] and unit mean with respect to Lebesgue measure, and let X be
as in the above Theorem. Then

o vl
gm o > @(T)f” |X|/|Y|
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We want to estimate the rate of convergence in smoothened version of this
ergodic theorem.

In [2] finitely-additive measures D3 on SL(2,R) were defined. They may be
represented as Dif = M% @ M+ @ MY-%, where K, A and N are subgroups
of SL(2,R) as in standard K AN-decomposition. We are interested in measures

Dy = M* @ MjH*

on the space of horocycles K A = R?\{0}.

In [2] Bufetov and Forni also define functions ﬁff : SM xR — R, where SM
is the spherization of the tangent bundle of the surface M = I'\SL(2,R), and
prove the following theorem:

Theorem 1 (Bufetov, Forni).

T
‘(/ fohg(:v)ds—T/ f(x)dx) — By(x,T)
0 M

where || - ||s stands for the Sobolev s-norm on the space of functions on M, f is
a function on M.

< G| f1ls(1 + log [T),

Br= Y. DHHBI+D, (1B,

n€ESpec(d)NR+

and mean of [ is understood with respect to the measure induced from Haar
measure on SL(2,R).

Corollary 2 (smoothened version).

T
‘( / o(t/T)f o hY (z)dt — T / f(x)dx> — B§(2,T)| < G|l £l (1+log | T)) T,
0 M

_ _ T
where BY =37 co,eenrr+ Dif ()BT +D, (f)Bf~, and Be*E = [ o(t/T)dg:E
— here we interpret 5f as a finitely additive measure on the horocycle.

We will need the following properties of 5. Define v = /T —4p.

1. Holder property:
1FRy
B3 (2. T)| < CulT| = (1)

for p # 1/4,

81 (&, T)| < CITI3Y, |8y (2, T)| < CIT2.
4 4
2. Renormalization under geodesic flow: for p # 1/4

BE(g-w,Te") = exp(

¥
OB (1),

for p=1/4 (v =0)

T A (1 —;) Bl (@, T)
,81_/4(g_tz,Tet) p2 0 1 ,81_/4(50,T) ’



Our main result is as follows:

Theorem 2. Put v = /11/3 — 1. Let f : R2\0 — R be the function with
compact support, let pu(f) be the minimal Casimir parameter from (0 74) for

T\SL(2,R). Then for v(u(f)) > o
S /X)L avs

Y€ [lI<T
> Di(Y) (f(Y)Blf"s (a; |X|T|Y|)> +o(T7), (2)

neSpec()NRT,5€{+,—}

where x € T\SL(2,R) depends only on X, and for 'y( () <7

v (1(f))
S /I 6X) = i [ TPy o)

YEL,|IVIST

in the above notation.

3 Proof of the main theorem
Let K be a compact in R?\{0}, f be a positive function with support in K. We

will need the following data depending on an arbitrary small r > 0:

1. Partition K = I_Ifi(lr)Ki(r), diamK; < 2r,N(r) < C/r?, where dY stands
for the Lebesgue measure on the plane, C' is fixed.

2. Partition of unity 1 = Z 1 ozz, a; >0

[last = siay <crr'. [ asflay <o <05 @
; K\K;

where 1/ < r we are going to adjust later, and ||-||; is the Sobolev L!-norm.

Denote f; = a;f. Also note that || f;||; has the same estimate as |||, (see the
Section with the proof of Ledrapie’s theorem: ¢ there depends only on I'; and
hence the derivative of ¢, is bounded). From [1] (see the last Section) we know
that for the positive f

— T+ D

\X\C(f) [XTC()
> / forfis<y ¥ jex<y [ hentws

i y€el,|yILT _T+D_

|X\C(f> T IXTe(h

where D is the constant depending solely on K, ¢(f) = infy cqupp(s) Y], C(f) =
SUPy esupp(s) Y|, and  is the projection on M of the point on the intersection
of the horocycle corresponding to X and the geodesic passing through 4. Using
the fact that D depends only on K we may rewrite these inequalities for not
necessary positive f:

T
[X1C(f)

Y X - [ fentwel=oqy)
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(note that the change of limits of integration changes the summands by O(1).
Using Lemma 3 from [1] (we recall the proof of this Lemma in the last
Section, see Proposition 6.3) we get

X111
[&l] ' ; )
|Z Z P fl( ) Z P\ v fioht (l’)dﬂ = 0(7)’
i ~el,||v|I<T ( T ) i |X4Y <|X||Y2|T) T

(4)

where Y; € supp(«;). From the corollary of Theorem 1

2 *”(H%H)f” |X\/ i Jrparsoe 1)+ 5] ("””’X&f»)*o(p/:?ﬂ)’

YEL,|IVIST

where f is a lift of f on SM as in [1]. Theorem follows from the Proposition
below (for appropriate r and 7’):

Proposition 3.1.

S0 o ) 211094 ) o,

where c(p) is such that the series 3, c(p) is convergent and (u) is the ezponent
in (1).
We will need the following

Proposition 3.2. Let f be the positive function with compact support. Then
D (f) < Cu*|Iflla k> 1.

We now deduce Proposition 3.1 from Proposition 3.2. For the sake of convenience
we omit indices u, J, ¢, and denote B(Y) = B(x, ﬁ) We want to estimate
the Sobolev norm of the difference of left and right hand sides of Proposition
3.1. First estimate

> af(V)BEY) = Y aif(VBEY)| = Y aif (V) B))| < c(ry®.

Then compare the derivatives:

5 (a0 1020) =[5 (10 (Zevm -0}

<CT"Wr 4 C ‘Z %‘:B(E) - LBa(x ) ‘ < T Wi
8041
+C ‘Z B(Y))‘ . (5)

Here we use the fact that the derivative of B(Y') is bounded:

</OT (t/T)d,B> (/ B t/T) - (/ B(t) > — o).



da;

Now note that in supp(a;) [9%| < Cr/r', |B(Y;) — B(Y)| < C(rT)*™ and

hence we get

7.+1

1Y aif B(Y;) = Y aiB(Y)|1 < CT"™ -

We have the following errors:

y+1 T2/3 1
Ty, 77— 17, .

b
r/ Iy

rr

o is the value of « for which maximum of these errors overpowers the main
term in the asymptotics.
4 Translation to the smoothened sum

In this section we prove the estimates concerning the translation to the smoothened
Birkhoff sum.

4.1 Proof of corollary 2

We want to estimate

Fonl( [ sz
[ ogiront@a-1 [ s [ ok

Divide the interval [0, T into intervals A; of length A. We have

Z/ Ly Fohl (2)dt— 5/ ()dx) :Z(/Ap(izi)fohgf(x)da;—
A [ jwisro@ag) - > (e(Z)p(a0) +0(a%/T)+
+0ogalfl) = X ([ e+ oA+

+0(7)+000g A1) = [ o(7)d5+0(A71)+0(A)+ O(0g Al 1),
©

As always, we omit indices of 5, and 7y is a Holder exponent of 5. To complete
the proof of corollary 2 set A = T/3.

Translation to the smoothened Birkhoff sum in (4) is completely analogous.
Note that the ||v|| parameter int the sum corresponds to the parameter of
integration by Proposition 6.3 (Lemma 3 in [1]).

5 Riemann-Stieltjes integral
We smoothened our ergodic sums because of the nature of distributions D,,

which are defined on the space of smooth functions. However, one may interpret
the main result in the terms of Riemann-Stieltjes integral. To do this, one



should think about the sum of the form > D(f;)53(z, IX\TT) as of the sums

approximating Riemann-Stieltjes integral f fdg, [ (corresponding to our )
being the Holder function and g (dg corresponding to our D,,) being the smooth
function. We now formulate our main result in these terms:

Theorem 3. Put v, =+/3—1. Let f : R?\0 — R be the function with compact
support, let p(f) be the minimal Casimir parameter from (0, %) for T\SL(2,R).
Then for v(u(f)) > 70

2 J6X)= X/Y| R

e, IMII<T
S (10 (v i) B) £e. @

nESpec(O)NR*,6e{+,—}

where x € T\SL(2,R) depends only on X, and for F(u(f)) <6

y((f))
Yoo fx) = |X|/ vl dY+O(T ).

veLIVIST

The proof follows the same lines as the smoothened version. Note that two
approximating sums over the partitions of size < r differ by (r7')7r/r’ (see [3]),
and, again, we have the following errors:

rtt 11
r

T r,—, —=.
Tt 2

Again, ~{, is the value of v for which maximum of these errors overpowers the
main term in the asymptotics.

6 Proof of the Ledrappier theorem

In this section we present the proof of Ledrappier theorem following the original
one from [1]. We now recall its statement.

Let f: R*\{0} — R* be an even function with compact support, let " be a
discrete subgroup of SL(2,R) of finite covolume and without torsion.

Theorem (Ledrappier). Assume that T'-orbit of X € Rz\{O} is non-discrete.

Then )
lim —
Amos > f0X)= |X| |Y|
YED|IVIST
where c¢(I') = 1/4(vol(T'\SL(2,R))
Without loss of generality we may assume that —1 € T. Identify R?\{0}/+
with the space of stable horocycles: point X = («, 3) corresponds to the horocycle
®(X) on H given by the equation

(Bx — )’ + B> —y =0.

Define ¥ : R?\{0}/+ — PSL(2,R) mapping X to the unique vector on ®(X)
lying on the geodesics passing through i. Define s : I' x R?\{0}/+ — R given
by

V(v X) = yU(X)hg(y,x)-



We now want to lift f to obtain the function f : SH — R. Set

F(2) = f(¥™1(Zhs))e(5), Zhs € W(RI\{0}/£).
Proposition 6.1.

s(v,X)+e +oo
f(X) = / FOru(X)h,)ds = / Fru(X)h,)ds
s(v,X)—e —0o0

for all v €T, X € R2\{0}/ £ 1.

Indeed, f(¥~1(Zh,)) is constant along the horocycle and ¢ has mean one
and support in [—¢,¢].
This makes the following Proposition evident:

Proposition 6.2.
[ fzaz = [ sxjax,

where dZ stands for the Liouville measure, dX stands for the Lebesque measure
and integration is over whole space.

Now set SM = I'\SH, and starting from f define a function f: SM — R.
Let 7 : SH — SM be the standard projection. Define

fzy= Y f).

f
yer—1(2)

Note that this sum is finite because T" is discrete.

Chose ¢ small enough so that for all 77,72 € I supports of fo~; and f o,
do not intersect. It is possible because I' does not contain elliptic elements. This
also implies that for all v;,v € T" such that 11X € suppf and 12X € suppf
[s(71,X) —&,8(m1,X) +e|N[s(y2, X) — €, s(72, X) +¢] = @. Indeed, we need to
show that if vX is in suppf, then |s(y, X)| > 2¢. But X € suppf implies that
X € suppf o. Now note that intersection of the horocycle corresponding to
X with suppf oy is {U(X)hs, s € [—¢,¢]} and our claim follows from the fact
that f o v have disjoint support.

Write

s(v,X)+e
OREFICOED DU B (CLT6STRLNS
IvI<T,ver IVISTYET (4 Xy

5(7,X)+e

D DR B (U 100) RSO

||’YH§T7’Y€FS(%X),E

We will need



Proposition 6.3.

IXP? _ hXP?
X2 X

X2y X 2% (7, X) = |]v]]% -

This implies

Corollary 3. There is a constant K (X, suppf) such that for vX € suppf we
have
A2 = 1X P X [2s? (v, X)| < K (X, suppf).

We prove this proposition with (almost) direct computation.

s (’y = <i Z) ,(1,0)t) .

This gives us two equations: on the imaginary and real parts,
Yhsgii = i.

This may be understood as follows: we identified (1,0)" with a horizontal horocycle

passing through ¢ and a vertical vector Zy at i is identified with the unit in

PSL(2,R), so that ¥((0,1)") = Z,. We shift it by v (recall that T acts on

PSL(2,R) with left shifts). We want to find s such that geodesics, passing

through vZyhs passes throgh ¢, and that’s expressed in the equation.
Expanding, we have

a b\ (1 s\ (e 0Y. [(a as+c\ (et 0. [ea etlas+c)\.
c d)\0o 1)\0 et)"T\ec es+d)\0 et)" " \ete etles+d))'
etai + e (as +c) :

_ ot ot —t _
_etci+6_t(68+d)_l’ea_e (cs+d),e “(as+c)=—ec. (9)

Solving these equations we get

_ ab+cd
a? +c?’

Now substitute s to the statement of the Proposition and obtain the desired
formula.

Note that for every X € R?\{0} there exist k € K, a € A, such that
X = ka(1,0)t. Tt is easy to see that for all v1,72 € T, s(y172, X) = s(72, X) +
s(m,72X). Nota also that if k € K, then s(k,X) = 0,|kX| = |X]| (point i is
fixed). So s(vk, X) = s(v, kX). Moreover, ||vk|| = ||ky|| = ||7]| (k preserves the
norm of row vector while acting from the right) which implies that if statement
of the Proposition holds for « then it holds for k. Hence it is enough to prove
the Proposition for X = (e*,0)! = g»(1,0)*. But

S(7u g)\(17 O)t) = 8(79% (17 0)t> - S(gA, (1, O)t) = 8(79/\7 (17 O)t) = 62)\5(77 (17 O)t)

Proposition implies the following estimates for v € I' such that vX € suppf.

3D >0, s(v, X) = v < T,

< I-D
— X[y X



T+ D
| X[y X1
We use the fact that D depends only on support of f and that for all functions

with support within the support of f we may chose the same D. Set k(f) =
infy esupps [V, K(f) = suPy eguppy |Y|- Applying the above inequalities we get

IVl <T = [s(v, X)| <

T—-D T+ D
TXTE () TXTECH
2 / fohg(x)ds < Z f(yX) <2 / fohg(x)ds.
_ T-D IvI<T,ver __T+D
TXTR () TXTR()

Multiplier 2 pops up because v, —y € I act on H in the same way. Applying the
ergodic theorem for horocycle flow we get

(D) 1 1 [T
4|X|/ kP Sdm g 2 J0X) st [ L

Iv|I<T,ver

Partition f into the sum of f; with small supports. We obtain

L (7)1 | 11 [T
49{2/ K2 S dmT 2 mX’§4|X|¥|X|/ R

IVIST,vel

f(2)
4

Desired sum is bounded by riemannian sums for the function . Passing to

the limit and noticing that

/?(Z)dz _ %/f(X)dX.

we get the statement of the Ledrappier theorem.
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