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Àííîòàöèÿ

In this paper, we estimate the rate of convergence in the ergodic

theorem for Fuchsian groups discovered by Ledrappier. Using the asymptotics

of the integrals along horocycle �ow in terms of �nitely-additive measures

on the space of recti�able arcs obtained by Bufetov and Forni, we modify

the argument of Ledrappier to obtain the rate of convergence. This rate

appears to depend heavily on the spectral properties of the underlying

surface. In this draft we restrict ourselves to the case of smoothened sums.

1 Introduction

In this paper, we study ergodic properties of discrete subgroups of SL(2,R). In
[1] Ledrappier formulates and proves the ergodic theorem for speci�c sums over
the balls in discrete subgroup Γ. The main step in his proof is the translation
from such sum to the integral along the horocycle on the surface Γ\SH. From
this point one may use the well-studied ergodic theory of horocycle �ows. Ledrappier,
for example, applies the ergodic theorem of Dani (1982). In this paper we are
concerned with the rate of convergence to the mean in the ergodic theorem,
so we need results of [2]. In [2] Bufetov and Forni, in particular, discover
the exact asymptotics for the ergodic integral of horocycle �ows in terms of
�nitely-additive measures βµ, depending on the Casimir parameter (see the
next Section). We substitute their result to the argument of Ledrappier and get
the error term depending on the spectral properties of Laplace operator on the
surface Γ\SH.

2 Ergodic theorems

Let f : R2\{0} → R+ be an even function with compact support, let Γ be a
discrete subgroup of SL(2,R) of �nite covolume and without torsion. Following
[1] de�ne a norm on Γ:∥∥∥∥(a b

c d

)∥∥∥∥ =
√
a2 + b2 + c2 + d2.

Let | · | be the standard euclidean norm on R2\{0}. The following theorem is
proved in [1]:

Theorem (Ledrappier). Assume that Γ-orbit of X ∈ R2\{0} is non-discrete.
Then

lim
T→∞

1

T

∑
γ∈Γ,‖γ‖≤T

f(γX) =
1

c(Γ)|X|

ˆ
f(Y )

|Y |
dY,

where c(Γ) = 1/4(vol(Γ\SL(2,R))

Corollary 1 (smoothened version). Let ϕ be a smooth function with compact
support in [0, 1] and unit mean with respect to Lebesgue measure, and let X be
as in the above Theorem. Then

lim
T→∞

1

T

∑
γ∈Γ,‖γ‖≤T

ϕ

(
‖γ‖
T

)
f(γX) =

1

c(Γ)|X|

ˆ
f(Y )

|Y |
dY
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We want to estimate the rate of convergence in smoothened version of this
ergodic theorem.

In [2] �nitely-additive measures D±µ on SL(2,R) were de�ned. They may be

represented as D±µ = MK,±
µ ⊗MA,±

µ ⊗MN,±
µ , where K,A and N are subgroups

of SL(2,R) as in standard KAN -decomposition. We are interested in measures

D̃±µ = MK,±
µ ⊗MA,±

µ

on the space of horocycles KA ∼= R2\{0}.
In [2] Bufetov and Forni also de�ne functions β±µ : SM ×R→ R, where SM

is the spherization of the tangent bundle of the surface M = Γ\SL(2,R), and
prove the following theorem:

Theorem 1 (Bufetov, Forni).∣∣∣∣∣
(ˆ T

0

f ◦ hUs (x)ds− T
ˆ
M

f(x)dx

)
− βf (x, T )

∣∣∣∣∣ ≤ Cs‖f‖s(1 + log |T |),

where ‖ · ‖s stands for the Sobolev s-norm on the space of functions on M , f is
a function on M .

βf =
∑

µ∈Spec(�)∩R+

D+
µ (f)β+

µ +D−µ (f)β−µ ,

and mean of f is understood with respect to the measure induced from Haar
measure on SL(2,R).

Corollary 2 (smoothened version).∣∣∣∣∣
(ˆ T

0

ϕ(t/T )f ◦ hUt (x)dt− T
ˆ
M

f(x)dx

)
−Bϕf (x, T )

∣∣∣∣∣ ≤ Cs‖f‖s(1+log |T |)T 2/3,

where Bϕf =
∑
µ∈Spec(�)∩R+ D+

µ (f)Bϕ,+µ +D−µ (f)Bϕ,−µ , and Bϕ,±µ =
´ T

0
ϕ(t/T )dβ±µ

� here we interpret β±µ as a �nitely additive measure on the horocycle.

We will need the following properties of β±µ . De�ne ν =
√

1− 4µ.

1. H�older property:

|β±µ (x, T )| ≤ Cµ|T |
1∓<ν

2 (1)

for µ 6= 1/4,

|β+
1
4

(x, T )| ≤ C|T | 12 +, |β−1
4

(x, T )| ≤ C|T | 12 .

2. Renormalization under geodesic �ow: for µ 6= 1/4

β±µ (g−tx, Te
t) = exp(

1∓ ν
2

t)β±µ (x, T ) ,

for µ = 1/4 (ν = 0)(
β+

1/4(g−tx, Te
t)

β−1/4(g−tx, Te
t)

)
= exp(

t

2
)

(
1 − t

2
0 1

)(
β+

1/4(x, T )

β−1/4(x, T )

)
.
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Our main result is as follows:

Theorem 2. Put γ0 =
√

11/3 − 1. Let f : R2\0 → R be the function with
compact support, let µ(f) be the minimal Casimir parameter from (0, 1

4 ) for
Γ\SL(2,R). Then for γ(µ(f)) > γ0∑

γ∈Γ,‖γ‖≤T

φ(‖γ‖/T )f(γX) =
T

c(Γ)|X|

ˆ
f(Y )

|Y |
dY+

∑
µ∈Spec(�)∩R+,δ∈{+,−}

D̃δ
µ(Y )

(
f(Y )Bϕ,δµ

(
x,

T

|X||Y |

))
+ o(T γ), (2)

where x ∈ Γ\SL(2,R) depends only on X, and for γ(µ(f)) ≤ γ0∑
γ∈Γ,‖γ‖≤T

φ(‖γ‖/T )f(γX) =
T

c(Γ)|X|

ˆ
f(Y )

|Y |
dY +O(T γ(µ(f)))

in the above notation.

3 Proof of the main theorem

Let K be a compact in R2\{0}, f be a positive function with support in K. We
will need the following data depending on an arbitrary small r > 0:

1. Partition K = tN(r)
i=1 K

(r)
i , diamKi ≤ 2r,N(r) ≤ C/r2, where dY stands

for the Lebesgue measure on the plane, C is �xed.

2. Partition of unity 1 =
∑N(r)
i=1 αi, αi ≥ 0ˆ

Ki

|αif − f |dY ≤ Crr′,
ˆ

K\Ki

|αif |dY ≤ Crr′, ‖αi‖1 ≤ C
r

r′
, (3)

where r′ < r we are going to adjust later, and ‖·‖1 is the Sobolev L1-norm.

Denote fi = αif̃ . Also note that ‖fi‖1 has the same estimate as |αi‖1 (see the
Section with the proof of Ledrapie's theorem: ε there depends only on Γ, and
hence the derivative of ϕε is bounded). From [1] (see the last Section) we know
that for the positive f

∑
i

T−D
|X|c(f)ˆ

− T−D
|X|c(f)

f ◦ hUs (x)ds ≤
∑
i

∑
γ∈Γ,‖γ‖≤T

f(γX) ≤
∑
i

T+D
|X|C(f)ˆ

− T+D
|X|c(f)

fi ◦ hUs (x)ds,

where D is the constant depending solely on K, c(f) = infY ∈supp(f) |Y |, C(f) =
supY ∈supp(f) |Y |, and x is the projection on M of the point on the intersection
of the horocycle corresponding to X and the geodesic passing through i. Using
the fact that D depends only on K we may rewrite these inequalities for not
necessary positive f :

|
∑
i

∑
γ∈Γ,‖γ‖≤T

f(γX)−
∑
i

T
|X|C(f)ˆ

− T
|X|c(f)

fi ◦ hUs (x)ds| = O(
1

r2
)
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(note that the change of limits of integration changes the summands by O(1).
Using Lemma 3 from [1] (we recall the proof of this Lemma in the last

Section, see Proposition 6.3) we get

|
∑
i

∑
γ∈Γ,‖γ‖≤T

ϕ

(
‖γ‖
T

)
fi(γX)−

∑
i

T
|X||Yi|ˆ

− T
|X||Yi|

ϕ

(
t

|X||Yi|T

)
fi◦hUt (x)dt| = O(

1

r2
),

(4)

where Yi ∈ supp(αi). From the corollary of Theorem 1∑
γ∈Γ,‖γ‖≤T

ϕ

(
‖γ‖
T

)
f(γX) =

1

c(Γ)|X|

ˆ
f(Y )

|Y |
dY+O(rT )+

∑
i

Bϕ
f̃

(
x,

T

|X|c(fi)

)
+O

(
T 2/3 log T

rr′

)
,

where f̃ is a lift of f on SM as in [1]. Theorem follows from the Proposition
below (for appropriate r and r′):

Proposition 3.1.∑
i

D̃δ
µ(fi)B

ϕ,δ
µ

(
x,

T

|X||Y |

)
= D̃δ

µ

(
f(Y )β̃δµ

(
x,

T

|X||Y |

))
+ c(µ)O(T γ(µ) r

2

r′
),

where c(µ) is such that the series
∑
µ c(µ) is convergent and γ(µ) is the exponent

in ( 1).

We will need the following

Proposition 3.2. Let f be the positive function with compact support. Then

D̃±µ (f) ≤ Cµ−k‖f‖1, k > 1.

We now deduce Proposition 3.1 from Proposition 3.2. For the sake of convenience
we omit indices µ, δ, ϕ, and denote B(Y ) = B(x, T

|X||Y | ). We want to estimate

the Sobolev norm of the di�erence of left and right hand sides of Proposition
3.1. First estimate∣∣∣∑αif(Y )B(Yi)−

∑
αif(Y )B(Y )

∣∣∣ =
∣∣∣∑αif(Y )(B(Yi)−B(Y ))

∣∣∣ ≤ C(Tr)γ(µ).

Then compare the derivatives:∣∣∣∣ ∂∂x (∑αif(Y )B(Yi)− f(Y )B(Y )
)∣∣∣∣ =

∣∣∣∣ ∂∂x (f(Y )
(∑

αiB(Yi)−B(Y )
))∣∣∣∣ ≤

≤ CT γ(µ)r + C

∣∣∣∣∑ ∂αi
∂x

B(Yi)−
∂B(Y )

∂x

∣∣∣∣ ≤ CT γ(µ)r+

+ C

∣∣∣∣∑ ∂αi
∂x

(B(Yi)−B(Y ))

∣∣∣∣ . (5)

Here we use the fact that the derivative of B(Y ) is bounded:(ˆ T

0

ϕ(t/T )dβ

)′
= −

(ˆ T

0

βdϕ(t/T )

)′
=

1

T

(ˆ T

0

β(t)ϕ′(
t

T
)dt

)′
= o(1).
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Now note that in supp(αi) |∂αi∂x | ≤ Cr/r′, |B(Yi) − B(Y )| ≤ C(rT )γ(µ) and
hence we get

‖
∑

αifB(Yi)−
∑

αiB(Y )‖1 ≤ CT γ(µ) r
γ+1

r′
.

We have the following errors:

(Tr)γ , T γ
rγ+1

r′
, T r,

T 2/3

rr′
,

1

r2
.

γ0 is the value of γ for which maximum of these errors overpowers the main
term in the asymptotics.

4 Translation to the smoothened sum

In this section we prove the estimates concerning the translation to the smoothened
Birkho� sum.

4.1 Proof of corollary 2

We want to estimate

|
ˆ T

0

φ(
t

T
)f ◦ hUt (x)dt− T

ˆ
M

f(x)dx−
ˆ T

0

φ(
t

T
)dβ±m|.

Divide the interval [0, T ] into intervals ∆i of length ∆. We have

∑
i

(∑
i

ˆ
∆i

ϕ(
t

T
)f ◦hUt (x)dt−δ

ˆ
M

f(x)dx
)

=
∑
i

( ˆ
∆i

ϕ(
ti
T

)f ◦hUt (x)dx−

−∆

ˆ
M

f(x)dx+O(∆
∆

T

)
=
∑
i

(
ϕ(
ti
T

)β(∆i) +O(∆2/T )+

+O(log ∆‖f‖1)
)

=
∑
i

(ˆ
∆i

ϕ(
t

T
)dβ +O(

∆

T
∆1+γ)+

+O(
∆2

T
)+O(log ∆‖f‖1)

)
=

ˆ T

0

ϕ(
t

T
)dβ+O(∆γ+1)+O(∆)+

T

∆
O(log ∆‖f‖1).

(6)

As always, we omit indices of β, and γ is a H�older exponent of β. To complete
the proof of corollary 2 set ∆ = T 1/3.

Translation to the smoothened Birkho� sum in (4) is completely analogous.
Note that the ‖γ‖ parameter int the sum corresponds to the parameter of
integration by Proposition 6.3 (Lemma 3 in [1]).

5 Riemann-Stieltjes integral

We smoothened our ergodic sums because of the nature of distributions Dµ,
which are de�ned on the space of smooth functions. However, one may interpret
the main result in the terms of Riemann-Stieltjes integral. To do this, one

5



should think about the sum of the form
∑
D(fi)β(x, T

|X||Yi| ) as of the sums

approximating Riemann-Stieltjes integral
´
fdg, f (corresponding to our β)

being the H�older function and g (dg corresponding to our Dµ) being the smooth
function. We now formulate our main result in these terms:

Theorem 3. Put γ′0 =
√

3− 1. Let f : R2\0→ R be the function with compact
support, let µ(f) be the minimal Casimir parameter from (0, 1

4 ) for Γ\SL(2,R).
Then for γ(µ(f)) > γ′0∑

γ∈Γ,‖γ‖≤T

f(γX) =
T

c(Γ)|X|

ˆ
f(Y )

|Y |
dY+

∑
µ∈Spec(�)∩R+,δ∈{+,−}

ˆ (
f(Y )βϕ,δµ

(
x,

T

|X||Y |

)
D̃δ
µ(Y )

)
+ o(T γ), (7)

where x ∈ Γ\SL(2,R) depends only on X, and for γ(µ(f)) ≤ γ′0∑
γ∈Γ,‖γ‖≤T

f(γX) =
T

c(Γ)|X|

ˆ
f(Y )

|Y |
dY +O(T γ(µ(f))).

The proof follows the same lines as the smoothened version. Note that two
approximating sums over the partitions of size < r di�er by (rT )γr/r′ (see [3]),
and, again, we have the following errors:

T γ
rγ+1

r′
, T r,

1

rr′
,

1

r2
.

Again, γ′0 is the value of γ for which maximum of these errors overpowers the
main term in the asymptotics.

6 Proof of the Ledrappier theorem

In this section we present the proof of Ledrappier theorem following the original
one from [1]. We now recall its statement.

Let f : R2\{0} → R+ be an even function with compact support, let Γ be a
discrete subgroup of SL(2,R) of �nite covolume and without torsion.

Theorem (Ledrappier). Assume that Γ-orbit of X ∈ R2\{0} is non-discrete.
Then

lim
T→∞

1

T

∑
γ∈Γ,‖γ‖≤T

f(γX) =
1

c(Γ)|X|

ˆ
f(Y )

|Y |
dY,

where c(Γ) = 1/4(vol(Γ\SL(2,R))

Without loss of generality we may assume that −1 ∈ Γ. Identify R2\{0}/±
with the space of stable horocycles: pointX = (α, β) corresponds to the horocycle
Φ(X) on H given by the equation

(βx− α)2 + β2y2 − y = 0.

De�ne Ψ : R2\{0}/± → PSL(2,R) mapping X to the unique vector on Φ(X)
lying on the geodesics passing through i. De�ne s : Γ × R2\{0}/± → R given
by

Ψ(γX) = γΨ(X)hs(γ,X).

6



We now want to lift f to obtain the function f̃ : SH→ R. Set

φε(t) = max(
1

ε
(1− |t|

ε
), 0);

f̃(Z) = f(Ψ−1(Zhs))φε(s), Zhs ∈ Ψ(R2\{0}/±).

Proposition 6.1.

f(γX) =

s(γ,X)+εˆ

s(γ,X)−ε

f̃(γΨ(X)hs)ds =

+∞ˆ

−∞

f̃(γΨ(X)hs)ds

for all γ ∈ Γ, X ∈ R2\{0}/± 1.

Indeed, f(Ψ−1(Zhs)) is constant along the horocycle and φ has mean one
and support in [−ε, ε].

This makes the following Proposition evident:

Proposition 6.2. ˆ
f̃(Z)dZ =

ˆ
f(X)dX,

where dZ stands for the Liouville measure, dX stands for the Lebesgue measure
and integration is over whole space.

Now set SM = Γ\SH, and starting from f de�ne a function f : SM → R.
Let π : SH→ SM be the standard projection. De�ne

f(Z) =
∑

Y ∈π−1(Z)

f̃(Y ).

Note that this sum is �nite because Γ is discrete.
Chose ε small enough so that for all γ1, γ2 ∈ Γ supports of f̃ ◦ γ1 and f̃ ◦ γ2

do not intersect. It is possible because Γ does not contain elliptic elements. This
also implies that for all γ1, γ2 ∈ Γ such that γ1X ∈ suppf and γ2X ∈ suppf
[s(γ1, X)− ε, s(γ1, X) + ε]∩ [s(γ2, X)− ε, s(γ2, X) + ε] = ∅. Indeed, we need to
show that if γX is in suppf , then |s(γ,X)| > 2ε. But γX ∈ suppf implies that
X ∈ suppf ◦ γ. Now note that intersection of the horocycle corresponding to
X with suppf̃ ◦ γ is {Ψ(X)hs, s ∈ [−ε, ε]} and our claim follows from the fact
thatf̃ ◦ γ have disjoint support.

Write

∑
‖γ‖≤T,γ∈Γ

f(γX) =
∑

‖γ‖≤T,γ∈Γ

s(γ,X)+εˆ

s(γ,X)−ε

f̃(γΨ(X)hs)ds =

=
∑

‖γ‖≤T,γ∈Γ

s(γ,X)+εˆ

s(γ,X)−ε

f(π(Ψ(X))hs)ds. (8)

We will need

7



Proposition 6.3.

|X|2|γX|2s2(γ,X) = ‖γ‖2 − |X|
2

|γX|2
− |γX|

2

|X|2
.

This implies

Corollary 3. There is a constant K(X, suppf) such that for γX ∈ suppf we
have

|‖γ‖2 − |X|2|γX|2s2(γ,X)| ≤ K(X, suppf).

We prove this proposition with (almost) direct computation.

s

(
γ =

(
a b
c d

)
, (1, 0)t

)
.

This gives us two equations: on the imaginary and real parts,

γhsgti = i.

This may be understood as follows: we identi�ed (1, 0)t with a horizontal horocycle
passing through i and a vertical vector Z0 at i is identi�ed with the unit in
PSL(2,R), so that Ψ((0, 1)t) = Z0. We shift it by γ (recall that Γ acts on
PSL(2,R) with left shifts). We want to �nd s such that geodesics, passing
through γZ0hs passes throgh i, and that's expressed in the equation.

Expanding, we have(
a b
c d

)(
1 s
0 1

)(
et 0
0 e−t

)
i =

(
a as+ c
c cs+ d

)(
et 0
0 e−t

)
i =

(
eta e−t(as+ c)
etc e−t(cs+ d)

)
i =

=
etai+ e−t(as+ c)

etci+ e−t(cs+ d)
= i; eta = e−t(cs+ d), e−t(as+ c) = −etc. (9)

Solving these equations we get

s = −ab+ cd

a2 + c2
.

Now substitute s to the statement of the Proposition and obtain the desired
formula.

Note that for every X ∈ R2\{0} there exist k ∈ K, a ∈ A, such that
X = ka(1, 0)t. It is easy to see that for all γ1, γ2 ∈ Γ, s(γ1γ2, X) = s(γ2, X) +
s(γ1, γ2X). Nota also that if k ∈ K, then s(k,X) = 0, |kX| = |X| (point i is
�xed). So s(γk,X) = s(γ, kX). Moreover, ‖γk‖ = ‖kγ‖ = ‖γ‖ (k preserves the
norm of row vector while acting from the right) which implies that if statement
of the Proposition holds for γ then it holds for γk. Hence it is enough to prove
the Proposition for X = (eλ, 0)t = gλ(1, 0)t. But

s(γ, gλ(1, 0)t) = s(γgλ, (1, 0)t)− s(gλ, (1, 0)t) = s(γgλ, (1, 0)t) = e2λs(γ, (1, 0)t)

.
Proposition implies the following estimates for γ ∈ Γ such that γX ∈ suppf .

∃D > 0, |s(γ,X)| ≤ T −D
|X||γX|

⇒ ‖γ‖ ≤ T,

8



‖γ‖ ≤ T ⇒ |s(γ,X)| ≤ T +D

|X||γX|
.

We use the fact thatD depends only on support of f and that for all functions
with support within the support of f we may chose the same D. Set k(f) =
infY ∈suppf |Y |,K(f) = supY ∈suppf |Y |. Applying the above inequalities we get

2

T−D
|X|K(f)ˆ

− T−D
|X|K(f)

f ◦ hs(x)ds ≤
∑

‖γ‖≤T,γ∈Γ

f(γX) ≤ 2

T+D
|X|k(f)ˆ

− T+D
|X|k(f)

f ◦ hs(x)ds.

Multiplier 2 pops up because γ,−γ ∈ Γ act on H in the same way. Applying the
ergodic theorem for horocycle �ow we get

4
1

|X|

ˆ
f(Z)

K(f)
dZ ≤ lim

T→∞

1

T

∑
‖γ‖≤T,γ∈Γ

f(γX) ≤ 4
1

|X|

ˆ
f(Z)

k(f)
dZ.

Partition f into the sum of fi with small supports. We obtain

4
1

|X|
∑
i

ˆ
fi(Z)

K(fi)
dZ ≤ lim

T→∞

1

T

∑
‖γ‖≤T,γ∈Γ

fi(γX) ≤ 4
1

|X|
∑
i

1

|X|

ˆ
fi(Z)

k(fi)
dZ.

Desired sum is bounded by riemannian sums for the function
f(Z)

|Z|
. Passing to

the limit and noticing that

ˆ
f(Z)dZ =

1

c(Γ)

ˆ
f(X)dX.

we get the statement of the Ledrappier theorem.
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