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Краткое содержание 

В данной работе приводится новая модель оценки опционов на основе 

случайных прыжков в цене и волатильности акции в связи с заранее 

запланированными корпоративными событиями (например, в связи с 

публикацией квартальной отчетности компаний). Утверждается, что 

информационные шоки в такие моменты оказывают влияние на 

волатильность цены акции. Модель описывается как в рыночной, так и в 

риск-нейтральной вероятностной мере и включает в себя элементы 

стохастической волатильности и прыжков в заранее определенные даты. Для 

нахождения формулы оценки опционов в замкнутой форме применяется 

анализ дисконтированной характеристической функции логарифма цены 

акции в момент исполнения опциона. Несмотря на то, что краткое 

эмпирическое исследование модели не позволяет нам утверждать, что модель 

значимо лучше предсказывает цены опционов, мы полагаем, что данная 

модель обладает большим потенциалом для будущих исследований.  
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 Abstract 

In this paper we provide a new option pricing model which takes into account random jumps 

in both stock price and stock volatility due to scheduled events, such as earnings 

announcements. We claim that announcement surprises can have potential upward pressure 

on stock volatility. The model is specified in both the market and the risk-neutral probability 

measures and incorporates stochastic volatility and jumps at a pre-determined date. We apply 

transform analysis to derive a closed-form solution for the price of a European call option 

under the specification of our model. Although the empirical study does not provide sufficient 

evidence in favor of our model, we think that the model has potential fruitful future 

applications. 

 

Keywords: option pricing, continuous time, scheduled events, stochastic volatility, volatility 

jumps. 
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List of notations 
 

        – probability space (a space of elementary outcomes   supplied by a σ-algebra 

  and probability measure  ) 

  - market probability measure 

  - risk-neutral probability measure 

   – value of a stock 

   – spot variance of returns 

   – Wiener process 

  – value of a call option 

  – option expiration date 

  – strike price 

  – risk-free interest rate 

SV – stochastic volatility 

SVJ – stochastic volatility with scheduled jumps in    

SVJJ – stochastic volatility with scheduled uncorrelated co-jumps in    and    

SVJJC - stochastic volatility with scheduled correlated co-jumps in    and    
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Introduction. 
 

Since the major work of Fisher Black and Myron Scholes ([2]) in 1973 option pricing 

theory has made several significant steps forward. However, the model introduced in their 

paper is still very popular among investors due to its tractability and easy implementation. 

Finally, almost all alternative pricing models stem from the famous Black-Scholes model. 

The drawbacks of the Black-Scholes model inspired many researchers to develop their 

option pricing models for various underlying assets. Namely, the assumption of constant 

volatility is the most crucial limitation of the model, since it does not allow for the well-

known phenomenon of a volatility smile (the plot of implied volatility as a function of an 

option’s strike price). In case of  equity options, empirical data showed that the implied 

volatility for an option with a low strike price (or deep-in-the-money call) is significantly 

higher than for an option with a high strike price (or deep-out-of-the-money call) – [10]. 

Volatility smile is an indicator of the non-normality of the distribution of stock returns (with 

negative skewness and positive excess kurtosis, and hence, with fatter tails – especially the 

left one - [10]). 

Further empirical evidence against the validity of Black-Scholes model is dependence 

of implied volatilities on options’ maturities. When short-dated historical volatility is low, 

traders expect it to rise and volatility seems to be an increasing function of maturity (and vice 

versa). (Bakshi, Cao, Chen, 1997) 

Several approaches were supposed to solve the problem of the deviations of stock 

returns distribution from the normal one. In 1975 Merton ([15]) introduced the model in 

which the process of the stock price incorporated not only a diffusion component but also a 

jump component, thus relaxing the assumption of almost surely continuous process in the 

Black-Scholes model. The intuition behind such specification is that under the hypothesis of 

semi-strong market efficiency at least, i.e. when unexpected events happen and information 

about them is public, market prices adjust to the incoming public information rapidly. 

Introduction of random jumps (where jumps arrival follows Poisson process) made extreme 

events more likely and was consistent with empirical data. 

Another major improvement was made by the class of stochastic volatility models, in 

which volatility is no longer constant, but is itself a stochastic process. We will use one of the 

most famous stochastic volatility model introduced by Heston ([8]) in our analysis. Heston 

was able to provide a closed-form solution of his model. 
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Duffie, Pan and Singleton ([4]) generalized and formalized these two branches 

(stochastic volatility and random jumps), proceeding to the class of multidimensional affine 

jump-diffusion processes. Transform analysis was used in their paper to derive option pricing 

formulae. Despite the generality of the models of this class, most of them imply complicated 

pricing approaches, and closed-form solutions cannot be constructed sometimes. Another 

disadvantage is decreased parsimony due to the large number of parameters. However, such 

general approach to pricing options in affine models provided a solid ground for our model. 

In this paper we will focus on a specific class of option pricing models: models of 

scheduled events. Whereas jump-diffusion models assume that jumps arrive at random times, 

models of scheduled events consider jumps arriving at the dates which are known in advance. 

The intuition behind this is as follows: some major information affecting stock prices, such as 

corporate earnings announcements or macroeconomic news (Fed minutes, non-farm payrolls, 

etc.) can have a significant impact on stocks, indices, currencies or bonds. At the same time, 

investors typically know in advance when this information is going to appear. Thus, it is 

natural to try to model this situations separately from randomly arriving jumps. Once again, a 

certain degree of market efficiency should be assumed in order to justify this kind of models, 

namely, informational efficiency in at least semi-strong form. 

Dubinsky and Johannes ([3]) concentrate on earnings announcements, which 

significantly influence stock returns on the day of an announcement, i.e. they lead to 

significant price jumps. Exploring this jumps (namely, their variance) allowed the authors to 

estimate uncertainty embedded in an individual firm’s earnings announcement (“fundamental 

uncertainty”). This means that investors are uncertain about the performance of the company 

before the announcement. At the announcement, this uncertainty is removed via a jump in 

stock price, which adjusts to the new information. 

In this paper we extend and generalize the model of Dubinsky and Johannes. We still 

concentrate on scheduled events, but we claim that sharp changes in stock prices due to 

informational content of announcements can affect not only the returns, but also the volatility 

of the underlying asset. The intuition is as follows: although the new information eliminates 

the uncertainty related to the announcement, it might also unveil new sources of risk for the 

company. We claim that it is natural to suppose that significant negative return on the day of 

announcement will likely have an upward pressure on the volatility. If a company’s 

fundamentals appeared to be significantly worse than expected (which was followed by a 

jump in the price), investors could become less certain about future fundamentals. This effect 

is augmented by the leverage effect, i.e. when equity depreciates, leverage increases, which 

raises the riskiness of the firm. Extreme positive returns might also force investors to re-
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assess the riskiness of the firm, but this effect is smaller due to the proposition that investors 

tend to be more sensitive to adverse shocks. Furthermore, in case of positive returns, the 

leverage effect has the opposite direction, i.e. it has a downward pressure on volatility. 

We use this logic to model the asymmetric response of volatility to a scheduled 

announcement by an almost surely positive increase in the variance of returns. In order to 

avoid complications in derivation and to guarantee that variance is almost surely positive, we 

assume that variance cannot jump downwards. Instead, the negative correlation between the 

jumps in returns and in variance generates the desired asymmetry and leverage effect. This 

means that given sufficient level of negative correlation, the effect of extreme positive return 

on variance is almost eliminated on average. 

Thus, this paper is devoted to a new option pricing model which accounts for potential 

jumps in volatility at the days of scheduled announcements. We focus our attention of pricing 

a European call on a stock without dividend yield, since this is the simplest derivative 

security. To achieve high level of goodness of fit, we include stochastic volatility in the form 

used by Heston ([8]). Finally, we include jumps in returns themselves, since earnings 

announcements affect returns in the first place, and this effect was proved to be significant by 

Dubinsky and Johannes ([3]). 

Having specified the model in the market probability measure   (the “real-world” 

probability measure), we move to a risk-neutral probability measure   and build the stock 

process in this measure. Risk-neutral valuation is one of the main ways to price an asset, and 

it is frequently used. It involves changing the probability measure   to  , which is called a 

risk-neutral or equivalent martingale measure (two measures on the same probability space 

are said to be equivalent if they have the same measure-zero sets, i.e. if these measures agree 

on which events can happen with probability zero). Intuitively, this means that the real 

world’s probability measure is distorted in such a way that all investors, regardless of their 

risk-preferences, expect returns at a rate equal to the risk-free rate. 

By definition, under a risk-neutral measure all discounted asset prices are martingales. 

Thus, risk-neutral valuation allows us to obtain derivative instrument’s value as the 

conditional expectation of the discounted payoff: 

                             

A risk-neutral measure is unique if and only if the model we consider is a complete-

market model, i.e. in which every instrument is hedgeable and can be replicated by a portfolio 

consisting of other assets. One of the problems with such complicated models as Stochastic 

Volatility models or Jump-Diffusion models is in the non-uniquieness of the risk-neutral 

measure. The class of Stochastic Volatility models has additional state variable (variance), 
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which is not traded in general and is not observable. However, this issue can be addressed in 

several ways, including local volatility models where the additional state variable is 

eliminated), assumptions about the market price of risk (e.g. Heston assumed that it is a 

constant parameter, which was then eliminated from the model) or adding other tradable 

assets related to the same volatility (e.g. VIX options). Unfortunately, it is impossible to 

achieve uniqueness of the risk-neutral measure in case of scheduled jumps, since the risk on 

the day of the announcement cannot be hedged. In this paper we provide a justification for our 

pricing formula under the impossibility of a perfect hedge. 

Due to complexity of the process, we do not construct a risk-neutral measure explicitly. 

Instead, we show that it exists in our case. 

Using the specification of the model in a risk-neutral measure we move to transform 

analysis equivalent to the one in [4]. This technique allows us to derive the expression for the 

discounted characteristic function of the logarithm of the stock price. Having obtained that, 

we proceed to the option-pricing formula in the closed form by a form of Fourier inversion 

which was used by [3]. 

The rest of the paper is organized as follows. In Section 2 we provide the basics of the 

Black-Scholes model as a ground for further modeling. In Section 3 we provide our model 

specification and solution in a closed form. Namely, we specify the model in the market 

measure first. Secondly, we transfer our model to the risk-neutral measure preserving the 

functional form of the underlying stochastic processes. Having obtained the risk-neutral 

specification, we prove that there exists a corresponding Radon-Nikodym derivative that 

allows us to construct the risk-neutral measure. To obtain a closed-form solution, we use 

transform analysis and derive the corresponding discounted characteristic function of 

logarithm of the stock price at maturity. In Section 4 we investigate how the introduction of a 

variance jump affects the estimator of expected future variance. We do this to address the 

complexity of SV-type models’ calibration procedure, where spot variance is included as an 

additional parameter. In Section 5 we examine the comparative statics of the nested models 

under our consideration. In the empirical part of the paper, we provide the description of 

model calibration and its results which does not give us enough evidence that introducing 

variance jumps improves the goodness of fit. In conclusion, we advise to continue the 

research on this model.  
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The basics of BS model. 
 

The Black-Scholes model is based on the fundamental assumption that the stock price is 

distributed lognormally. Under the market measure the stock price follows Geometric 

Brownian Motion: 

   

  
            

Under the risk-neutral measure (which is unique in this model, i.e. the market is 

complete) the firm-specific parameter   (expected return) is eliminated, and the drift term 

becomes    : 

   

  
            

Let us find the discounted stock price process                         by applying 

the Ito lemma: 

                                            

                                                

                            

Hence, under the risk-neutral measure, the discounted stock process is a martingale.  

The following assumptions must also be satisfied: 

a. The stock price follows the process specified above.   and   are constant 

parameters. 

b. Short selling is permitted. 

c. No transaction costs or taxes. 

d. All financial instruments are perfectly divisible. 

e. There are no dividends. 

f. There must be no sustainable regular arbitrage opportunities. 

g. Security trading is continuous. 

h. The risk-free interest rate, r, is constant. 

 

We will now use the intuition of this basic model in building our SVSJJC model.  
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The option pricing model (SVJJC) 
 

 Market measure 

For our model we have all the assumptions from the Black-Scholes model, except from 

(a). 

Under   the stock price process is given by: 

           √         
      [   

  ]    

                √      
         (3.1.1) 

   
     

       

Here the time of jump is   ,      
    is a deterministic process (function of t) such 

that    {
      
      

. We assume that Feller condition holds, i.e.            . This 

condition is required for variance to be almost surely positive. 

Let us look at the model specification more closely. First of all, we include Heston’s 

specification of Stochastic volatility. Here,         is instantaneous variance (squared 

volatility) - a square root mean reverting process with long-run mean  , and rate of reversion 

k,    is referred to as the volatility of volatility;    
  and    

  are correlated with coefficient 

of correlation ρ; the risk-free rate r is constant. 

Some features of the model can be seen already at this stage. It involves two Wiener 

processes and thus, in order to replicate the derivative security by a portfolio, there should 

exist an asset whose price is perfectly correlated with the variance process, since volatility 

itself cannot be traded. 

Furthermore, the variance process is mean-reverting in the following sense: greater 

deviations from the long-run mean   lead to increase of the absolute value of           

term which then “drags” diffusion back to  . 

Another feature is that as     , √     and   √      
   , which ensures that the 

variance never becomes negative. 

Intuitively, this model provides greater flexibility than BS and can be regarded as an 

elegant solution to some major problems. Negative correlation   between variance and stock 

return can generate heavier left tail of returns p.d.f. than BS’s lognormal distribution and 

lighter right tail, affecting the skewness of the distribution in a way consistent with volatility 

smiles. Parameter   , “volatility of volatility”, affects the kurtosis of the distribution, again 

making the distribution more sensible with respect to the leverage effect ([1]).  
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The model incorporates one scheduled jump in both stock price and volatility. We 

consider only one scheduled event to reduce the complexity of the model. Thus, we consider 

only the closest announcement date given that the option matures before the next 

announcement. 

Following [4], we assume that the jumps have a joint distribution with the following 

characteristic function: 

 [    
     

 
]  

   (    
 
 
       

 )

           
 

where  [    
     

 
]  ∫     

     
 
  

   

and    and    are complex-valued arguments. Furthermore, we require that correlation 

    , which is needed to model the leverage effect. 

We can see that the characteristic function of marginal distributions are, respectively 

 [    
 
]   [    

     
]  

   (    
 
 
       

 )

       
 

 [    
 
]   [        

 
]  

 

     
 

Thus,    is distributed exponentially with mean  , whereas    has some continuous 

distribution. In [4] it is also shown that for this function    is conditionally normally 

distributed. At the same time, the unconditional expectation of    
 can be easily derived from 

the characteristic function: 

 [    
 
]  ∫     

 
  

  

  

 

 [   
]  ∫    

  

  

  

 

Thus,  [   
]    [    

 
] at     . 

 [   
]  

   (  
 
 
     )

     
 

Since we consider scheduled announcements which cause instantaneous jumps in spot 

price. Suppose that 
   

    
    

, which is the jump size, has mean different from one, i.e. 

 [        ]      
. Then there would exist a trading strategy which would bring abnormal 

returns. Any difference between  [        ] and     
 would constitute a positive abnormal 

expected return, since there are no interest accruals from     to   . Thus, efficient markets 
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would imply  [        ]      
, or equivalently,  [        

     ]   [   
     ]   . 

Finally, this implies  [ [   
     ]]   [   

]    

Hence, 

   (  
 
 
     )

     
   

and 

    (     )  
 

 
      

Note that we consider equity options, and, therefore, an investor cannot trade volatility 

directly. So, the mean of variance jump    can be positive. 

We will now transfer our process into a risk-neutral measure. 

 

Risk-neutral measure. 

Let   be a probability measure. The stock process under   is assumed to follow: 

           √         
         [   

  ]    

                     √      
           (3.2.1) 

   
        

           

          [    
     

 
]  

   (     
 
 (     )

 
  
 )

         
     

 

  
    

 

Assume Feller condition holds, i.e.       (     )
 
  . 

 

First of all we need to show that   and   are equivalent. Given the specification of the 

process under  , we can claim that the two measures are equivalent (it is guaranteed by the 

fact that the jump occurs at the same time   ), which means that if some set of paths     

has non-zero probability under  , it will have non-zero probability under  , and vice versa. 

Namely, for any      both stochastic processes have almost surely continuous paths. At 

     jumps in stock price and variance occur almost surely under both measures.    is 

contained in any interval         with positive probability under both measures.    is 

contained in any interval          with positive probability under both measures, and    
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is almost surely positive under both measures (                   and 

                   ). Thus, we can claim that the two measures are equivalent. 

 By Radon-Nikodym theorem ([18]) if   and   are equivalent, then there exists an 

almost surely positive random variable   such that for any set     

     ∫       
 

    . I.e. we can be sure that Radon-Nikodym derivative, which can 

help us to construct   explicitly, exists. From now on we will consider stock price process 

under    

 We can now also claim that under  , the discounted stock process is a martingale. 

Consider              . Applying Ito lemma, we get: 

                                              

                        (       √         
         [        ]   )   

 √         
         [        ]    

Before and after the jump               ∫         √         
    

 

 
. Since Ito 

integral is a martingale,            is a martingale before and after the jump. For 

           to be a martingale at   , the pre-jump expected value of     should be equal to 

    . This reduces to requirement   [            ]   , which was already discussed in 

the section on the market measure. Hence, under   we also have the requirement  

     (    
   )  

 

 
(     )

 
 

Under this condition, the discounted stock process is martingale under  . Hence,   is an 

equivalent martingale (risk-neutral) measure. To price a derivative security contingent on    

we now turn to the Transform analysis. 

 

Transform analysis.  

Let us slightly adjust the stock price process (according to Ito’s formula): 

         (  
 

 
  )   √       

              

                     √      
              (3.3.1) 

To find the expected value              [        ] we will apply analysis based on 

direct and inverse Fourier transforms. This technique for the topic we consider was developed 

in [4]. This method allows deriving closed-form solutions even when one cannot derive 

probability distributions. 

 Suppose we are given the following Fourier Transform of        : 
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                         [            ]     (3.3.2) 

We cannot use the inverse transform directly, since we need integrability condition to be 

satisfied. Thus, we will use the results developed by [3]. Introduction of a dampened call 

allows us to get the following option pricing formula: 

     
         

 
∫   [              ]  

 

 
     (3.3.3) 

      
                       

                
       (3.3.4) 

Where   stands for log-strike and   is assumed to be 2 which is sufficient for 

integrability according to [3]. 

Hence, the only thing we need is to find               . First of all, following the 

affine jump-diffusion studies in [4] we assume the certain form of  : 

                  [                    ]    (3.3.5) 

Here,                 ,        is continuous,       is not. 

We will now apply two-dimensional Ito’s formula for jump-diffusions to   (please refer 

to A1) and get the following ODEs: 

  ̇                           (A1.1) 

 ̇    
 

 
        

  

 
 

     

 
                        (A1.2) 

The equation we obtained for  ̇    is the same as in [4] in 4. Thus, we can use the 

solution provided by Duffie et al. 

                         √                 1 

      
         

                
        (3.3.6) 

 

             ( (       ))             (3.3.7) 

Where                
    

(     )
 (          [  

   

  
        ]) 2 

 

Hence, we obtained a solution which has a simpler form than in [4]. Not surprisingly, 

our solution embeds the solution in [3], namely, for one jump in stock price distributed 

normally   ( (       ))        {
 

 

 
(     )

 
 

  

 
(     )

 
     

      
   

  

                                                           
1
 More precisely:             (

        

 
), where        (     )

 
 

2
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Finally, using the restricted version of transform          for our model, we get: 

         
   ((  (    

 
  ) 

 

 
(     )

 
)   

 

 
(     )

 
  
 )

         
     

    (3.3.8) 

 

Finally, we need to prove that    [                    ] indeed represents the 

discounted characteristic function of        . For the proof, please refer to A2. 

Thus, combining (3.3.3), (3.3.4), (3.3.5), (3.3.6), (3.3.7), (3.3.8) we have obtained a 

closed-form solution for the price of European call option. 

 

Impossibility of perfect hedge.  

We should be very careful here, since due to the impossibility of perfect hedge the risk-

neutral measure is not unique, i.e. we took only one risk-neutral measure ( ) from the 

continuum of risk-neutral measures. Perfect hedge is impossible due to stochastic volatility 

and scheduled jumps. 

The problem due to stochastic volatility can be eliminated by assuming that there exists 

market price of volatility risk, as defined in Heston ([8]). However, it is impossible to hedge 

the risk of stock and variance movements at the scheduled announcements, primarily because 

there are no other assets which are prone to the same source of risk. In the absence of perfect 

hedge risk-averse investors may demand additional premium for this risk. 

However, we still avoid adding additional terms to the option pricing formula (as was 

done in [19], for example). We motivate this decision as follows. First of all [19] reports that 

similar premium is insignificant most of the time. Secondly, [3] claims that the difference 

between the real-market jump parameter    and the risk neutral parameter       is almost 

negligible, which also motivates low risk premium. Finally, our model is very flexible, i.e. it 

has 7 embedded parameters at minimum, which means that we can calibrate out model to the 

market prices without introducing additional premia and not losing the explanatory power of 

the model. Calibration issues are further discussed in the related section. 

Therefore, we advise not to include additional parameters related to the risk premium, 

since it would have an adverse effect on the parsimony of the model. 
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Expected future variance. 
 

We will now briefly discuss how the new parameters in our model affect the logic in 

[3]. In the paper, two types of fundamental uncertainty (     ) were introduced. The 

estimators themselves are not in the scope of this paper. However, it is important to see what 

our model implies for the expected future variance. Under mild conditions on stochastic 

volatility the stochastic volatility option price is the expectation of the Black-Scholes price 

where the Black-Scholes implied variance is expected risk-neutral variance. The error 

between the implied variance and this estimator is getting smaller with the decrease of 

absolute value of correlation between returns and variance increments. Generally, this is not 

true for our model (since we have   and   ), but for ATM options it is usually very difficult to 

obtain significant values for the correlations. Furthermore, the errors even in presence of 

correlation is low (about 1%), as reported by [3]. 

Thus, in this case we will deal with ATM options and stipulate that       . This 

means that our model adds only an independent jump in variance to the model considered by 

Dubinsky and Johannes. We will now find out what this type of jumps adds to the expected 

future variance estimator. 

According to [3], we can approximate the value of expected future variance by implied 

Black-Scholes volatility, i.e. we can assume that Black-Scholes implied variance is an 

accurate proxy for expected risk neutral variance. 

    
   

     
           [∫  

 

 

     ]         (     )
 
 

We derive the value of   [∫   
 

 
     ] in the A3. 

  [∫  

 

 

     ]  
     

  
(           )  

  

  
(            )          

    
  

     

       
(           )  

  

       
(            )     

(     )
 

   
 (4.1) 

This formula is valid only for       . 

We can see that our model adds an additional term 
  

       
(            ) which is an 

expected future variance from the volatility jump. This formula is consistent with the intuition 

of Dubinsky and Johannes about the movements of implied volatility before the 

announcement: the new term increases prior to the announcement. After the announcement, 

this term is effectively eliminated from the expected future variance formula.  
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Comparative Statics. 
 

Our model is related to several nested models which might be of particular interest 

when it comes to model comparison. First of all, as        ,       and            

we obtain a solution to the Black-Scholes model. We are more interested in the comparison 

between the SV (          ), SVJ      , SVJJ (  
   ) and SVJJC models. We 

can see from the graphs that  SVJ, SVJJ and SVJJC models are almost equivalent, although 

each model adds a certain degree of flexibility. Each additional feature increases the value of 

a call option: positive       increases total expected volatility prior to the announcement, 

which means that an option is more valuable; positive    acts in a similar way; negative   
  

increases the probability of a negative price movement due to   , which means that the 

probability that a call will be in the money at maturity increases. We can also mention the fact 

that transition from SV to SVJ significantly alters the price of an option due to embedded 

discontinuity. The greater is      , the greater is the difference. Finally, all option prices tend 

to          as moneyness increases. This is justified by the put-call parity, which states 

that                    . Since the value of any option is nonnegative,       and 

             . As moneyness increases, a put is deeper out of the money, which means 

that its price tends to zero.  It is also important to consider the distributions of         which 

can be derived from the characteristic function by Fourier inversion. Note that these are risk-

neutral distributions, not market-implied distributions. First of all,   [          ]  

               is the mean of each distribution, which is held constant for all of the 

distributions in the figure. We can see that introduction of stochastic volatility, jumps and 

negative correlation between them makes the tails of the distribution fatter, especially the left 

one. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Predicted risk-neutral distributions of         conditional on   ; source: own calculations 
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Figure 2: Predicted call prices for                                                        

             
           ; source: own calculations

 

Figure 3: Predicted call prices for                                                          

             
            ; evident convergence as 

 

 
    ; source: own calculations 
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Empirical study. 
 

Data description.  

To assess the empirical performance of our model, we will perform calibrations to 

market option data. We take 3 samples of option prices (Apple Computer (AAPL), years 

2002, 2004 and 2006) and concentrate our analysis primarily on OTM-options (we take 

options with           
  

 
  ), since pricing errors of OTM-options has always been of 

particular interest for researchers and practitioners. Traditional pricing models (e.g. BS) fail to 

price OTM-options correctly, whereas they provide fair fit for ATM- and ITM-options. 

Apple Computer was also considered in [3] and [19]. We chose this stock because it 

was actively traded on NASDAQ and because it has been a low-dividend stock (hence traded 

American calls are equivalent to European calls). Taking an actively traded stock allows us to 

assume sufficient degree of semi-strong market efficiency, which is necessary for the model 

of scheduled announcements. Option prices, maturities, strikes, risk-free rates and stock prices 

were collected from OptionMetrics. 

We choose earnings announcements as the scheduled events of interest. Thus, we 

gathered the dates of earnings announcements from www.fulldisclosure.com. 

We adjust our data in the following way (based on [19]): we eliminate all options with 

1) maturity in time span of three days around the date of earnings announcement; 2) quote 

given in time span of three days around the date of earnings announcement; (1 and 2 are 

needed to avoid significant price disturbances which arise at the date of EA); 3) more than 1 

earnings announcement during their life (since our model covers only one jump); 4) prices 

violating theoretical bounds given by put-call parity (        and         

   (       ) ); 5) implied volatility more than 100%. 

 

 
Time to expiration 

(T-t) < 0.1 
years 

(T-t) >= 0.1 
years   

Subtota
l N 

Moneyness             

1<=S/K<0.9   price 1.7848 2.2791     

    N 42 355   397 

0.9<=S/K<0.
7   price 0.3759 0.6084     

    N 79 604   683 

S/K>=0.7 
 

price 0.0656 0.0894   
 

  
N 98 522   620 

              

Subtotal N 
 

  219 1481   2101 
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Table 1: Descriptive statistics; source: own calculations 

Only 3 samples were considered mainly due to extreme computational complexity of 

the calibration formulae. Fitting each model took a considerable amount of machine time. 

Therefore, this calibration analysis does not possess strict statistical power. Instead, it is used 

to present a general view on the goodness of fit of the model comparing with other models. 

 

 Estimation procedure.   

We use the approach in [19] to compare three nested models: Heston SV model (). 

Parameter estimates  ̂  [                           
 ] are obtained as follows: 

 ̂        

 ̂   

[∑(     
           ( ̂   ) 

     
)
 

 

] 

We minimize the objective function, which is the sum of squared pricing errors. 

Implicitly we assume that our filtering procedure was successful in eliminating all market data 

entries which contradicted no-arbitrage considerations. Thus, we treat      
       as an 

unbiased estimate of the true value of a call option. 

Normally, the objective function is indeed optimized with respect to the vector of 

parameters and the time series of spot variances   , which are unobservable on the market. 

This means that the total number of parameters would exceed 80 for each year. This approach 

is very computationally expensive and can yield implausible spurious results due to the large 

amount of parameters. Our calibration procedure uses an estimate of spot variance derived 

earlier in the paper to reduce the number of parameters without a significant decrease in 

model performance. 

We suggest that one can use the formula  

    
   

 
     

       
(           )  

  

       
(            )     

(     )
 

   
 

to derive a proxy for   . However, in practice it appears that the contribution of the term 

 

      
(           ) to the total expected future variance is very low. Thus, in order to 

further simplify numerical calibration, we omit this term and derive our proxy from: 

    
   

 
     

       
(           )     

(     )
 

   
 

 ̂    
  

           
((    

   
   )       (     )

 
) 
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Our optimization problem reduces to: 

 ̂        

 ̂

[∑(     
           ( ̂   ̂) 

     
)
 

 

] 

 

In order to obtain the values of     
   

 (Black-Scholes implied volatility) for each day we 

select one ATM-option (call), because     
   

     
  for ATM-options. By using a proxy for    

we decrease the number of estimated parameters significantly without major loss in the 

goodness of fit. 

 

In [3] the following objective function was used: 

   ( ( ̂   ))  
 

 
      

   
 

 
∑(

     
           ( ̂)

 

     

    
)

 
 

 

 

We avoided this specification and chose SSE minimization due to the following 

considerations. First of all, since the pricing formula is computationally heavy itself, we 

looked for a measure of loss as simple and intuitive as possible. SSE and MSE are frequently 

used by researchers to assess option pricing models ([19]). Secondly, we avoided estimating 

additional parameter,   . Finally, since we investigate OTM-options, we are facing the 

following dilemma: deep OTM-options are traded less frequently, and so they should be less 

important during calibration. This weighting scheme is achieved by SSE-minimization: the 

price of an option decreases as its moneyness decreases, and so, the same relative pricing 

error will be smaller in absolute terms for cheaper options with lower moneyness. Therefore, 

deep OTM-options have lower weights in the process of optimization. 

The optimization is performed in MatLab using         function based on interior-

point algorithm. The bounds for parameters are derived from [3]. 

After calibration we use Diebold-Mariano test
3
 to compare the models of interest. We 

cannot use standard F-test for this purpose because of the nonlinear form of our pricing 

formula. Instead, we test the hypothesis that the mean difference between squared pricing 

errors of the two models is equal to zero versus the alternative hypothesis (one-sided). We 

apply Newey-West variance estimator to account for possible autocorrelation in differences 

between squared errors. 

  

                                                           
3
 We use Diebold-Mariano Test Statistic for MatLab created by Semin Ibisevic 
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 Estimation results.  

The results of calibration are presented in the table. In general, it is evident that parameters 

are not stable across years for the same company. Significant errors in estimated parameters 

might be due to invalid global minimum search, i.e. it might be the case that the numerical 

optimization algorithm failed to find the true global minimum of the loss function. However, 

since parameters are fairly consistent with the previous research, we can still make some 

conclusions. 

 

AAPL 
 

                          
  

2002 SV 2.6466 0.0847 0.1467 -0.6357 
   

 
SVJ 1.9975 0.0932 0.1325 -1.0000 0.0797 

  

 
SVJJ 1.7109 0.1005 0.1319 -0.9945 0.0802 1.0E-05 -0.5502 

2004 SV 5.1737 0.0613 0.0475 -0.1357 
   

 
SVJ 3.1992 0.0962 0.0473 -0.0954 0.0613 

  

 
SVJJ 3.4796 0.0865 0.0473 -0.1001 0.0546 0.0151 -0.0200 

2006 SV 1.4655 0.2479 0.0999 -0.4222 
   

 
SVJ 1.0463 0.2348 0.0946 -0.4538 0.0335 

  

 
SVJJ 1.3099 0.2298 0.1023 -0.4168 0.0335 8.3E-08 -0.5017 

Table 2: Estimation results; source: own calculations 

 

AAPL 

 

DM p-value 

2002 SV 

  

 

SVJ 3.5494 0.0002 

 

SVJJ 0.7071 0.2398 

2004 SV 

  

 

SVJ 2.7368 0.0031 

 

SVJJ 5.1173 0.0000 

2006 SV 

  

 

SVJ 2.3599 0.0091 

 

SVJJ 0.7108 0.2386 

Table 3: Diebold-Mariano tests; source: own calculations 

  

The Diebold-Mariano test statistics (DM) reported in the table have the following 

meaning. The DM-statistic and the p-value next to the SVJ model corresponds to the null 
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hypothesis that the SVJ model does not provide a significantly better fit than the SV model 

versus the alternative hypothesis that the SVJ model is better than the SV model. The DM-

statistic and the p-value next to the SVJJC model corresponds to the null hypothesis that the 

SVJJC model does not provide a significantly better fit than the SVJ model versus the 

alternative hypothesis that the SVJJC model is better than the SVJ model. 

First of all, it is very important to mention that the SVJ model (an analogue of Dubinsky 

and Johannes) outperformed the SV model in all three samples at any reasonable significance 

level, since the corresponding p-values are very close to zero. This result is in line with the 

empirical performance of the model in [3]. Another consistent result is that introducing jumps 

tend to decrease the estimates of long-run variance and volatility of variance. This is an 

intuitive result, since without jumps their effect was attributed to either of these two variables. 

The evidence on the performance of the SVJJC model versus the SVJ model is 

somewhat mixed. In two samples out of three the SVJJC model does not provide significantly 

better fit than the SVJ model, and the corresponding values of the mean jump in variance is 

close to zero. However, in the sample (2004) the SVJJC model outperformed the SVJ model. 

In general, there is not enough evidence to claim that the SVJJC model is an improvement 

compared to the SVJ model. 

This result is due to several possible reasons. First, it might be the case that in general, 

potential variance jumps add only a marginal effect on variance. Secondly, investors and 

traders might consider the risk associated with jumps in returns much more important than the 

risk associated with variance jumps. Third, the results may be biased due to the extreme 

computational complexity of numerical optimization, which might provide local extrema 

instead of global ones. Finally, the results are contingent on the sample under consideration. 

The model might perform better in the times of market turbulence. In this case, our model 

might be more flexible to fit the skewed pattern of returns distribution. 
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Conclusion 
 

In this paper we have derived a closed-form option pricing formula for stock price 

process with simultaneous correlated scheduled jumps in stock price and volatility. The model 

can be viewed as a significant generalization of the model in [3], since it not only introduces 

the jump in volatility, but also can flexibly change distributions of jumps by choosing the 

jumps joint characteristic function         . This model can be useful in investigating the 

potential impact of massive information inflows during scheduled events (such as earnings 

announcements). 

However, within this framework further studies should be performed, namely, in the 

empirical part. We did not find enough evidence in favor of the model. The model should be 

tested more carefully on a broader sample. It could also be interesting to calibrate the model 

on the data during turbulent changes on the markets (during crises or turmoil related to a 

single company). 

One further improvement can be done via implementing randomly arriving jumps, as in 

[4]. This can be done relatively easy by adjusting     . However, this would make the model 

more complicated and probably less parsimonious. 
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Appendices. 

 

A1. Derivation of               . 

 

Suppose that           [            ]                    [                    ] 

The following shows that          is a martingale: 

  [                        ]    [  [            ]   ]    [            ] 

We now apply Ito’s formula to  . 
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Since          is a martingale and                                    for all     , 

its drift term must be equal to zero, i.e. 

        (     ̇     ̇       (  
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Since    has almost surely non-differentiable paths, 

  ̇                        (6.1) 

 ̇    
 

 
        

  

 
 

     

 
                      (6.2) 

 

For          to be a martingale at the jump time     , the following condition must be 

satisfied: 
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For any       

                 

For       

(            )   (            ) 

      ∫   ̇     
 

 
 ∑ (            )       ∫   ̇     

 

 
 ∑ (           

      )   ∫   ̇     
 

 
   ( (       ))            (6.3) 

 

 

A2. Proof that    [                    ] is indeed a discounted characteristic function 

          [            ]. 

 

Let         [                       ]. Let us show that   is a martingale with 

     and      satisfying the ODEs (6.1)-(6.2). 

By Ito formula: 
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From ODEs (6.1)-(6.2) we have  

∫  
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 and ∫             √      

    
 

 
 are Ito integrals, hence, they are 

martingales 

Since (6.3) is satisfied, (        )        is a martingale: 

  [(        )          ]  (        )        

Thus,    is a martingale, and 

  [     ]     
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Let us multiply both sides by    [  ]: 

   [  ]   [     ]     [  ]   

   [  ]   [   [                       ]    ]

    [  ]    [                       ] 

   [       ]   [   [                    ]    ]

    [                    ] 

       

       

   [       ]   [   [        ]    ]     [                    ] 

           QED 

 

A3. Derivation of   [∫   
 

 
     ] with no correlations. 
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Assume that      (i.e. the scheduled event has not happened by time t). Let us find the value 

of   [     ]: 
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