### On Big Data Applications

P. M. Pardalos<sup>1</sup>, <sup>2</sup>

<sup>1</sup>Center for Applied Optimization Department of Industrial and Systems Engineering University of Florida

<sup>2</sup>Laboratory of Algorithms and Technologies for Networks Analysis (LATNA) National Research University Higher School of Economics

ItForum, 2013



Big Data Case Study Proposed Model Results and Conclusions



### How big will the data be tomorrow?

Cisco: Global 'Net Traffic to Surpass 1 Zettabyte in 2016 http://cacm.acm.org/news/150041-cisco-global-net-traffic-to-surpass-1-zettabyte-in-2016/fulltext

| SI decimal prefixes |                  | Binary          | IEC binary prefixes |                 |
|---------------------|------------------|-----------------|---------------------|-----------------|
| Name                | Value            | usage           | Name                | Value           |
| (Symbol)            |                  |                 | (Symbol)            |                 |
| kilobyte (kB)       | 10 <sup>3</sup>  | 2 <sup>10</sup> | kibibyte (KiB)      | 2 <sup>10</sup> |
| megabyte (MB)       | 10 <sup>6</sup>  | 2 <sup>20</sup> | mebibyte (MiB)      | 2 <sup>20</sup> |
| gigabyte (GB)       | 10 <sup>9</sup>  | 2 <sup>30</sup> | gibibyte (GiB)      | 2 <sup>30</sup> |
| terabyte (TB)       | 10 <sup>12</sup> | 2 <sup>40</sup> | tebibyte (TiB)      | 2 <sup>40</sup> |
| petabyte (PB)       | 10 <sup>15</sup> | 2 <sup>50</sup> | pebibyte (PiB)      | $2^{50}$        |
| exabyte (EB)        | 10 <sup>18</sup> | $2^{60}$        | exbibyte (EiB)      | 2 <sup>60</sup> |
| zettabyte (ZB)      | 10 <sup>21</sup> | $2^{70}$        | zebibyte (ZiB)      | $2^{70}$        |
| yottabyte (YB)      | 10 <sup>24</sup> | 2 <sup>80</sup> | yobibyte (YiB)      | 2 <sup>80</sup> |



## What is BigData?

- The proliferation of massive datasets brings with it a series of special computational challenges.
- This data avalanche arises in a wide range of scientific and commercial applications.
- With advances in computer and information technologies, many of these challenges are beginning to be addressed.

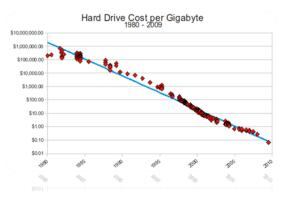
#### HandBook of Massive Datasets



Handbook of Massive Data Sets, co-editors: J. Abello, P.M. Pardalos, and M. Resende, Kluwer Academic Publishers, (2002).

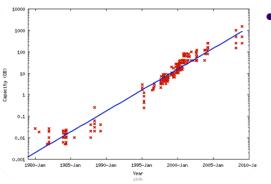
- Data Mining: the practice of searching through large amounts of computerized data to find useful patterns or trends.
- Optimization: An act, process, or methodology of making something (as a design, system, or decision) as fully perfect, functional, or effective as possible; specifically: the mathematical procedures (as finding the maximum of a function) involved in this.

#### Hard drive Cost



 Approximate ly 1/10 cheaper every 5 years

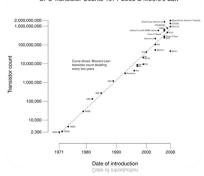
# Hard drive Capacity



 Approximat ely 10 times more every 5 years

### **Processing power**





 Number of transistors of a computer processor double every two years

### Some Examples of Massive Datasets

- Internet Data
- Weather Data
- Telecommunications Data
- Medical Data
- Demographics Data
- Financial Data

### Handling Massive Datasets

New computing technologies are needed to handle massive datasets

- Input-Output Parallel Systems
- External Memory Algorithms
- Quantum Computing

### An example in biomedicine

- Acute Kidney Injury (AKI) is one of common complications in post-operative patients.
- The in-hospital mortality rate for patients with AKI may be as high as 60%.
- An elevated serum creatinine (sCr) level in blood is commonly recognized as an indicator of AKI.
- The degree to which patterns of sCr change are associated with in-hospital mortality is unknown.

## Study Outline

#### Objectives:

- To develop a comprehensive model for assessing the mortality risk in post-operative patients
- To establish a quantitative relationship between sCr pattern and mortality risk

#### Results:

- A probabilistic model was designed to assess mortality risk in post-operative patients
- The model provided high discriminative capacity and accuracy (ROC = 0.92)
- A quantitative association between sCr time series and mortality risk was established
- Simple and informative sCr risk factors were derived



#### Data Set

- We performed a retrospective study involving patients admitted to Shands Hospital (Gainesville, FL) from 2000 through 2010.
- For each patient who underwent a surgery detailed clinical and outcome data were collected.
- The analysis included 60,074 patients who underwent in-patient surgery at Shands Hospital during a 10-years period.

### **Logistic Function**

Probabilistic score 1

$$\mathbb{P}(C = 1 | X = x) = \left(1 + \exp\left(w_0 + \sum_{i=1}^m w_i g_i(x_i)\right)\right)^{-1}; \quad (1)$$

 $C \in \{0, 1\}$  is an outcome;

$$X = (X_1, \dots, X_m)$$
 - the risk factors;

 $g_i$  - nonlinear function associated with the *i*th factor

$$w_0 = \ln \mathbb{P}(C = 1)/\mathbb{P}(C = 0)$$
 is the a priori log odds ratio.

 $\{w_i\},\ i>0$  - weights indicating importance of the risk factors

<sup>&</sup>lt;sup>1</sup>S. Saria, A. Rajani,J. Gould,D. Koller,A. Penn, Integration of Early Physiological Responses Predicts Later Illness Severity in Preterm Infants, Sci Transl Med, 2010

#### Nonlinear Risk Factors Estimation

From the probabilistic score equation we can derive

$$w_0 + \sum_{i=1}^m w_i \cdot g_i(x_i) = \log \frac{\mathbb{P}(X = x | C = 0)}{\mathbb{P}(X = x | C = 1)} + \log \frac{\mathbb{P}(C = 0)}{\mathbb{P}(C = 1)}$$

Under assumption of risk factors independence:

$$w_0 + \sum_{i=1}^m w_i \cdot g_i(x_i) = \sum_{i=1}^m log \frac{\mathbb{P}(X_i = x_i | C = 0)}{\mathbb{P}(X_i = x_i | C = 1)} + \log \frac{\mathbb{P}(C = 0)}{\mathbb{P}(C = 1)}.$$

For continuous factors  $\mathbb{P}(X_i = x_i | C)$  implies  $\mathbb{P}(X_i \in [x_i - \varepsilon, x_i + \varepsilon] | C)$  where  $\varepsilon$  is sufficiently small

### **Model Parameters**

$$\max_{w} \sum_{k \in \{0,1\}} \sum_{j: C^{j} = k} \ln \mathbb{P}(C^{j} = k | X_{i} = x_{i}^{j}, \dots, X_{i} = x_{m}^{j});$$

*j* denotes patients in the data set;  $C^j \in \{0, 1\}$  - outcome for the *j*th patient;  $x_i^j$  - value of *i*th risk factor for the *j*th patient.

We solved this problem approximately with interior point method implemented in MATLAB

#### Nonlinear risk functions

We get

$$g_i(x_i) = \ln \frac{\mathbb{P}(X_i = x_i | C = 0)}{\mathbb{P}(X_i = x_i | C = 1)};$$

$$w_0 = \ln \frac{\mathbb{P}(C = 1)}{\mathbb{P}(C = 0)};$$

$$w_i = 1, i = 1, \dots, m.$$

• The probabilities  $P(X_i = x_i | C)$ , i = 1, ..., m were learned from the data using maximum likelihood principle.

#### Discrete risk factors estimation

For discrete valued factors

$$g_i(x) = \ln \left( \frac{\#\{j: C^j = 1, \ x_i^j = x\}}{\#\{j: C^j = 1\}} \frac{\#\{j: C^j = 0\}}{\#\{j: C^j = 1, \ x_i^j = x\}} \right).$$

#### Continuous Risk Factors Estimation

For continuous factors we defined

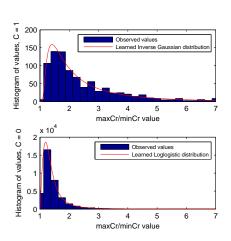
$$g_i(x) = \ln \frac{f_i^0(x)}{f_i^1(x)},$$

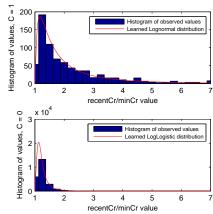
$$f_i^k(x) = \varphi^*(x - h^*, \theta^*),$$

$$\{\varphi^*, h^*, \theta^*\} = \arg \max_{\varphi \in \Phi, \theta, h} L_i^k(\varphi, \theta, h),$$

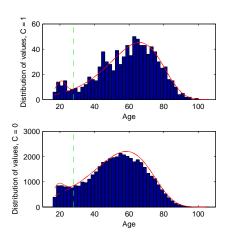
$$L_i^k(\varphi, \theta, h) = \sum_{j:C^j = k} \ln \frac{\varphi(x_j^j - h, \theta)}{F_{\varphi}(I_i^2, \theta) - F_{\varphi}(I_i^1, \theta)}.$$

#### Continuous Risk Factors Estimation





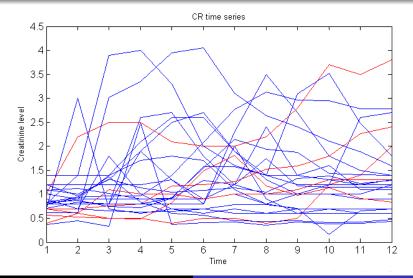
### Age Risk Factor



### Which creatinine (Cr) characteristics are "good"?

- Absolute Cr value is not very informative
- (maximal Cr value)/(minimal Cr value) works good
- Recent Cr value is important

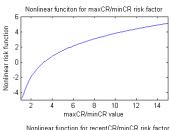
### Cr plots in patients with elevated Cr level

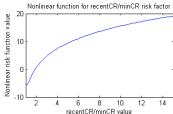


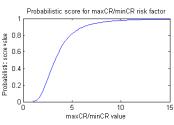
### **Our Speculations**

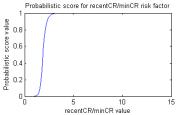
- The risk is defined by a function R(RC, OD),
   RC stands for recent condition
   OD stands for overall damage suffered during AKI
- One should look for features describing these two factors

### Resulting nonlinear risk functions





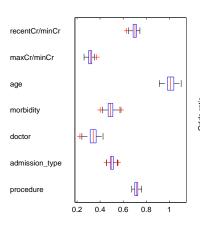


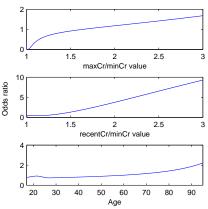


# Classification accuracy evaluation

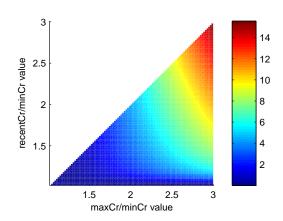
- 70/30 cross-validation analysis has been performed
- Random split into 70% training subset and 30% testing subset
- The average over 100 runs results are reported

### Learned risk factors weights



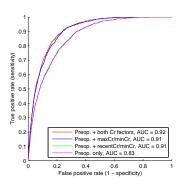


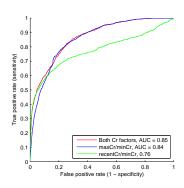
### The odds ratio based on Cr factors



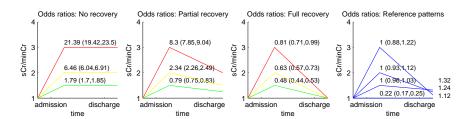


### The Resulting ROC Curves

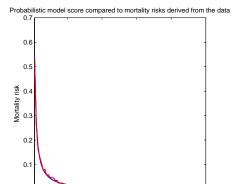




## Cr time series patterns



#### **Model Calibration**



20

40

) 60 Percentile 80

100

| Risk factors included      | Prob. model AUC (95% CI) |
|----------------------------|--------------------------|
| Preop.                     | 0.835 (0.817-0.854)      |
| Hosmer-Lemeshow statistics | s = 95.06; $p = 0.57$    |
| Preop. + maxCr/minCr       | 0.900 (0.888-0.911)      |
| Hosmer-Lemeshow statistics | s = 84.33; p = 0.84      |
| Preop. + recentCr/minCr    | 0.910 (0.897-0.923)      |
| Hosmer-Lemeshow statistics | s = 72.19; $p = 0.98$    |
| Preop. + both sCr factors  | 0.917 (0.906-0.929)      |
| Hosmer-Lemeshow statistics | s = 68.94; $p = 0.99$    |
| maxCr/minCr only           | 0.834 (0.816-0.852)      |
| Hosmer-Lemeshow statistics | s = 1,818; p = 0         |
| recentCr/minCr only        | 0.791 (0.764-0.818)      |
| Hosmer-Lemeshow statistics | s = 112.88; $p = 0.14$   |
| both sCr factors           | 0.855 (0.837-0.873)      |
| Hosmer-Lemeshow statistics | s = 137.31; p = 0.01     |

#### Conclusions

- Relatively high classification accuracy was obtained using probabilistic model
- Creatinine time series do provide complimentary information on patient's risk of death
- Presumably AKI effect on risk of death depends on two factors:
  - Kidney recent condition
  - Overall kidney damage suffered since surgery

### The End

Thank you!