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Abstract. We propose a novel approach for solving the approximate nearest 
neighbor search problem in arbitrary metric spaces. The distinctive feature of 
our approach is that we can incrementally build a non-hierarchical distributed 
structure for given metric space data with a logarithmic complexity scaling on 
the size of the structure and adjustable accuracy probabilistic nearest neighbor 
queries. The structure is based on a small world graph with vertices correspond-
ing to the stored elements, edges for links between them and the greedy  
algorithm as base algorithm for searching. Both search and addition algorithms 
require only local information from the structure. The performed simulation for 
data in the Euclidian space shows that the structure built using the proposed  
algorithm has navigable small world properties with logarithmic search  
complexity at fixed accuracy and has weak (power law) scalability with the di-
mensionality of the stored data. 

Keywords: Similarity Search, Nearest Neighbor, Approximate Nearest Neigh-
bor, Small World, Distributed Data Structure, Metric space. 

1 Introduction 

The scalability of any software system is limited by the scalability of its data struc-
tures. Massively distributed systems like BitTorrent or Skype are based on the distri-
buted hash tables. While the latter have good scalability, their search functionality is 
limited to the exact element hash value matching. This limitation arises because small 
changes in an element value lead to large and chaotic changes in the hash value, mak-
ing the hash-based approach inapplicable to the range search and the similarity search 
problems.  

However, there are many applications (such as pattern recognition and classifica-
tion [1], content-based image retrieval [2], machine learning [3], recommendation 
systems [4], searching similar DNA sequence [5], semantic document retrieval [6]) 
that require the similarity search rather than just exact matching. The nearest neighbor 
search (NNS) problem is a mathematical formalization for the similarity search. It is 
defined as follows: we need to find the closest object p X∈  from a finite set of ob-

jects X ⊆  to a given query q ∈ , where   is a set of all possible objects (the 
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data domain). Closeness or proximity of two objects ' '',o o ∈  is defined as a dis-

tance function '( , '')o oσ . 

A naïve solution for the NNS problem is to calculate the distance function σ   
between q and every element from X. This leads to linear search time complexity 
scalability with the number of elements which is much worse than the scalability of 
structures with the exact value search and makes it almost impossible to use the NNS 
for extreme size datasets.  

We suggest a solution for the nearest neighbor search problem, a data structure 

with a small world network topology represented by a graph ( ),G V E , where every 

object io  from X  is uniquely associated with a vertex iv  from V .  Searching for 

the closest element to the query q  from the data set X  takes a form of searching for 

a vertex in the graph G . 
We chose this approach based on the following: 

• There are many existing well-developed algorithms for building small world net-
works for some special cases [7]. 

• Small world networks principally have no root element. 
• All operations (addition and search) use only local information and can be initiated 

from any element that was previously added to the structure. 

This gives an opportunity for building decentralized similarity search oriented storage 
systems where physical data location doesn’t depend on the content because every 
data object can be placed on an arbitrary physical machine and can be connected with 
others by links like in p2p systems. Such storage systems can provide a simultaneous 
access to large numbers of users performing data search and addition, have good fault 
tolerance and are highly scalable in terms of performance and capacity.  

One of the basic vertex search algorithms in graphs with metric objects is the gree-
dy search algorithm. It has a simple implementation and can be initiated from any 
vertex. In order for a result of the algorithm to be always the exact nearest neighbor to 
any query, the network must contain the Delaunay graph as its subgraph, which is 
dual to the Voronoi tessellation [8]. However, there are major drawbacks associated 
with the Delaunay graph, it requires some knowledge of metric space internal struc-
tures [9] and it suffers from the curse of dimensionality [8]. Moreover the requirement 
of the search for the exact nearest neighbor can be not necessary (optional) for the 
applications described above. So the problem of finding the exact nearest neighbor 
can be substituted by the approximate nearest neighbor search, and thus we don’t 
need to support the whole/exact Delaunay graph. 

For the greedy search algorithm to be logarithmically scalable, the small world 
network should have the navigation property [7]. 

In this paper we present a very simple algorithm for the data structure construction 
based on a small world network topology with a graph  ( , )G V E  which uses the 

greedy search algorithm for the approximate nearest neighbor search problem. The 

graph ( ),G V E  contains an approximation of the Delaunay graph and has long-range 
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links together with the small-world navigation property. The search algorithm has an 
ability to adjust the accuracy of search without modification of the structure. Pre-
sented algorithms do not use the coordinate representation and do not presume the 
properties of linear spaces, because they are based only on the metric computation 
between the objects, and therefore are applicable to data from general metric spaces. 
It is shown experimentally that the dimensionality dependence is polynomial for a 
vector data. 

2 Related Works 

All papers that are dedicated to the nearest neighbor search problem can be divided 
into four categories: centralized nearest neighbor search structures;  centralized ap-
proximate exact nearest neighbor search structures, distributed exact nearest neighbor 
search structures and distributed approximate nearest neighbor search structures. 

2.1 Centralized Exact Nearest Neighbor Search Structures 

Kd-tree[10] and quadra trees[11] were among the first works on the NNS problem. 
They perform well in 2-3 dimensions (search complexity is close to (log )O n ), but 

the analysis of the worst case for that structures[12] indicates 1 1/( * )dO d N −  search 

complexity, where  d  is the dimensionality. 
Other structures which have a tree topology such as variants of kd-trees, R-trees 

and structures based on space-filling curves are surveyed in [13]. They also have good 
performance when searching in a low-dimension ( 4d < ) metric space, but they 
quickly lose their effectiveness with the increasing number of dimensions [14].  

In general, presently there are no methods for effective exact NNS in  
high-dimensionality metric space. The reason behind this lies in the "curse" of dimen-
sionality [15]. To avoid the curse of dimensionality while retaining the logarithmic 
scaling on the number of elements, it was proposed to reduce the requirements for the 
NNS problem solution, making it approximate (ANN). 

2.2 Centralized Approximate Nearest Neighbor Search Structures 

Thus a large number of papers appeared which proposed to search for the nearest 
neighbor with predefined accuracy ε (ε-NNS). For example, Arya and Mount pro-

posed methods with search complexity 3(log )O n , but preprocessing requires 2( )O n  

and the algorithm was applicable only to data from Ed [16] . 
Kleinberg proposed two methods [17] for solving ε-NNS. First method requires 

2(n log ) dO d  preprocessing time and query time polynomial in , d ε  , and log n . 

The other method with preprocessing time polynomial in d, ε , and n, but with query 

time 3( log )O n d n+ . Also both methods are applicable only to data from Ed. 
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The first algorithms with search complexity polynomial in d , log n , ε-1 and po-

lynomial preprocessing time for fixed ε were proposed  by Indyk and Motwani in 
[18] and Kushilevitz, Ostrovsky and Rabani in [19]. Indyk and Motwani were the first 
ones to relax ε-ANN problem to approximate point location in equal balls (ε-PLEB). 
For the formulation of the problem in ε-PLEB points in metric space expand to the 
balls with center at this point and radius (1+ ε)r, it is necessary to determine which 
ball belongs to the query q . Also in [18] proposed a second method, which uses the 

concept of locality-sensitive hashing in regard to formulation of the problem ε-PLEB, 

with search time 1/(1 ε)O(n )+ . This method however requires near quadratic memory 

(for small ε). In addition, the first method is applicable only for dE , and the second 
for the Hamming space. 

In general, the concept of locality-sensitive hashing has become popular in the last 
decade to solve the ANN problem. Other works using the concept of locality-sensitive 
hashing are [20], [21]. But they all have the same major drawback: each algorithm is 
focused on a narrow class of metrics such as Hamming distance, Jakarta or sl  norms 

for Euclidean space. 
In [22,23] there were proposed non-distributed algorithms for the approximate k-

NN problem suitable in general spaces performing well even in case of high dimen-
sionality. The drawback for the ordering permutations index [23]  is that it has a part 
of search algorithm with a CPU time linear dataset size scaling, and [22] is an essen-
tially static index. 

2.3 Distributed Exact Nearest Neighbor Search Structures 

There are a number of distributed structures that doesn’t support nearest neighbor 
search in general metric spaces but provide search for interval queries in attribute-
based (vector) data or simple Euclidian space. MAAN [24], SCRAP[25] , Mercury 
[26] support multi-dimensional range queries and Voronet [27] is p2p network 
oriented to search nearest neighbor in E2 based on Voronoi tessellation [8]. Every 
peer has coordinates in E2 and has links to all neighbors of its Voronoi region. For the 
logarithmic navigation Voronet supports long-range links.  

The only metric-based distributed structures are M-Chord [28], GHT [29] and 
MCAN[25]. MCAN uses a pivot-based technique to map the high dimensional metric 
data to an N-dimensional vector space, and then uses CAN protocol as its underlying 
structured P2P system, however they all suffer from the curse of dimensionality. 

2.4 Distributed Approximate Nearest Neighbor Search Structures 

Authors in [30] explain how to use locality-sensitive hashing scheme for building the 
structure in a distributed environment. They suggest using a two-level mapping from 
a d-dimensional space to the peer identifier space. However the lack of versatility 
inherent to all LSH schemes remains as its main drawback. 
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Kleinberg’s work [7] has shown the possibility of using navigable small world 
networks for finding the nearest neighbor with the greedy search algorithm. The  
algorithm relied on long-range links following power-law length distribution for na-
vigation and 2-dimensional lattice for correctness of the results. In Voronet[27] the 
approach was extended to arbitrary 2-dimensional data by building a two dimensional 
Delaunay tessellation instead of a regular lattice. In their next work [31] they have 
weakened the requirements on the exactness of the search in order to avoid the curse 
of dimensionality for the d-dimension Euclidian space. The algorithm approximates 
the Delaunay graph by selecting 2 1d +  neighbors that minimize the volume of the 
corresponding Voronoi cell. The algorithm is rather complicated; it relies heavily on 
the quality of the Delaunay graph approximation, it has to be repeated iteratively to 
reach acceptable accuracy and in principle works only in the Euclidian space. The 
work also presented some sophisticated algorithms for managing the long range links. 

3 Structure Definition 

The structure  S  is constructed as a small world network represented by a graph 
( , )G V E , where objects from the set X  are uniquely mapped to vertices from the set 

V . The set of edges E  is determined by the structure construction algorithm. Since 
each vertex is uniquely mapped to an element from the set X , we will use the terms 
"vertex", "element" and "object" interchangeably. We will use the term “friends” for 
vertices that share an edge. The list of vertices that share a common edge with the 
vertex iv  is called the friend list of the vertex iv . 

We use a variant of the greedy search algorithm as a base algorithm for the NNS. It 
traverses the graph from an element to an element each time selecting the friend clos-
est to the query until it reaches a local minimum.  See a detailed description of the 
algorithm in the section 4.  

Links (edges) in the graph serve two distinct purposes. There is a subset of short-
range links, which are used as an approximation of the Delaunay graph[8] required by 
the Greedy Search algorithm. Another subset is the long-range links, which are used 
for logarithmic scaling of the Greedy Search, they are responsible for the navigation 
small world properties of the constructed graph similar to the ones in Kleinberg’s [7]  
work. The structure is illustrated on the Fig. 1. 

In our work we focus on the approximation of the Delaunay graph and ways to nul-
lify the errors rising from of the approximation. It can be studied independently be-
cause there is a very simple and strict way to create long range links for a predefined 
data set (see the section 5). 

All queries in the structure are independent, they can be done in parallel and if the 
elements are placed randomly on physical computer nodes the processing query load 
is shared evenly across physical nodes. And the performance of the system (parallel 
queries per second) is limited only by the number of the nodes. 
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Fig. 1. Graph representation of the structure. Circles (vertices) are the data in metric space, 
black edges are the approximation of the Delaunay graph, and red edges are long range links 
for logarithmic scaling. Arrows show a sample path of the greedy algorithm from an enter point 
to a query (shown green). 

4 Search Algorithm 

4.1 Greedy Search 

The basic search algorithm traverses the edges of the graph ( , )G V E  from one vertex 

to another. The algorithm takes two parameters: query and the vertex  

_ [ ]enter pointV V G∈  which is the starting point of a search (the entry point). Starting 

from the entry point at each vertex the algorithm computes a metric value from the 
query q to each vertex from the friend list of the current vertex and then selects a ver-
tex with the minimal metric value. If the metric value between the query and the se-
lected vertex is smaller than the one between the query and the current element, then 
the algorithm moves to that (new) vertex. The algorithm stops when it reaches a local 
minimum, a vertex whose friend list doesn’t contain a vertex that is closer to the 
query than the vertex itself. The algorithm: 

Greedy_Search(q: object, venter_point: object) 

1  vcurr ← venter_point;  
2  σmin ← σ(q, vcurr); vnext ← NIL; 
3  foreach vfriend ∈ vcurr.getFriends() do 

4     if σfr ← σ(query, vfriend) < σmin then 

5        σmin ← σfr; 

6        vnext ← vfriend; 
7  if vnext = Nil then return vcurr; 

8  else return Greedy_Search(q, vnext); 

The element which is a local minimum with respect to the query q ∈ can be either 

the true closest element to the query q  from the entire set of elements of X , or a 

false closest.  
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If every element in the structure had in their friend list all of its Voronoi neighbors, 
then this would preclude the existence of false local minima. Maintaining this condi-
tion is equivalent to constructing the Delaunay graph, which is dual to the Voronoi 
diagram. 

It turns out that it is impossible to determine exact Delaunay graph for an unknown 
metric space [9] (excluding the variant of the complete graph) so we cannot avoid  
the existence of local minima. For the problem of approximate searching as  
defined above it is not an obstacle since approximate search does not require the en-
tire Delaunay graph [31].  

Note that there is a distinction from the ANN problem defined in the works [16], 
[17] where it is expressed in terms of ε-neighborhood for which if there are several 
elements within the ε of the true nearest neighbor the result of the query can be any of 
these elements with comparable probabilities. There are no constrains on an absolute 
value of the distance between the false NN result and true NN result in our structure. 
Inaccuracy of the algorithm is «topological» in our case, meaning that the most likely 
result (e.g. with probability 0.95) is the true nearest neighbor, if not, the most likely it 
will be the second closest and so on with sharply decreasing probability. It may be 
more convenient to use such definition when the data distribution is highly skewed 
and it is hard to define one ε for all regions at the same time. 

4.2 Multi-search  

In order to diminish search errors arising in a network with local minima, we propose 
a following modification of the search algorithm. We use a series of m searches in-
itiated from random vertices and choose a result element that is closest to the query 
from the set of found elements. Since the greedy search Greedy_Search(q, venter-
Point ϵ V)is unambiguous, for each entry point venterPoint ϵ V it either results in a 
success, finding the true nearest neighbor, or in a failure, finding an element that is 
not the nearest neighbor of q. 

Thus a search of the closest element to a fixed query q  may result in finding the 

true nearest neighbor (a global minimum) or a false nearest neighbor  depending on 
the entry point from which the search algorithm started (see Fig. 2).  

Since we can choose an entry point at random, there is a probability p  of finding 

the true closest element to a particular element q. Moreover, this probability is always 
nonzero, because it is always possible to choose the exact nearest neighbor as an entry 
point, which subsequently will be returned by the greedy search algorithm. As an 
example the probability of finding query element in Fig. 2 is about 73% since there 
are 8 elements for which taken as the entry point the algorithm will succeed and 3 
elements for which he will not (3/8 results in 73%). 

If for a fixed query element probability of finding the true closest in a single search 
attempt is p  then probability of finding the true closest element in at least one of m 

attempts is 1 (1 )mp− − , thus failure probability decreases exponentially with the  
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number of search attempts. Thus we can improve the search precision, increasing the 
parameter m - the number of searches from random entry points. For example in the 
Fig. 2 for m =5 the result probability is 99.985%, which is more than sufficient for the 
most applications. 

The modified greedy search algorithm: 

Multi_Search(object q, integer: m) 

1  results: SET[objects]; 
2  for (i ← 0; i < m; i++) do 
3    entry_point ← getRandomEntryPoint(); 
4    local_min ← Greedy_Search(query, entry_point) 
5    if local_min ∉ results then 

6       results.add(result); 
7  return results; 

By selecting the closest element from the results we get an answer to the query. 
If m is comparable to the number of elements in the structure, the algorithm be-

comes an exhaustive search, assuming that entry points are never reused. If the graph 
of the network has the small-world properties, then it is possible to choose a random 
vertex in a number of random steps proportional to log n , which doesn’t affect the 

overall logarithmic search complexity. Therefore the overall complexity of a search 
will increase in no more than m times. 

Fig. 2. An illustration of the multisearch approach. Blue circles represent metric space elements 
for which taken as entry points for the greedy algorithm it will succeed finding the true NN for 
a query (green circle). Red circles represent elements for which taken as entry points the algo-
rithm will stuck in a local minimum. Arrows represent gradients direction of the greedy search 
algorithm. The probability of finding the query in a single search is about 73%. For the multi-
search algorithm with m =5 it is 99.985%. 
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5 Data Addition Algorithm 

Since we build an approximation of the Delaunay graph, there is a great freedom of 
choice of the construction algorithm. The main goal of all the works is to minimize 
the probability of the false local minima while the keeping number of links small.  
Some approaches are based on knowledge of topology of a metric space being used. 
For example in [31]  it is proposed to build an approximate Delaunay graph which 
would minimize a volume of a Voronoi region (computed by the Monte-Carlo me-
thod) for a fixed number of edges for each vertex in the graph, this was done by iterat-
ing a selection of neighbors of every node in the graph several times. We propose to 
assemble the structure by adding elements one by one and connecting them on each 
step with the k closest objects which are already in the structure. It is based on the 
idea that intersection of the set of elements which are Voronoi neighbors and the k 
closest elements should be large. Another advantage of this approach was shown em-
pirically in for one-dimensional data[32]. A graph created by such algorithm with data 
arriving in random order has small world navigation properties without any additional 
algorithms. That allows us to fully concentrate on the short-range links which approx-
imate the Delaunay graph. 

In this work we use a variant of the algorithm which is distinguished by the fact 
that the search for the k nearest elements uses a series of searches (an analogy to the 
multi-search, see 4.2).The algorithm takes three parameters: an object to be added to 
the structure and two positive integer numbers k and w. First, the algorithm deter-
mines a set of local minima using the procedure Multi_Search (see 4.2), which 
produces a series of w searches using random enter points. After that the algorithm 
determines a neighborhood u which contains all neighbors of the each found local 
minima. The set u is sorted in ascending order by distance from the object 
new_object to be added. After that new_object is connected with first k nearest 
elements from the set u. 

Nearest_Neighbor_Add(object: new_object, integer: k, integer: w) 

1  SET[object]: localMins ← Multi_Search (new_object, w); 
2  SET[object]: u ←∅ ; //neighborhood; 

3  foreach object: local_min ∈ localMins do 

4    u ← u ∪ local_min.getFriends(); 

6  sort the set u so to satisfy the condition σ (u[i], 
new_object) < σ (u[i+1], new_object) 
7  for (I ← 0; i < k; i++) do 
8    u[i].connect(new_object); 

9    new_object.connect(u[i]); 

The choice of the parameter k is not clear, it depends on the space, but it can be eva-
luated automatically for an unknown space with a distributed algorithm; we are plan-
ning to describe it in our next works. Note that as in 4.2 setting w to a big number is 
equivalent to an exhaustive search of the closest elements in the structure. More on 
the choice of w and k see in the next section. 
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6 Test Results and Discussion 

Test Data  
We have implemented the algorithms presented above in order to validate our as-
sumptions about the scalability of the structure and to evaluate its performance. For a 
test dataset we have used: 

• Uniformly distributed random points with a L2 (Euclidean distance) proximity 
function (up to 106 elements). 

• To test our algorithm in a general metric space we have used a database of chemi-
cal compounds [33] with a Tanimoto [34] distance function. We have randomly se-
lected 105 elements from the database to test the algorithm. 

• A subset of the TREC-3 documents collection containing 24276 documents[23] for 
comparison with other works. 

Small World  
To verify the small world properties of the proposed structure we have measured the 
average path length induced by the greedy search algorithm for the vectors and chem-
ical compounds (see Fig. 3). The plot clearly shows a logarithmic dependence on the 
dataset size proving it is a navigable small world. Thus the complexity of a single 
search scales logarithmically. It can be shown that the small world properties retain at 
any size (we are going to focus on it in one of our next works). Note that for bigger 
dimensionalities dependence is weaker due to smaller diameter of a set at a fixed 
number of elements. 

Construction Parameters  
We adjusted the number of search attempts m, so that the probability of finding the 
true closest element to the query was not less than a fixed value (we took 95% as a 
reference). 

To test the scaling of the search algorithm with the number of elements n we have 
plotted (see Fig. 4) the number of multi-searches m required to get the 95% true near-
est neighbor rate versus the size of the dataset for d=10 and different w parameters of 
the construction algorithm. For w=20 the dependence is clearly logarithmic up to 106 
elements. For low values of w the algorithm complexity dependence deviates from the 
expected. Arrows denote the point where the dependence deviates from the logarith-
mic for w=1..4.  One can see that the points are almost equidistant in the logarithmic 
scale.  

So, if we need to get the logarithmic scaling up to n  elements we have to have  

w ( )log ;(6.1)A n> × , where A is a constant value. And the overall complexity of both 

the search and the construction algorithms can be made logarithmic at the same time. 
Such dependence on the construction parameters can be easily understood. For the 
low w parameters the probability of finding the true nearest neighbor to a new element 
is low and the algorithm cannot choose the closest neighbors links correctly. The 
number of searches required to get P  close to unity scales logarithmically with the 
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size of the dataset, leading to equation (6.1). We can set w high enough for any rea-
sonable size of the dataset (like 10100) while keeping acceptable construction com-
plexity or if the size of the dataset is known (or evaluated dynamically) we can always 
set the parameters optimal and maintain an overall logarithmic scaling. 

Fig. 3. The average hop count induced by a 
greedy search algorithm for different dimen-
sionality Euclid data and for a chemical com-
pounds dataset (k=10, w=20). The navigable 
small world properties are evident from the 
logarithmic scaling.  

Fig. 4. The number of multi-searches 
required to get the 95% true nearest neigh-
bor rate versus the size of the dataset for 
different w parameters of the construction 
algorithm. Arrows denote points where the 
dependence deviates from the logarithmic.  
The points are almost equidistant in the log 
scale. 

Fig. 5 presents the number of multi-searches m for the same parameters as in Fig. 4 

setting w= ( )logA n c× −    for A=1.5, 2, 2.5, 3.  For any value of A the scaling stays 

logarithmic but at expense of worse complexities for the small values of A. Setting A 
higher than 2.5 does not affect the complexity of the search.  

To define the best choice of the parameter k we have plotted the probability of fail-
ing finding the true nearest neighbor versus the fraction of visited elements (metric 
calculations) for d=10 and different parameters k (see Fig. 6). For k smaller than 
2...3 d⋅ there is a significant fall of performance, while for bigger values of k there is 
a very slow decay with the rise of the parameter. For d=2…50 it was verified that the 
optimal value for k is close to 3 d⋅ . Also one can see that the probability of a wrong 
NN result falls exponentially with the fraction of visited elements confirming assump-
tions from section 4. 

The bottom line is that the optimal value for k is 3 d⋅ ; the value of w has to be dy-

namically changed ( )log currentA n×  with a constant A or set fixed to ( )logA n× , 

where n is the maximum database size. 
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Fig. 5. The number of multi-searches required 
to get the 95% true nearest neighbor rate versus 
the size of the dataset for a logarithmic scaling 
of w (A=1.5, 2, 2.5, 3) 

Fig. 6. Probability of failing finding the true 
nearest neighbor versus fraction of visited 
elements for d=10, 52.6 10n = ⋅  

Absolute Speedup and Scaling  
The graph (Fig. 7) shows the percent of visited (extracted) elements (vertical) versus 
the dataset size (horizontal) in a log-log scale for different dimensionalities. k was 
fixed to 3 d⋅  for all trials and w was fixed to a big number. The plot shows that with 
the increase of the number of elements in the structure, the percentage of visited ele-
ments decreases, and the curves become close to straight lines with an angle of 45 
degrees (corresponding to the 1 / n  law of decay). This means that the single search 
complexity does not change significantly with the size of the dataset. From the graphs 
the overall scaling for complexity of the search can be extracted. It turns out that it 

scales as 2log ( )n , just as it might be expected. One “log” coming from the average 

path length and the other is from the number of multi-searches. 

We have also plotted the average fraction of visited elements for n= 52.6 10⋅  in a 
log-log scale to check the dimensionality dependence (see Fig. 8), it can be approx-

imated by a 1.7d  power law. Judging on the Fig. 7 it seems that for low d with rise of 
n at some size the difference in performance between the dimensionalities diminishes. 
It might be suspected that such behavior will be the same for bigger dimensionalities 
but it requires further study. 

Overall, the measured search complexity scaling for n>105 and d = 5..100 is not 

worse than 1.7 2ln ( ) ln(1/ )faild n P× × and the construction complexity (deduced from 

the search complexity) is 1.7 2ln ( )×d n n , where failP  is an acceptable probability of 

failing finding the true nearest neighbor. 
To get an idea about how the algorithm performs compared to the other k-NN  

algorithms we have run a test from [23], a subset of collection TREC-3 documents 
containing 24276 documents. For a k-NN algorithm we have used a part of the con-
struction algorithm from section 5. To get the averaged 90% recall of 9 documents 
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from the database it required visiting 5% of the database compared to about 2% from 
the [23]. We believe it is a good result for such a simplified algorithm. We have also 
made a slight modification of the k-NN search algorithm, changing the stop condition 
(the algorithm continues to travel the graph while it can improve distance for the k-th 
element) yielding about 2.5% extraction of the database at the same recall, very close 
to the state of art. 

 

 

Fig. 7. Average fraction of visited elements 
within a single NN-search versus the size of 
the dataset for different dimensionality and 
data types 

Fig. 8. Average fraction of visited elements 
within a single Nearest Neighbor search 
versus the dimensionality of the dataset for n 
= 262k with a power-law fit 

7 Conclusions and Future Work 

We have proposed a method of organizing data into a distributed small world graph 
structure suited for the distributed approximate nearest neighbor search in a metric 
space. The algorithm uses no information about inner topology of the data and space, 
thus it is applicable to arbitrary metric data. The algorithm is very simple and easy to 
understand. All elements in the structure are of the same type, there is no central or 
root element. There is no dedicated algorithm for managing the small world proper-
ties, they arise automatically. The algorithm uses only local information on each step 
and can be initiated from any vertex. The search is approximate from the topological 
point of view. An unsuccessful Nearest Neighbor query typically results in the second 
nearest element. 

Accuracy of the approximate search can be tuned by using multiple searches with a 
random initial vertex and the probability of finding a false nearest neighbor decreases 
exponentially with the number of multi-searches.  

The performed simulation for data in the Euclidian space shows that the structure 
built using the proposed algorithm has the navigable small world property. Both loga-
rithmic search and construction complexity at fixed accuracy can be achieved with 
appropriate algorithm parameters. There are reasons to believe such behavior will be 
retained for any dataset size. The algorithm also shows a power law scalability  
of metric calculation count with dimensionality of the stored data. Simulations for 

10 100 1000 10000 100000 1000000

1E-3

0,01

0,1

1

 d = 3

 d = 5

 d = 10

 d = 30

 d = 50

 d = 60

 d = 100

 Tanimoto

F
ra
c
ti
o
n
 o
f 
v
is
it
e
d
 e
le
m
e
n
ts

Dataset size

10 100

1E-3

0,01

0,1
 Algorithm performance

 ~d
 1.7

F
ra
c
ti
o
n
 o
f 
v
is
it
e
d
 e
le
m
e
n
ts

Dimensionality



 Scalable Distributed Algorithm for Approximate Nearest Neighbor Search Problem 145 

chemical compounds and documents have shown the effectiveness of the approach for 
non-Euclidian spaces comparable to best algorithms.  

The proposed structure was intentionally slimmed-down to demonstrate its scala-
bility over the dataset size and dimensionality. There are several ways to optimize the 
structure in order to get lower complexity or/and better accuracy constants, such as: 

• More complicated algorithms for node friends selection (see sec. 5). It is obvious 
that selecting nearest neighbors as friends is not the best way to approximate De-
launay graph since it takes into account only distances between the new element 
and candidates and neglects distances between the candidates. Knowledge of inter-
nal structure of the metric space can boost up search performance. In [31] is was 
shown that for Euclidean space the accuracy of a single search can be significantly 
increase while keeping the number of friends per node fixed. 

• More complicated search algorithms can be used. Excluding already visited ele-
ments in consequent searches or/and changing the stop parameters in search algo-
rithm can potentially reduce the number of metric computations several times at 
the same accuracy. 

• More complicated algorithms for navigable small world creation suitable for corre-
lated (non-random) data. 

As a future work, we are going to enhance the performance of the structure while 
keeping good scalability and distributed nature and to make a detail comparison with 
the state of art algorithms from the area. 

Summing up, simplicity, high scalability both with size and data dimensionality 
and the distributed nature of the algorithm are a good base for building many real-
world extreme dataset size high dimensionality similarity search applications. 
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