Affine Option Pricing Model in Discrete Time

Eric Renault1 Stanislav Khrapov2

1Brown University
Providence, RI

2New Economic School
Moscow, Russia

Third International Moscow Finance Conference
November 8, 2013
Introduction
Continuous vs Discrete

Continuous time affine models with stochastic volatility:
- Cox, Ingersoll, and Ross (1985, Econometrica)
- Heston (1993, RFS)
- Duffie, Pan, and Singleton (2000, Econometrica)
Continuous vs Discrete

Popular because of computational convenience ...

... with historical probability measure (P):

- Robustness to temporal aggregation: Meddahi and Renault (2004, JoE)
- Robustness to cross-sectional aggregation (portfolio)
Continuous vs Discrete

Popular because of computational convenience ...

... with historical probability measure (P):
- Robustness to temporal aggregation: Meddahi and Renault (2004, JoE)
- Robustness to cross-sectional aggregation (portfolio)

... with risk neutral probability measure (Q):
- Structure preserving change of measure (affine structure preserved)
- Analytical tractability of computing derivative prices (inverse Fourier transform)
Discrete Time Extension

Volatility model:
- Darolles, Gourieroux, and Jasiak (2006, JTSA)
- Gourieroux and Jasiak (2006, JoF)

Option pricing model with conditional skewness:
- Feunou and Tedongap (2012, JBES)
Discrete Time Extension

Advantages of discrete time:

- Computational/Statistical tractability
- More flexibility for higher order moments
Discrete Time Extension

Advantages of discrete time:
- Computational/Statistical tractability
- More flexibility for higher order moments

Challenges of discrete time:
- Accommodating leverage effect
- Keeping the advantage of structure preserving change of measure historical/risk-neutral
Affine Stochastic Volatility Model
The Model

CAR Volatility: Darolles, Gourieroux, and Jasiak (2006, JTSA)

\[E \left[\exp \left\{ -u\sigma_{t+1}^2 \right\} \mid I_t \right] = \exp \left\{ -a(u)\sigma_t^2 - b(u) \right\} \]
The Model

CAR Volatility: Darolles, Gourieroux, and Jasiak (2006, JTSA)

\[
E \left[\exp \{-u \sigma_{t+1}^2\} \mid I_t \right] = \exp \{-a(u) \sigma_t^2 - b(u)\}
\]

Log Excess Return

\[
E \left[\exp \{-vr_{t+1}\} \mid I_t \cup \sigma_{t+1}^2 \right] = \exp \{-\alpha(v) \sigma_{t+1}^2 - \beta(v) \sigma_t^2 - \gamma(v)\}
\]
The Model

Joint Return and Volatility

\[E \left[\exp \left\{ -u \sigma^2_{t+1} - vr_{t+1} \right\} \mid l_t \right] = \exp \left\{ -l(u, v) \sigma^2_t - g(u, v) \right\} \]
The Model

Joint Return and Volatility

\[E \left[\exp \left\{ -u\sigma_{t+1}^2 - vr_{t+1} \right\} \mid l_t \right] = \exp \left\{ -l(u, v) \sigma_t^2 - g(u, v) \right\} \]

\[l(u, v) = a[u + \alpha(v)] + \beta(v) \]
\[g(u, v) = b[u + \alpha(v)] + \gamma(v) \]
The Model

Joint Return and Volatility

\[E \left[\exp \left\{ -u \sigma^2_{t+1} - v r_{t+1} \right\} \mid I_t \right] = \exp \left\{ -l(u, v) \sigma^2_t - g(u, v) \right\} \]

\[
\begin{align*}
 l(u, v) &= a[u + \alpha(v)] + \beta(v) \\
g(u, v) &= b[u + \alpha(v)] + \gamma(v)
\end{align*}
\]

\[\alpha(v) \neq 0 \iff \text{leverage!} \]
The affine structure is kept from P to Q when

\[\text{Pricing Kernel} = \text{Exponential Affine} \]
Risk-Neutral Distribution

The affine structure is kept from P to Q when
Pricing Kernel = Exponential Affine

Stochastic Discount Factor (SDF):

\[M_{t,t+1} (\theta) = \exp (-r_{f,t}) \exp \left\{ m_0 (\theta) + m_1 (\theta) \sigma_t^2 - \theta_1 \sigma_{t+1}^2 - \theta_2 r_{t+1} \right\} \]

- risk prices \(\theta_1 \leq 0 \) and \(\theta_2 \geq 0 \)
- \(m_0 (\theta), m_1 (\theta) \): bonds and stocks are priced correctly
Risk-Neutral Distribution

Risk-neutral pricing:

\[E^Q \left[H \left(r_{t+1}, \sigma_{t+1}^2 \right) \middle| I_t \right] = \exp \left(r_{f,t} \right) E \left[M_{t,t+1} \left(\theta \right) H \left(r_{t+1}, \sigma_{t+1}^2 \right) \middle| I_t \right] \]

for any function \(H \)
Risk-Neutral Pricing

Risk-neutral pricing:

\[E^Q \left[H \left(r_{t+1}, \sigma^2_{t+1} \right) \mid I_t \right] = \exp(r_{f,t}) E \left[M_{t,t+1}(\theta) H \left(r_{t+1}, \sigma^2_{t+1} \right) \mid I_t \right] \]

for any function \(H \)

Risk-neutral distribution:

\[E^Q \left[\exp \left(-u \sigma^2_{t+1} - vr_{t+1} \right) \mid I_t \right] = \exp \left(-l^* (u, v) \sigma^2_t - g^* (u, v) \right) \]

with

\[l^* (u, v) = l(\theta_1 + u, \theta_2 + v) - l(\theta_1, \theta_2) \]
\[g^* (u, v) = g(\theta_1 + u, \theta_2 + v) - g(\theta_1, \theta_2) \]
Affine Moments

Volatility moments:

\[
E \left[\sigma_{t+1}^2 \mid I_t \right] = a'(0) \sigma_t^2 + b'(0) \\
V \left[\sigma_{t+1}^2 \mid I_t \right] = -a''(0) \sigma_t^2 - b''(0)
\]

\[E\left[I_{t+1}\mid I_t\right]=E[\sigma_{t+1}^2]\]
Affine Moments

Volatility moments:

\[
E \left[\sigma^2_{t+1} \mid l_t \right] = a'(0) \sigma^2_t + b'(0)
\]

\[
V \left[\sigma^2_{t+1} \mid l_t \right] = -a''(0) \sigma^2_t - b''(0)
\]

Return expectation:

\[
E \left[r_{t+1} \mid l_t^\sigma \right] = \alpha'(0) \sigma^2_{t+1} + \beta'(0) \sigma^2_t + \gamma'(0)
\]
Affine Moments

Volatility moments:

\[
E \left[\sigma_{t+1}^2 \mid I_t \right] = a'(0) \sigma_t^2 + b'(0)
\]

\[
V \left[\sigma_{t+1}^2 \mid I_t \right] = -a''(0) \sigma_t^2 - b''(0)
\]

Return expectation:

\[
E \left[r_{t+1} \mid l_t^\sigma \right] = \alpha'(0) \sigma_{t+1}^2 + \beta'(0) \sigma_t^2 + \gamma'(0)
\]

Leverage effect:

\[
\phi \approx Corr \left[r_{t+1}, \sigma_{t+1}^2 \mid I_t \right] = \alpha'(0) \left(\frac{V \left[\sigma_{t+1}^2 \mid I_t \right]}{V \left[r_{t+1} \mid I_t \right]} \right)^{1/2}
\]

\[\alpha(v) \neq 0 \iff \text{leverage!}\]
Option Pricing
Generalized Black-Scholes

Assume $\alpha(v), \beta(v), \gamma(v)$ are quadratic, then

$$r_{t+1} \mid l_t^\sigma \sim N(E[r_{t+1} \mid l_t^\sigma], V[r_{t+1} \mid l_t^\sigma])$$
Generalized Black-Scholes

Assume $\alpha(v), \beta(v), \gamma(v)$ are quadratic, then

$$r_{t+1} | I_t^\sigma \sim N(E[r_{t+1} | I_t^\sigma], V[r_{t+1} | I_t^\sigma])$$

Option price:

$$C_t(x_t, \phi) = E_t^Q[BS(S_t \xi_{t,t+1}(\phi), (1 - \phi^2) \sigma_{t+1}^2, K)]$$

where $x_t = \log(K/S_t)$ is the moneyness and

$$\log \xi_{t,t+1}(\phi) = E^Q[r_{t+1} | I_t^\sigma] + \frac{1}{2} V^Q[r_{t+1} | I_t^\sigma]$$

is price distortion
Leverage and Volatility Smirk

Two effects of ϕ:

- Price distortion $S_t \xi_{t,t+1}(\phi)$
- Volatility $(1 - \phi^2) \sigma_{t+1}^2$
Leverage and Volatility Smirk

Two effects of ϕ:

- Price distortion $S_t \xi_{t,t+1}(\phi)$
- Volatility $(1 - \phi^2) \sigma_{t+1}^2$

Around $\phi = 0$ the first order effect is through volatility:

$$C_t(x_t, \phi) \approx C_t(x_t, 0) + k\phi \cdot \text{Cov}^Q \left[\sigma_{t+1}^2, \Phi(d) \right| l_t]$$

with

$$d = \frac{1}{2} \frac{\sigma_{t+1}}{\sigma_{t+1}} - \frac{x_t}{\sigma_{t+1}}$$
Leverage and Volatility Smirk

Two effects of ϕ:
- Price distortion $S_t \xi_{t,t+1}(\phi)$
- Volatility $(1 - \phi^2) \sigma_{t+1}^2$

Around $\phi = 0$ the first order effect is through volatility:

$$C_t(x_t, \phi) \approx C_t(x_t, 0) + k\phi \cdot \text{Cov}^Q[\sigma_{t+1}^2, \Phi(d) \mid l_t]$$

with

$$d = \frac{1}{2} \sigma_{t+1} - \frac{x_t}{\sigma_{t+1}}$$

Cov() more positive out of the money

\implies the smile is pushed down on the out of the money side
Leverage and Volatility Smirk
Estimation
Maximum Likelihood

Joint likelihood

\[
f (r_{t+1}, \sigma_{t+1}^2 \mid \sigma_t^2; c, \rho, \delta, \phi, \theta_2) = f (r_{t+1} \mid \sigma_{t+1}^2, \sigma_t^2; \phi, \theta_2) \\
\times f (\sigma_{t+1}^2 \mid \sigma_t^2; c, \rho, \delta)
\]
Maximum Likelihood

Joint likelihood

\[f \left(r_{t+1}, \sigma^2_{t+1} \mid \sigma^2_t; c, \rho, \delta, \phi, \theta_2 \right) = f \left(r_{t+1} \mid \sigma^2_{t+1}, \sigma^2_t; \phi, \theta_2 \right) \times f \left(\sigma^2_{t+1} \mid \sigma^2_t; c, \rho, \delta \right) \]

where

\[f \left(r_{t+1} \mid \sigma^2_{t+1}, \sigma^2_t; \phi, \theta_2 \right) \sim \text{Normal} \]

\[f \left(\sigma^2_{t+1} \mid \sigma^2_t; c, \rho, \delta \right) \sim \text{nc} - \text{Gamma} \]

\(\sigma^2_{t+1} \) is ARG(1) from Gourieroux and Jasiak (2006, JoF)
Spectral GMM

Singleton (2001, JoE), Chacko and Viceira (2003, JoE)

Moment functions:

\[g_t(u, \theta) = Z_t \cdot \left[\exp \left\{ -u \sigma_{t+1}^2 \right\} - \exp \left\{ -a(u) \sigma_t^2 - b(u) \right\} \right. \]

\[\left. \exp \left\{ -ur_{t+1} + 1 \right\} - \exp \left\{ -\alpha(u) \sigma_{t+1}^2 - \beta(u) \sigma_t^2 - \gamma(u) \right\} \right] \]
Spectral GMM

Singleton (2001, JoE), Chacko and Viceira (2003, JoE)

Moment functions:

\[g_t(u, \theta) = Z_t \cdot \left[\exp \left\{ -u \sigma_t^2 \right\} - \exp \left\{ -a(u) \sigma_t^2 - b(u) \right\} \right. \]

\[\left. \exp \left\{ -ur_{t+1} \right\} - \exp \left\{ -\alpha(u) \sigma_{t+1}^2 - \beta(u) \sigma_t^2 - \gamma(u) \right\} \right] \]

Moments to match:

\[E \left[\begin{array}{c} \text{Re} \{g_t(u, \theta)\} \\ \text{Im} \{g_t(u, \theta)\} \end{array} \right] = 0 \]
Model Fit
Parameter Estimates

<table>
<thead>
<tr>
<th></th>
<th>MLE</th>
<th></th>
<th>GMM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\theta}$</td>
<td>t</td>
<td>$\hat{\theta}$</td>
<td>t</td>
</tr>
<tr>
<td>c</td>
<td>2.4e-5</td>
<td>29.9</td>
<td>6.7e-6</td>
<td>4.5</td>
</tr>
<tr>
<td>ρ</td>
<td>0.66</td>
<td>39.9</td>
<td>0.91</td>
<td>28.5</td>
</tr>
<tr>
<td>δ</td>
<td>1.45</td>
<td>29.5</td>
<td>1.18</td>
<td>6.4</td>
</tr>
<tr>
<td>ϕ</td>
<td>-0.21</td>
<td>-14.3</td>
<td>-0.22</td>
<td>-10.2</td>
</tr>
<tr>
<td>θ_2</td>
<td>1.57</td>
<td>0.7</td>
<td>1.90</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Vol Risk Price Calibration

\[\hat{\theta}_1 = \arg\min_{\theta_1} \text{RMSE}_{IV} (\theta_1) = \sqrt{\frac{1}{N} \sum_{j=1}^{N} \left(IV_{Market}^j - IV_{Model}^j (\theta_1) \right)^2} \]
Vol Risk Price Calibration

\[\hat{\theta}_1 = \arg \min_{\theta_1} \text{RMSE}_{IV}(\theta_1) = \sqrt{\frac{1}{N} \sum_{j=1}^{N} (IV_{Market}^j - IV_{Model}^j(\theta_1))^2} \]
Conclusion

- We have been able to build a discrete time version of Heston’s model
We have been able to build a discrete time version of Heston’s model.

Advantages of discrete time:

- Easier theoretical derivations
 (impact of leverage on volatility smile, etc...)
- Easier for statistical inference
- More flexibility for higher order moments
Conclusion

- We have been able to build a discrete time version of Heston’s model

- Advantages of discrete time:
 - Easier theoretical derivations
 (impact of leverage on volatility smile, etc...)
 - Easier for statistical inference
 - More flexibility for higher order moments

- Work in progress: take advantage of this flexibility for empirical fit better than standard Heston:
 - Two volatility factors (slow and fast mean reverting)
 - Mixture component in return r_{t+1} given I_t^σ for more kurtosis
 (gamma mixture to keep the affine structure) reminiscent of jumps in continuous time
Thank you!

