CHEKANOV-TYPE THEOREM FOR SPHERIZED COTANGENT BUNDLES

PETYA PUSHKAR

Abstract. We generalise a Chekanov theorem to the space of cooriented contact elements.

Introduction

1. Chekanov-type theorem for sperization of a cotangent bundle

1.1. Contact structure on ST^*. We recall standard notions from contact geometry [AG]. Let B be a smooth manifold. Denote by 0_B the zero section of the cotangent bundle T^*B. The spherisation ST^*B of its cotangent bundle T^*B is a quotient space under the natural free action of a multiplicative group of positive real numbers \mathbb{R}_+ on $T^*B \setminus 0_B$, a positive number a transform a pair (q,p) ($q \in B, p \in T^*_q B$) into the pair (q,ap). The space ST^*B is a smooth manifold of the dimension $2 \dim B - 1$ and it carries a natural cooriented contact structure ξ defined as follows. Consider the Liouville 1-form $\lambda = pdq$ on T^*B, it defines a cooriented (by λ itself) hyperplane field $\lambda = 0$ on $T^*B \setminus 0_B$. That cooriented hyperplane field is invariant with respect to the action of \mathbb{R}_+ and it is tangent to orbits of the action. Hence the projection of that hyperplane field to ST^*B is a cooriented hyperplane field on ST^*B and it turns out to be a contact structure. We remark here, that there is no natural choice of a contact form on ST^*B.

1.2. Critical points and critical values of Legendrian manifolds in $J^1(B)$. We say that a point x of a Legendrian manifold is a critical point of Λ if it projects to a zero section 0_B under the natural projection $J^1(B) \rightarrow T^*B$. We say that a number a is a critical value of Λ if a equals to the value of u-coordinate of a critical point of Λ.

1.3. Legendrian manifolds. The following notion generalise a notion of regular level set of a function on a manifold. Let $c \in \mathbb{R}$. Suppose that Λ is transverse to $T^*B \times c \subset T^*B \times \mathbb{R} = J^1(B)$. Note that it implies that c is not a critical value of Λ. Consider a manifold $L^c = \Lambda \cap T^*B \times c$. The intersection of L^c with $0_B \times c$ is empty and the restriction of natural

This study was carried out within The National Research University Higher School of Economics Academic Fund Program in 2012-2013, research grant No.11-01-0059.
projection \((T^*B \setminus 0_B) \times c \to ST^*B\) to \(L^c\) is a legendrian immersion. We denote the image of \(L^c\) by \(\Lambda^c\) and we say in that situation that \(\Lambda^c\) is a c-reduction of \(\Lambda\).

1.4. Legendrian manifolds and generating families. Let us recall firstly the definition of generating family in the space of 1-jets of a function.

Let \(B\) be a manifold, consider the space \(J^1(B) = T^*B \times \mathbb{R}\) of one jets of functions on \(B\). The space \(J^1(B)\) is a contact manifold with the canonical contact structure given by the form \(du - \lambda\), where \(\lambda\) is (a lift of) Liouville form on \(T^*B\), \(u\) is the coordinate on the factor \(\mathbb{R}\). A smooth bundle \(E \to B\) and a generic function \(F: E \to \mathbb{R}\) generates a (immersed) Legendrian submanifold \(\Lambda_F \subset J^1(B)\) as follows. Consider a fiber of the bundle \(E \to \mathbb{R}\), and a critical point of the restriction of the function \(F\) to this fiber. For a sufficiently generic function \(F\) the set \(C_F\) consisting of all such points is a smooth submanifold of the total space \(E\) (the genericity condition is that the equation \(d_wF = 0\), where \(w\) is a local coordinate on a fiber of \(E \to B\), satisfies the condition of the implicit function theorem). At any point \(z\) of \(C_F\) the differential \(d_BF(z)\) of the function \(F\) along the base \(B\) is well defined. The rule \(z \mapsto (z, d_BF(z), F(z))\) defines an immersion \(l_F: C_F \to J^1(B)\) and its image is a Legendrian manifold \(\Lambda_F\) under definition. For a generating family \(F\) in a local trivialization \(B \times W\) of \(E\ \Lambda_F\) is given by the formula:

\[
\Lambda_F = \{(q, p, u) | \exists w_0 F_w(q, w_0) = 0, p = F_q(q, w_0), u = F(q, w_0)\},
\]

where \(q, p\) are coordinates on \(T^*B\).

Now we define a Legendrian (immersed) submanifold \(L_F\) in the space \(ST^*B\) starting from a smooth bundle \(\pi: E \to B\) and a generic function \(F: E \to \mathbb{R}\). For a point \(b \in B\) we denote by \(C^0_F(b)\) the zero level of the restriction of the function \(F\) to \(C_F\). Genericity conditions are the following - \(C_F\) is a manifold in a neighborhood of \(C^0_F\) and 0 is a regular value of \(C_F\). Consider a map \(C^0_F \to ST^*B\), \(z \mapsto (z, [d_BF(z)])\). That map is well defined since for \(z \in C^0_F\) \(d_BF(z) \neq 0\). Moreover, that map is a legendrian immersion and we denote its image by \(L_F\). We will be interested in embedded Legendrian manifolds only.

We remark here that if \(F\) is a generating function for a manifold \(\Lambda_F \subset J^1(B)\) then \(F\) is a generating function for a manifold \(L_F \subset ST^*B\) if and only if \(\Lambda_F\) is transversal to the hypersurface \(\{u = 0\}\) in \(J^1(B)\). The last condition is equivalent to the condition of emptiness ???.

Stabilization

Example

1.5. Legendrian isotopy lifting.

Lemma 1.1. Let \(B\) be a closed manifold and \(c \in \mathbb{R}\). Consider a compact Legendrian manifold \(\Lambda \subset J^1(B)\) such that its c-reduction \(\Lambda^c\) is well defined and \(\Lambda^c\) is an embedded manifold. Let \(L_{t\in[0,1]}\) be a legendrian isotopy of \(\Lambda^c = L_0\). Than there exists a legendrian isotopy
\(\Lambda_{t, \varepsilon \in [0,1]}, \Lambda_0 = \Lambda \) such that for any \(t \in [0,1] \) its \(c \)-reduction is defined and \(\Lambda_t^c = L_t \).

Proof. It is sufficient to prove the statement of lemma for \(c = 0 \). Consider the legendrian isotopy \(L_t \). By isotopy extension theorem there exists a contact flow \(\varphi_{t \in [0,1]} \), such that for any \(t \in [0,1] \) \(\varphi_t(L_0) = L_t \). Any contact isotopy of \(ST^*B \) lifts to a (homogeneous) Hamiltonian flow on \(T^*B \setminus 0_B \). More precisely – consider a Hamiltonian \(H_t: T^*B \setminus 0_B \to \mathbb{R} \) such that \(H_t(ap,q) = aH_t(p,q) \) for any positive number \(a \) (we will say that such a Hamiltonian is homogeneous). Then the flow of such a Hamiltonian function is well defined for all values of \(t \) and projects to a contact flow on \(ST^*B \). Moreover, any contact flow on \(ST^*B \) could be given as a projection of a unique Hamiltonian flow above.

We take a homogeneous Hamiltonian \(H_t \) corresponding to the flow \(\varphi_t \). Consider a function \(K_t(p,q,u) = H_t(p,q) \) on \((T^*B \setminus 0_B) \times \mathbb{R} \subset J^1(B) \) as a contact Hamiltonian (see [AG]) with respect to the contact form \(du - \lambda \). Any set \((T^*B \setminus 0_B) \times c \) is invariant under the flow of generated by \(K_t \) and coincides on it with the flow of \(H_t \) under the forgetful identifications \(T^*B \times c = T^*B \) that set with the flow of \(H_t \).

It follows from the explicit formula for the corresponding vector field: \(\dot{u} = K - pK_p, \dot{p} = K_q - pK_u, \dot{q} = -K_p \) (see [AG]). \(u \)-component of that contact vector field equals to zero since \(K \) is homogeneous. Hence the flow \(\psi_t \) generated by \(K \) satisfy \(\psi_t(\Lambda \cap (T^*B \setminus 0_B)) = L_t \).

But in general it is impossible to extend \(\psi_t \) to a flow on the whole space \(J^1(B) \) so we will change the function \(K_t \). Let us fix an arbitrary smooth function \(\tilde{H}_t : T^*B \to \mathbb{R} \) coinciding with \(H_t \) in a neighbourhood of infinity. Denote by \(P_t \) the function \(P_t(p,q,u) = \tilde{H}_t(p,q) \) and by \(P^C_t \) \((C \in \mathbb{R}_+) \) the function \(P^C_t(p,q,u) = \frac{1}{C}P_t(Cp,q,u) \). We claim that for sufficiently big \(C \) the legendrian isotopy of \(\Lambda \) generated by the contact flow \(\Psi_t^C \) of \(P^C_t \) satisfies to the claim of lemma.

Let us fix a number \(a \) such that absolute value of any critical value of \(\Lambda \) is bigger then \(2a \). Denote by \(X \subset \Lambda \) the subset formed by all points such that an absolute value of \(u \)-coordinate is at most \(a \), by \(Y \) we denote the closure of its complement \(\Lambda \setminus X \). The set \(X \) is a compact set and contained in \((T^*B \setminus 0_B) \times \mathbb{R} \). Take a neighborhood \(U \subset T^*B \) of zero section, the support of \(P^C_t - K_t \) contains in \(U \times \mathbb{R} \) for sufficiently big \(C \). Hence, for sufficiently big \(C \) \(\Psi_t^C(X) = \psi_t(X) \) for all \(t \in [0,1] \). It remains to show that for sufficiently big \(C \) \(u \)-coordinate of any point in \(\Psi_t^C(Y) \) could not be zero and hence zero reduction of \(\Psi_t^C(\Lambda) \) is \(L_t \).

The coordinate \(u \) changes under an action of a contact Hamiltonian \(P \) according to the low: \(\dot{u} = P^C_t - p\frac{\partial P^C_t}{\partial p} \). So it is sufficient to show that the speed uniformly tends to zero. The following general consideration finishes the proof.

Consider a smooth vector bundle \(V \) over closed manifold \(M \). We denote by \(M(c) \) fiberwise multiplication by \(c \). We say that a smooth
function on V is positively homogeneous of degree 1 at infinity if it coincides with a continuous positively homogeneous (i.e. $1/c(M(c))^*$-invariant for any positive c) of degree 1 function up to a sum with a compactly supported continuous function. Let v be a vertical vector field coinciding with Euler vector field on each fiber. Consider an operator D sending a function g on V to $g - L_v g$. For a positively homogeneous function f the function Df is a compactly supported function. Denote by f^c the function $1/c(M(c))^*f$, i.e. for any $x \in V$ $f^c(x) = 1/cf(M(c)x)$.

Lemma 1.2. For any smooth positively homogeneous of degree 1 at infinity function f, C^0-norm of $D(1/c(M(c))^*f)$ tends to zero while $C \to +\infty$.

Proof. Indeed, $D(1/c(M(c))^*f) = \frac{1}{c}(M(c))^*Df$. Hence C^0-norm of $D(1/c(M(c))^*f)$ equals to C^0-norm of f divided by C. □

1.6. Chekanov-type theorem. Consider the space ST^*B of cooriented contact elements on a closed manifold B.

Theorem 1.3. Let $\{L_t\}_{t \in [0,1]}$ be a legendrian isotopy of a compact Legendrian manifold $L_0 \subset ST^*B$. Suppose L_0 is given by a generating family $F: E \to \mathbb{R}$, for a smooth compact fibration $E \to B$. Then there exists $N \in \mathbb{Z}_+$, such that L_t is given by a generating family $G_t: E \times \mathbb{R}^N \to \mathbb{R}$ of the form:

$$G_t(e, q) = F(e) + Q(q) + f_t(e, q)$$

for a nondegenerate quadratic form Q on \mathbb{R}^N and compactly supported function f_t such that $f_0 = 0$.

The (generalized) Chekanov theorem [Ch, P] has almost the same statement – ST^*B is replaced by $J^1(B)$.

Proof. Proof is a reduction to (generalised) Chekanov theorem. By legendrian isotopy lifting lemma we reduce the problem to $J^1(B)$-case. □

References

[EG] Y. Eliashberg, M. Gromov