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Abstract

The phenomena of crowding-out and crowding-in of motivation after an ex-
ternally administered reward have received empirical support in the domains of
health care and education. In addition, self-rewards have been observed to provide
motivational crowding-in but not crowding-out. In the present paper a theoreti-
cal model explaining the observed differences in the effects of external and self-
rewards is developed. The model is based on the combination of the dual-self ap-
proach to the analysis of the time-inconsistency problem with the principal-agent
framework. It is shown that psychological property of disappointment aversion
may help to explain these differences in the situation when abstention costs are
not perfectly known in advance.
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Introduction

Recent behavioral economic research has drawn our attention to the problem of time-

inconsistent behavior, or, in other words, the self-control problem. An individual

demonstrating such behavior is characterized by present-biased preferences, accord-

ing to which current consumption has a disproportionately higher weight compared to

future consumption. This phenomenon was suggested to be underlying such problems

as various types of addiction (like smoking and alcoholism), failures to keep diet, poor

sugar level control by diabetics and procrastination in performing onerous tasks (see

Kan (2007), Dodd (2008), O’Donoghue and Rabin (1999)).

One of the popular methods of dealing with the self-control problem consists in

providing an individual with a reward contingent on successful accomplishment of a

task. Rewards can be offered in a a tangible form (such as money or a possibility to win

a prize), or in a non-tangible form (such as praise, encouragement or verbal approval).

In the present chapter I will distinguish between externally and internally provided

rewards (or self-rewards). External rewards are usually offered by people interested

in promoting prudent behavior in those individuals whom they care about. Common

examples of such situations are payment of money by parents to their children for

good grades, encouragement by one of the spouses of the other to quit smoking, or

participation in a program rewarding a successful weight loss over a certain period of

time. Self-rewards are those that a person offers him/herself to overcome the problem

of time-inconsistency. A common example is rewarding oneself with a gift for every

achievement of a goal (like abstention from smoking for one day or meeting a deadline

for writing a report).

The aim of the present chapter is to theoretically investigate and compare the short-

run and long-run effects of rewards (both external and internal) as a means to encour-

age self-control. The need for such analysis stems from the ongoing debate on the

efficiency of externally provided rewards to increase the level of self-control efforts.
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Empirical evidence on the effects of rewards of both types is mixed. A wide range

of studies suggests that external rewards may help to promote self-control behavior in

the short-run at the cost of its poor long-term maintenance. Jochelson (2007) reviews

41 studies on the effects of monetary rewards observed in various health-improving

programs. These programs offer various kinds of rewards (direct money payments,

gift certificates, lottery prizes) for participation and/or achievement of certain health-

related goals. Some studies mentioned in this review indicate that the use of rewards

increases the rates of participation in the program (see Bains et al. (1998), Englberger

(1999), Harland et al. (1999), Hey and Perera (2005)). Positive effects were observed in

the intervention period in smoking-cessation and cocaine abstinence programs. How-

ever, these studies document significant relapse rates and poor long-termmaintenance

of the results achieved during participation.

Several studies offer a more optimistic view on the use of external rewards (see

Volpp et al. (2008), Volpp et al. (2009), Finkelstein et al. (2007)). In these experi-

ments participants were rewarded with money or lottery prizes for their achievement

in weight-loss or smoking-cessation program. The maintenance of these achievements

was monitored several months after the intervention period. The results of these stud-

ies indicate that for some people external rewardsmay generate a larger crowding-in of

motivation (as measured by the share of the participants who maintained the achieve-

ment after the intervention period) compared to the control group.

Little is known about the factors that might determine whether an external reward

will lead to crowding-in or crowding-out of motivation for a particular individual.

An interesting experiment of Leuven et al. (2006) suggests that ability to succeed

in an activity that is being rewarded might be such a factor. In this study students

with high abilities in math have demonstrated a boost in motivation during the next

three years after the payment year. By contrast, students with low abilities have shown

significantly lower results during the payment year which have reduced even further
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in three subsequent years.

Empirical evidence on the effects of self-rewards suggests that they may outper-

form externally provided incentives both in the short- and in the long-run. The results

of the experimental study of Ryan et al. (1995) show that patients subject to alco-

hol treatment demonstrated greater involvement and better treatment retention when

their motivation was mostly internal. Williams et al. (1996) and Williams et al. (2002)

document that better short-term and long-term results of participation in a weight-loss

and smoking-cessation programs were associated with more autonomous (as opposed

to more controlling) motivation. Curry et al. (1991) finds similar pattern for the level

of intrinsic relative to extrinsic motivation in smoking cessation.

Although several theoretical papers exist that attempt to explain the phenomenon

of motivational crowding-out and crowding-in using economic analysis (Bénabou and

Tirole(2003), Harvey (2005)), the direct comparison between external and self-rewards

is underexplored.

The theoretical model developed in this chapter demonstrates that crowding-in and

crowding-out of motivation may be observed under both types of rewards if the self-

control costs are not perfectly known. However, which effect will take place depends

on the level of the self-control costs and on the individual confidence in the ability to

abstain. Moreover, both effects are generated under the assumption that an individual

is disappointment-averse. The individual dislikes learning that her self-control costs

are high, since this is discouraging for her future attempts at self-control.

The model is based on the dual-self approach to the problem of self-control. I

follow the modeling practice for this approach, introduced in Fudenberg and Levine

(2006), according to which a decision of the individual to consume a tempting but

harmful product could be represented as an equilibrium in a game between a multi-

period forward-looking self and a series of short-run one-period agents. Each of the

short-run selves maximizing its utility prefers to consume as much of the product as
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possible. The long-run self understands that such an unbounded consumption can

have negative long-run consequences and, hence, tries to restrict it. In Fudenberg

and Levine (2006) the long-run self does this by making sure that each short-run self

simply does not have an access to large amounts of a product that could be overcon-

sumed. In my model, rather than restricting access to resources, the long-run self (or

the self-principal) incentivises each of the short-run selves (or agents) to consume less

by paying a bonus dependent on the abstention level. To model externally adminis-

tered rewards I consider the situation where in the first period an external principal

pays a bonus in addition to that of the self-principal. In the second period external

intervention is removed and the individual has to decide on the level of self-reward.

The representation of the dual-self model in the "principal-agent" framework allows

for a direct comparison between the short-term and long-term effects of external and

self-rewards.

There are two important ingredients in the model. One is the assumption that ab-

stention costs are initially not perfectly known but can be revealed in case the agent

exerts high effort in the first period. This seems to be a natural assumption: for exam-

ple, if an individual has little experience in cessation of smoking, she may not know

how hard it is to quit smoking. But once she tried to quit, she gets more precise per-

ception of the costs of abstention. Second ingredient of the model is the assumption

that self-principal is disappointment-averse. I model disappointment aversion as loss

aversion with respect to the expected value of a lottery. In mymodel an individual may

get disappointed if after the first period high costs of abstention have been revealed.

Knowing that abstention costs are high leads to loss of motivation in the second period.

Therefore, revealing those costs may not be desirable from the perspective of the first

period, especially if an individual expects her costs to be high with probability close to

1. This means that in order to avoid disappointment and preserve self-confidence in

one’s ability to quit smoking, an individual may not motivate herself to work too hard.
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On the contrary, an external motivator may not be worried about the self-confidence

of the agent after the intervention period and may not be subject to disappointment

aversion1. She therefore may induce higher efforts compared to those induced by an

individual herself, which results in the loss of motivation for those agents who tried to

abstain and observed high abstention costs.

Depending on the degree of loss aversion, the level of agent’s self-confidence and

his sensitivity to an external reward, the model predicts that three situations are pos-

sible. First, the presence of the external principal may not change the behavior of a

person compared to that without an external reward. Second, external reward may

make abstention more likely both in the short-run and in the long-run compared to

"no intervention" condition. Finally, under the external reward some people may be

more likely to abstain in the short-run, but less likely so in the long-run.

The Model

General setting

I consider a model where an individual lives for two periods. I follow the dual-self

approach to the self-control problem by representing an individual as consisting of two

selves in each period. The short-run self corresponds to the individual’s temptation

to consume a harmful good (e.g. cigarettes) with no concern regarding the future

negative consequences of this consumption. In each period there is a new short-run

self and each of these selves is fully myopic, i.e. concerned only about a one-period

1The issue of howmuch an external motivator takes into account future effects of her actions depends
to a large extent on the context of the situation. We believe that there exist many situations in which
external principal may not take into account the long-run consequences of her actions. For example,
the role of an external motivator may be played by a company like Tangerine Wellness or Weight Wins
that offer rewards for achieving some self-control goal. These companies may focus only on positive
short-run effects of rewards for advertisement purposes. However, even if an external motivator has
altruistic intentions towards the agent (e.g. a parent or a teacher), she may still demonstrate a high
degree of myopia with respect to the future consequences of an excessive control (Soenens et al.(2007),
Darling (1999)).
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utility. The long-run self corresponds to the "prudent" part of an individual willing

to promote abstention from a harmful product. This self is forward-looking and is

assumed to gain utility from abstention in each period.

As we are exploring the effect of externally and self-administered rewards it is con-

venient to adhere to the principal-agent framework in modeling the relationship be-

tween short-run and long-run self. Therefore, each of the short-run selves will be called

an "agent", while the long-run self will play the role of the "self -principal".

A. Actions

Reward paid to the agent can be seen as a positive bonus offered by the principal to

stimulate abstention. In each of the periods the self-principal decides on the level of

bonus bSP ≥ 0 to offer to the agent.

In order to model externally administered rewards I assume that in the first period

external principal offers a bonus bEP ≥ 0 in addition to that set by the self-principal.

There are two possible cases I investigate. In the first one the external principal exists

for only one period and cares only about the current (short-run) level of abstention,

while in the second one the external principal exists for two periods, cares about out-

comes in both periods and pays the bonus only in the first period.

In each period agents 1 and 2 decide on the level of effort to exert given the bonuses

provided by either the self-principal alone or together with the external principal. An

agent can choose effort level et, t ∈ {1,2} from the set {0,1}. Table 1 summarizes the

choice variables for both principals and the agents.
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Period 1 Period 2

Self-principal First-period bonus 01 SPb
Second-period bonus 

02 SPb

External principal Bonus 0EPb -

Agent 1 Effort level }1,0{1 e -

Agent 2 - Effort level }1,0{2 e

Table 1.

B. Types

The cost of zero effort is zero. Exerting effort of 1 is costly and the cost is equal to

some k > 0. I assume that the cost of effort in the first period is not perfectly known

and that an individual can be of two types: "strong" type is characterized by low cost

of efforts k = kL, while "weak" type has high abstention costs k = kH > kL. Without

loss of generality one can set kL = 0. I also impose an assumption that kH > 1. As will

be seen later, this assumption ensures that the abstention cost of a "weak" type is so

high that in the second period the individual gets discouraged from abstention if the

"weak" type is revealed. The type of the individual is determined by nature prior to

the beginning of the first period and does not change between first and second period.

C. Beliefs

In the first period the type is not known, however both principals have some prior

regarding the type of the agents. I assume that the priors of both principals coincide

and denote the probability of types {kL, kH } as (1 − p) and p respectively. Since each

agent and the self-principal represent different subdivisions of the same individual,
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one may logically assume that they share the same information and therefore have the

same priors about the cost type. Therefore, the priors of the agent coincide with those

of the self-principal.

After the first period an individual may receive new information about the costs of

abstention. It seems natural to assume that the more effort the individual exerts, the

more information she gets about the costs of these efforts. I make an assumption that

if an agent chooses zero effort in the first period, then no new information is revealed

about the costs and in the second period the self-principal’s beliefs do not change. If

in the first period an agent chooses e1 = 1, then he observes his payoff and, hence,

derives his true cost type. Hence, the second-period beliefs (of both the agent and the

self-principal) regarding the cost type can be either equal to the first-period beliefs (in

case of no revealing) or equal to the true type (in case of revealing).

D. Preferences

In order to specify preferences of agents and principals one needs to make assump-

tions regarding the utility that the agent gets from external and self-bonuses. In case

when both external and self-principal are present agent 1 receives bonuses from both

of them if he generates positive level of abstention. However, we assume that the

agent may react differently to external or self-bonus. Recent psychological findings

(namely, the Personality Systems Interaction Theory, or PSI) indicate that individuals

may be described as either "state-oriented" or "action-oriented". State-oriented indi-

viduals are mostly motivated by external factors or goals (such as encouragement of

parents and teachers or controlling framing of instructions). Action-oriented individu-

als, on the other hand, do not rely on the external sources of regulation as they are able

to internally generate motivation for exerting efforts (see Baumann and Kuhl (2005)).

Therefore, I assume that action-oriented individuals are relatively more sensitive to

internal rather than external rewards when both are present, while it is vice versa for

state-oriented individuals. To model this assumption the agent 1’s utility function is
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presented in the following way:

UA
1 = bSP1 +γbEP − k · e1. (1)

Here parameter k ∈ {kL, kH } denotes the cost of abstention, e1 ∈ {0,1} represents

effort level, and γ ≥ 0 indicates the relative sensitivity of the agent towards the external

reward. In the second period external principal is no longer present, hence, agent 2’s

utility is simply:

UA
2 = bSP2 − k · e2. (2)

I now specify the utility functions of the principals. If the external principal cares

only about the outcome of the first period, her utility function looks as follows:

UEP = (1− bEP ) · e1. (3)

If the external principal cares about the outcomes in both periods, her utility func-

tion looks as follows:

UEP = (1− bEP ) · e1 + e2. (4)

In this chapter I first consider a benchmark case where the external principal is

myopic and takes into account only the outcome of the first period. I then follow with

its extension assuming that the external principal is forward-looking. She cares about

the current abstention of the agent as well as about the future one, but is only able to

provide a bonus in period 1. This case may correspond to many real-life situations. For

example, a governmental program for quitting smoking may provide a bonus condi-

tional on abstention during some limited period of time. However, this program may

aim at promoting the long-term abstention, i.e. beyond the payment period. The same
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may be true, for instance, in the experimental settings in which students are being

paid for good grades. Although the payment period is limited, the goal of the program

might be to make students willing to exert more effort in the future as well.

Consider the self-principal’s utility function. Denote by x1 and x2 the outcomes

that the self-principal receives in the first and second period respectively, and by Ex2

the expectation of the second-period outcome in the beginning of period 1. The out-

come that she receives in the first period is either equal to zero (in case the agent

does not abstain at all) or to (1 − bSP1 ), where bSP1 is the bonus paid to the agent for

abstention. In the first period the self-principal does not know the agent’s type ex-

actly, but knows that it will be revealed if the agent chooses e1 = 1. As a result her

choice to induce a positive effort level in the first period implies that she simulta-

neously forms some expectation about the outcome of the second period. The main

assumption here is that the self-principal is disappointment-averse, or in other words,

loss-averse with respect to the expected outcome. Formally this means that overall the

self-principal’s ex-post utility from the perspective of period 1 when she had an ex-

pectation of Ex2 consists of two parts: linear, reflecting the utility from abstention as

such, and reference-dependent emotional part (v(x2)), or an emotional response to the

changes in the second-period outcomes. Formally, this utility function can be written

in the following way:

USP = x1 +E[x2 + v(x2)], (5)

x1 = (1− bSP1 ) · e1,

x2 = (1− bSP2 ) · e2,

v(x2) =


x2 −Ex2, if x2 ≥ Ex2;

λ(x2 −Ex2) if x2 < Ex2,

with λ > 1 being the loss-aversion coefficient. The first term of the expression rep-

resents the outcome of the first period (x1), the second one is the expected utility of the
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second period. This expression takes into account not only the present need to stimu-

late abstention but also its consequences for the self-confidence in the second period.

If agent 1 has made an effort to abstain and revealed that he has low abstention costs,

the self-principal realizes that in the second period abstention will be an easy task and

will not require a large bonus. On the contrary, if agent 1 reveals that abstention costs

are high, the self-principal’s future profit lowers relative to its expectation (since she

realizes that only a large bonus will suffice in period 2 for abstention). Because losses

generally loom larger than gains and the self-principal is loss averse by assumption ob-

serving the agent to be a weak type leads to a larger absolute loss in utility than a gain

produced by observing a strong type. This property is reflected by the loss-aversion

coefficient λ. This two-part utility function reflects the trade-off that the self-principal

is confronted with. On the one hand, she prefers to receive a higher physical payoff.

On the other hand, she may have expectation of the outcome that she could have re-

ceived and she, therefore, dislikes to fall short of this expectation. The self-principal

gets additional positive utility when the outcome exceeds the expectation. Note that

since external principal cares only about the outcome of the first period, I do not in-

clude disappointment-aversion in her utility function. In the present formulation nei-

ther the agent, nor the self-principal derive utility directly from the ability to abstain.

Rather they derive utility from the outcome that having low abstention costs allows to

achieve. Observing a high abstention cost is disappointing not by itself but because it

lowers the expected outcome of the second period.

Equilibrium analysis

First, I analyze the equilibrium of a two-period game in which external principal is

not present. The self-principal and both agents are characterized by the assumptions

described above. Consider the agent’s problem. Note that it is the same in both periods

and may differ only in whether the agent knows her self-control costs or can only
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rely on his best guess which is the expected cost pkH . In the first period the agent

maximizes his expected utility given by the expectation of (1) with bEP = 0, since there

is no external principal. The agent does not know his costs of abstention, therefore, his

expected utility is written as:

EUA
1 = bSP1 − k̂, (6)

with k̂ = pkH . In his first-period optimum the agent chooses:

e1 =


0, if bSP1 < k̂;

1, if bSP1 ≥ k̂,
(7)

In the second period the agent’s problem solution is the same in case the true cost

of abstention has not been revealed in period 1. If the agent has chosen e1 = 1 then in

the second period k̂ will be substituted by the actual abstention cost.

Since the self-principal lives for two periods we solve her problem starting with

period 2. The optimal bonus will depend on two factors: whether the true cost has

been revealed and (in case of non-revealing) on the level of self-confidence p. Since

kH > 1 by assumption, then if the weak type has been revealed the agent will require a

bonus larger than 1 to abstain in period 2. Obviously, the self-principal will not offer

such bonus since her maximum outcome in case of abstention equals 1. Therefore, the

second-period agent chooses e2 = 0 and the self-principal’s optimum is bSP2 = 0. If the

agent’s cost of abstention is low, then he does not require any bonus to exercise self-

control. Hence, e2 = 1 and bSP2 = 0 when k = kL. However, when the abstention cost

is not known, in equilibrium the self-principal chooses to incentivise the agent only

when her self-confidence is high enough (i.e. when p < p̄ = 1/kH ). In the opposite case

the agent would require too large bonus (at least equal to pkH > 1) which would lead

the self-principal with a negative second-period utility.
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In order to determine the equilibrium of the first period we need to compare the

expected utility (i.e. expectation of 5) that the self-principal obtains by paying the

minimal bonus necessary for abstention and by not paying it.

Suppose the agent has chosen zero effort in period 1. When the self-confidence is

high enough (i.e. the probability of high abstention costs is low, or p ∈ [0, p̄]), in the

second period the self-principal chooses to pay a bonus to the agent who then exerts

effort e2 = 1. In equilibrium this bonus will be equal to k̂ and, hence, the self-principal’s

second-period utility will beUSP
2 (e1 = 0) = 1−bSP1 = 1−k̂. In the opposite case, i.e. when

p ∈ (p̄,1] the self-principal cannot afford paying a sufficiently high bonus and receives

utility of zero.

Suppose now that the agent has chosen e1 = 1. Since the cost of abstention is not

known in period 1 but is revealed in this case by the beginning of period 2, the self-

principal does not know her exact second-period utility and may only compute its

expectation. If the agent is of weak type then the self-principal may only get zero,

while with a strong type her utility equals 1. Since the probabilities of these types are

p and (1 − p) respectively, the self-principal’s expectation of utility (or her reference-

point) is (1−p). After the agent’s type is revealed and the self-principal knows exactly

the utility of the second period, she experiences it either as a gain or as a loss relative to

the reference point. This means that her first-period expected utility may be computed

as a sum of two components according to (5) in the following way2:

EUSP
1 (e1 = 1) = (1− k̂) + (−λp(1− p) + (1− p)(1 + p)), (8)

Proposition 1. There exists p∗ ∈ (0,1) such that in equilibrium:

(1) The self-principal offers a bonus bSP1 = pkH for any p ≤ p∗ and pays zero for any

p > p∗.

2See Appendix for the computation.
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(2) For 1 < λ ≤ kH +1, p∗ = λ+kH−
√
(λ+kH )2−8(λ−1)
2(λ−1) > 1

kH
.

(3) For λ > kH +1, p∗ = 1
λ−1 < 1

kH
.

(4) The payment threshold p∗ decreases in λ.

The second proposition describes the equilibrium choice of efforts in the first and

second period given the bonus paid by the self-principal according to Proposition 1.

Since the agent’s type is not known, after the agent has chosen e1 = 1, we may only

compute the expected second-period level of efforts which will depend on the belief p.

Obviously, if no revealing has taken place, the second-period efforts will not depend on

p in equilibrium. I denote this expected effort level by ē2. The following proposition

states the equilibrium effort level in the first and second period depending on loss

aversion and belief p.

Proposition 2.

(i) For 1 < λ ≤ kH +1:

if p ∈ [0,p∗], then bSP1 = pkH , bSP2 = pkH , e1 = 1, ē2 = 1− p;

if p ∈ (p∗,1], then bSP1 = 0, bSP2 = 0, e1 = 0, ē2 = 0.

(ii) For λ > kH +1:

if p ∈ [0,p∗], then bSP1 = pkH , bSP2 = 0, e1 = 1, ē2 = 1− p;

if p ∈ (p∗,1/kH ], then bSP1 = 0, bSP2 = pkH , e1 = 0, ē2 = 1;

if p ∈ (1/kH ,1] , then bSP1 = 0, bSP2 = 0, e1 = 0, ē2 = 0.

The intuition behind these propositions is straightforward. The self-principal faces a

trade-off. On the one hand, she may incentivize the provision of effort in the first pe-

riod, which gives her an immediate payoff. However, exerting effort also reveals the

agent’s type. If high cost of effort is revealed, this has two effects on the self-principal’s

payoff. First, it means that in the second period the agent will be discouraged to exer-

cise self-control. He will require a bonus too high for the self-principal to pay. Second,

since the self-principal is loss averse with respect to her expected payoff, she experi-
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ences disappointment from learning that her second-period payoff is lower than she

might have expected to obtain prior to self-control cost being revealed. Alternatively,

the self-principal may decide not to stimulate abstention in the first period. In this

case the agent’s type is not revealed and the self-principal does not experience any

disappointment. However, whether the agent will exert effort in the second period

or not will depend on his belief p (or his level of self-confidence (1 − p)): whenever

p < 1/kH the agent will exert effort. Therefore, the self-principal’s trade-off consists in

the choice between abstention in the first period at the expense of a potential loss of

motivation in the second period, and foregoing first-period benefits of abstention to

maintain self-confidence in the future.

The second proposition describes the conditions under which crowding-in and

crowding-out of motivation may be observed. Obviously, individuals with very low

probability of being a strong type do not make efforts to abstain in any period. In

this case the agent always requires a bonus higher than what the self-principal may af-

ford to pay. In particular, this happens for any individual with p > max{p∗,1/kH }. The

situation is different when the self-confidence is sufficiently high. If loss aversion λ is

smaller than the threshold (kH+1), the self-principal is not very disappointment-averse

as she does not experience a big loss from observing a weak type. Hence, she will pay

a bonus for any p ∈ [0,p∗]. Exerting effort in the first period reveals the self-control

cost, and only agents with low cost kL will decide to abstain in the second period. In

other words, when loss aversion is low, the self-reward leads to motivational crowding-

out for those with high abstention costs. For those with low costs the motivation for

self-control is increased since in the second period they do not require any bonus to

exert effort. Similar situation is observed when loss aversion is high (λ > kH + 1). The

higher is loss aversion, the less the self-principal is willing to pay a bonus because

of the fear to be disappointed by high abstention costs. When loss aversion is high

enough, the payment threshold p∗ is smaller than the minimal self-confidence needed

15



for the agent to exert effort without any bonus. In this case the agent with an interme-

diate self-confidence (p∗ < p < 1/kH ) will choose zero effort in the first period, but his

self-confidence will be enough to exercise self-control in the second period.

In order to determine the effect of external rewards on motivation I assume that

the external principal offers a bonus together with the self-principal in the first period.

External principal either exists and gains utility only in period 1, or exists and gains

utility in both periods. The agent’s utility function is determined by (1). The self-

principal solves her problem for every level of external reward considering it as given.

Knowing the solution of the choice of the self-principal external principal decides on

the optimal level of reward to offer.

I start the analysis assuming that the external principal exists only for one period.

Solving the model in this case establishes the conditions for two different out-

comes of the external principal’s participation. Namely, when the external principal

is present two different situations are possible. In the first one, the self-principal does

not incentivize abstention in the first period, yet the agent’s self-confidence is high

enough (p ∈ [p∗,1/kH ]) that the agent chooses the effort of 1 in the second period. Note

that the agent’s self-confidence is maintained because the self-control cost has not been

revealed. If the external principal is present in one period only, she does not care about

the agent’s future self-confidence, and may choose to provide a bonus in period 1 to get

immediate benefits of abstention. This may crowd out the second-period motivation

for those agents who discover high abstention costs. In other words, for the same level

of self-confidence, in the presence of an external reward the agent may be more likely

to abstain in the short-run, but less likely to do it in the long-run (compared to the case

of the self-principal alone).

The second important case is one in which the agent’s self-confidence is so low that

in the absence of external bonus he chooses zero effort in both periods (p > 1/kH ). Then

external principal may incentivize the agent to abstain in period 1. With probability

16



(1 − p) low abstention cost is revealed, and, hence, with probability (1 − p) the agent

abstains in period 2. This means that for a sufficiently low self-confidence, the agent is

more likely to abstain in both periods under the external principal than without her.

Denote C =min
(
λ
kH
− 1− λ−1

k2H
, kH − 1

)
. The following proposition describes the con-

ditions under which the discussed cases are possible.

Proposition 3.

i) For λ < 1+ kH :

if γ ≥ kH − 1 then the external principal always pays non-zero bonus in the interval

p ∈ [p∗,1], the agent chooses the effort of 1, and the expected effort in the second period is

ē = 1− p;

if γ < kH −1 then there exists such pγ that for all p ∈ [p∗,pγ ] the external principal pays

non-zero bonus, the agent chooses the effort of 1, and the expected effort in the second period

is ē = 1− p. If p ∈ (pγ ,1] then both principals pay zero bonuses.

ii) For λ ≥ 1+ kH :

if γ > 0 there exists such pγ that for all p ∈ [p∗,pγ ] the external principal pays a non-zero

bonus, the agent chooses e1 = 1, and the expected effort in the second period is ē2 = 1− p;

If γ ≤ C then for all p ∈ [1/kH ,1] both external and self-principal pay zero bonus in

period 1;

If γ > C then there exist an interval in p ∈ [1/kH ,1] such that the external principal pays

a non-zero bonus, the agent chooses e1 = 1, and the expected effort in the second period is

ē2 = 1− p.

I prove the proposition in the Appendix. The intuition behind this proposition is

the following. The decision of the external principal to pay a bonus depends on two

factors: whether the self-principal decides to pay a bonus, and how much influence

the external bonus has on the agent’s incentive to work (parameter γ). Three cases are

possible. If the agent’s self-confidence is high (p < p∗), the self-principal will always
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pay a bonus in the first period, independently of whether the external principal is

present. Therefore, external principal free rides and pays zero for any γ . In terms

of efforts, the presence of the external principal does not have any effect on the self-

control motivation, since the person is strong enough to abstain herself. The chances

to abstain in the second period do not change as well.

If the self-confidence is intermediate or low, in equilibrium either both principals

pay a zero bonus or a non-zero one. Whenever γ is sufficiently large (e.g., γ > C or

γ ≥ kH − 1 in the proposition), the external reward has a lot of influence on the agent’s

decision to abstain. Hence, the agent may choose e1 = 1 even for a small external bonus.

This makes payment profitable for both external and self-principal, since it reduces

the bonuses that each of them has to pay. The presence of an external bonus makes the

agent abstain, although he would not have abstained given the self-principal alone. In

terms of efforts chosen, when the self-confidence is low (i.e. p ∈ [1/kH ,1] or p ∈ [p∗,1]

in the proposition) the agent is more likely to exert positive effort in the long-run after

the external principal than without her. On the contrary, when the self-confidence is

not too low (i.e. p ∈ [p∗,pγ ]), then the agent will choose e1 = 1 under external principal

and e1 = 0 without her. As a consequence, in the second period the expected effort will

be ē2 = 1− p after the external principal and ē2 = 1 after the self-principal alone. This

means, that in the short-run abstention is more likely with the external reward, while

in the long-run the self-control is more likely without the preceding intervention.

In case γ is low, the external principal finds it too costly to stimulate abstention

and pays zero. The self-principal also cannot afford a sufficiently high bonus and pays

zero as well. Here, the presence of the external principal does not affect the agent’s

choice of effort.

In this setting I have considered the external principal that is strategic. She chooses

the reward given the parameters of a particular individual and taking into account

her willingness to abstain without an external reward. In reality this is not always the
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case. When an individual decides to participate in a self-control promoting program,

the person or the organization offering a reward may not know the individual level of

self-confidence or her sensitivity to an external bonus. Therefore, the bonus cannot be

tailor-made for every participant of the program, but is fixed. It is easy to see that the

case where the external principal does not choose a bonus strategically is a subcase of

the model outlined above. The solution of the self-principal is the same, since in both

cases she takes the external bonus as given. The cases where the strategic external

principal would choose zero bonus are analogous to the situation in which the non-

strategic principal offers an insufficient bonus to make a person abstain. High bonus

paid by the non-strategic principal is identical to the case of the agent being highly

sensitive to the reward of the strategic principal (large γ). The only difference is that

the non-strategic principal may offer a very high bonus, such that the self-principal

will choose to pay zero. Then, for any level of self-confidence the agent will exert effort

in the first period, but in the second period only that person will maintain motivation

for self-control who observed low abstention costs after the first period effort.

Next, I consider the extension to the benchmark case of the model. I analyze the

model solution assuming that the external principal cares about the outcomes of both

periods but may pay a bonus only in the first one. I formulate the following proposi-

tion3:

Denote C1 =min
(

kH
2kH−1

(
λ
kH
− 1− λ−1

k2H

)
, kH − 1

)
.

Proposition 4.

i) For λ < 1+ kH :

if γ ≥ kH − 1 then the external principal always pays non-zero bonus in the interval

p ∈ [p∗,1], the agent chooses the effort of 1, and the expected effort in the second period is

ē = 1− p;
3Note that I provide sufficient conditions and do not describe the solution in full as in Proposition

3. The reason for this is that the intuition is very similar to that of Proposition 3 yet the computation is
more complicated. Hence, I concentrate on the most interesting cases that correspond to the results in
Proposition 3.
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if γ < kH −1 then there exists such pγ that for all p ∈ [p∗,pγ ] the external principal pays

non-zero bonus, the agent chooses the effort of 1, and the expected effort in the second period

is ē = 1− p. If p ∈ (pγ ,1] then both principals pay zero bonuses.

ii) For λ ≥ 1+ kH :

if γ > 0 there exists such pγ that for all p ∈ [p∗,pγ ] the external principal pays a non-zero

bonus, the agent chooses e1 = 1, and the expected effort in the second period is ē2 = 1− p;

If γ ≤ C1 then for all p ∈ [1/kH ,1] both external and self-principal pay zero bonus in

period 1;

If γ > C1 then there exist an interval in p ∈ [1/kH ,1] such that the external principal

pays a non-zero bonus, the agent chooses e1 = 1, and the expected effort in the second period

is ē2 = 1− p.

Note that the external principal’s behavior described in this proposition is identical

to that in Proposition 3: the only difference is in the definition of the constant C1.

Intuitively, if the external principal participates in both periods and cares about both

outcomes, her choice is very similar to the one-period case if λ < 1 + kH : the only

difference is that the threshold pγ decreases as the external principal gets utility from

the second period.

However, if λ ≥ 1 + kH then the trade-off for the external principal changes. For

p ∈ [p∗,1/kH ] she gets 1 in the first period and 1−p in the second when the agent exerts

e1 = 1. If e1 = 0 then the agent will be motivated by the self-principal in the second

period and e2 = 1. The external principal gets 1−p of additional utility if she motivates

the agent to work in the first period. If p ∈ (1/kH ,1] then the agent will not exercise

any effort in both periods on his own. Thus the additional utility the external principal

gets from making the agent exert effort in the first period would be 2− p.

Note that the results for the long-lived and short-lived external principal are qual-
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itatively the same. This is intuitive as the only difference in the external principal’s

utility function consists in the additional utility she receives from abstention in pe-

riod 2. Yet the influence of her bonus bEP on the agent is determined by γ . Varying

this parameter we achieve qualitatively the same result in both cases. Therefore, the

differences in the utility function do not qualitatively impact the external principal’s

behavior.

Conclusion

The theoretical model presented in this chapter allows to explain the contradictory

empirical evidence regarding the positive and negative effects of rewards. This model

demonstrates the intuition that is different from that described in other papers at-

tempting to explain the phenomena of motivational crowding-in and crowding-out.

Instead of being based on the leakage of private information from the principal to the

agent (Bénabou and Tirole (2003)) or on the individual preferences for being internally

or externally motivated (Harvey(2005)), the model uses the concept of a trade-off be-

tween achieving better short-run results by induction of higher efforts and being averse

to revelation of information about abstention costs.

The developed model makes several contributions to the analysis of the self-control

problem and motivational crowding out.

First, the model shows that motivational crowding out can occur even when both

the principal and the agent have identical information on the agent’s level of ability.

The main driving force of the model is based on the fact that the larger is the effort

level exerted by the agent themore information an individual gets about her abstention

costs. If this information is negative, this may crowd out motivation to abstain in the

future.

Second, themodel allows to see that the behavior of people with high self-confidence

regarding their self-control abilities is not particularly influenced by the presence of an
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external reward. On the contrary, for people with low self-confidence external reward

may make abstention more likely than self-rewards. For those with the intermedi-

ate self-confidence external and self-bonuses demonstrate the opposing effects on the

likelihood of abstention in the short- and in the long-term perspective.

Finally, the model may shed light on the fact that the property of motivational

crowding-out is mostly a feature of rewards for achievement as opposed to rewards

for participation. In the present paper I have mostly focused on the analysis of re-

wards delivered for a success in a certain activity requiring self-control. Deci and

Ryan(1985), Charness and Gneezy (2008) and Jochelson (2007) suggests that mon-

etary rewards offered for a mere participation in an activity often increase partici-

pation rates and do not have an undermining effect on motivation in a post-reward

period. On the other hand, performance-contingent rewards are most likely to lead

to the motivational crowding-out after the rewards are withdrawn. One possible ex-

planation for this would be habit formation during the reward period. However, the

presented model suggests a different view on this issue. The main problem with re-

ward for achievement is that it establishes a direct link between efforts exerted and

the payment received. Therefore, if an agent wants to get high payment he should

exert high efforts which inevitably leads to revealing the cost of abstention and poten-

tial loss of motivation. If reward is paid merely for participation in an activity, then

this link between payment and effort is no more present. Hence, an individual may

still choose lower effort level and avoid revealing the costs at the same time preserv-

ing her self-confidence for the future period. This conclusion represents a testable

prediction of the model. If it is possible to obtain an unambiguous measure of in-

dividual disappointment-aversion, then an experiment may demonstrate that people

with higher degree of disappointment-aversion are more prone to decrease efforts un-

der reward-for-participation scheme given that performing an activity may reveal cer-

tain useful information about the subject’s skills. In this case motivational crowding-
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out should occur to a lesser extent in future periods compared to being rewarded for

achievement. In the latter case reducing the efforts is more costly.
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Appendix: Proof of Proposition 1

First, I calculate the utility function of the self-principal (8). The bonus paid to the

agent in the first period is equal to k̂. In the second period, agent is paid 0 regardless

of the true cost. Expected outcome is equal to p×0+(1−p)×1 = (1−p) and hence from

(5):

EUSP
1 (e1 = 1) = (1− k̂) + (1− p)(1 + 1− (1− p)) +λp(0− (1− p)) =

= (1− k̂) + (−λp(1− p) + (1− p)(1 + p)).

Assume first that p < p̄. Given e1 = 0, the self-principal pays bonus k̂ in the second

period.

In the beginning of period 1, the self-principal compares utilities EUSP
1 (e1 = 1) and

EUSP
1 (e1 = 0) = 1− k̂:

EUSP
1 (e1 = 1)−EUSP

1 (e1 = 0) = (−λp(1− p) + (1− p)(1 + p)). (9)

Thus, the utility of the self-principal is larger with e1 = 1 if 1+ p > λp, p < 1
λ−1 .

There are two possible cases:

1) 1
λ−1 < p̄ = 1

kH
or λ > 1+ kH . In this case, in the first period the self-principal pays

bonus k̂ if p < p∗ = 1
λ−1 , and pays 0, otherwise.

2) 1
λ−1 ≥ p̄ = 1

kH
or λ ≤ 1+kH . In this case, the threshold 1

λ−1 is larger than the point p̄

after which the self-principal does not pay the agent in the second period. This means

that for all p < p̄, EUSP
1 (e1 = 1) − EUSP

1 (e1 = 0) > 0. Therefore, to derive p∗ we should

compare EUSP
1 (e1 = 1) to the utility function given e1 = 0 in the interval p ∈

[
p̄, 1

λ−1

]
which is equal to EUSP

1 (e1 = 0,p ≥ p̄) = 0.

Hence, I compare:

EUSP
1 (e1 = 1)−EUSP

1 (e1 = 0,p ≥ p̄) = p2(λ− 1)− p(kH +λ) + 2. (10)
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Note that the minimum of this function is achieved at p = kH+λ
2(λ−1) ≥ 1 as 2 + kH >

1 + kH ≥ λ. Moreover, the function is positive at p = p̄ (note that it is proven that the

function is larger than 1− k̂ in the interval [0, p̄]) and it is negative at p = 1 as 1−kH < 0.

Thus there is a unique point at which the function crosses 0 in the interval [p̄,1].

Solving p2(λ−1)−p(kH +λ)+2 = 0 we get p∗ =
kH+λ−

√
(kH+λ)2−8(λ−1)
4(λ−1) . Note that given

λ ≤ 1+ kH :

(kH+λ)2−8(λ−1) ≥ (2λ−1)2−8(λ−1) = 4λ2−4λ+1−8λ+8 = 4λ2−12λ+9 = (2λ−3)2 ≥ 0.

Thus, the root is correctly defined. The second root,
kH+λ+

√
(kH+λ)2−8(λ−1)
4(λ−1) , is larger

than the first one and is larger than 1.

If p ≥ p∗ and λ ≤ 1+kH , the self-principal pays zero bonus in the first period. Q.E.D.

Appendix: Proof of Proposition 2

i) From the proof of Proposition 1 we know that in the first period, the self-principal

pays bonus k̂ if p ≤ p∗ and pays zero, otherwise. This means that e1 = 1 if p ≤ p∗, and in

the second period only the agent with low cost exerts effort. Thus, the expected effort

is ē2 = 1− p.

If p > p∗ then e1 = 0 and there is no revealing. Moreover, as p∗ > p̄, the self-principal

pays zero bonus in the second period. Hence ē2 = 0.

ii) From the proof of Proposition 1, in the first period the self-principal pays bonus

k̂ if p ≤ p∗. Thus e1 = 1, there is revealing and only the agents with low costs work in

the second period which means that ē2 = 1− p.

If p ∈ (p∗,1/kH ] then the self-principal pays zero in the first period but pays k̂ in the

second period. This means that no agent works in the first period and all of them work

in the second period, so e1 = 0 and ē2 = 1.

If p > 1/kH then the self-principal pays zero in both periods and thus e1 = 0, ē2 = 0.
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Appendix: Proof of Proposition 3

To prove the Proposition 3 I first should calculate the optimal behavior of the external

principal in different intervals of parameters.

As is shown in Proposition 1, there are twomajor cases: λ > 1+kH and 1 < λ ≤ 1+kH .

I start the solution with the second case.

Case 1: 1 < λ ≤ 1+ kH .

We know from the proof of Proposition 1 that self-principal pays the agent to apply

effort e1 = 1 if p ≤ p∗ where p∗ > 1/kH . This means that the external principal pays zero

bonus in this interval.

If p ∈ (p∗,1] then the self-principal does not motivate agent to work in the first

period because the self-principal gets negative utility. Consider the utility function of

the self-principal in this interval given bonus bEP of the external principal:

EUSP
1 (e1 = 1) = γbEP + (1− k̂) + (−λp(1− p) + (1− p)(1 + p)).

This relation is derived from the utility function of the agent: the external princi-

pal’s bonus reduces the self-principal’s bonus by γbEP . External principal should pay

a bonus such that the self-principal break-even. This means that

γbEP = −1+ k̂ +λp(1− p)− (1− p)(1 + p). (11)

Moreover, this bonus should be no larger than 1 and thus we have

γ ≥ −1+ k̂ +λp(1− p)− (1− p)(1 + p). (12)

Denote f (p) = −1+ k̂ +λp(1− p)− (1− p)(1 + p) = −p2(λ− 1) + p(λ+ kH )− 2. This is a

quadratic function in p and it crosses zero at p = p∗. We can compute the point of the
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maximum value of this function:

f ′(p) = −2(λ− 1)p+ (λ+ kH ) = 0, p1 =
λ+ kH
2(λ− 1)

.

Here p1 is the point at which the maximum for f (p) is achieved. Note that we have

λ ≤ 1+ kH and thus

p1 =
λ+ kH
2(λ− 1)

≥ λ+λ− 1
2λ− 2

> 1.

This means that the unrestricted maximum is achieved outside the interval [p∗,1]

and the maximum value in this interval is achieved at p = 1 because f (p∗) = 0 and

p1 > 1. I compute f (1) = −(λ−1)+λ+kH −2 = kH −1. This function is increasing in the

interval [p∗,1].

In the case γ ≥ kH − 1 the only possible point of intersection between the function

f (p) and the function g(p) = γ in the interval [p∗,1] is p = 1. This means that the

external principal may always pay a bonus enough to make agent apply effort e1 = 1.

In the case γ < kH − 1 the functions f (p) and g(p) intersect at the point solving

−p2(λ− 1) + p(λ+ kH )− 2 = γ, p∗∗ =
λ+ kH −

√
(λ+ kH )2 − 4(2+γ)(λ− 1)

2(λ− 1)

(the other root is greater than 1 as λ + kH > 2(λ − 1)). The external principal com-

pensates for the self-principal’s bonus until the point p∗∗ and both principals pay zero

if p ∈ [p∗∗,1].

Thus in the interval p ∈ [p∗,1] the solution is the following:

i. If γ ≥ kH − 1 then the external principal pays the bonus

bEP =
−p2(λ− 1) + p(λ+ kH )− 2

γ
, (13)

the agent supplies effort e1 = 1 in the first period, and the self-principal pays k̂−bEP .

ii. If γ < kH − 1 and p ∈ [p∗,p∗∗] then the external principal pays the bonus (22), the
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agent supplies effort e1 = 1 in the first period, and the self-principal pays k̂ − bEP .

If γ < kH − 1 and p ∈ (p∗∗,1] then both principals pay zero bonus and the agent’s

effort is zero in the first period.

This concludes case 1.

Case 2: λ > 1+ kH .

In this case, as I proved in Proposition 1, p∗ < 1/kH and the self-principal pays the

bonus if p ≤ p∗. Hence the external principal pays zero bonus in this interval. If p > p∗,

the self-principal pays zero bonus.

Consider first the interval p ∈ [p∗,1/kH ]. In this interval the difference between

utilities the self-principal gets if the effort in the first period is 1 or 0 is given by (9).

Denote

f1(p) = −(−λp(1− p) + (1− p)(1 + p)) = −p2(λ− 1) +λp − 1.

This function achieves its maximum at p21 =
λ

2(λ−1) and the (unrestricted) maximum

is equal to f max
1 = λ2

2(λ−1) −
λ2

4(λ−1) − 1 = (λ−2)2
4(λ−1) .

Consider now the interval p ∈ [1/kH ,1]. In this interval the difference between

utilities the self-principal gets if the effort in the first period is 1 or 0 is given by (10).

Denote

f2(p) = −(p2(λ− 1)− p(kH +λ) + 2) = −p2(λ− 1) + p(λ+ kH )− 2.

Note that f2(p) ≡ f (p) and thus has the same point of maximum: p22 =
λ+kH
2(λ−1) . How-

ever, the parameters are different in the Case 2. The value at this point is

f max
2 =

(λ+ kH )2

2(λ− 1)
− (λ+ kH )2

4(λ− 1)
− 2 =

(λ+ kH )2

4(λ− 1)
− 2.

The external principal should add a bonus to the self-principal payment in order to

make agent work in the first period. This means that in the interval p ∈ [p∗,1/kH ] the
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agent exerts effort e1 = 1 only if

γbEP = f1(p), γ ≥ f1(p). (14)

Similarly, in the interval p ∈ [1/kH ,1] the agent exerts effort e1 = 1 only if

γbEP = f2(p), γ ≥ f2(p). (15)

The two functions, f1(p) and f2(p), are both quadratic. Their points of maximum

may either lay in the respective intervals or to the left/right of these intervals. I next

study their positions depending on the parameters λ and kH .

Let’s start with p21. This point should be compared with p∗ = 1
λ−1 and 1

kH
. We have

p21 ≤ p∗⇔ λ
2(λ− 1)

≤ 1
λ− 1

⇔ λ ≤ 2.

Yet in the Case 2, λ > 1+ kH > 2. Hence p21 > p∗ always.

Next, we compare

p21 ≤
1
kH
⇔ λ

2(λ− 1)
≤ 1
kH
⇔ kHλ ≤ 2(λ− 1).

If kH ≥ 2, this cannot hold and thus p21 >
1
kH

always. If kH < 2 then

p21 ≤
1
kH
⇔ λ ≥ 2

2− kH
≡ λ1. (16)

Now we consider p22. We have

p22 ≤
1
kH
⇔ λ+ kH

2(λ− 1)
≤ 1
kH
⇔ kHλ+ k2H ≤ 2(λ− 1).
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If kH ≥ 2, this cannot hold and thus p22 >
1
kH

always. If kH < 2 then

p22 ≤
1
kH
⇔ λ ≥

2+ k2H
2− kH

≡ λ2. (17)

Note that λ2 > λ1 if kH < 2 as the numerator of the former is larger.

Compare p22 to 1:

p22 ≤ 1⇔ λ+ kH
2(λ− 1)

≤ 1⇔ λ ≥ kH +2 ≡ λ3.

Note that if kH < 2 then

2+ k2H
2− kH

− (2 + kH ) =
2+ k2H − 4+ k2H

2− kH
> 0.

Thus λ2 > λ3 if kH < 2.

Note also that λ1 > 1+ kH and λ3 > 1+ kH if kH < 2:

λ1 > 1+ kH ⇔
2

2− kH
> 1+ kH ⇔

2− 2+ kH − 2kH + k2H
2− kH

=
k2H − kH
2− kH

> 0,

λ3 > 1+ kH ⇔ kH +2 > kH +1.

Compare λ1 and λ3 assuming kH < 2:

λ1 ≤ λ3⇔
2

2− kH
− (2 + kH ) =

k2H − 2
2− kH

≤ 0.

Hence λ1 ≤ λ3 if kH ∈ (1,
√
2], and λ1 > λ3 if kH ∈ (

√
2,2). We can now summarize

the cases for p21 and p22.

A. If kH ∈ (1,
√
2] then λ1 ≤ λ3 < λ2, and:

A.1. If λ ∈ (1 + kH ,λ1] then p21 > 1/kH and p22 ≥ 1.

A.2. If λ ∈ (λ1,λ3] then p21 ≤ 1/kH and p22 ≥ 1.
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A.3. If λ ∈ (λ3,λ2] then p21 ≤ 1/kH and 1/kH ≤ p22 ≤ 1.

A.4. If λ > λ2 then p21 ≤ 1/kH and p22 < 1/kH .

B. If kH ∈ (
√
2,2) then λ3 < λ1 < λ2, and:

B.1. If λ ∈ (1 + kH ,λ3] then p21 > 1/kH and p22 ≥ 1.

B.2. If λ ∈ (λ3,λ1] then p21 > 1/kH and 1/kH ≤ p22 ≤ 1.

B.3. If λ ∈ (λ1,λ2] then p21 ≤ 1/kH and 1/kH ≤ p22 ≤ 1.

B.4. If λ > λ2 then p21 ≤ 1/kH and p22 < 1/kH .

C. If kH ≥ 2 then p21 > 1/kH , and:

C.1. If λ ∈ (1 + kH ,λ3] then p22 ≥ 1.

C.2. If λ > λ3 then 1/kH ≤ p22 ≤ 1.

The summary above shows what happens in each case and in which point functions

f1, f2 achieve their maximums. For example, in the case A.1 the maximum value of f1

in the interval [p∗,1/kH ] is at p = 1/kH and the maximum value of f2 in the interval

[1/kH ,1] is at p = 1. In the case A.3, however, the maximum values are achieved at p21

and p22, respectively.

We need also to calculate f1(1/kH ), f2(1/kH ) and f2(1) to find the maximum values

in the cases where p21 and p22 lie outside the intervals [p∗,1/kH ] and [1/kH ,1], respec-

tively. I compute

f1(1/kH ) = f2(1/kH ) =
λ
kH
− 1− λ− 1

k2H
, f2(1) = kH − 1.

I calculate below the maximum values in every case A.1-C.2 for f1 (denote it g1)

and f2 (denote it g2:

A.1 g1 =
λ
kH
− 1− λ−1

k2H
, g2 = kH − 1.

A.2 g1 = f max
1 , g2 = kH − 1.

A.3 g1 = f max
1 , g2 = f max

2 .

A.4 g1 = f max
1 , g2 =

λ
kH
− 1− λ−1

k2H
.
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B.1 g1 =
λ
kH
− 1− λ−1

k2H
, g2 = kH − 1.

B.2 g1 =
λ
kH
− 1− λ−1

k2H
, g2 = f max

2 .

B.3 g1 = f max
1 , g2 = f max

2 .

B.4 g1 = f max
1 , g2 =

λ
kH
− 1− λ−1

k2H
.

C.1 g1 =
λ
kH
− 1− λ−1

k2H
, g2 = kH − 1.

C.2 g1 =
λ
kH
− 1− λ−1

k2H
, g2 = f max

2 .

In the cases A.1, B.1, B.2, C.1 and C.2 we have g1 ≤ g2. This is derived from the fact

that when p22 ≥ 1 then f2(1) > f2(1/kH ) = f1(1/kH ) (cases A.1, B.1 and C.1), while in the

other two cases (B.2 and C.2) the maximum of f2 over the interval [1/kH ,1] is no less

than f2(1/kH ).

In the cases A.4 and B.4 we observe that the maximum of f1 in the interval [p∗,1/kH ]

is no less than f1(1/kH ) which coincides with g2. Thus in these cases g1 ≥ g2.

For the rest of the cases with two internal maximums it is not straightforward to

determine the conditions relating g1 and g2. In these cases I will explain the behavior

of agents and principals without giving explicit condition relating g1, g2.

I derive now the points in which f1 and f2 cross constant γ . Note that if γ ≥ g1

(γ ≥ g2) then f1 (f2) lies below γ in the respective interval. Consider the case γ < g1

(note that this condition depends on g1 and is different for each scenario A.1-C.2). We

may have no more than two points of intersection between γ and f1 in the interval

[p∗,1/kH ]:

γ = −p2(λ− 1) +λp − 1,

p
γ
L1 =

λ−
√
λ2 − 4(1+γ)(λ− 1)

2(λ− 1)
,

p
γ
L2 =

λ+
√
λ2 − 4(1+γ)(λ− 1)

2(λ− 1)
.

Here upper index γ means that I solve for the crossing between f1 and γ , lower

index L means that the point is in the "left" interval [p∗,1/kH ], and lower indices 1,2
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mean that we consider the root with minus or plus (the second one is obviously larger).

To choose which root lies in the interval [p∗,1/kH ]we follow a simple rule. Function

f1 starts at zero (f1(p∗) = 0) and increases until its "peak" (point at which the maximum

is reached), then it decreases. If the peak lies outside the interval (cases A.1, B.1, C.1

and C.2) then there is only one point at which γ and f1 intersect in the interval, and

this point is pγL1 as the second point is larger. If the peak is inside the interval then there

are two points of intersection, both p
γ
L1 and p

γ
L2, but only if γ > f1(1/kH ) - otherwise

there is only one point of intersection p
γ
L1.

For the "right" interval p ∈ [1/kH ,1] we solve γ = f2(p),

γ = −p2(λ− 1) + (λ+ kH )p − 2,

p
γ
R1 =

λ+ kH −
√
(λ+ kH )2 − 4(2+γ)(λ− 1)

2(λ− 1)
,

p
γ
R2 =

λ+ kH +
√
(λ+ kH )2 − 4(2+γ)(λ− 1)

2(λ− 1)
.

In this interval we have a different picture as the peak of f2 may lie to the left, to the

right and in the interval, and also minimum value of f2 is achieved at either 1/kH or 1.

If γ is less than this minimum then the external principal pays zero bonus. Assuming

f min
2 ≤ γ < g2 we get the following:

In the cases A.1, A.2, B.1 and C.1 the peak is larger than 1, f2 is increasing in the

interval and there is only one point of intersection p
γ
R1; the minimum value of f2 is

f2(1/kH ) = f1(1/kH ).

In the cases A.3, B.2, B.3 and C.2 the peak is inside the interval and there are two

points of intersection, pγR1 and p
γ
R2; the minimum value of f2 may be either of two

f2(1/kH ), f2(1).

In the cases A.4 and B.4 the peak is lower than 1/kH , f2 is decreasing in the interval

and there is only one point of intersection p
γ
R2; the minimum value of f2 is f2(1).
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There are seven cases mentioned above in which we can directly compare g1 and

g2 (A.1, A.4, B.1, B.2, B.4, C.1 and C.4). This is enough to explicitly state the relation

between γ and the intervals in which the external principal pays bonus in the first

period, and agent’s effort is 1. In other three cases (A.2, A.3, B.3) I describe necessary

and sufficient conditions to get the relation.

Note that the bonus paid (if non-zero) in the interval p ∈ [p∗,1/kH ] is equal to:

bLEP =
−p2(λ− 1) + pλ− 1

γ
, (18)

and the bonus paid in the interval p ∈ [1/kH ,1] is equal to:

bREP =
−p2(λ− 1) + p(λ+ kH )− 2

γ
, (19)

Note that cases A.1, B.1 and C.1 correspond to the Figure 1, cases B.2 and C.2 - to

the Figure 2, cases A.3 and B.3 - to the Figure 5, cases A.4 and B.4 - to the Figure 3,

and case A.2 - to the Figure 4.

In the Table 1 I describe what happens in each of the cases A.1-C.2. I do not con-

sider cases A.3 and B.3 because there are 20 possible combinations of parameters that

define the intervals for bonuses in these two cases, and they do not add anything differ-

ent to the intuition. Each row corresponds to up to three cases. Each column is devoted

to the conditions on γ and other parameters that lead to the result given. Every cell

contains the information on the intervals in which bonuses bLEP , b
R
EP or zero are paid.

"n/a" means that this bonus is not paid in any interval.

The results in the Table 1 directly follow from the Figures 1-5. Namely, as γ de-

creases we have more intervals in which the external principal does not participate

(pays zero bonus). These intervals are found from the intersection of γ with respective

functions f1, f2 (see p
γ
L1, p

γ
L2, p

γ
R1, p

γ
R2).

Cases A.1, B.1 and C.1, as well as A.4 and B.4, are easier to describe because there is
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no uncertainty in the Figures 1 and 3: the respective positions of the values g1, f1(1/kH )

and f1(1) are unique. Thus there are only 3 intervals for γ in the first three cases, and

there are only 4 intervals for γ in the last two cases.

Where the external principal pays a bonus different from zero, the agent would

exert effort of 1. This means that the Table 1 helps us to find the intervals in which

crowding-out or crowding-in appears.
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I can now describe the intervals of crowding-out and crowding-in.

I consider two situations of interest: 3.1) the agent works less in the second period

after the external principal than he would do after the self-principal only; 3.2) the

agent works more after the external principal than he would do after the self-principal

only.

Situation 3.1 appears, for example, in the cases A.1, B.1 and C.1. In the interval

[p∗,1/kH ] for large enough γ , or in the interval [p∗,pγL1] when γ is small enough, the

external principal participates with the bonus bLEP and makes agent work in the first

period. In the second period only the agents with low costs will still work. However,

in this same interval, given γ = 0 the self-principal does not force agent to work in the

first period yet pays him the bonus k̂ in the second period. This means that the agent

decreases his effort with respect to the case with no external principal. Note that this

happens for any γ > 0 however small it is.

Situation 3.2 appears in the "right" interval p ≥ 1/kH . In this interval the self-

principal never pays the agent enough to make him work, but the external principal

may add a bonus to force the agent to work (in almost all the cases). Only low γ

may prevent the external principal to participate: if γ ≤ min(f2(1/kH ), f2(1)) then the

self-principal produces the same outcome as the combination of two principals (agent

never works if p > 1/kH ).

Appendix: Proof of Proposition 4

To prove the Proposition 4 I first should calculate the optimal behavior of the external

principal in the different intervals of parameters.

In this section I assume that the external principal cares about both periods. Thus,

given Propositions 1-2, I can characterize the utility of the external principal.

As is shown in Proposition 1, there are twomajor cases: λ > 1+kH and 1 < λ ≤ 1+kH .

I start the solution with the second case.
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Table 1: Intervals of external principal’s payments

γ ≥ g2 ≥ g1 g2 > γ ≥ g1 g1 > γ ≥ 0

A.1, B.1,
C.1

bLEP : [p
∗,1/kH ]

bREP : [1/kH ,1]
0: [0,p∗]

bLEP : [p
∗,1/kH ]

bREP : [1/kH ,p
γ
R1]

0: [0,p∗]
0: [p

γ
R1,1]

bLEP : [p
∗,p

γ
L1]

bREP : n/a
0: [0,p∗]
0: [p

γ
L1,1]

γ ≥ g1 ≥ g2 g1 > γ ≥ g2 g2 > γ ≥ f2(1) f2(1) > γ > 0

A.4, B.4 bLEP : [p
∗,1/kH ]

bREP : [1/kH ,1]
0: [0,p∗]

bLEP : [p
∗,p

γ
L1]

bLEP : [p
γ
L2,1/kH ]

bREP : [1/kH ,1]
0: [0,p∗]
0: (pγL1,p

γ
L2)

bLEP : [p
∗,p

γ
L1]

bREP : [p
γ
R2,1]

0: [0,p∗]
0: (pγL1,p

γ
R2)

bLEP : [p
∗,p

γ
L1]

bREP : n/a
0: [0,p∗]
0: [p

γ
L1,1]

γ ≥ g2 ≥ g1
f2(1/kH ) ≥ f2(1)

g2 > γ ≥ f2(1/kH )
f2(1/kH ) ≥ f2(1)

f2(1/kH ) > γ ≥ f2(1)
f2(1/kH ) ≥ f2(1)

f2(1) > γ > 0
f2(1/kH ) ≥ f2(1)

B.2, C.2 bLEP : [p
∗,1/kH ]

bREP : [1/kH ,1]
0: [0,p∗]

bLEP : [p
∗,1/kH ]

bREP : [1/kH ,p
γ
R1]

bREP : [p
γ
R2,1]

0: [0,p∗]
0: (pγR1,p

γ
R2)

bLEP : [p
∗,p

γ
L1]

bREP : [p
γ
R2,1]

0: [0,p∗]
0: [pγL1,p

γ
R2]

bLEP : [p
∗,p

γ
L1]

bREP : n/a
0: [0,p∗]
0: [p

γ
L1,1]

γ ≥ g2 ≥ g1
f2(1/kH ) < f2(1)

g2 > γ ≥ f2(1)
f2(1/kH ) < f2(1)

f2(1) > γ ≥ f2(1/kH )
f2(1/kH ) < f2(1)

f2(1/kH ) > γ > 0
f2(1/kH ) < f2(1)

B.2, C.2 bLEP : [p
∗,1/kH ]

bREP : [1/kH ,1]
0: [0,p∗]

bLEP : [p
∗,1/kH ]

bREP : [1/kH ,p
γ
R1]

bREP : [p
γ
R2,1]

0: [0,p∗]
0: (pγR1,p

γ
R2)

bLEP : [p
∗,1/kH ]

bREP : [1/kH ,p
γ
R1]

0: [0,p∗]
0: (p

γ
R1,1]

bLEP : [p
∗,p

γ
L1]

bREP : n/a
0: [0,p∗]
0: [p

γ
L1,1]

γ ≥ g1 ≥ f2(1) g1 > γ ≥ f2(1) f2(1) > γ ≥ f2(1/kH ) f2(1/kH ) > γ > 0

A.2 bLEP : [p
∗,1/kH ]

bREP : [1/kH ,1]
0: [0,p∗]

bLEP : [p
∗,p

γ
L1]

bLEP : [p
γ
L2,1/kH ]

bREP : [1/kH ,1]
0: [0,p∗]
0: (p

γ
L1,p

γ
L2)

bLEP : [p
∗,p

γ
L1]

bLEP : [p
γ
L2,1/kH ]

bREP : [1/kH ,p
γ
R1]

0: [0,p∗]
0: (pγL1,p

γ
L2)

0: (p
γ
R1,1]

bLEP : [p
∗,p

γ
L1]

bREP : n/a
0: [0,p∗]
0: (pγL1,1]

γ ≥ f2(1) > g1 f2(1) > γ ≥ g1 g1 > γ ≥ f2(1/kH ) f2(1/kH ) > γ > 0

A.2 bLEP : [p
∗,1/kH ]

bREP : [1/kH ,1]
0: [0,p∗]

bLEP : [p
∗,1/kH ]

bREP : [1/kH ,p
γ
R1]

0: [0,p∗]
0: (p

γ
R1,1]

bLEP : [p
∗,p

γ
L1]

bLEP : [p
γ
L2,1/kH ]

bREP : [1/kH ,p
γ
R1]

0: [0,p∗]
0: (p

γ
L1,p

γ
L2)

0: (pγR1,1]

bLEP : [p
∗,p

γ
L1]

bREP : n/a
0: [0,p∗]
0: (p

γ
L1,1]
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Case 1: 1 < λ ≤ 1+ kH .

We know from the proof of Proposition 1 that self-principal pays the agent to apply

effort e1 = 1 if p ≤ p∗ where p∗ > 1/kH . This means that the external principal pays zero

bonus in this interval.

If p ∈ (p∗,1] then the self-principal does not motivate agent to work in the first

period because the self-principal gets negative utility. Consider the utility function of

the self-principal in this interval given bonus bEP of the external principal:

EUSP
1 (e1 = 1) = γbEP + (1− k̂) + (−λp(1− p) + (1− p)(1 + p)).

This relation is derived from the utility function of the agent: the external princi-

pal’s bonus reduces the self-principal’s bonus by γbEP . External principal should pay

a bonus such that the self-principal break-even. This means that

γbEP = −1+ k̂ +λp(1− p)− (1− p)(1 + p). (20)

Note that the utility the external principal gets in the case e1 = 0 is zero, while if

the agent works in the first period then the abilities are revealed and fraction 1− p of

agents work in the second period. Thus bEP ≤ 1+1− p = 2− p, hence

γ(2− p) ≥ −1+ k̂ +λp(1− p)− (1− p)(1 + p). (21)

Denote f (p) = −1+ k̂ +λp(1− p)− (1− p)(1 + p) = −p2(λ− 1) + p(λ+ kH )− 2. This is a

quadratic function in p and it crosses zero at p = p∗. We can compute the point of the

maximum value of this function:

f ′(p) = −2(λ− 1)p+ (λ+ kH ) = 0, p1 =
λ+ kH
2(λ− 1)

.

Here p1 is the point at which the maximum for f (p) is achieved. Note that we have
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λ ≤ 1+ kH and thus

p1 =
λ+ kH
2(λ− 1)

≥ λ+λ− 1
2λ− 2

> 1.

This means that the unrestricted maximum is achieved outside the interval [p∗,1]

and the maximum value in this interval is achieved at p = 1 because f (p∗) = 0 and

p1 > 1. I compute f (1) = −(λ−1)+λ+kH −2 = kH −1. This function is increasing in the

interval [p∗,1].

Function g(p) = γ(2 − p) is decreasing in the interval [p∗,1]. Its value at p = p∗ is

positive (g(p∗) = γ(2− p∗)) and its value at p = 1 is equal to g(1) = γ .

In the case γ ≥ kH − 1 the only possible point of intersection between the function

f (p) and the function g(p) in the interval [p∗,1] is p = 1. This means that the external

principal may always pay a bonus enough to make agent apply effort e1 = 1.

In the case γ < kH − 1 the functions f (p) and g(p) intersect at the point solving

−p2(λ− 1) + p(λ+ kH )− 2 = γ(2− p), p∗∗ =
λ+ kH +γ −

√
(λ+ kH +γ)2 − 4(2+ 2γ)(λ− 1)

2(λ− 1)

(the other root is greater than 1 as λ + kH > 2(λ − 1)). The external principal com-

pensates for the self-principal’s bonus until the point p∗∗ and both principals pay zero

if p ∈ [p∗∗,1].

Thus in the interval p ∈ [p∗,1] the solution is the following:

i. If γ ≥ kH − 1 then the external principal pays the bonus

bEP =
−p2(λ− 1) + p(λ+ kH )− 2

γ
, (22)

the agent supplies effort e1 = 1 in the first period, and the self-principal pays k̂−bEP .

ii. If γ < kH − 1 and p ∈ [p∗,p∗∗] then the external principal pays the bonus (22), the

agent supplies effort e1 = 1 in the first period, and the self-principal pays k̂ − bEP .

If γ < kH − 1 and p ∈ (p∗∗,1] then both principals pay zero bonus and the agent’s
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effort is zero in the first period.

This concludes case 1.

Case 2: λ > 1+ kH .

In this case, as I proved in Proposition 1, p∗ < 1/kH and the self-principal pays the

bonus if p ≤ p∗. Hence the external principal pays zero bonus in this interval. If p > p∗,

the self-principal pays zero bonus on his own.

Consider first the interval p ∈ [p∗,1/kH ]. In this interval the difference between

utilities the self-principal gets if the effort in the first period is 1 or 0 is given by (9).

Denote

f1(p) = −(−λp(1− p) + (1− p)(1 + p)) = −p2(λ− 1) +λp − 1.

The external principal gets 2− p if e1 = 1 as only the fraction 1− p of agents works

in the second period. If e1 = 0, the self-principal motivates the agent to work in the

second period and thus the external principal gets 1. This means that the maximum

bonus bEP = 1− p.

The external principal should add a bonus to the self-principal payment in order to

make agent work in the first period. This means that in the interval p ∈ [p∗,1/kH ] the

agent exerts effort e1 = 1 only if

γbEP = f1(p), γ(1− p) ≥ f1(p). (23)

This means the bonus paid is equal to

bEP =
−p2(λ− 1) +λp − 1

γ
. (24)

Consider now the interval p ∈ [1/kH ,1]. In this interval the difference between

utilities the self-principal gets if the effort in the first period is 1 or 0 is given by (10).

Denote

f2(p) = −(p2(λ− 1)− p(kH +λ) + 2) = −p2(λ− 1) + p(λ+ kH )− 2.
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The external principal gets 2−p if e1 = 1 as only the fraction 1−p of agents works in

the second period. If e1 = 0, the self-principal cannot motivate the agent to work in the

second period and thus the external principal gets 0. This means that the maximum

bonus bEP = 2− p.

Hence in the interval p ∈ [1/kH ,1] the agent exerts effort e1 = 1 only if

γbEP = f2(p), γ(2− p) ≥ f2(p). (25)

The two functions, f1(p) and f2(p), are both quadratic. Their points of maximum

are studied in the proof of Proposition 3.

In this proposition I compare f1 to h1(p) = γ(1− p) and f2 to h2(p) = γ(2− p). Note

that the incentives of the external principal have changed: before the comparison was

uniform (f1 and f2 to γ). Now, the external principal has more incentives to motivate

agent in the right interval [1/kH ,1].

Both functions h1 and h2 are linear and decreasing. I start the analysis from f1,h1.

Note that f1(1) = h1(1) = 0. Thus the only possible tangency line to f1 of the form

γ(1− p) is the one that has one point of intersection at p = 1. Any other line h1 crosses

the graph f1 twice in the interval [p∗,1] - at the point p = 1 and at the point pγL1:

−p2(λ−1)+λp−1 = γ(1−p),−p2(λ−1)+(λ+γ)p−1−γ = 0, (p−1)(−p(λ−1)+1+γ) = 0;

p
γ
L1 =

1+γ

λ− 1
.

This point is larger than p∗ = 1
λ−1 and should be less than 1/kH or

1+γ

λ− 1
≤ 1
kH

,γ ≤ λ− 1
kH
− 1.

So with a small γ , f1 and h1 cross inside the interval [p∗,1/kH ]. The functions cross

after 1/kH if γ is large enough.
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This leads to the conclusion: if 0 < γ ≤ λ−1
kH
− 1 then the external principal pays

bonus 18 in the interval [p∗,pγL1], the agents works e1 = 1 and Ee2 = 1−p; in the interval

(p∗,pγL1] the external principal pays zero bonus, the agents works e1 = 0 and e2 = 1.

If 0 < γ > λ−1
kH
−1 then the external principal pays bonus 18 in the interval [p∗,1/k)H],

the agents works e1 = 1 and Ee2 = 1− p.

Functions f2,h2 are more complicated to analyze. To skip uninteresting cases I con-

centrate on the ones that provide sufficient conditions for the cases similar to those

described in the Proposition 3. Note that the position of the maximum of f2 is de-

scribed in the Proposition 3.

One of the cases is such that the straight line h2 lies above f2. In this case, the

external principal is eager to pay the bonus (22) in the first period for any p ∈ [1/kH ,1].

Sufficient condition is h2(1) = γ > f max
2 where f max

2 is defined in the Proposition 3.

Then e1 = 1 and only the agents with low costs work in the second period, Ee2 = 1− p.

Another case is one in which h2(1/kH ) = γ(2 − 1/kH ) > f2(1/kH ), h2(1) = γ < f2(1) =

kH − 1. In this case, the external principal pays the bonus (22) for p ∈ [1/kH ,p
γ
R1] and

does not pay the bonus for p ∈ (pγR1,1]. Here pγR1 is defined from the equation

−p2(λ− 1) + p(λ+ kH )− 2 = γ(2− p),−p2(λ− 1) + p(λ+ kH +γ)− 2− 2γ = 0,

p
γ
R1 =

λ+ kH +γ −
√
(λ+ kH +γ)2 − 4(λ− 1)(2 + 2γ)

2(λ− 1)
.

In this case for p ∈ [1/kH ,p
γ
R1] we get e1 = 1, Ee2 = 1 − p, and for p ∈ (pγR1,1] we get

e1 = 0, e2 = 0.

The last important situation is one in which the bonus is always zero in the interval

[1/kH ,1]. This case takes place when h2(1/kH ) = γ(2 − 1/kH ) < f2(1/kH ), h2(1) = γ <

f2(1) = kH − 1, e.g. for small γ . External principal always pays zero, so the agent’s

efforts e1 = e2 = 0.

Finally, note that if I define C1 = min
(

kH
2kH−1

(
λ
kH
− 1− λ−1

k2H

)
, kH − 1

)
, then if γ ≤ C1
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there is no intersection between h2 and f2. Both principals will pay zero and the agent

works 0 in both periods. If g ≥ C1 then either h2(1/kH ) > f2(1/kH ), h2(1) > f2(1), or

both. Then either h2 > f2 in the whole interval, or they cross inside the interval. Thus

at least in one interval inside [1/kH ,1] the external principal will pay bonus (22) and

the agent will work e1 = 1 and Ee2 = 1− p.

This concludes the proof of the Proposition 4.
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P* 1/kH 1

Figure 1: Cases A.1, B.1 and C.1.
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P* 1/kH 1

Figure 2: Cases B.2 and C.2
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P* 1/kH 1

Figure 3: Cases A.4 and B.4
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P* 1/kH 1

Figure 4: Case A.2
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P* 1/kH 1

Figure 5: Cases A.3 and B.3
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