Solitons in an extended nonlinear Schrödinger equation with a spatial-domain stimulated Raman scattering and decreasing dispersion

E.M. Gromov^a and B.A. Malomed^b

^aNational Research University Higher School of Economics, 25/12 Bolshaja Pecherskaja Ulitsa, Nizhny Novgorod 603155, Russia ^bDepartment of Physical Electronics, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel

Abstract

Dynamics of solitons is considered in the framework of an extended nonlinear Schrödinger equation (NLSE), which is derived from a system of the Zakharov's type for the interaction between high- and low-frequency (HF and LF) waves. The resulting NLSE includes a *pseudo-stimulated-Raman-scattering* (pseudo-SRS) term, i.e., a spatial-domain counterpart of the SRS term, which is a known ingredient of the temporal-domain NLSE in optics. The pseudo-SRS effect is induced by diffusion losses acting on the LF waves. Also included is inhomogeneity of the spatial second-order diffraction (SOD). It is shown that the wavenumber downshift caused by the pseudo-SRS may be compensated by the upshift provided by the SOD whose local strength is a decaying function of the equation including such losses. Analytical soliton solutions with a permanent shape are found in an approximate form for both equations, and are verified by comparison with numerical results.

[1] E. M. Gromov and B. A. Malomed, *Soliton dynamics in an extended nonlinear Schrödinger equation with a spatial counterpart of the stimulated Raman scattering*, J. Plasma Phys., in press.

This study (research grant No 14-01-0023) was supported by The National Research University– Higher School of Economics' Academic Fund Program in 2014/2015.