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Abstract

This paper proposes a test of a key condition on the instrument projection matrix
in the Bekker (1994) framework of an instrumental variables regression with many
instruments. The validity of this condition has two consequences. First, it implies
that the limited-information maximum likelihood (LIML) estimator is optimal in a
broad class of estimators considered by Anderson et al.(2010). Second, asymptotic
variances for many popular estimators (see Hausman et al.(2012), van Hasselt (2010))
have much simpler forms under this condition. The latter could be used to improve
finite sample properties of tests. Another goal of the paper is to show how universality
results from the random matrix theory could be used in econometrics.
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1 Introduction

This paper contributes to the literature on many instruments in several directions. First,
it resolves a recent question posed in Anderson et al.(2010), Kunitomo (2012), Anatolyev
and Gospodinov (2011) and Anatolyev (2013) on the validity of the condition

1

n

n∑
i=1

(Pii − α)2
p→ 0 as n→∞ and l/n→ α ∈ [0, 1), (∗)

where Pii are diagonal elements of the instrument projection matrix PZ = Z(Z ′Z)−1Z ′

with a p × n random instrument matrix Z (l < n). This is a key condition implying the
weak heteroscedasticity assumption considered by Anderson et al. (2010) and Kunitomo
(2012). The latter, in turn, guarantees that LIML estimator is well-behaved, optimal in
a certain sense (see Anderson et al. (2010)) and has the same asymptotic distribution
as in the case of normal errors (see van Hasselt (2010) and Bekker (1994)). Condition
(∗) also gives a much simpler forms for asymptotic variances for the bias-corrected two
stage least squares estimator (see van Hasselt (2010)), the jackknife LIML estimator and
the heteroscedasticity robust Fuller estimator (see Hausman et al. (2012)). This could
be used to improve finite sample properties of many standard tests including t-test and
specification tests (see Okui and Lee (2012) and Anatolyev (2013)).

Second, the paper shows how to use universality results from the random matrix theory
in econometrics.

The paper is structured as follows. Section 2 contains main results. Section 3 deals
with examples and counterexamples. All proofs and auxiliary results are relegated to the
Appendix.

2 Main results

Let Z be a n× l random matrix with IID rows z′1, . . . , z
′
n and l 6 n. Denote by λmin(A) the

smallest eigenvalue of a square matrix A. Since the object of our study is the orthogonal
projector PZ = Z(Z ′Z)−1Z ′ associated with Z, we may assume that Eziz

′
i = Il (after a

proper normalization).
Assumption 1. For any matrices Al of the size l× l (l = 1, 2, . . .) and such that ‖Al‖

is uniformly bounded over l, (z′1Alz1 − trAl)/l
p→ 0 as l→∞.

Assumption 1∗. For any matrices Al of the size l× l (l = 1, 2, . . .) and such that ‖Al‖
is uniformly bounded over l, P (|z′1Alz1 − trAl| > δl) = o(1/l) as l→∞ for all δ > 0.

As far as we know, Assumption 1 is the most general assumption which implies that
quantities like tr(Z ′Z + εnIl)

−1, ε > 0, behave as if Z were a Gaussian matrix. The latter
is called universality in the random matrix theory. The formal statement is given in the
following Proposition.

Proposition 1. Under Assumption 1,

tr(Z ′Z + εnIl)
−1 − tr(W ′W + εnIl)

−1 p→ 0, n→∞,
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for all ε > 0 and l = O(n), where W is a n× l matrix with IID standard normal entries.
Proposition 1∗. Under Assumption 1∗,

max
16j6n

∣∣∣tr(Z ′−jZ−j + εnIl)
−1 − tr(W ′W + εnIl)

−1
∣∣∣ p→ 0, n→∞,

for all ε > 0 and l = αn+ o(n), where W is a (n− 1)× l matrix with IID standard normal
entries.

Proposition 2. Let Assumption 1 hold and P (λmin(Z ′Z) > Cn)→ 1 for some C > 0

as n → ∞ and l/n = α + o(1) with α ∈ [0, 1). Then n−1
∑n

i=1(Pii − α)2
p→ 0 as n → ∞

and l/n→ α.
Proposition 2∗. Let Assumption 1∗ hold and P (λmin(Z ′Z) > Cn)→ 1 for some C > 0

as n → ∞ and l/n = α + o(1) with α ∈ [0, 1). Then maxi |Pii − α|
p→ 0 as n → ∞ and

l/n→ α.
Assumption that λmin(Z ′Z)/n is separated from zero with high probability is rather

technical and is hard for theoretical verification. However, see Theorem* in Appendix B
(cf. Yaskov(2013)).

Now we discuss a question how to test Condition (*) in practice. We need one more
assumption.

Assumption 2. For any matrices Al of the size l× l (l = 1, 2, . . .) and such that ‖Al‖
is uniformly bounded over l, E|z′1Alz1 − trAl|2 = O(l) as l→∞.

Assumption 2 holds if instruments are linear combinations of weakly dependent factors
(see Proposition 4 below).

Proposition 3. Let Assumption 2 hold and P (λmin(Z ′Z) > Cn)→ 1 for some C > 0
as n→∞ and l/n = α+ o(1) with α ∈ [0, 1). Then

∑n
i=1 |Pii − l/n|2 = Op(1) as n→∞.

As a result, we see that, under some reasonable assumptions, Condition (∗) reduces to

n∑
i=1

|Pii − l/n|2 = Op(1). (∗∗)

In particular, if the instrument matrix Z is a Gaussian random matrix then results1 of
Bai and Silverstein (2004) and the central limit theorem for quadratic forms imply that∑n

i=1 |Pii − l/n|2 should have a certain asymptotic distribution. Therefore, the rule of

thumb test of Condition (∗∗) against
∑n

i=1 |Pii− l/n|2
p→∞ could have the following form.

If
∑n

i=1 |Pii − l/n|2 > q then put the validity of Condition (∗∗) in question; here q is a
certain (e.g., 0.01) quantile of the random variable

∑n
i=1 |Pii − l/n|2 in the case of jointly

normal instruments (q could be found by simulations). Formal proofs of these assertions
are rather technical and are postponed for the future research.

Examples and counterexamples.

Example 1. Instruments that are sums of weakly dependent random variables.

1Namely, central limit theorem for Stieltjes transform in Bai and Silverstein (2004), Lemma 1.1.
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Suppose z = Γε, where Γ is a non-random l×∞ matrix and ε = (ε1, ε2, . . .) is a random
sequence which components are orthonormal and weak dependent in a way that

|cov(ε2i , ε
2
j)| 6 ϕj−i and |Eεiεjεpεq| 6 min{ϕj−i, ϕp−j, ϕq−p}, i < j < p < q,

with ϕp decreasing to 0 as p→∞ and
∑

p>1 pϕp <∞. In particular, the last bounds take
place if variables εn have bounded moments of order 2δ > 4 and are strongly mixing with
mixing coefficients proportional to ϕ

(δ−2)/δ
p .

Proposition 4. If z = Γε and Ezz′ = Il, then, for any a ∈ Rl and all positive-
semidefinite symmetric matrices A of size l × l,

E|z′a|4 6 K|a′a|2 and E|z′Az − trA|2 6 CtrA2

for some C,K > 0 depending on ϕ.
Proposition 4 implies that Assumption 1 (with other assumptions of Theorem*) holds.

Propositions 3 and 4 imply that n−1
∑n

i=1 |Pii − α|2 p→ 0 for each fixed i and the given
structure of instruments.

Proposition 4 also implies that

P (|z′1Alz1 − trAl| > δl) 6
E|z′1Alz1 − trAl|2

δ2l2
6
C‖Al‖2

δ2l
= O(1/l)

as l → ∞ for all δ > 0 and all symmetric (l × l)-matrices Al such that ‖Al‖ is uniformly
bounded over l. The latter is, of course, not enough but close to Assumption 1∗.

Example 2. Instruments that are sums of independent random variables.
Let, in Example 1, ε1, ε2, . . . be independent random variables with zero mean and unit

variance. Assume also that supiEε
p
i = ν <∞ for some p > 2. Therefore, by Lemma B.26

in Bai& Silverstein (2011),

E|z′Az − trA|p 6 C(|trA2|p/2 + trA2p) 6 C‖Al‖p(l + lp/2)

for any symmetric (l× l)-matrix and some C > 0 depending only on p and ν. This bound
guarantees that Assumption 1∗ holds since

P (|z′1Alz1 − trAl| > δl) 6
E|z′1Alz1 − trAl|p

δplp
6
C‖Al‖p(l + lp/2)

δplp
= o(1/l)

as l → ∞ for all δ > 0 and all symmetric (l × l)-matrices Al such that ‖Al‖ is uniformly
bounded over l.

Using Proposition 4 (for independent εi) we get that

sup
a∈Rl: a′a=1

E|z′1a|4 6 K

for some K > 0 not depending on l. Thus Theorem∗ and Proposition 2∗ hold. As a result,
maxi |Pii − α| → 0.
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Example 3. Instruments that are weakly dependent.
This reduces to Example 1 with εi = zi, i = 1, . . . , n.
Counterexample 1. Instruments interacted with dummy variable.
Suppose z = du, where d ∈ {0, 1} is a dummy variable with P (d = 0) = P (d = 1) = 1/2

and u = Γε with ε defined in Example 1 and Euu′ = Il (here we allow Ezz′ 6= Il).
Let calculate the limit of Pii in this case. First we note that, by CLT,

∑n
i=1 di =

n/2 +OP (
√
n). Hence, the rank of the matrix

Z ′Z =
n∑
i=1

diuiu
′
i

is non greater than n/2 + OP (
√
n) and it size is l × l. Therefore, Z ′Z is degenerate with

large probability under the scheme l/n = α + o(1) with α > 1/2. So let us suppose that
α < 1/2.

Proposition 5. Under given assumptions, if d is independent of u, then |Pii−2αdi|
p→ 0

for any fixed i.
By Proposition 5,

E
∣∣∣ 1
n

n∑
i=1

P 2
ii−

1

n

n∑
i=1

(2αdi)
2
∣∣∣ 6 1

n

n∑
i=1

E|P 2
ii−(2αdi)

2| = E|P 2
11−(2αd1)

2| 6 (1+2α)E|P11−2αd1| → 0.

In addition, the law of large numbers implies that

1

n

n∑
i=1

(2αdi)
2 p→ E(2αd1)

2 = 2α2.

Hence, n−1
∑n

i=1 P
2
ii

p→ 2α2.
Counterexample 2.
Suppose z = (1, v, v2, v3, v4, vd1, vd2, . . . , vdl−5), where dj ∈ {0, 1} are IID dummy

variables with P (dj = 1) = 1/2 and v ∼ N (0, 1) does not depend on (dj)
∞
j=1. As was

argued by Hausman et al.(2012), Pii could not be asymptotically constant in this case.
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Appendix A.

Theorem 0. If λmin(Z ′Z)/
√
n

p→∞ as n→∞ for some given l = l(n), then

1

n

n∑
i=1

f(Pii)− Ef(P11)
p→ 0
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for any continuous function f , where Pii, i = 1, . . . , n, are diagonal elements of PZ.
Proof of Theorem 0. Any continuous function on [0, 1] could be approximated

by a smooth function. Therefore, we may consider only smooth functions f . The rest of
the proof consists in the verification of several claims.

Claim 1. There are λn such that λn
p→∞ and n−1

∑n
i=1[f(Pii)− fi]

p→ 0, where
fi = f(z′i(Z

′Z + λnIl)
−1zi).

Since λmin(Z ′Z)
p→ ∞, there are λn that grow to infinity slower than λmin(Z ′Z) (i.e.

λn/λmin(Z ′Z)
p→ 0). Using the formula Pii = z′i(Z

′Z)−1zi, the smoothness of f and the
inequality

|z′i(Z ′Z)−1zi − z′i(Z ′Z + λnIl)
−1zi| = λn|z′i(Z ′Z)−1(Z ′Z + λnIl)

−1zi| 6 λn/λmin(Z ′Z),

we prove Claim 1.

Claim 2. n−1
∑n

i=1[fi − E−ifi]
p→ 0.

Since |fi| is bounded, we have

E
∣∣∣ 1
n

n∑
i=1

[fi − E−ifi]
∣∣∣2 = O(n−1) +O(1) · E[f1 − E−1f1][f2 − E−2f2].

Hence, we only need to show that E[f1 − E−1f1][f2 − E−2f2] = o(1).
Recall the Sherman-Morrison-Woodbury formula (SMW)

(A+ uu′)−1 = A−1 − A−1uu′A−1

1 + u′A−1u
.

By the SMW formula,

z′i(Z
′Z + λnIl)

−1zi = g(zi(Z
′
−iZ−i + λnIl)

−1zi)

with g(x) = x/(1 + x), x > 0. In addition, the function h(x) = f(g(x)) is second-order
smooth on R+ and there is C0 > 0 such that |h(k)(x)|2 6 C0 on R+ for each k = 0, 1. Put
fij = h(z′i(Z

′
−ijZ−ij + λnIl)

−1zi) for i 6= j. Since

E[f12 − E−12f12][f21 − E−12f12] = E
[
E−12[f12 − E−12f12][f21 − E−12f21]

]
= 0

and E−1f12 = E−12f12 = E−12f21 = E−2f21, the equality E[f1 − E−1f1][f2 − E−2f2] = o(1)
(as well as Claim 2) follows from Claim 3 below.

Claim 3. E|fi − fij| → 0 and E|E−ifi − E−ifij| → 0 for any fixed i, j, i 6= j.
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The SMW formula yields

∆ij = z′i[(Z
′
−iZ−i + λnIl)

−1 − (Z ′−ijZ−ij + λnIl)
−1]zi =

|z′i(Z ′−ijZ−ij + λnIl)
−1zj|2

1 + z′j(Z
′
−ijZ−ij + λnIl)−1zj

.

If |∆ij| 6 1, then |fi−fij| 6 C0 |∆ij|. else if |∆ij| > 1, then |fi−fij| 6 2C0. By conditional
Jensen’s inequality,

E|E−i(fi − fij)| 6 E|fi − fij| 6 2C0Emin{|∆ij|, 1}

and
Emin{|∆ij|, 1} = EE−i min{|∆ij|, 1} 6 Emin{E−i|∆ij|, 1}.

It follows from the inequality E−iziz
′
i = Il that

E−i|∆ij| = E−i
z′j(Z

′
−ijZ−ij + λnIl)

−1ziz
′
i(Z
′
−ijZ−ij + λnIl)

−1zj

1 + z′j(Z
′
−ijZ−ij + λnIl)−1zj

=

=
z′j(Z

′
−ijZ−ij + λnIl)

−2zj

1 + z′j(Z
′
−ijZ−ij + λnIl)−1zj

6
1

λn
= o(1).

Hence, Claim 3 is obtained.

Claim 4. E|n−1
∑n

i=1E−ifi − E−1f1| → 0.

Using that |fi| 6 C0 and E−1f12 = E−12f12 = E−12f21 = E−2f21, we derive from Claim 3
that

E
∣∣∣ 1
n

n∑
i=1

E−ifi − E−1f1
∣∣∣ 6 1

n

n∑
i=1

E|E−ifi − E−1f1| 6 E|E−1f1 − E−2f2| =

= E|E−1f1−E−1f12 +E−2f21−E−2f2| 6 E|E−1f1−E−1f12|+E|E−2f21−E−2f2| = o(1).

Thus, Claim 4 is proven.

Claim 5. If λmin(Z ′Z)
p→∞, then n−1

∑n
i=1 f(Pii)− E−1f(P11)

p→ 0.

This follows from Claims 1-4.

Claim 6. E|E−1f1 − Ef1|2 → 0.

To prove Claim 6 we need the assumption λmin(Z ′Z)/
√
n

p→ ∞. Going back to the
definition of λn in the proof of Claim 1 we can initially take λn such that λn growing faster
than

√
n and slower than λmin(Z ′Z) (i.e. λn/λmin(Z ′Z)

p→ 0). Let Ei = E( ·|z2, . . . , zi) and
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E1 = E. Using that Ei(E−1f1i) = Ei−1(E−1f1i) we represent E−1f1 − Ef1 as the sum of
martingale differences

E−1f1 − Ef1 =
n∑
i=2

(Ei − Ei−1)E−1f1 =
n∑
i=2

(Ei − Ei−1)E−1(f1 − f1i),

where, by the SMW formula and the inequalities given in the proof of Claim 3,

|E−1(f1 − f1i)| 6 E−1|f1 − f1i| 6 2C0E−1 min{|∆1i|, 1} 6 2C0 min{E−1|∆1i|, 1} 6
2C0

λn
.

Claim 6 now follows from

E|E−1f1 − Ef1|2 =
n∑
i=2

E|(Ei − Ei−1)E−1(f1 − f1i)|2 6
4C2

0n

λ2n
= o(1).

Proposition*. If λmin(Z ′Z)
p→∞ as n→∞ and l/n

p→ α ∈ (0, 1), then the following
assumptions are equivalent

1. n−1
∑n

j=1 P
2
jj

p→ α2,

2. Pii
p→ α for each fixed i,

3. Pii =
z′i(Z

′
−iZ−i)

−1zi
1 + z′i(Z

′
−iZ−i)

−1zi
does not asymptotically depend on zi for each fixed i.2

4. n−1
∑n

j=1(Pjj − α)2
p→ α2,

Proof of Proposition*. W.l.o.g. we consider i = 1. By Claim 5 in the proof of
Theorem 1, if λmin(Z ′Z)

p→∞, then

l

n
− E−1P11 =

1

n

n∑
i=1

Pii − E−1P11
p→ 0 and

1

n

n∑
i=1

P 2
ii − E−1P 2

11

p→ 0.

In particular, E−1P11
p→ α. Suppose 1 holds. Then

E−1[P11 − E−1P11]
2 = E−1P

2
11 − [E−1P11]

2 p→ 0

and EE−1[P11 −E−1P11]
2 = E[P11 −E−1P11]

2 → 0. The latter yields 2 since E−1P11
p→ α.

Obviously, 2 implies 3 and we only need to show that 3 implies 1. Assume that 3 holds,
i.e. z′1(Z

′
−1Z−1)

−1z1 − fn(Z−1)
p→ 0 for some nonnegative functions fn. Then

P11 −
fn(Z−1)

1 + fn(Z−1)
=

z′1(Z
′
−1Z−1)

−1z1
1 + z′1(Z

′
−1Z−1)

−1z1
− fn(Z−1)

1 + fn(Z−1)

p→ 0

2By this, we mean that z′i(Z
′
−iZ−i)

−1zi − fn(Z−i)
p→ 0 for each fixed i and some functions fn.
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and, by conditional Jensen’s inequality,

E
∣∣∣E−1P11 −

fn(Z−1)

1 + fn(Z−1)

∣∣∣ 6 E
∣∣∣P11 −

fn(Z−1)

1 + fn(Z−1)

∣∣∣→ 0,

E
∣∣∣E−1P 2

11 −
fn(Z−1)

2

[1 + fn(Z−1)]2

∣∣∣ 6 E
∣∣∣P 2

11 −
fn(Z−1)

2

[1 + fn(Z−1)]2

∣∣∣→ 0.

Therefore, we conclude that E−1P
2
11 − [E−1P11]

2 p→ 0 and E−1P
2
11

p→ α2. Thus, we get 1.
Finally, 1 is obviously equivalent to 4 since n−1

∑n
i=1 iPii = l/n→ α. Q.e.d.

Proof of Proposition 1. Here we proof a little more general version, i.e.

tr
( n∑
i=1

diziz
′
i + εnIl

)−1
− tr

( n∑
i=1

diwiw
′
i + εnIl

)−1 p→ 0, n→∞,

for all ε > 0 and l = O(n), where (di, zi) are IID, di are a bounded non-negative scalar
random variable, and wi are IID l × 1 standard normal vectors independent of everything
else.

Using so called Lindeberg’s method and the Sherman-Morrison-Woodbury formula (see
Claim 2 in the proof of Theorem 1) we get∣∣∣tr( n∑

i=1

diziz
′
i+εnIl

)−1
− tr

( n∑
i=1

diwiw
′
i + εnIl

)−1∣∣∣ 6
6

1

n

n∑
k=1

∣∣∣tr(Ck + dk
zkz
′
k

n
+ εIl

)−1
− tr

(
Ck + εIl

)−1
+

+ tr
(
Ck + εIl

)−1
− tr

(
Ck + dk

wkw
′
k

n
+ εIl

)−1∣∣∣
=

1

n

n∑
k=1

∣∣∣∣ dkzk
(
Ck + εIl

)−2
zk/n

1 + dkzk
(
Ck + εIl

)−1
zk/n

−
dkwk

(
Ck + εIl

)−2
wk/n

1 + dkwk
(
Ck + εIl

)−1
wk/n

∣∣∣∣
=

1

n

n∑
k=1

|∆k|

where C1 =
∑n

i=2 diziz
′
i/n, Cn =

∑n−1
i=1 diwiw

′
i/n and

Ck =
k−1∑
i=1

diwiw
′
i/n+

n∑
i=k+1

diziz
′
i/n, 1 < k < n.

By exchangeability,

E
1

n

n∑
k=1

|∆k| = E|∆1|

and we only need to show that ∆1
p→ 0 (since |∆1| 6 1/ε).
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Arguing as in the proof of Proposition 4 and using Assumption 1 (and its analog for
Gaussian vectors wk) we easily get for j = 1, 2

1

n
[z1
(
C1 + εIl

)−j
z1 − tr

(
C1 + εIl

)−j] p→ 0,

1

n
[w1

(
C1 + εIl

)−j
w1 − tr

(
C1 + εIl

)−j] p→ 0.

Finally we see that

∆1 =
d1
(
C1 + εIl

)−2
/n+ oP (1)

1 + d1tr
(
C1 + εIl

)−1
/n+ oP (1)

−
d1tr

(
C1 + εIl

)−2
/n+ oP (1)

1 + d1tr
(
C1 + εIl

)−1
/n+ oP (1)

p→ 0.

Here the notation is the same as in the proof of Proposition 1 and di ≡ 1. Let

zi,j = ziI(i 6= j) and wi,j = wiI(i < j) + wi−1I(i > j).

As in the proof of Proposition 1, we derive

max
16j6n

∣∣∣tr( n∑
i=1

zi,jz
′
i,j+εnIl

)−1
− tr

( n∑
i=1

wi,jw
′
i,j + εnIl

)−1∣∣∣ 6
6

1

n
max
16j6n

n∑
k=1

∣∣∣∣ zk,j
(
Ck,j + εIl

)−2
zk,j/n

1 + zk,j
(
Ck,j + εIl

)−1
zk,j/n

−
wk,j

(
Ck,j + εIl

)−2
wk,j/n

1 + wk,j
(
Ck,j + εIl

)−1
wk,j/n

∣∣∣∣
6

1

n

n∑
k=1

( max
16j6n

|∆k,j|+ max
16j6n

|Dk,j|)

where C1,j =
∑n

i=2 zi,jz
′
i,j/n, Cn,j =

∑n−1
i=1 wi,jw

′
i,j/n and

Ck,j =
k−1∑
i=1

wi,jw
′
i,j/n+

n∑
i=k+1

zi,jz
′
i,j/n, 1 < k < n,

∆k,j =
zk,j
(
Ck,j + εIl

)−2
zk,j/n

1 + zk,j
(
Ck,j + εIl

)−1
zk,j/n

−
tr
(
Ck,j + εIl

)−2
/n

1 + tr
(
Ck,j + εIl

)−1
/n
, 1 6 k 6 n,

and Dk,j defined as ∆k,j with zk,j replaced by wk,j. Now we only need to show that

max
16k6n

(E max
16j6n

|∆k,j|+ E max
16j6n

|Dk,j|)→ 0.

Let us first prove that max
16k6n

E max
16j6n

|∆k,j| → 0. Since |∆k,j| is bounded (by 2ε), we have

(for all δ > 0)
max
16k6n

E max
16j6n

|∆k,j| 6 δ + 2ε max
16k6n

P ( max
16j6n

|∆k,j| > δ).

10



Using inequality ∣∣∣ x

1 + y
− x0

1 + y0

∣∣∣ 6 |x− x0|+ ε2|y − y0|

for 0 6 x0 6 ε2 and y, y0 > 0, we derive

max
16k6n

P ( max
16j6n

|∆k,j| > δ) 6 n max
16k,j6n

P (|∆k,j| > δ) 6 n max
16k,j6n

2∑
m=1

P (|Mm
k,j| > δ0),

where δ0 = δmin{1, ε−2}/2,

Mm
k,j = (zk,j

(
Ck,j + εIl

)−m
zk,j − tr

(
Ck,j + εIl

)−m
)/n, m = 1, 2.

Moreover, by the law of iterated mathematical expectations and the independence of zk,j
and Ck,j, for all k, j,m,

P (|Mm
k,j| > δ0) = EP (|z′k,jAlzk,j − trAl| > δ0n)|Al=(Ck,j+εIl)−m 6 Sn,

where Sn = supP (|z′1Alz1 − trAl| > δ0n) is taken over all (l × l)-matrices Al with ‖Al‖ 6
max{ε−1, ε−2}. By Assumption 1∗, nSn → 0 if l = αn+ o(n) with α ∈ (0, 1). Hence,

max
16k6n

E max
16j6n

|∆k,j| 6 δ + o(1) for all δ > 0.

As a result, we get that max
16k6n

E max
16j6n

|∆k,j| → 0.

Now let us prove that max
16k6n

E max
16j6n

|Dk,j| → 0. This could be done as above if we prove

that the following version of Assumption 1∗ holds:

For any matrices Al of the size l×l (l = 1, 2, . . .) and such that ‖Al‖ is uniformly
bounded over l, P (|w′1Alw1 − trAl| > δl) = o(1/l) as l→∞ for all δ > 0.

We may consider w.l.o.g. only symmetric matrices Al. For each symmetric (l × l)-matrix
Al, there is an orthonormal basis e1, . . . , el in Rl such that Al =

∑l
k=1 λkeke

′
k and w′1Alw1 =∑l

k=1 λk(w
′
1ek)

2. Noting that Ew′1Alw1 = trAl and {(w′1ek)2}lk=1 are IID random variables
distributed as ξ ∼ χ2

1, we see that

P (|w′1Alw1 − trAl| > δl) 6
E|w′1Alw1 − trAl|4

δ4l4
=

E|
l∑

k=1

λk[(w
′
1ek)

2 − E(w′1ek)
2]|4

δ4l4

6
C

l∑
k=1

λ4kE[(w′1ek)
2 − E(w′1ek)

2]4

δ4l4

6 C‖Al‖4E|ξ − Eξ|4 ·
1

l3
= o(1/l)

11



for some universal constant C > 0 (by the Marcinkiewicz-Zygmund inequality) when ‖Al‖
is uniformly bounded over l. Thus the version of Assumption 1∗ holds and

max
16k6n

E max
16j6n

|Dk,j| → 0.

Q.e.d.
Proof of Proposition 2. W.l.o.g. we consider i = 1. To avoid technicalities we

prove the proposition under the assumption that P (λmin(Z ′−1Z−1) > Cn) → 1 instead of
P (λmin(Z ′Z) > Cn)→ 1 (in the second case, one should proceed as in Claim 1 in the proof
of Theorem 1).

Using that P (λmin(Z ′−1Z−1) > Cn)→ 1 we obtain via Assumption 1

P (|z′1Alz1 − trAl| > ε)
∣∣
Al=(Z′−1Z−1)−1

p→ 1

for any ε > 0. Therefore, letting w1 = z1(Z
′
−1Z−1)

−1z1 we derive

P
(
|w1 − tr(Z ′−1Z−1)

−1| > ε
)

= EP (|z′1Alz1 − trAl| > ε)
∣∣
Al=(Z′−1Z−1)−1 → 1

for any ε > 0. Writing z′1(Z
′Z)−1z1 = g(w1) with g(x) = x/(1 + x) as in Claim 2 in the

proof of Theorem 0we get

z′1(Z
′Z)−1z1 − g(tr(Z ′−1Z−1)

−1)
p→ 0 and E−1P11 − g(tr(Z ′−1Z−1)

−1)
p→ 0,

where E−1 = E[ · |Z−1]. Now the desired result follows from Proposition* (see point 3).
Q.e.d.

Proof of Proposition 2∗. First note that

max
i
|Pii − z′i(Z ′Z + εnIl)

−1zi| 6 εn/λmin(Z ′Z)

(see Claim 1 in the proof of Theorem 1). Assumption 1∗ yields

P (max
i
|z′i(Z ′−iZ−i + εnIl)

−1zi − tr(Z ′−iZ−i + εnIl)
−1| > δ) 6

6 nP (|z′1(Z ′−1Z−1 + εnIl)
−1z1 − tr(Z ′−1Z−1 + εnIl)

−1| > δ)

= nEP (|z′1Alz1 − trAl| > δn)
∣∣
Al=(Z′−1Z−1/n+εIl)−1

6 n supP (|z′1Alz1 − trAl| > δn)→ 0

for any δ > 0 and l = αn + o(n) with α ∈ (0, 1), where sup is taken over all Al with
‖Al‖ 6 ε−1. Therefore we get

max
i
|z′i(Z ′−iZ−i + εnIl)

−1zi − tr(Z ′−iZ−i + εnIl)
−1| p→ 0.

Using Proposition 1∗, we derive that

max
i
|z′i(Z ′−iZ−i + εnIl)

−1zi − tr(W ′W + εnIl)
−1| p→ 0

12



where W is (n− 1)× l matrix with IID standard normal entries. Note that

|tr(W ′W + εnIl)
−1 − tr(W ′W )−1| = εn · tr[(W ′W + εnIl)

−1(W ′W )−1] 6
εn2

λmin(W ′W )2
.

Moreover, we have tr(W ′W )−1
p→ α/(1 − α) that could be verified as in the proof of

Proposition 2 with zi replaced by standard normal vectors wi (in the proof, we established
that g(tr(Z ′−1Z−1)

−1)→ α for g(x) = x/(1 + x)) . Combining the above estimates we see
that

max
i
|Pii − α| 6

εn

λmin(Z ′Z)
+ max

i
|z′i(Z ′Z + εnIl)

−1zi − α|

=
εn

λmin(Z ′Z)
+ max

i

∣∣∣g(z′i(Z
′
−iZ−i + εnIl)

−1zi)− g
( α

1− α

)∣∣∣
6

εn

λmin(Z ′Z)
+ max

i

∣∣∣z′i(Z ′−iZ−i + εnIl)
−1zi −

α

1− α

∣∣∣
6

εn

λmin(Z ′Z)
+

εn2

λmin(W ′W )2
+ oP (1).

Since there is a constant C > 0 such that

P (λmin(Z ′Z) > Cn)→ 1, P (λmin(W ′W ) > Cn)→ 1,

we have
max
i
|Pii − α| 6

ε

C
+

ε

C2
+ op(1).

The latter holds for any ε > 0. Hence, we get the desired convergence maxi |Pii − α|
p→ 0.

Q.e.d.
Proof of Proposition 3. To be proven.
Proof of Proposition 4. Since z = Γε and Il = Ezz′ = ΓEεε′Γ′ = ΓΓ′, we obtain

z′a = ε′b with b = Γ′a satisfying b′b = a′ΓΓ′a = a′a. Therefore, the first inequality

E|z′a|4 = E|ε′b|4 6 K|b′b|2 = K|a′a|2 (∗)

is contained in Theorem 3a of Gaposhkin(1972) (for some K > 0 not depending of a). Let
us verify the second inequality. Since Il = Ezz′ = ΓEεε′Γ′ = ΓΓ′, putting B = (bij) =
Γ′AΓ we have trB = tr(AΓΓ′) = trA, z′Az − trA = ε′Bε− trB,

trB2 = tr(Γ′AΓΓ′AΓ) = tr(A2ΓΓ′) = trA2

and, by the inequality (x+ y)2 6 2x2 + 2y2,

E|ε′Bε− trB|2 =E
∣∣∣∑

i

bii(ε
2
i − Eε2i ) +

∑
i 6=j

bijεiεj

∣∣∣2
6 2E

∣∣∣∑
i

bii(ε
2
i − Eε2i )

∣∣∣2 + 2E
∣∣∣2∑

i<j

bijεiεj

∣∣∣2.
13



Applying the Cauchy-Schwartz inequality, we see that

E
∣∣∣∑

i

bii(ε
2
i − Eε2i )

∣∣∣2 6∑
i

b2iiV ar(ε
2
i ) +

∑
i 6=j

biibjjcov(ε2i , ε
2
j)

6ϕ(0)
∑
i

b2ii +
∑
i 6=j

b2ii + b2jj
2

ϕ(|i− j|)

6ϕ0

∑
i

b2ii +
∑
i

b2ii
∑
j:j 6=i

ϕ|i−j|

62trB2
∑
p

ϕp = 2trA2
∑
p

ϕp.

Let us now deal with the second term

E
∣∣∣∑
i<j

bijεiεj

∣∣∣2 =4
∑
i<j

b2ijEε
2
i ε

2
j + 4

∑
i<j<p

bijbipEε
2
i εjεp + 4

∑
i<j<p

bijbjpEεiε
2
jεp

+ 4
∑
i<p<j

bijbpjEεiε
2
jεp + 4

∑
i<j<p<q

bijbpqEεiεjεpεq

+ 4
∑

i<p<j<q

bijbpqEεiεpεjεq + 4
∑

i<p<q<j

bijbpqEεiεpεqεj

Let us step by step control all terms in the left hand side of the last inequality.

Control of
∑

i<j<p bijbipEε
2
i εjεp.

By the Cauchy-Schwartz inequality and inequality (∗),

2
∑
i<j<p

bijbipEε
2
i εjεp +

∑
i<j

b2ijEε
2
i ε

2
j =

∑
i

Eε2i

(∑
j:j>i

bijεj

)2
6

6
∑
i

√
Eε4i

[
E
( ∑
j: j>i

bijεj

)4]1/2
6M

√
K
∑
i

∑
j: j>i

b2ij 6M
√
KtrA2,

where M = sup
√
Eε4i .

Control of
∑

i<j<p bijbjpEεiε
2
jεp.

By the Cauchy-Schwartz inequality and inequality (∗),∣∣∣2 ∑
i<j<p

bijbipEεiε
2
jεp

∣∣∣ =
∣∣∣∑

j

Eε2j

(∑
i: i<j

bijεi

)( ∑
p: p>j

bjpεp

)∣∣∣ 6
6
∑
j

√
Eε4j

[
E
(∑
i: i<j

bijεi

)4]1/4[
E
( ∑
p: p>j

bjpεp

)4]1/4
6

6M
[∑

j

[
E
(∑
i: i<j

bijεi

)4]1/2]1/2[∑
j

E
( ∑
p: p>j

bjpεp

)4]1/2]1/2
6M

√
KtrA2.
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Control of
∑

i<p<j bijbpjEεiεpε
2
j .

This could be done similarly to
∑

i<j<p bijbipEε
2
i εjεp.

Control of
∑

i<p<j<q bijbpqEεiεpεjεq.

Since
|Eεiεpεjεq| 6 min{ϕp−i, ϕq−j}, i < p < j < q,

we have

|
∑

i<p<j<q

bijbpqEεiεpεjεq

∣∣∣ 6 ∑
i<p<j<q

|bijbpq|min{ϕp−i, ϕq−j} 6
√
I1I2

with
I1 =

∑
i<p<j<q

b2ij min{ϕp−i, ϕq−j}, I2 =
∑

i<p<j<q

b2pq min{ϕp−i, ϕq−j}.

In addition,

I1 =
∑
i<j

b2ij
∑

p: i<p<j

[
(p− i)ϕp−i +

∑
q: q−j>p−i

ϕq−j

]
6
∑
i<j

b2ij

[∑
p

pϕp +
∑
q

∑
q: q>p

ϕq

]
6 2trA2

∑
p

pϕp.

and similarly

I2 =
∑
p<q

b2pq
∑

j: p<j<q

[
(q − j)ϕq−j +

∑
i: p−i>q−j

ϕp−i

]
6 2trA2

∑
p

pϕp.

Control of
∑

i<p<q<j bijbpqEεiεpεqεj.

Since
|Eεiεpεqεj| 6 min{ϕp−i, ϕj−q}, i < p < q < j,

we have

|
∑

i<p<q<j

bijbpqEεiεpεqεj

∣∣∣ 6 ∑
i<p<q<j

|bijbpq|min{ϕp−i, ϕj−q} 6
√
I3I4

with
I3 =

∑
i<p<q<j

b2ij min{ϕp−i, ϕj−q}, I2 =
∑

i<p<q<j

b2pq min{ϕp−i, ϕj−q}.

Since I3 =
∑

i<j Lijb
2
ij with

Lij =
∑

p: i<p<j

[
(p− i)ϕp−i I

(
p− i 6 j − i

2

)
+

∑
q: q>p, j−q>p−i

ϕj−q

]
6 2

∑
p

pϕp,

we conclude that I3 6 2trA2
∑

p pϕp. Similarly we get that

I4 =
∑
p<q

b2pq
∑
i: i<p

[
(p− i)ϕp−i +

∑
j: j−q>p−i

ϕj−q

]
6 2trA2

∑
p

pϕp.
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Control of
∑

i<j<p<q bijbpqEεiεjεpεq.

Since
|Eεiεjεpεq| 6 min{ϕj−i, ϕp−j, ϕq−p}, i < j < p < q,

we conclude that∣∣∣ ∑
i<j<p<q

bijbpqEεiεjεpεq

∣∣∣ 6 ∑
i<j<p<q

|bijbpq|min{ϕj−i, ϕp−j, ϕq−p} 6
√
I5I6,

where
I5 =

∑
i<j<p<q

b2ij min{ϕp−j, ϕq−p}, I6 =
∑

i<j<p<q

b2pq min{ϕj−i, ϕp−j}.

Additionally,

I5 =
∑
i<j

b2ij
∑
p: p>j

[
(p− j)ϕp−j +

∑
q: q−p>p−j

ϕq−p

]
6 2trA2

∑
p

pϕp

and similarly

I6 =
∑
p<q

b2pq
∑
j: j<p

[
(p− j)ϕp−j +

∑
i: j−i>p−j

ϕj−i

]
6 2trA2

∑
p

pϕp.

Proof of Proposition 5. Assume w.l.o.g. that i = 1. First note that

|P11 − z′1(Z ′Z + εnIl)
−1z1| 6 εn/λmin(Z ′Z)

(see Claim 1 in the proof of Theorem 1). Applying Theorem∗ for ui instead of zi (as well as
Proposition 4) we get that P (λmin(U ′mUm) > Cm)→ 1 for some constant C > 0, whenever
l = 2αm+ o(m) and Um is a m× l matrix with rows ui+1, i = 1, . . . ,m. In addition,

P (λmin(Z ′Z) > Cn/3) = P
(
λmin

( n∑
i=1

diuiu
′
i

)
> Cn/3

)
=

= EP
(
λmin

( n∑
i=1

diuiu
′
i

)
> Cn/3

∣∣∣ n∑
i=1

di

)
= EP (λmin(U ′mUm) > Cn/3)|m=

∑n
i=1 di

By the law of large numbers,
∑n

i=1 di = n/2 + o(n) a.s. Therefore,

P (λmin(Z ′Z) > Cn/3)→ 1

and

|P11 − z′1(Z ′Z + εnIl)
−1z1| 6

3ε

C
+ oP (1).

By the Sherman-Morrison-Woodbury formula,

z′1(Z
′Z + εnIl)

−1z1 = g(z′1(Z
′
−1Z−1 + εnIl)

−1z1),
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where g(x) = x/(x+ 1). By Proposition 4,

E|z′1(Z ′−1Z−1 + εnIl)
−1z1 − d1tr(Z ′−1Z−1 + εnIl)

−1|2 =

= E|u′1Alu1z1 − trAl|2|Al=(Z′−1Z−1+εnIl)−1 6 CEtr(Z ′−1Z−1 + εnIl)
−2 6

Cl

ε2n2
= o(1).

Note that

|tr(U ′mUm + εnIl)
−1 − tr(U ′mUm)−1| 6 εnm

λmin(U ′mUm)2
6

2ε

C2
+ op(1)

whenever n = 2m+ o(m) since P (λmin(U ′mUm)2 > Cm)→ 1 for some constant C > 0. As
in the Proof of Proposition 2 one could show that g(tr(U ′mUm)−1)→ 2α if l = 2αm+o(m).
The latter yields We have

E
∣∣g(tr(Z ′−1Z−1 + εnIl)

−1)− 2α
∣∣ = E

[∣∣g(tr(Z ′−1Z−1 + εnIl)
−1)− 2α

∣∣∣∣∣ n∑
i=2

di

]
= E

∣∣g(tr(U ′mUm + εnIl)
−1)− 2α

∣∣∣∣∣
m=

∑n
i=2 di

6 Emin{2ε/C2 + oP (1), 2}+ E|g(tr(U ′mUm)−1 − 2α|
∣∣∣
m=

∑n
i=2 di

6 min{2ε/C2 + oP (1), 2}+ o(1),

where we take into account that g is bounded function with |g(x)−g(y)| 6 |x−y|, x, y > 0.
Combining all above estimates together we arrive at

|P11 − 2αd1| 6
3ε

C
+

2ε

C2
+ oP (1).

Q.e.d.

Appendix B.

Theorem*. Let Assumption 1 hold and

sup
a∈Rl: a′a=1

E|z′1a|4 6 K

for some K > 0 not depending on l. If l = l(n) = αn + o(n) for some α ∈ [0, 1), then
P (λmin(Z ′Z) > Cn)→ 1 as n→∞ for some C = C(α,K) > 0.

Assumptions like supE|z′1a|4 6 K are only needed to guarantee that there is a large
enough constant L > 0 such that averages Emin{|z′1a|2, L} are uniformly (over a in the
unit sphere) close to E|z′1a|2 = 1. That is, linear combinations z′1a don’t explode on average
in this sense.
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