Modular system development by composing Petri nets on interfaces

Lucia Pomello

Dipartimento di Informatica, Sistemistica e Comunicazione
University of Milano – Bicocca

Moscow, 21/04/2014
Joint work with

- Luca Bernardinello – DISCo, University of Milano–Bicocca
- Carlo Ferigato – JRC European Commission, Ispra
- Görkem Kılınc – Phd student, Univ. Milano – Bicocca
- Elisabetta Mangioni – Phd, now CNR, Milano
- Elena Monticelli – former Master Thesis student.
- Stefano Scacabarozzi – former Master Thesis student.
Modular system development by composing Petri nets on interfaces

Outline

1. Composing on interfaces, the intuition
2. \(\hat{N}\)-morphisms: abstraction and refinement
3. Composing on interfaces by \(\hat{N}\)-morphisms
4. Properties preserved/reflected
5. A new notion of morphisms: \(\alpha\)-morphisms
6. Application to modular synthesis
7. A case study
8. Conclusions
Section 1

Composing on interfaces, the intuition
Composition operations for Petri nets

\[N = (P, T, F, M_0) \]

typical ways of composing nets

- synchronous
- asynchronous
- mixed
Synchronous Composition

merging transitions (synchronization)
Asynchronous Composition

merging places (channels)
Composing on interfaces, the intuition...

Elementary net systems \(N = (B, E, F, c_{in}) \):
- \(B \): conditions (boolean propositions) - \(E \): events

\[
\begin{align*}
N1 & \quad N2 \\
\text{p} & \quad \text{q}
\end{align*}
\]
Composing on interfaces, the intuition...

Elementary net systems $N = (B, E, F, c_{in})$:
- B: conditions (boolean propositions) - E: events
Composing on interfaces, the intuition...
Composing on interfaces, by means of morphisms

Lucia Pomello (DISCo)
Composing on interfaces, by means of morphisms

abstracting from details
Composing on interfaces, by means of **morphisms**

abstracting from details

\[
\text{if } q \text{ then } (s \land (r \lor u)) \lor w
\]
Composing on interfaces, by means of morphisms

N = N1 \[N1 \] N2
Section 2

\(\hat{N}\)-morphisms: abstraction and refinement
the origins

N-morphisms

[Nielsen, Rozenberg, Thiagarajan '92]

(intuitively) they *preserve* behaviours, i.e.:

if $\phi : N_1 \rightarrow N_2$ is a *N-morphism* then N_2 is *partially simulating* N_1.
\(\hat{N} \)-morphisms for EN systems

\[N_i = (B_i, E_i, F_i, c_{i,in}), \quad i = 1, 2 \]

\(\hat{N} \)-morphisms for EN systems \(^1\) \(^2\)

\[N_i = (B_i, E_i, F_i, c_{i, in}), \; i = 1, 2 \]

\((\beta, \eta) : N_1 \rightarrow N_2\) is an \(\hat{N} \)-morphism iff

\(\beta \subseteq B_1 \times B_2 \) relation, \hspace{1cm} \(\eta : E_1 \rightarrow E_2 \) partial surjective map:

\(\hat{N}\)-morphisms for EN systems

\(N_i = (B_i, E_i, F_i, c_i, in), \ i = 1, 2\)

\((\beta, \eta) : N_1 \rightarrow N_2\) is an \(\hat{N}\)-morphism iff

- \(\beta \subseteq B_1 \times B_2\) relation,
- \(\eta : E_1 \rightarrow E_2\) partial surjective map:
 - \(\beta^{-1} : B_2 \rightarrow B_1\) total injective map
 - \(\forall (b_1, b_2) \in \beta : b_1 \in c_{1, in} \Leftrightarrow b_2 \in c_{2, in}\)

N-morphisms for EN systems

\[N_i = (B_i, E_i, F_i, c_{i,in}), \quad i = 1, 2 \]

\[(\beta, \eta) : N_1 \rightarrow N_2 \text{ is an } \hat{N}\text{-morphism iff} \]

- \(\beta \subseteq B_1 \times B_2 \) relation,
- \(\eta : E_1 \rightarrow E_2 \) partial surjective map:

 - \(\beta^{-1} : B_2 \rightarrow B_1 \) total injective map
 - \(\forall (b_1, b_2) \in \beta : b_1 \in c_{1,in} \iff b_2 \in c_{2,in} \)
 - \(\eta(e_1) = e_2 \Rightarrow \beta(e_1) = e_2 \) and \(\beta(e_1^\bullet) = e_2^\bullet \)

\[\]

\(\hat{N} \)-morphisms for EN systems

\[N_i = (B_i, E_i, F_i, c_{i,in}), \quad i = 1, 2 \]

\[(\beta, \eta) : N_1 \rightarrow N_2 \] is an \(\hat{N} \)-morphism iff

- \(\beta \subseteq B_1 \times B_2 \) relation,
- \(\eta : E_1 \rightarrow E_2 \) partial surjective map:
 - \(\beta^{-1} : B_2 \rightarrow B_1 \) total injective map
 - \(\forall (b_1, b_2) \in \beta : b_1 \in c_{1,in} \iff b_2 \in c_{2,in} \)
 - \(\eta(e_1) = e_2 \Rightarrow \beta(\bullet e_1) = \bullet e_2 \) and \(\beta(e_1^\bullet) = e_2^\bullet \)
 - \(\eta(e_1) = \perp \Rightarrow \beta(\bullet e_1) = \beta(e_1^\bullet) = \emptyset \)

The counterimage of N_I, after T-simplification, is isomorphic to N_I.

\hat{N}-morphisms: refinement / abstraction
Section 3

Composing on interfaces by \hat{N}-morphisms
Composing two nets on an interface by \hat{N}-morphisms

\[
\begin{array}{c}
N_1 \\
\uparrow_{\beta_1, \eta_1} \\
N_I \\
\downarrow_{\beta_2, \eta_2} \\
N_2
\end{array}
\]
Composing two nets on an interface by \hat{N}-morphisms

\hat{N}-morphisms dictate the identification (composition) of elements
Composing two nets on an interface by \hat{N}-morphisms

\hat{N}-morphisms dictate the identification (composition) of elements

Proposition

The diagram commute
The composition: how to compose events

N_1 and N_2 are composed on the interface i_1. The composition is depicted as follows:

- N_1 with events e_0, e_1, and e_2 connected to i_1.
- N_2 with events e_{00}, e_{01}, e_1, e_{20}, and e_{21} connected to i_1.
The composition: how to compose events

\[N_1 < N_1 \rightarrow N_2 \]

\[\langle e_1, e_1 \rangle < \langle e_2, e_0 \rangle < \langle e_2, e_0 \rangle < \langle e_2, e_2 \rangle < \langle e_2, e_2 \rangle < \langle e_2, e_2 \rangle \]
Composing on interfaces, by \hat{N}-morphisms

\[N = N1[N1]N2 \]
Composition by \hat{N}-morphisms is **not** a Pullback

Example:

\[N = N_1 [N_1] N_2 \]

Composition by \(\hat{N}\)-morphisms is \textbf{not} a Pullback

Example:

A pullback composition has been defined on a bit different morphisms/composition \(^3\)

Section 4

Properties preserved/reflected
Preserving/reflecting properties

refined system \(\varphi \rightarrow \) abstract system
Preserving/reflecting properties

- Refined system
- Abstract system

Diagram:

- Directed edge from "refined system" to "abstract system" labeled with \(\varphi \)
- Directed edge from "abstract system" to "refined system" labeled with "preserving"
Preserving/reflecting properties

\[\text{refined system} \xrightarrow{\varphi} \text{abstract system} \]

preserving

reflecting
\((\beta, \eta) : N_1 \to N_2 \)

- **S-invariants are reflected:**
 - if \(l_2 \) is an S-invariant of \(N_2 \), then \(l_1 = \beta^{-1}(l_2) \) is an S-invariant of \(N_1 \)
\hat{N}-morphisms: properties preserved/reflected

$$(\beta, \eta) : N_1 \rightarrow N_2$$

- S-invariants are reflected:
 if I_2 is an S-invariant of N_2, then $I_1 = \beta^{-1}(I_2)$ is an S-invariant of N_1

- S-invariants are **not** preserved
\hat{N}\text{-morphisms: properties preserved/reflected}

\((\beta, \eta) : N_1 \to N_2\)

- S-invariants are \textit{reflected}: if \(I_2\) is an S-invariant of \(N_2\), then \(I_1 = \beta^{-1}(I_2)\) is an S-invariant of \(N_1\)

- S-invariants are \textbf{not} preserved

- T-invariants are \textit{preserved}: if \(J_1\) is a T-invariant of \(N_1\), then \(J_2 = \eta(J_1)\) is a T-invariant of \(N_2\)
\hat{N}-morphisms: properties preserved/reflected

$(\beta, \eta) : N_1 \to N_2$

- S-invariants are **reflected**: if I_2 is an S-invariant of N_2, then $I_1 = \beta^{-1}(I_2)$ is an S-invariant of N_1

- S-invariants are **not** preserved

- T-invariants are **preserved**: if J_1 is a T-invariant of N_1, then $J_2 = \eta(J_1)$ is a T-invariant of N_2

- T-invariants are **not** reflected
Preserving properties

- It is possible that N_I, N_1, N_2 are live, but $N_1[N_I]N_2$ is not live;
- however, ...
reflecting sequences

Definition

\[\text{FS}(N) \quad \text{firing sequences of } N, \]

\[(\beta, \eta) : N \rightarrow N' \quad \hat{N}\text{-morphism} \]

\[N \text{ reflects the sequences of } N' \text{ under } (\beta, \eta) \quad \text{iff} \]

\[\forall v \in \text{FS}(N'), \exists w \in \text{FS}(N) \text{ such that: } \hat{\eta}(w) = v \]
If N_1 and N_2 reflect the sequences of N_I, respectively,
then $N_1[N_I]N_2$ reflects the sequences of N_1, N_2 and N_I.
Deadlock-freeness?

\(N_I, N_A \) and \(N_B \) are deadlock-free and even live.
Deadlock-freeness?

\[N_A[N_I]N_B \]
Deadlock-freeness?

\[N_A[N_I]N_B \]

\[N_A[N_I]N_B \text{ is dead} \]
Weak Bisimulation

if N' and N'' are weakly bisimilar ($N' \approx^{BIS} N''$)

then N' is deadlock-free iff N'' is deadlock-free

4 R. Milner, A Calculus of Communicating Systems, 1980
Weak Bisimulation4

\begin{align*}
\text{if } N' \text{ and } N'' \text{ are weakly bisimilar } (N' \approx^{BIS} N'') \\
\text{then } N' \text{ is deadlock-free iff } N'' \text{ is deadlock-free}
\end{align*}

Remark
Weak Bisimulation is verified considering the reachability graphs.

4R. Milner, A Calculus of Communicating Systems, 1980
Deadlock-freeness?

Theorem

\[N_1 \approx^{BIS} N_1 \Rightarrow N \approx^{BIS} N_2 \]

Corollary

\[(N_1 \approx^{BIS} N_I \land N_2 \text{ deadlock-free}) \Rightarrow N \text{ deadlock-free} \]
Deadlock-freeness?

Theorem

\[N_1 \approx_{BIS} N_I \Rightarrow N \approx_{BIS} N_2 \]

if \(N' \approx_{BIS} N'' \) and \(N' \) is deadlock-free, then \(N'' \) is deadlock-free
Deadlock-freeness?

Theorem

\[N_1 \approx^{BIS} N_I \Rightarrow N \approx^{BIS} N_2 \]

if \(N' \approx^{BIS} N'' \) and \(N' \) is deadlock-free, then \(N'' \) is deadlock-free

Corollary

\[(N_1 \approx^{BIS} N_I \land N_2 \text{ deadlock-free}) \Rightarrow N \text{ deadlock-free} \]
Section 5

Refinement and composition based on a new notion of morphisms: α-morphisms
Section 5

Refinement and composition based on a *new notion of morphisms*: α-*morphisms*

for Elementary Net systems, covered by sequential components
Main aim

Refinement/abstraction and composition preserving/reflecting properties by considering behaviours, only locally
Main aim

Refinement/abstraction and composition preserving/reflecting properties by considering behaviours, only locally
Composition on Interfaces using α-morphisms: the idea

N_I

5 Luca Bernardinello, Elisabetta Mangioni and Lucia Pomello, Local State Refinement and Composition of Elementary Net Systems: An Approach Based on Morphisms, ToPNoC VIII, 2013

Composition on Interfaces using α-morphisms: the idea

$N_1 \xrightarrow{\varphi_1} N_I \xleftarrow{\varphi_2} N_2$

5 Luca Bernardinello, Elisabetta Mangioni and Lucia Pomello, Local State Refinement and Composition of Elementary Net Systems: An Approach Based on Morphisms, ToPNoC VIII, 2013

Composition on Interfaces using α-morphisms: the idea

Luca Bernardinello, Elisabetta Mangioni and Lucia Pomello, Local State Refinement and Composition of Elementary Net Systems: An Approach Based on Morphisms, ToPNoC VIII, 2013

Properties preserved and reflected by α-morphisms

$\varphi : N_1 \rightarrow N_2$ α-morphism:

- “Good behaviour” of a ”bubble”
 - if an entering event to a bubble can fire then the bubble is empty
 - if an outgoing event from a bubble fires, it empties the bubble
Properties preserved and reflected by α-morphisms

$\varphi : N_1 \rightarrow N_2$ α-morphism :

- "Good behaviour" of a "bubble"
 - if an entering event to a bubble can fire then the bubble is empty
 - if an outgoing event from a bubble fires, it empties the bubble

- Sequential components are reflected
 - counter image of a sequential component is covered by sequential components
Properties preserved and reflected by α-morphisms

$\varphi : N_1 \rightarrow N_2$ α-morphism:

- “Good behaviour” of a ”bubble”
 - if an entering event to a bubble can fire then the bubble is empty
 - if an outgoing event from a bubble fires, it empties the bubble

- Sequential components are reflected
 - counter image of a sequential component is covered by sequential components

- Sequential components are not preserved
Properties preserved and reflected by α-morphisms

$\varphi : N_1 \rightarrow N_2$ α-morphism:

- “Good behaviour” of a “bubble”
 - if an entering event to a bubble can fire then the bubble is empty
 - if an outgoing event from a bubble fires, it empties the bubble

- Sequential components are reflected
 - counter image of a sequential component is covered by sequential components

- Sequential components are not preserved

- Reachable markings are preserved
Properties preserved and reflected by α-morphisms

$\varphi : N_1 \rightarrow N_2$ α-morphism:

- “Good behaviour” of a ”bubble”
 - if an entering event to a bubble can fire then the bubble is empty
 - if an outgoing event from a bubble fires, it empties the bubble

- Sequential components are reflected
 - counter image of a sequential component is covered by sequential components

- Sequential components are not preserved

- Reachable markings are preserved

- Reachable markings are reflected \textbf{iff}
 1. the initial marking of each bubble is at the start of the bubble itself
 2. no deadlock internal to a bubble and each final marking of a bubble enables the “same” set of events enabled by its image
Properties preserved and reflected by α-morphisms

$\varphi : N_1 \rightarrow N_2$ α-morphism:

- "Good behaviour" of a "bubble"
 - if an entering event to a bubble can fire then the bubble is empty
 - if an outgoing event from a bubble fires, it empties the bubble

- Sequential components are reflected
 - counter image of a sequential component is covered by sequential components

- Sequential components are not preserved

- Reachable markings are preserved

- Reachable markings are reflected iff
 1. the initial marking of each bubble is at the start of the bubble itself
 2. no deadlock internal to a bubble and each final marking of a bubble enables the "same" set of events enabled by its image
 3. a "Local unfolding" condition
Composition based on α-morphisms, formal results

Proposition

α-morphism: $N_1 \rightarrow N_I$ and $1 + 2 + 3$

\Rightarrow N_1 is weakly bisimilar to N_I;
Composition based on α-morphisms, formal results

Proposition

- α-morphism: $N_1 \rightarrow N_I$ and $1 + 2 + 3$
 \Rightarrow N_1 is weakly bisimilar to N_I;

- α-morphism: $N_1 \rightarrow N_I$ and $1 + 2 + 3$ and α-morphism: $N_2 \rightarrow N_I$
 \Rightarrow $N_1\langle N_I \rangle N_2$ is weakly bisimilar to N_2.
Section 6

Application to modular synthesis
(on the basis of \(\hat{N}\)-morphisms)
Synthesis

$$A = (S, E, T)$$
Elementary Transition Systems

$$N = (B, E, F)$$
Elementary Nets Systems

[Nielsen, Rozenberg, Thiagarajan '92]
Modular synthesis

ETS and \hat{G}-morphisms

$A_I \xleftarrow{h_1} A_1$

$A_2 \xrightarrow{h_2} A_1$

$N(A_I) \xleftarrow{n_1} N(A_1) \xrightarrow{n_2} N(A_2)$

CG(N) isomorphic to

[Bernardinello, Ferigato, Pomello 02]
Modular synthesis

ETS and \hat{G}-morphisms

\[
\begin{array}{ccl}
A_l & \xleftarrow{h_1} & A_1 \\
\uparrow h_2 & & \uparrow N(h_2) \\
A_2 & & N(A_2)
\end{array}
\]

ENS and \hat{N}-morphisms

\[
\begin{array}{ccl}
N(A_l) & \xleftarrow{N(h_1)} & N(A_1) \\
N(h_2) & & N(h_2)
\end{array}
\]

CG(N) isomorphic to A
Modular synthesis

ETS and \(\hat{G} \)-morphisms

\[
\begin{array}{c}
A_I & \xleftarrow{h_1} & A_1 \\
\uparrow{h_2} & & \\
A_2 & \end{array}
\]

ENS and \(\hat{N} \)-morphisms

\[
\begin{array}{c}
N(A_I) & \xleftarrow{N(h_1)} & N(A_1) \\
\uparrow{N(h_2)} & & \uparrow{n_1} \\
N(A_2) & \xleftarrow{n_2} & N \\
\end{array}
\]

\(CG(N) \) isomorphic to

[Bernardinello, Ferigato, Pomello 02]
Modular synthesis

ETS and \hat{G}-morphisms

$A_i \xleftarrow{h_1} A_1 \xrightarrow{g_1} N(A_1)$

$N(A_2) \xleftarrow{n_2} N(A_1)$

ENS and \hat{N}-morphisms

$A_2 \xleftarrow{g_2} A \xrightarrow{h_2} N(A_1)$

$N(A_i) \xleftarrow{N(h_2)} N(A_1)$

$CG(N)$ is isomorphic to A

[Bernardinello, Ferigato, Pomello 02]
Section 7

A case study
Modeling and Analyzing
a Distributed Private Key Generation Protocol
Modeling Distributed Private Key Generation Protocol

Interaction of system components

Net representing PKG Net representing client

Interface Net, N_i

- an abstract view of the system
- represents the communication between components
Interface Net, N_i

Interface
- an abstract view of the system
- represents the communication between components

Properties
- live
- reversible
- covered by sequential components
Net Representing PKG, N_{PKG}

Properties

- live
- reversible
- covered by sequential components
Net Representing the Client, N_C

Properties
- live
- reversible
- covered by sequential components
There is an α-morphism both from N_{PKG} to N_I and from N_C to N_I.

Additional requirements are satisfied.
• There is an α-morphism both from N_{PKG} to N_I and from N_C to N_I.

• Additional requirements are satisfied.

• Reflection of reachable markings property is held.

• Weakly bisimulation property is held.
 ▶ N_{PKG} is weakly bisimilar to N_I.
 ▶ N_C is weakly bisimilar to N_I.
There is an α-morphism both from N_{PKG} to N_I and from N_C to N_I.

Additional requirements are satisfied.

Reflection of reachable markings property is held.

Weakly bisimulation property is held.

- N_{PKG} is weakly bisimilar to N_I.
- N_C is weakly bisimilar to N_I.
- Consequently, $N_{PKG} \langle N_I \rangle N_C$ is weakly bisimilar to N_I.
Ex:
A property to be analyzed: “Shares cannot be verified while distribution or extraction process is continuing”
Analysis on the Composed Net can be done directly on the Interface

even without computing the Composed Net

A property to be analyzed: "Shares cannot be verified while distribution or extraction process is continuing"

Corresponding CTL formulae

\[\text{EXPATH EVENTUALLY shares verified AND key AND shares calculated} \]
Analysis on the Composed Net can be done directly on the Interface even without computing the Composed Net

A property to be analyzed: “Shares cannot be verified while distribution or extraction process is continuing”

Corresponding CTL formulae

EXPATH EVENTUALLY shares verified AND key AND shares calculated
Section 8

Remarks and Conclusions
Remarks and Conclusions

- \(\bar{N}\)-morphisms and the composition on \(\bar{N}\)-morphisms have been defined also for P/T nets

- an other notion of morphisms for marked graphs has been studied (paper just submitted to PNSE 2014)
Remarks and Conclusions

- N-morphisms and the composition on N-morphisms have been defined also for P/T nets
- An other notion of morphisms for marked graphs has been studied (paper just submitted to PNSE 2014)

Future?

- Define and study α-morphisms and the other just defined notion for more general classes (e.g.: P/T nets, high level nets, Coloured nets,..)
Remarks and Conclusions

- \(\hat{N}\)-morphisms and the composition on \(\hat{N}\)-morphisms have been defined also for P/T nets
- An other notion of morphisms for marked graphs has been studied (paper just submitted to PNSE 2014)

Future?

- Define and study \(\alpha\)-morphisms and the other just defined notion for more general classes (e.g.: P/T nets, high level nets, Coloured nets,..)
- Morphisms and compositionality on Petri Hypernets or on Nested nets

THANK YOU!

Спасибо большое!
THANK YOU!

Спасибо большое!

Arrivederci!...