Disposition effect in an Agent-based Financial Market Model

By: Bangwei Li
Wei Shang
Hongquan Li
Lin Huo
Shanying Xu
Outline

- Introduction
- The Model
- Results
- Sensitivity Analysis
- Conclusion

Disposition effect in an Agent-based Financial Market Model
Introduction

- Disposition effect refers to investors’ being reluctant to realize losses.

 Shefrin and Statman (1985)

- Disposition effect is very common in financial markets, especially in mainland China.

Introduction

- **Purpose of research**
 1. The empirical study has found that strong non-rational factors in Chinese stock market, such as disposition effect, could bring the special asymmetric volatility: the impact of bad news (negative unexpected return) on future volatility is greater than the impact of good news (positive unexpected return) of the same magnitude.

 Does disposition effect bring the special asymmetric volatility in the agent-based model?
Introduction

- Purpose of research

2. Some researchers think there is a negative relationship between the disposition effect and investment performance, but there are also some researchers who find no evidence of any contemporaneous measurable costs associated with disposition effect.

Does disposition effect bring investors earnings or losses?
Introduction

- Purpose of research

3. It’s found that disposition effect may slow the rate at which this information influence the stock price.

Use agent-based model to verify this conclusion.
The model

- One asset:

- One market: N agents.
The model

- Every agent has three strategies:
 1. Fundamentalist
 \[D_t^f = c(F_t - p_t) + \gamma_t \]
 2. Chartist (Chartist has disposition effect, \(f < 0 \))
 \[D_t^c = \begin{cases}
 0 & \text{if } p_t - p_{t-1} < f \\
 b(p_t - p_{t-1}) + \beta & \text{else}
 \end{cases} \]
 3. Inactive rule
 \[D_t^0 = 0 \]
The model

- The attractiveness of three strategies:
 1. Fundamentalist
 \[A_t^f = (\exp[P_t] - \exp[P_{t-1}])D_{t-2}^f + dA_{t-1}^f \]
 2. Chartist
 \[A_t^c = (\exp[P_t] - \exp[P_{t-1}])D_{t-2}^c + dA_{t-1}^c \]
 3. Inactive rule
 \[A_t^o = 0 \]
The model

- The relative weights of the strategies:
 1. Fundamentalist
 \[W_i^f = \frac{\exp(eA_i^f)}{\exp(eA_i^f) + \exp(eA_i^c) + \exp(eA_i^o)} \]
 2. Chartist
 \[W_i^c = \frac{\exp(eA_i^c)}{\exp(eA_i^f) + \exp(eA_i^c) + \exp(eA_i^o)} \]
 3. Inactive rule
 \[W_i^o = \frac{\exp(eA_i^o)}{\exp(eA_i^f) + \exp(eA_i^c) + \exp(eA_i^o)} \]

Disposition effect in an Agent-based Financial Market Model
The log of the price of the asset in period $t + 1$ is given as:

$$p_{t+1} = p_t + a(W_t^C D_t^C + W_t^F D_t^F) + \alpha_t$$
Results

- Stylized facts
 1. Bubbles and crashes

Fig. 1. Time series of the log of price in simulation market
Results

- **Stylized facts**

 2. Excess volatility and volatility clustering

Fig. 2. Time series of return rate in simulation market
Results

- Stylized facts
 3. Auto-correlation

Fig. 3. Auto-correlation diagram for the return series

Fig. 4. Auto-correlation diagram for the absolute return series
Results

- Stylized facts
 4. Leptokurtosis and Fat-Tail

Table 1 Statistical properties of SHCI returns series and simulation returns series

<table>
<thead>
<tr>
<th></th>
<th>Sample</th>
<th>Mean</th>
<th>Variance</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>JarBra</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SHCI</td>
<td>0.00026</td>
<td>0.0182</td>
<td>0.4058</td>
<td>19.3788</td>
<td>50479.20</td>
</tr>
<tr>
<td></td>
<td>Model</td>
<td>0.00003</td>
<td>0.0253</td>
<td>0.1142</td>
<td>5.9020</td>
<td>1764.966</td>
</tr>
</tbody>
</table>
Results

- Asymmetric Volatility

\[r_t = \theta_0 + \varepsilon_t \quad \varepsilon_t \sim N(0, \sigma_t^2) \]

\[\ln(\sigma_t^2) = \theta_1 + \theta_2 \left| \frac{\varepsilon_{t-1}}{\sigma_{t-1}} \right| + \theta_3 \frac{\varepsilon_{t-1}}{\sigma_{t-1}} + \theta_4 \ln(\sigma_{t-1}^2) \]

Where \(r_t \) is the return, the asymmetrical coefficient in conditional variance model is \(\theta_3 \), which is to measure the strength of the volatility asymmetry.
Results

- Asymmetric Volatility: the chartist’s disposition behavior can produce the special volatility asymmetry in Chinese mainland market.

1. The estimated coefficients

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_0</td>
<td>8.80E-06</td>
<td>0.000277</td>
<td>0.031821</td>
<td>0.9746</td>
</tr>
<tr>
<td>θ_1</td>
<td>-0.318795</td>
<td>0.029142</td>
<td>-10.93943</td>
<td>0.0000</td>
</tr>
<tr>
<td>θ_2</td>
<td>0.224813</td>
<td>0.013087</td>
<td>17.17865</td>
<td>0.0000</td>
</tr>
<tr>
<td>θ_3</td>
<td>0.019719</td>
<td>0.006580</td>
<td>2.996727</td>
<td>0.0027</td>
</tr>
<tr>
<td>θ_4</td>
<td>0.980689</td>
<td>0.003138</td>
<td>312.5267</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

2. News impart curve
Sensitivity Analysis

- The value of f is changed gradually from -0.01 to -0.15 at the step of -0.01 (the smaller f is, the weaker disposition effect is).

<table>
<thead>
<tr>
<th>f</th>
<th>Asymmetrical coefficient</th>
<th>Prob.</th>
<th>f</th>
<th>Asymmetrical coefficient</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.01</td>
<td>0.450473</td>
<td>0</td>
<td>-0.09</td>
<td>0.014288</td>
<td>0.0869</td>
</tr>
<tr>
<td>-0.02</td>
<td>0.369855</td>
<td>0</td>
<td>-0.10</td>
<td>0.01225</td>
<td>0.0869</td>
</tr>
<tr>
<td>-0.03</td>
<td>0.297115</td>
<td>0</td>
<td>-0.11</td>
<td>0.010841</td>
<td>0.1354</td>
</tr>
<tr>
<td>-0.04</td>
<td>0.025946</td>
<td>0.0001</td>
<td>-0.12</td>
<td>0.009846</td>
<td>0.1773</td>
</tr>
<tr>
<td>-0.05</td>
<td>0.019719</td>
<td>0.0027</td>
<td>-0.13</td>
<td>0.010033</td>
<td>0.1695</td>
</tr>
<tr>
<td>-0.06</td>
<td>0.015629</td>
<td>0.0229</td>
<td>-0.14</td>
<td>0.009936</td>
<td>0.174</td>
</tr>
<tr>
<td>-0.07</td>
<td>0.013653</td>
<td>0.0468</td>
<td>-0.15</td>
<td>0.009936</td>
<td>0.174</td>
</tr>
<tr>
<td>-0.08</td>
<td>0.011983</td>
<td>0.0845</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With the decrease of f, the asymmetry coefficient also becomes smaller, it means that the more sensitive agents are to loss, the more obvious the phenomenon of volatility asymmetry is.
Sensitivity Analysis

- The reaction speed to news

In these curves, the one which has smaller f is steeper.

Disposition effect become stronger, the market’s reaction speed to news is slower.
Sensitivity Analysis

- The influence on the market dynamic
 1. Change of volatility
 2. Change of distortion

Disposition effect has inhibitory effect on market swings and price deviating.
Sensitivity Analysis

- Earnings or losses?

1. In most cases disposition effect reduces investors’ earnings.
2. Proper disposition effect can make chartists to avoid some loss, when the price drops badly.
Conclusion

- Chartists’ disposition effect can produce such asymmetric volatility: the impact of bad news is greater than the impact of good one.
- Investors’ disposition behavior slows the release rate of bad news, which has a function to inhibit the fluctuation of asset price and reduce the deviation between asset price and its fundamental value.
- Disposition effect doesn’t always mean loss. When investors’ disposition behavior is very strong, they may earn less, but if there is a proper strength of disposition effect, investors can avoid some loss and make higher return.
Thank you!