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A general approach to compact difference schemes’ construction is developed. A 

differential problem 
Au f=  or Au Bf=  

 
will approximated by difference one 

h hPu Qf= .     (1) 
 

We want determine the “optimal” difference operators P and Q. In the simplest problem  
2
xAu d u f= =  we can search the three-point difference operators P and Q  and obtain  

the 4-th order compact difference scheme (CDS): 1 1 1 1j j j j j jau bu cu pf qf rf− + − ++ + = + + , with 

coefficients  2 21; 2; /12; 5 / 6.a c b p r h q h= = = − = = =  
To determine the coefficients of the scheme we can assume that the following test functions: 

,k
k k ku x f Au= = , k=0..4 are exact solutions of (1). Thus we obtain the coefficients. 

The standard difference scheme 21; 2; 0; .a c b p r q h= = = − = = =  The order of the 
standard scheme is equal to 2, only. 

  

 

Any case we can use the double-sweep 
method to solve both linear algebraic systems 
with three-diagonal matrix. But the error of the 
compact scheme is much smaller. 
      Here N is the number of the grid points 
with respect to x. 

 
 
The following typical for mathematical physics operators A are considered: 
• Laplace op. (Δ ); 
• Helmholtz op. ( ( )q xΔ − ); 

• diffusion op. with constant diffusion coefficient ( ( )t D q x∂ − Δ − ); 

• diffusion op. with variable one ( ( )t x xD q x∂ − ∂ ∂ − ); 

• Schrodinger op. ( ( )t iD q x∂ − Δ − ); 

• rod vibrations op. ( 2 2 2 4
t t x xD C∂ − ∂ ∂ + ∂ ). 

 We constructed 4-th order CDSs and confirmed this order by numerical experiments for 
various boundary, initial-boundary, and eigen-values problems. We compare these CDSs with 
classic ones, e. g. with the Crank – Nicolson scheme. The relative high-order approximations for 
corresponding boundary and initial conditions were constructed, too.  
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