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A glance at classic results

Arrow’s theorem

Theorem
Arrow’(1963): No social welfare function satisfies the following
conditions:

1 unrestricted domain (U)
2 independence of irrelevant alternatives (IIA)
3 Pareto (P)
4 non-dictatorship (D)

Remark: social welfare functions assigns to each n-tuple of connected
and transitive individual preference relations a (collective) connected
and transitive preference relation.
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A glance at classic results

Definitions

Definition
The set V of individuals is almost decisive for x against y, if x � y
whenever x �i y ,∀i ∈ V and y �j x , ∀j /∈ V .

Definition
V is decisive for x against y, if x � y whenever x �i y ,∀i ∈ V .

Definition
D(x , y) means that J is almost decisive for x against y. D̄(x , y) means
that J is decisive for x against y.

Remark: D̄(x , y)→ D(x , y).
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A glance at classic results

Lemma

Lemma
If there is an individual J that is almost decisive for any pair of
alternatives, then a social welfare function that satisfies U, IIA and P
implies that J is a dictator.

Proof: Let J be almost decisive for some x against some y, i.e.
∃x , y ∈ X : D(x , y). Let z be an alternative different from x and y and
let i denote all other individuals.
Assume that x �J y and y �J z that y �i x and y �i z.
Now, [D(x , y)&x �J y&y �i x ]→ x � y .
Moreover, [y �J z&y �i z]→ y � z (Pareto).
But [x � y&y � z]→ x � z (by transitivity).
Hence we have derived x � z assuming nothing about other persons’
but J preferences regarding x and Z. I.e.

D(x , y)→ D̄(x , z). (1)
Hannu Nurmi (Turku) Rationality of Voting III 16–19 November, 2014 4 / 58



A glance at classic results

Lemma, cont’d

Assume now that z �J x&x �J y and that z �i x&y �i x . Then,
Pareto implies that z � x .
And since D(x , y)&x �J y&y �i x , then x � y . Hence, by transitivity
z � y . Now we have obtained this result assuming nothing about other
persons’ but J’s preferences about y and z. I.e.

D(x , y)→ D̄(y , z) (2)

Interchanging y and z in (2), we see that

D(x , z)→ D̄(y , z) (3)
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A glance at classic results

Lemma, cont’d

Make now the following substitutions in Eq. (1): x for z, z for y, y for x.
Now (1) becomes

D(y , z)→ D̄(y , x) (4)

Now,

D(x , y) → D̄(x , z) (due to (1))
→ D(x , z) (due to Remark)
→ D̄(y , z) (due to (3))
→ D(y , z) (due to Remark)
→ D̄(y , x)(by (4))

I.e.

D(x , y)→ D̄(y , x) (5)
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A glance at classic results

Lemma, cont’d

By interchanging x and y in (1), (2) and (5), we get:

D(y , x)→ [D̄(y , z)&D̄(z, x)&D̄(x , y)] (6)

Now, D(x , y) → D̄(y , x) (due to (5))
→ D(y , x) (due to Remark)

Thus,
(6)→ D(x , y)→ [D̄(y , z)&D̄(z, x)&D̄(x , y)] (7)

Combining (1), (2), (5) and (7) we see that D(x , y) implies that J is
decisive for all pairs that can be formed of x, y and z when conditions
U, P and IIA are satisfied. Thus, J is a dictator for all triplets where x
and y are present.
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A glance at classic results

Lemma, cont’d

To expand the alternative set, take any 2 alternatives u and v. If u = x
and v = y then (by what is said above) D̄(u, v) holds.
If u = x and v 6= y , we choose x, y and v. Since D(x , y) holds, we have
D̄(u, v) and D̄(v ,u).
If both x and y differ from u and v, we take first (x , y ,u). Then
D̄(x ,u)→ D(x ,u). Next, take (x ,u, v). Since we have D(x ,u), we also
have D̄(u, v) and D̄(v ,u). Therefore, D(x , y) for some x,y implies that
D̄(u, v) for any u and v. I.e. J is a dictator. Q.E.D.
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A glance at classic results

The proof of the theorem

It will be shown that if conditions IIA, P and U are satisfied, there
always exists a person who is almost decisive for some pair of
alternatives.
For all pairs of alternatives, there is at least one decisive set, viz. N
(Pareto).
Consider now all sets of individuals that are almost decisive for some
pair. Choose the smallest of them and denote it by V. Let the
alternative pair for which it is almost decisive be (x,y).
If |V | = 1 we are done.
If |V | > 1, we divide V in two parts:

V1 consisting of one person,
V2 consisting of the others in V, and
N \ V = V3.
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A glance at classic results

The proof, cont’d

Assume that we have the following profile:
1 ∀i ∈ V1 : x �i y&y �i z,
2 ∀j ∈ V2 : z �j x&x �j y , and
3 ∀k ∈ V3 : y �k z&z �k x .

Since V is almost decisive for x against y and since ∀i ∈ V : x �i y and
∀i ∈ V3 : y �i x we have x � y .
In the comparison of y and z, only ∀i ∈ V2 : z �i y , while ∀i ∈ V1 and
∀i ∈ V3 we have: y �z . So, if z � y , then V2 has to be almost decisive
for z against y and hence for x against y (by Lemma). But V was chose
as the smallest almost decisive set. Moreover, V2 ⊂ V . Therefore,
¬(z � y).
By completeness we thus must have y � z. But
(x � y&y � z)→ x � z. However, only V1 (one person) prefers x to z.
Others have z �i x . I.e. V1 is almost decisive. Therefore, by Lemma
V1 a dictator. Q.E.D.
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A glance at classic results

Gibbard-Satterthwaite theorem

Definition
A social choice function is manipulable (by individuals) iff there is a
situation and an individual so that the latter can bring about a
preferable outcome by preference misrepresentation than by truthful
revelation of his/her preference ranking, ceteris paribus.

Definition
A social choice function is non-trivial (non- degenerate) iff for each
alternative x, there is a preference profile so that x is chosen.
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A glance at classic results

Theorem
(Gibbard-Satterthwaite 1973-75). Every universal and non-trivial
resolute social choice function is either manipulable or dictatorial.

Strategy of proof:
1 It is shown that any universal, non-trivial and non-manipulable

SCF must satisfy the Pareto condition if the number of voters is
two.

2 One goes through all 36 different preference profiles (of two
voters) and determines the possible winners excluding outcomes
that fail of Pareto condition. It turns out that the non-excluded
outocmes are either manipulable at some profiles or one of the
voters is a dictator.
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A glance at classic results

Gärdenfors’ theorem

Theorem
Gärdenfors. If a social choice function is anonymous and neutral and
satisfies the Condorcet winning criterion, then it is manipulable.

Strategy of proof:
One begins with a specific 3-voter, 3-alternative profile, where the
same alternative is ranked first by two voters. One postulates that
this alternative is chosen in this profile.
Another specific 3-voter, 3-alternative profile is then focused upon
and all logically possible choice from this profile are analyzed.
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A glance at classic results

Gärdenfors, cont’d

For each choice form the latter profile, one shows that if this were
the actual choice, then the SCF would be manipulable by some
voter at some other profile. Since the Condorcet winner is chosen
in the first profile, the conclusion is that all Condorcet extensions
are manipulable.
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A glance at classic results

Examples of non-manipulable SCF’s:

If every voter’s preference ranking is strict (no ties), then SCF that
chooses the Condorcet winner when one exists and all
alternatives, otherwise, is non-manipulable.
Under the same assumption concerning voter preferences any
SCF that chooses the Condorcet winner when one exists and the
set of Pareto-undominated outcomes, otherwise, is also
non-manipulable.
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A glance at classic results

Young and Moulin

Theorem
Young: all consistent methods are incompatible with the Condorcet
winning criterion.

Theorem
Moulin: all procedures that satisfy the Condorcet winning criterion are
vulnerable to no-show paradox.
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How the incompatibilities are dealt with?

How the incompatibilities are dealt with?

Most politicians of today and in the past are unaware of voting
paradoxes and other incompatibilities. Yet, there are institutional
arrangements that can be see as ways out of certain types of voting
paradoxes. An example of those arrangements is the rule adhered to
in all parliamentary bodies that resort to the amendment type binary
voting: of k alternatives only k − 1 pairwise votes are taken and the
winner of the last vote is declared to overall winner. This amounts to
assuming something that we know is not in general true, viz. that the
collective preference relation is transitive.
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How the incompatibilities are dealt with?

Dealing with incompatibilities, cont’d

Another general stratagem is not to disclose individual preference
rankings. Reasons for this can be practical, e.g. in plurality voting the
computation of the winner does not require full information about
preference rankings. In the absence of this information it is impossible
to determine whether some desiderata have been satisfied or not.
Some voting rules can be viewed as direct remedies of shortcomings
of other rules. E.g. the plurality runoff may be seen as an improvement
of the plurality rule and Nanson’s rule as an improvement of Borda’s.
That these alleged remedies may come with a price of being
accompanied with additional weaknesses, is often overlooked.
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How often are the criteria violated?

The role of culture

impartial culture: each ranking is drawn from uniform probability
distribution over all rankings
impartial anonymous culture: all profiles (i.e. distributions of
voters over preference rankings) equally likely
unipolar cultures
bipolar cultures
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How often are the criteria violated?

Lessons from probability and simulation studies

cultures make a difference (Condorcet cycles, Condorcet
efficiencies, discrepancies of choices)
none of the cultures mimics “reality”
IC is useful in studying the proximity of intuitions underlying
various procedures
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The no-show paradox

What makes some incompatibilities particularly
dramatic?

The fact that they involve intuitively plausible, “natural” or “obvious”
desiderata. The more plausible etc. the more dramatic is the
incompatibility.

Theorem
Moulin, Pérez: all Condorcet extensions are vulnerable to the no-show
paradox.

Example

26% 47% 2% 25%
A B B C
B C C A
C A A B

Hannu Nurmi (Turku) Rationality of Voting III 16–19 November, 2014 21 / 58



The no-show paradox

Some “difficult” counterexamples: Black

Black’ procedure is vulnerable to the no-show paradox, indeed, to the
strong version thereof.

Example

1 voter 1 voter 1 voter 1 voter 1 voter
D E C D E
E A D E B
A C E B A
B B A C D
C D B A C

Here D is the Condorcet winner and, hence, is elected by Black.
Suppose now that the right-most voter abstains. Then the Condorcet
winner disappears and E emerges as the Borda winner. It is thus
elected by Black. E is the first-ranked alternative of the abstainer.
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The no-show paradox

Another difficult one: Nanson

5 voters 5 voters 6 voters 1 voter 2 voters
A B C C C
B C A B B
D D D A D
C A B D A

Here Nanson’s method results in B.
If one of the right-most two voters abstain, C – their favorite – wins.
Again the strong version of no-show paradox appears.
The twin paradox occurs whenever a voter is better off if one or several
individuals, with identical preferences to those of the voter, abstain.
Here we have an instance of the twin paradox as well: if there is only
one CBDA voter, C wins. If he is joined by another, B wins.
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The no-show paradox

Dodgson’s method and the twins’ paradox

42 voters 26 voters 1 voters 11 voters
B A E E
A E D A
C C B B
D B A D
E D C C

In this profile B is the (strong) Condorcet winner. Adding 20 copies of
the one voter with ranking EDBAC leads to A being closest to
Condorcet winner. This is worse than B from the point of view of the
clones. Hence we have an instance of the twins’ paradox.
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Learning from proofs

Learning from proofs

Some proofs are (almost) constructive, i.e. tell us how to generate
paradoxes. Pérez uses the following auxiliary result. Let p(x , y) = the
no. of voters preferring x to y .

Theorem
For any Condorcet extension which is invulnerable to no-show
paradox, for any situation (X ,p) and for any pair x , z of alternatives, if
p(x , z) < miny∈X p(z, y), then x /∈ f (X ,p).

In words, the antecedence says that the minimum support for z is
larger than the no. of votes x receives in comparison with z. The
consequence says that then x is not elected (provided that the f is
Condorcet and invulnerable).
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Learning from proofs

Learning . . ., cont’d

The theorem is then used to construct an example.

5 4 3 3
t y x x
y z t t
z x z y
x t y z

Applying the Theorem to pairs (z, y), (y, t), (t , x) it turns out that only x
is chosen.
Add now 4 voters with ranking zxyt and apply Theorem to pairs
(t , x), (x, z), (z, y) to find that y is chosen.
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Why tournaments?

Why tournaments?

rankings just aren’t always plausible
individual decision making with multiple criteria
best variant choice problems
much background work is already available
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From rankings to tournaments and back

All ranking profiles can be mapped into tournaments

Example
4 3 2 A B C A B C
A B C A - 4 4 A - 0 0
B C B =⇒ B 5 - 7 =⇒ B 1 - 1
C A A C 5 2 - C 1 0 -

Remark
What we have above is a simple majority tournament.

Remark
Ties call for special arrangements, e.g. 1

2 points to each element.
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From rankings to tournaments and back

. . . and all tournaments into profiles

Theorem
McGarvey 1953. Given an arbitrary preference pattern [relation], over
a set of n elements, a group of individuals exists with strong individual
preference orderings [complete, asymmetric and transitive] such that
the group preference pattern as determined by the method of simple
majority decision is the given preference pattern.
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From rankings to tournaments and back

Illustration

Suppose that we want to find a preference profile that would translate
into the following tournament:

A B C D E
A - 1 0 1 0
B 0 - 1 1 1
C 1 0 - 0 1
D 0 0 1 - 1
E 1 0 0 0 -
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From rankings to tournaments and back

Illustration, cont’d

Consider all elements (i , j), i , j = A, . . . ,E that equal 1, e.g. (D,E) = 1.
Introduce now two voters with the following preferences
voter 1 voter 2

D C
E B
A A
B D
C E

Thereby D will beat E with 2 votes to none, while all other pairwise
comparisons result in 1− 1 tie. Thus all other collective preferences
remain unaffected.
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From rankings to tournaments and back

Illustration, cont’d

McGarvey also allows for indifference. Suppose the desired collective
preference relation includes a pair of indifferent elements, say F and
G. Then one introduces two individuals with inverted preferences
rankings, e.g. the following
voter 1 voter 2

A G
B F
C E
D D
E C
F B
G A
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From rankings to tournaments and back

Illustration, cont’d

Remark
The technique is based on the idea that each pair of introduced voters
determines the collective preference concerning one and only one pair
x , y of alternatives and has no effect on other pairs. This is
accomplished by making the preferences of these two voters “cancel
out” each other in all pairwise comparisons that include alternatives
that are not x or y. In the case of collective indifference, the voter pair
cancels each other’s preference in all pairs of alternatives, that is, also
between x and y.
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From rankings to tournaments and back

Another illustration

Suppose we want a collective preference relation: A � B ∼ C � D.
The following profile does the trick:

A D B D C B
B C C A D A
C A A C A C
D B D B B D

According to the theorem we could use 2×
(k

2

)
= k(k − 1) pairs to

generate any desired (collective) preference pattern, transitive or
nontransitive.
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From rankings to tournaments and back

Another, cont’d

Remark
We have used only 6 ( not 12) individuals. Why? We need to consider
only half (upper-diagonal) of the number of all pairs since the other half
is determined by asymmetry of strict preference or symmetry of
indifference.
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From rankings to tournaments and back

How many voters are needed?

Thus, with k alternatives, there are k(k − 1)/2 pairwise comparisons.
Consequently, k(k − 1) is the maximum number of voters one needs to
generate a preference profile that translates into any given
tournament. Is this also the minimum? No, says McGarvey:

. . . the actual minimum number of individuals necessary to
express all possible patterns over n elements has not been
ascertained, but we conjecture that it is approximately n.
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From rankings to tournaments and back

How many, cont’d

Theorem
Stearns 1959. The number of voters need not be larger than k + 2.

Theorem
Knoblauch 2013. Head-to-head (absolute) majority membership voting
with voters having complete and transitive preferences can implement
an arbitrary binary relation over the set of alternatives. The number of
voters can be chosen to be smaller than 4× k − 2.
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From rankings to tournaments and back

How many, cont’d

Remark
Head-to-head membership voting defines a binary relation V over
alternatives as follows:

xVy ⇔ |{v ∈ N|x � y}| > |N|/2.

Remark
In Knoblauch’s theorem, the collective preference relation does not
have to be complete. Hence, it is a generalization of McGarvey and
Stearns.
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Results on tournaments

Zermelo on chess tournaments

Zermelo’s (1926) approach to tournaments is based on observations
of chess playing contests which often take the form of a tournament.
Each player plays against every other player several times. The
outcome of each game is either a victory of one player or a tie. We
assume that the games are independent binomial trials so that the
probability of player i beating player j is pij . Zermelo then introduces
the concept Spielstärke, playing strength, denoted by Vi , that
determines the winning probability as follows:

pij =
Vi

Vi + Vj
.
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Results on tournaments

Zermelo, cont’d

The order of the Vi values is the ranking of the players in terms of
playing strength. Apparently player i is ranked no lower than player j if
and only if pij ≥ 1/2, i.e. players with greater strength defeat
contestants with smaller strength more often than not. Now, given the
matrix M = {mij} of contest schedules and matrix R of results, i.e. a
k × k matrix of 0’s and 1’s denoting losses and victories of the
alternatives represented by the rows, Zermelo defines maximum
likelihood estimates, denoted by vi , for the playing strengths of players.
Consider any k vector of strengths v . One can associate with it the
probability that the observed matrix M of game schedules and matrix
R of outcomes is the result of the tournament when the strengths are
distributed according to v .
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Results on tournaments

Zermelo, cont’d

The probability is the following:

p(v) =
∏
i,j

(
mij

rij

)
(

vi

vi + vj
)rij × (

vj

vi + vj
)rji

and this is what is to be maximized. (Here mij is the number of times
player i has competed with player j and rij is the number of victories of
i over j in those contests.)
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Results on tournaments

Zermelo, cont’d

Conditions under which a unique maximizing vector of strengths can
be found are discussed by Zermelo and found to be rather general. A
particularly noteworthy property of the Zermelo rankings is that they
always coincide with the rankings in terms of scores defined above.
So, were one interested in rankings only, the easy way to find them is
simply to compute the scores. However, the vi values give us more
information about the players than just their order of strength; it also
reveals how much stronger player i is when compared with player j .
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Results on tournaments

Early results of graph theory

Theorem
Landau 1953. A sequence of nonnegative integers s1 ≤ s2 ≤ . . . ≤ sk
is a score (outdegree) sequence iff their sum satisfies

k∑
i=1

si =
1
2

k(k − 1).

and the following inequalities hold for any m < k:

m∑
i=1

si ≥
1
2

m(m − 1).
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Results on tournaments

Theorem
Harary and Moser 1966. In any tournament, the distance from a point
with maximum score to any other point is 1 or 2.

Theorem
Harary and Moser 1966. The following are equivalent in any
tournament T of k points: (1) T is transitive, (2) T is acyclic, (3) T has a
unique complete path, (4) the score sequence is (0,1, . . . , k − 1), (5) T
has k(k − 1)(k − 2)/6 transitive triples.
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Results on tournaments

Theorem
Harary and Moser 1966. The number b of transitive triples in a
tournament T with score sequence (s1, s2, . . . , sk ) is

b =
k∑

i=1

1
2

si(si − 1).

Theorem
Harary and Moser 1966. The maximum number cmax (k) of cyclic
triples is: (k3 − k)/24 if k is odd, and (k3 − 4k)/24 if k is even.
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Results on tournaments

This result has been used in defining the coefficient of consistency (of
pairwise comparisons) by Kendall and Babington Smith (1940):

ξ = 1− c
cmax (k)

where c is the number of cyclic triples in the tournament.
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Results on tournaments

Axiomatic approach

Definition
Ranking method is a function that ascribes a ranking (complete,
reflexive and transitive relation) to any tournament.

Definition
Point system is the ranking method defined by i � j if Si ≥ Sj , where Si
is the number of individuals that i beats in the tournament.
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Results on tournaments

Axioms

1 anonymity: the ranking method does not discriminate for or
against individuals

2 positive responsiveness: suppose that i � j in T . Then T ′ is
formed so that k beats i in T , but i beats k in T ′, ceteris paribus.
Then i � j in T ′.

3 independence: the relative ranking of two individuals is
independent of those matches in which neither of them is involved.
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Results on tournaments

Rubinstein’s theorem

Theorem
Rubinstein 1980. The point system is the only ranking method that
satisfies axioms 1.− 3. above.
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Tournament solutions

Tournament solutions

Definition
An alternative x covers another alternative y iff it beats y and
everything that y beats. The uncovered set UC consists of alternatives
not covered by any alternative.

Definition
A Copeland winner is an alternative that beats the largest number of
alternatives (has a maximum outdegree).

Definition
A Banks chain from x consists of alternatives x1, . . . , xm so that each
alternative beats all its predecessors. The Banks set consists of end
points of all Banks chains.
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Tournament solutions

Slater’s rule

given a set of k alternatives, generate all k ! rankings
convert these into tournaments
measure the distance between these and the individual
tournaments
pick the closest one(s): the underlying ranking is the solution
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Tournament solutions

Miller’s and Moulin’s findings

Copeland winners and the Banks set are always subsets of UC
the Banks set represents all outcomes of sophisticated voting in
binary voting games
when the number of alternatives is no larger than 12 some
Copeland winners are in the Banks set
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Tournament solutions

Discrepancies

the Slater winner may be in an position in Dodgson ranking
(Klamler)
the Slater and Copeland rankings can be far from each other
(Charon and Hudry)
prudent order (Arrow and Raynaud) may be exact opposite of the
Slater ranking (Lamboray)
the unique Slater winner may be in any position of a prudent order
(Lamboray)
the Banks and Slater sets can be disjoint when the number of
alternatives is at least 14 (Östergård and Vaskelainen)
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New beginning?

Is tournament aggregation the way to go?

calls for new criteria of performance
loses order information (which may be unreliable anyway)
a well-researched field with a lot of computational complexity
results
analogous to pairwise comparison voting (and should thus not be
viewed as voter-degrading)
more demanding than approval voting (requires preference
statement for every pair of alternatives)
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