

National research university 'Higher school of economics' (Moscow, Russia) 'Development Center' Institute

Sergey V. Smirnov, Alexander D. Gromov

Predicting the US Recessions: Does a "Wishful" Bias Exist?

32 CIRET Conference Hangzhow, October 2014

My Proposition

I strongly *believe* that there exists an "over-optimistic" bias while predicting recessions

My Aim

To convince others

My Understanding

Quality of a forecast is dependent on:

- Information used;
- Model used;
- Final expert's decision

The Data

SPF by PhilFed

- Real GDP growth rates;
- Consensuses (medians), not individual forecasts;
- 1968:Q4 2013:4 (181 quarters, 151 belonging to expansions, 27 belonging to contractions; 7 pairs of peaks and troughs)

BEA

- Real GDP growth rates;
- First ("advance") estimate;
- NBER
 - Turning points (quarterly version)

First Argument: Forecasts of Real GDP Growth Rates Made at Peaks are Usually Positive for All Horizons of Forecasting

Horizons of Forecasting						
Turing points	Actual, First estimate	t+0	t+1	t+2	t+3	t+4
			Peaks			
1969:Q4	-0.1	0.2	0.3	0.6	2.5	3.1
1973:Q4	1.3	1.4	-0.3	-0.6	2.1	2.7
1980:Q1	1.1	0.0	-2.5	-0.7	0.8	2.2
1981:Q3	-0.6	0.0	2.1	3.5	4.0	4.3
1990:Q3	1.8	1.4	0.8	0.8	0.8	2.4
2001:Q1	2.0	0.8	2.2	3.3	3.7	3.7
2007:Q4	0.6	1.5	2.2	2.3	2.7	2.8
			Troughs			
1970:Q4	-3.3	-1.3	5.9	4.5	2.9	3.8
1975:Q1	-10.4	-5.5	-0.5	3.3	4.9	5.7
1980:Q3	1.0	-3.8	-1.6	4.0	2.3	4.9
1982:Q4	-2.5	1.1	2.4	3.3	4.3	4.0
1991:Q1	-2.8	-1.9	0.2	1.7	2.9	3.2
2001:Q4	0.2	-1.9	0.1	2.4	3.6	4.0
2009:Q2	-1.0	-1.5	0.4	1.7	2.2	2.9

Source: PhilFed, BEA, NBER

Designations

- f_{t+0}, f_{t+1}, f_{t+2}, f_{t+3}, f_{t+4}, forecasts of real GDP growth rates in quarters t+0, t+1, t+2, t+3, t+4, made in quarter t.
- a_{t+0}, a_{t+1}, a_{t+2}, a_{t+3}, a_{t+4}, actual real GDP growth rates for the same quarters.

Second Argument: mean (f_t)> mean (a_t)

Horizons of Forecasting								
t+0	t+1	t+2	t+3	t+4	All horizons pooled			
Whole period, 1968:Q4 – 2013:Q								
0.117	-0.211	-0.442	-0.734	-0.857	-0.427			
(0.398)	(0.269)	(0.044)	(0.002)	(0.000)	(0.000)			
	Periods of Expansion							
0.333	0.001	-0.264	-0.596	-0.705	-0.250			
(0.017)	(0.996)	(0.150)	(0.004)	(0.003)	(0.003)			
Periods of Contraction								
-1.105	-1.406	-1.432	-1.505	-1.743	-1.434			
(0.014)	(0.073)	(0.164)	(0.162)	(0.060)	(0.000)			

The probabilities of random rejection of the null hypothesis (H0: D = 0) with the alternative hypothesis (H1: $D \neq 0$) are in parentheses.

Mean (D_t) = mean $(a_t - f_t) = 0 \rightarrow$ no bias; Mean (D_t) = mean $(a_t - f_t) > 0 \rightarrow$ negative bias, excessive pessimism; Mean (D_t) = mean $(a_t - f_t) < 0 \rightarrow$ positive bias, excessive optimism Third Argument: In the Mincer-Zarnowitz equation $(a_t = \alpha + \beta f_t + e_t), \alpha$ is usually positive and/or $\beta < 1$

Probability of a random rejection of a H₀

H _o	t + 0	t + 1	t + 2	t + 3	t + 4	All horizons
α = 0, β = 1	0.154	0.512	0.075	0.001	0.000	0.000
Νο α, β = 1	0.072	0.332	0.023	0.000	0.000	0.000
	(1.076)	(0.587)	(0.846)	(0.747)	(0.722)	(0.864)

Note: estimates of β are in parentheses

 α = 0, β = 1 \rightarrow no bias;

- $\alpha > 0$ and/or $\beta > 1 \rightarrow$ negative bias, excessive pessimism;
- α < 0 and/or β < 1 \rightarrow positive bias, excessive optimism

Fourth Argument: dummies for peaks (D_p) and troughs (D_t) are significantly different from zero for horizons t+1 and t+2

Coefficients for D_p and D_t added to Mincer-Zarnowitz equation $a_t = \alpha + \beta f_t + e_t$

Dummy	t + 0	t + 1	t + 2	t + 3	t + 4	All horizons
D _p	0.158	-3.806+	-1.854 [×]	-1.193	-2.459 [*]	-1.842 ⁺
D _t	-0.232	2.542 ⁺	3.153 ⁺	1.209	0.291	0.944*

Notes: ⁺ significant at 0.01 level;^{*} significant at 0.05 level; [×] significant at 0.1 level;

 D_p and/or $D_t = 0 \rightarrow$ no bias at peaks and/or troughs; D_p and/or $D_t > 0 \rightarrow$ negative bias, excessive pessimism; D_p and/or $D_t < 0 \rightarrow$ positive bias, excessive optimism

Therefore, over-optimism exists in the following cases

For t+3 and t+4:

- mean (a_t f_t) < 0;</p>
- β < 1 (Mincer-Zarnowitz equation)

At peaks

- usually f_{t+j} > 0 (j=0,..4);
- For t+1 and t+2: D_p < 0</p>

Two possible explanations for positive bias while predicting recessions

Experts rely too heavy on extrapolations

 But there is no "symmetry" between over-optimism and over-pessimism (it should be if an extrapolation is the reason)

There is a wishful bias against predicting recessions

It may be rooted in psychological factors

We believe in the second explanation. Are you agree?