Foresight for aviation industry in Russia

Konstantin Vishnevskiy

Head of Department for Private-Public Partnership in Innovation Sector, PhD
Research Lab for Science and Technology Studies
Institute for Statistical Studies and Economics of Knowledge
National Research University Higher School of Economics

HSE annual research conference Foresight and STI policy, 6 November 2014
Prerequisites for using Foresight in Russia

• “Russian economy is stagnating now” (The Central Bank of the Russian Federation)
• Technological gap between Russia and leading economies
• Restrictions for import in variety of sectors
• Relatively low innovation activity of Russian companies
• Lack of long-term planning at the sectoral level
• Shortcomings of action plans in the industry

Necessity of new forms of innovation activity stimulation – Foresight for “locomotive” sectors

Source: HSE, OECD
Main fields for Foresight in Russia

- Energy
- Transport
- Advanced technologies

Source: Vishnevskiy K., Karasev O., Meissner D. Integrated roadmaps and corporate Foresight as tools of innovation management: The case of Russian companies // Technological Forecasting and Social Change. 2014
Aviation sector among top priorities

Priority S&T directions & Critical technologies

“Transport and space systems” and “Technologies of creating new generation rocket, space and transport system”

State program “Development of aviation industry till 2025”

Russian long-term S&T Foresight 2030

Special chapter “Transport and space systems”

Long-term Foresight for nanotechnologies

273 prospective aerospace products
Aviation sector among top priorities: Roadmaps public domain selected by Phaal

<table>
<thead>
<tr>
<th>Area</th>
<th>Number of Roadmaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software, computing, information and</td>
<td>385</td>
</tr>
<tr>
<td>communications technology</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>242</td>
</tr>
<tr>
<td>Science</td>
<td>242</td>
</tr>
<tr>
<td>Policy, government and community</td>
<td>233</td>
</tr>
<tr>
<td>Industrial, business and other organisational</td>
<td>196</td>
</tr>
<tr>
<td>Transport</td>
<td>103</td>
</tr>
<tr>
<td>Electronics</td>
<td>94</td>
</tr>
<tr>
<td>Materials</td>
<td>62</td>
</tr>
<tr>
<td>Defense</td>
<td>61</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>51</td>
</tr>
<tr>
<td>Construction</td>
<td>45</td>
</tr>
<tr>
<td>Nanotechnology</td>
<td>23</td>
</tr>
<tr>
<td>Chemistry</td>
<td>22</td>
</tr>
</tbody>
</table>

More than 50 public domain Foresight studies for aviation industry
Example of Foresight: Flightpath 2050. Europe’s Vision for Aviation

Goal: creation of future vision for aviation industry development in the European Union

Task: setting priority system for R&D for aviation

Analysis: current situation, challenges and opportunities

Strategic fields of interest:
- maintenance and expansion of industrial leadership
- satisfaction of social and market needs
- environmental protection
- use of safe energy
- providing security
Example of roadmap for certain goal: Sustainable Aviation CO₂ Roadmap

Goal: Providing sustainable development of aviation industry in Great Britain, identification of ways of reducing CO₂ emission in aviation

Problem: existing forecasts concerning CO₂ emission reduction don’t take into account future technologies and S&T breakthroughs

8 key tasks and 34 necessary actions were identified

Scenarios of CO₂ emission reduction:

- Integration of new technologies, improvement of operational efficiency and new fuels
- Emissions trading
- Better flight planning, more direct flights and less delays
- Improvements of airplanes features
Russian long-term S&T Foresight 2030: Results for “Transport and space systems”

Challenges

Threats

Windows of opportunities

Prospective markets

Innovation products and services

Prospective directions of R&D

Estimation of level of Russian R&D

Higher School of Economics, Moscow, 2014
Russian long-term S&T Foresight 2030: Main challenges for aviation industry

- Management of hydro- and aerodynamics flows
- Shift to new construction materials
- Shift to new generation of aircraft engines
- Wide using of polymer materials
- Strengthening of safety legislation
- Development of unmanned aircrafts

Period of time

Impact for Russia

Higher School of Economics, Moscow, 2014
Foresight & roadmapping for nanotechnologies: Key prospective directions

Most promising areas of nanotechnology concern the development of polymer composites, thermoplastics, composite materials and metallic nanoalloys.

- Airframe: Reduced structural weight, fuel economy, lower emissions
- Engine: Increased wearing qualities, reliability and durability
- Avionics: Increased passenger comfort
Example of corporate roadmap for air transportation industry

Grand challenges

Priority directions of innovation development

R&D

Technologies

Projects

Business processes improvements

Action plan

Innovation program financing

Prospective routes

Target indicators

Key performance indicators

Time of technologies commercialization

Competitors and their level

Roadmapping as a post-Foresight activity

Foresight
- Methodological principles of Foresight for aviation industry
- Aviation S&T Foresight 2030

Roadmapping
- Composition & configuration
- Materials
- Avionics
- Engine

Prospective S&T directions
- Key technological tasks
- Market forecasts

Detailed chains
- R&D – technology – product – market
- Wild cards & weak signals
- Key points for decision-making
Thank you for your attention!

Konstantin Vishnevskiy

kvishnevsky@hse.ru
http://issk.hse.ru/