
# A Model of Decision Making on Stock Exchange

Fuad Aleskerov, Lyudmila Egorova

(NRU HSE)



#### Introduction



«The central idea of this book concerns our blindness with respect to randomness, particularly the large deviations: Why do we, scientists or nonscientists, hotshots or regular Joes, tend to see the pennies instead of the dollars? Why do we keep focusing on the minutiae, not the possible significant large events, in spite of the obvious evidence of their huge influence?»

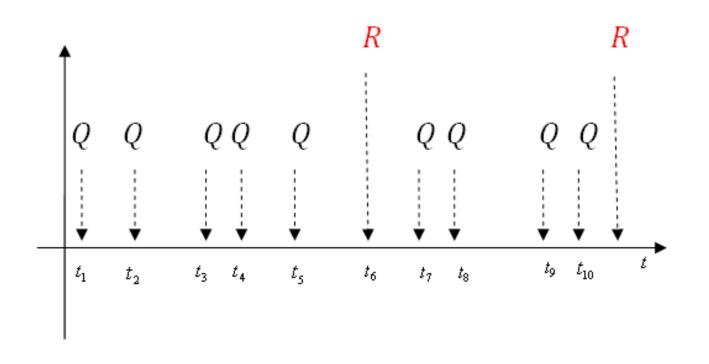
Nassim Nicolas Taleb

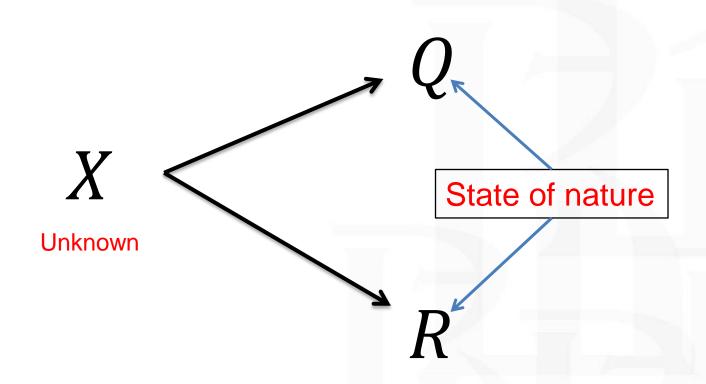
«The Black Swan. The Impact of The Highly Improbable»

#### Introduction

- [Kahneman 2011] there is no extra knowledge that analysts bring to receive a premium or remuneration as they often fail to achieve even a 50% success rate.
- [Proskurin and Penikas 2013] only 56.8% of expert recommendations on selling or buying stocks of Russian companies were profitable.
- [Odean, 1999] the stocks individual investors buy subsequently underperform those they sell.
- [Barber and Odean 2008] 66,465 households during 1991 to 1996 were analyzed, the average household earns an annual return of 16.4 percent, while the market returns 17.9 percent, and those who trade most earn an annual return less (11.4 percent).



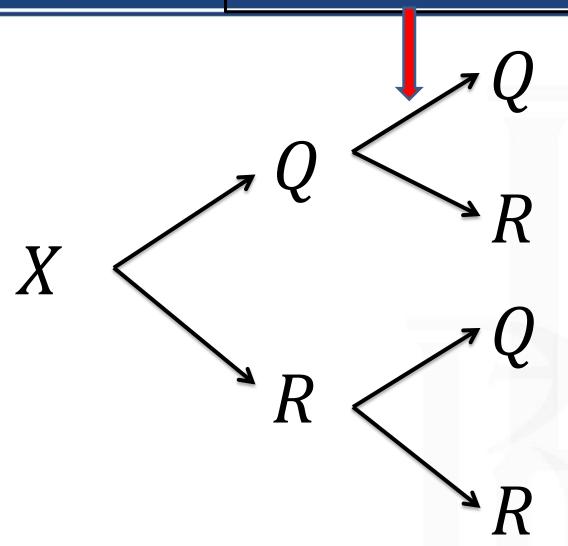

We will model economic fluctuations representing them as a flows of events of two types:


- Q-event reflects the "normal mode" of an economy;
- R-event is responsible for a crisis.

The number of events in each time interval has a Poisson distribution with constant intensity.

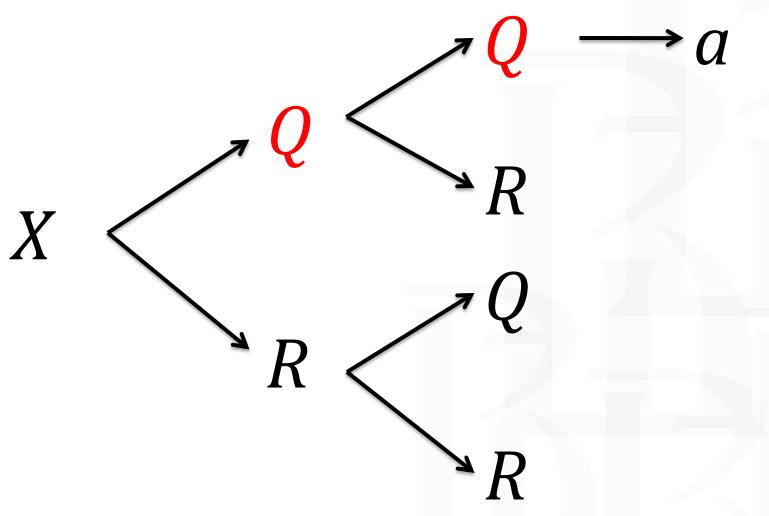
- $\lambda$  is the intensity of the flow of regular events Q.
- $\mu$  is the intensity of the flow of crisis events R.
- $\lambda >> \mu$  holds (that is, Q-type events are far more frequent than the R-type events).

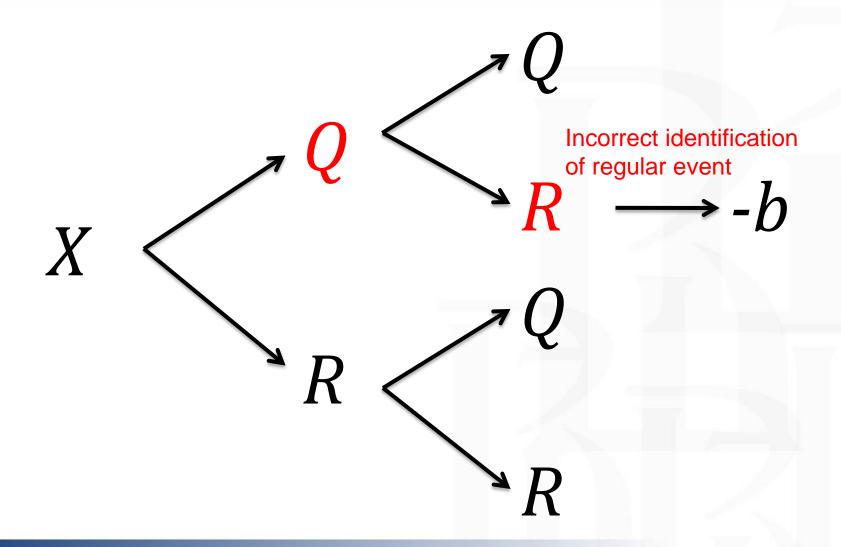


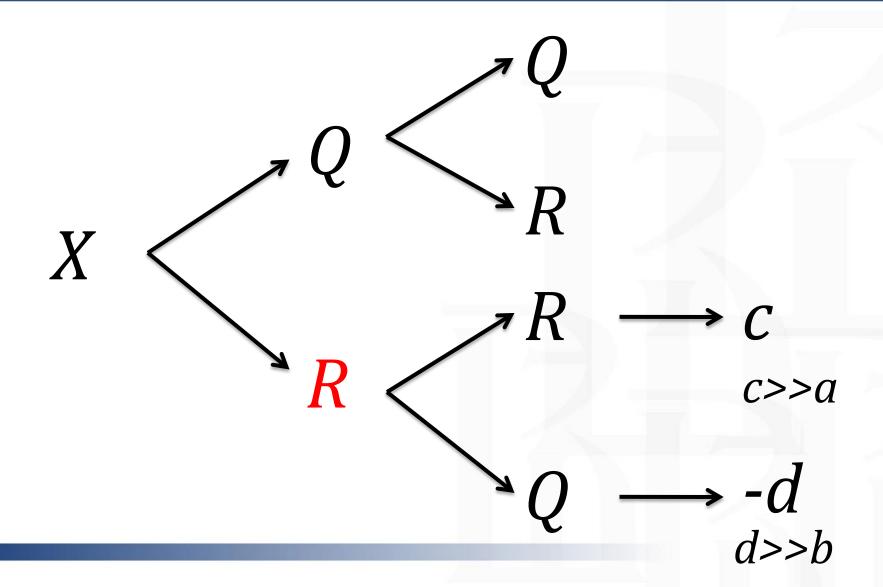





The problem of correct identification (recognition)

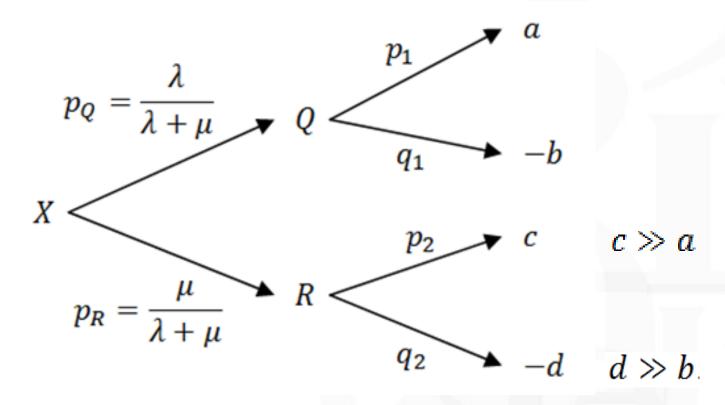




# Player's perceived identification of the state of nature




#### Payoff of correct

identification of regular event














How large will be the sum of payoffs received up to time *t*?

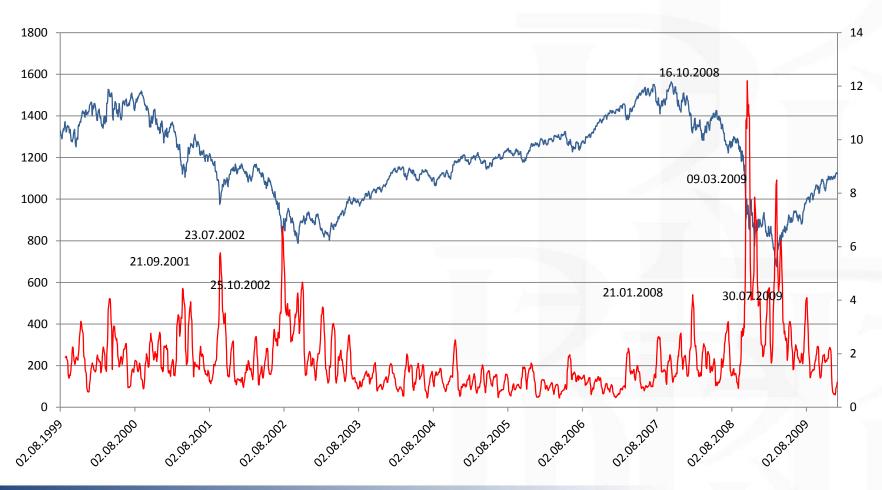
#### Solution

Random value Z of the total sum of the received payoffs during the time t is a compound Poisson type variable.

We give the expression for the expectation of a random variable payoff:

$$E(Z) = (\lambda t)E(W) + (\mu t)E(Y) =$$

$$= \lambda t ((1 - q_1)a - q_1b) + \mu t ((1 - q_2)c - q_2d)$$


### Application to real data

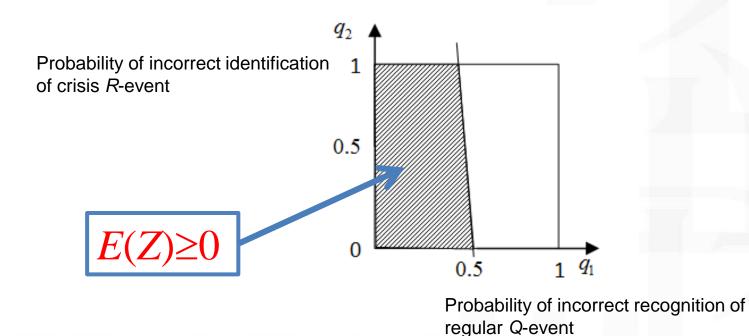
We consider a stock exchange and events Q and R which describe a 'business as usual' and a 'crisis', respectively.

The unknown event *X* can be interpreted as a signal received, e.g. by an economic analyst or by a broker, about the changes of the economy that helps him to decide whether the economy is in 'a normal mode' or in a crisis.



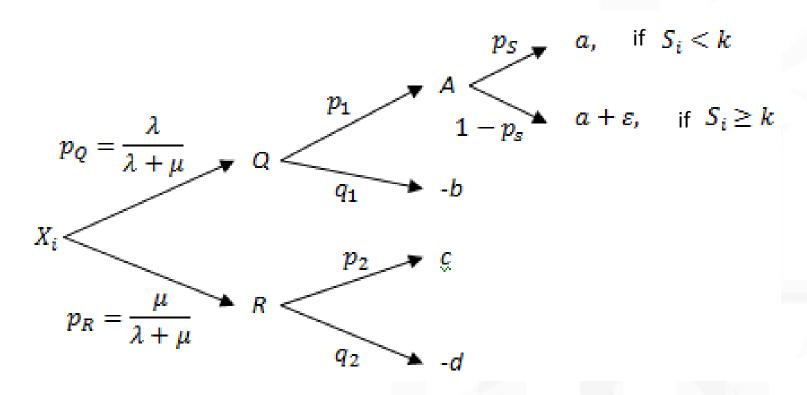
## Parameters for S&P 500






# Parameters for S&P 500

| Estimates for indices with the threshold 6% |     |    |      |               |      |       |  |  |  |
|---------------------------------------------|-----|----|------|---------------|------|-------|--|--|--|
| Index                                       | λ   | μ  | a, % | <i>-b</i> , % | c, % | -d, % |  |  |  |
| S&P 500                                     | 246 | 4  | 0,6  | -0,6          | 2,8  | -2,9  |  |  |  |
| Dow Jones                                   | 246 | 4  | 0,6  | -0,6          | 1,9  | -2,4  |  |  |  |
| CAC 40                                      | 243 | 7  | 0,8  | -0,8          | 3,0  | -2,5  |  |  |  |
| DAX                                         | 239 | 11 | 0,8  | -0,9          | 2,1  | -2,5  |  |  |  |
| Nikkei 225                                  | 245 | 5  | 0,8  | -0,9          | 2,6  | -3,2  |  |  |  |
| Hang Seng                                   | 241 | 9  | 0,9  | -0,9          | 2,6  | -3,0  |  |  |  |


#### Parameters for S&P 500

In fact, it is enough to identify regular Q-events in half of the cases to ensure a positive outcome of the game.





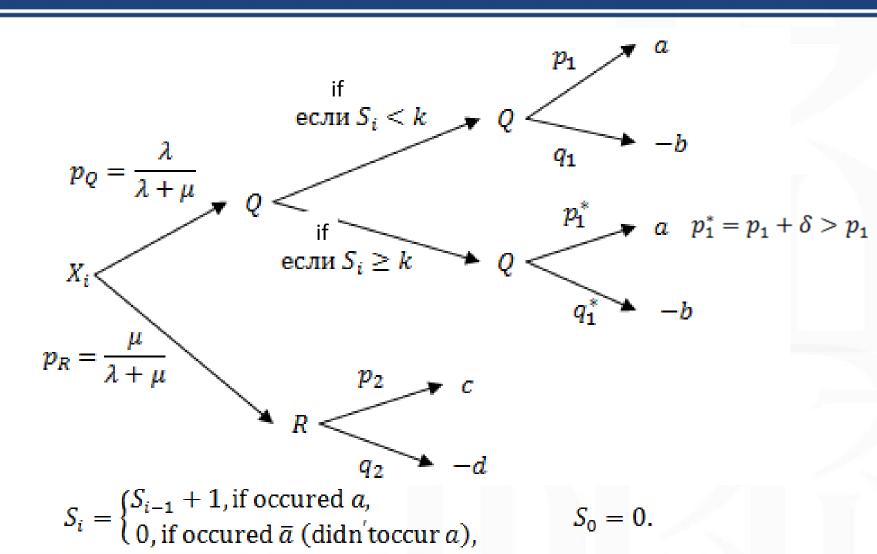
## Model with stimulation



$$S_i = \begin{cases} S_{i-1} + 1, & \text{if came } A, \\ 0, & \text{if came } \overline{A} \text{ (didn't come } A), \end{cases}$$

$$S_0 = 0.$$




## Model with stimulation

$$E(Z) = E(X)\lambda_{N_Z} +$$

$$+\varepsilon p_a^{k+1}\left[\lambda_{N_Z}\left(1-\frac{\Gamma(k-1,\lambda_{N_Z})}{\Gamma(k-1)}\right)+(1-k)\left(1-\frac{\Gamma(k,\lambda_{N_Z})}{\Gamma(k)}\right)\right].$$



# Model with learning





# Estimations for advanced models

|                                                 | k = 3                   | k = 5                   | k = 10         |
|-------------------------------------------------|-------------------------|-------------------------|----------------|
|                                                 | Critical q <sub>1</sub> | Critical q <sub>1</sub> | Critical $q_1$ |
| The model with stimulation $\varepsilon = 0.05$ | 0.464                   | 0.462                   | 0.461          |
| The model with training $\delta = 0.1$          | 0.477                   | 0.466                   | 0.461          |
| The model with stimulation $\varepsilon = 0.05$ | 0.464                   | 0.462                   | 0.461          |
| The model with training $\delta = 0.2$          | 0.497                   | 0.473                   | 0.461          |
| The model with stimulation $\varepsilon = 0.05$ | 0.464                   | 0.462                   | 0.461          |
| The model with training $\delta = 0.3$          | 0.522                   | 0.485                   | 0.462          |
| The model with stimulation $\varepsilon = 0.05$ | 0.464                   | 0.462                   | 0.461          |
| The model with training $\delta = 0.4$          | 0.554                   | 0.504                   | 0.465          |

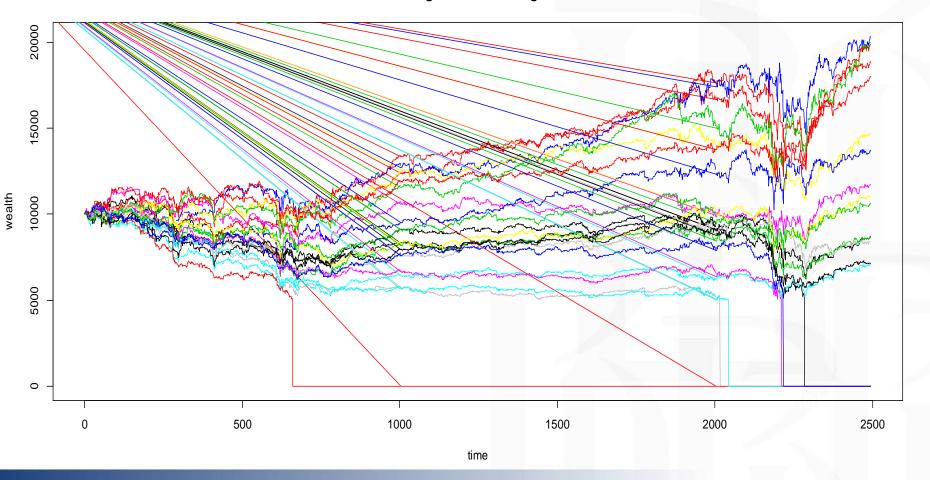


Effectiveness of different trading strategies for price-takers: analysis via computational simulation



## Description of models

- Market description and price formation
  - Market orders
  - Initial wealth allocation
  - Capital reference level
  - Margin trading with leverage rate 1:2, 1:5, 1:10




## Description of models

- Traders and their strategies
  - All of them are price-takers
  - Basic characteristic: p is a probability of correct prediction of the price movement on the next day
  - Follower strategy
  - 'Black swan seeker' strategy

## Results for the basic model

#### average wealth of 20 agents





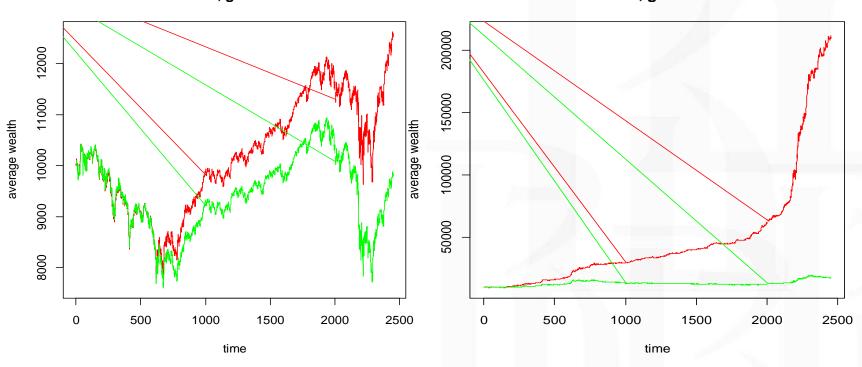
# Results for the basic model

|    | p    | Leverage=0 | Leverage=2 | Leverage=5 | Leverage=10 |  |
|----|------|------------|------------|------------|-------------|--|
| 1  | 0.50 | 6.2        | 52.2       | 88.5       | 98.6        |  |
| 2  | 0.51 | 2.7        | 37.5       | 77.6       | 96.2        |  |
| 3  | 0.52 | 0.9        | 20.7       | 60.6       | 90.8        |  |
| 4  | 0.53 | 0.2        | 10.2       | 42.4       | 81.4        |  |
| 5  | 0.54 | 0.0        | 5.0        | 30.3       | 70.5        |  |
| 6  | 0.55 | 0.0        | 2.4        | 21.4       | 59.8        |  |
| 7  | 0.56 | 0.0        | 1.0        | 13.7       | 49.3        |  |
| 8  | 0.57 | 0.0        | 0.7        | 10.9       | 40.8        |  |
| 9  | 0.58 | 0.0        | 0.5        | 7.3        | 32.4        |  |
| 10 | 0.59 | 0.0        | 0.0        | 5.1        | 26.5        |  |
| 11 | 0.60 | 0.0        | 0.0        | 2.7        | 21.8        |  |
| 12 | 0.61 | 0.0        | 0.0        | 1.8        | 17.9        |  |
| 13 | 0.62 | 0.0        | 0.0        | 1.5        | 15.5        |  |
| 14 | 0.63 | 0.0        | 0.0        | 1.4        | 13.3        |  |
| 15 | 0.64 | 0.0        | 0.0        | 0.5        | 9.6         |  |
| 16 | 0.65 | 0.0        | 0.0        | 0.5        | 7.0         |  |



# Results for the basic model

|   |                                                                        | Leverage=0 |            |         |        |        |        |  |  |  |  |
|---|------------------------------------------------------------------------|------------|------------|---------|--------|--------|--------|--|--|--|--|
|   |                                                                        | S&P        | CAC        | DAX     | FTSE   | Nikkei | HS     |  |  |  |  |
| 1 | Average wealth of not-bankrupts                                        | 9 584      | 9 464      | 11 098  | 9 667  | 8 929  | 12 719 |  |  |  |  |
| 2 | The fraction of agents with final wealth greater than initial wealth,% | 35.35      | 28.05      | 45.35   | 37.36  | 18.83  | 71.12  |  |  |  |  |
| 3 | The fraction of bankrupts,%                                            | 6.17       | 19.58      | 23.17   | 3.95   | 24.09  | 5.16   |  |  |  |  |
|   |                                                                        |            | Leverage=2 |         |        |        |        |  |  |  |  |
| 1 | Average wealth of not-bankrupts                                        | 14 131     | 19201      | 17 348  | 14 110 | 15 637 | 19 606 |  |  |  |  |
| 2 | The fraction of agents with final wealth greater than initial wealth,% | 29.80      | 20.44      | 25.73   | 29.25  | 18.87  | 34.99  |  |  |  |  |
| 3 | The fraction of bankrupts,%                                            | 52.21      | 72.06      | 65.20   | 54.40  | 71.95  | 55.87  |  |  |  |  |
|   |                                                                        | Leverage=5 |            |         |        |        |        |  |  |  |  |
| 1 | Average wealth of not-bankrupts                                        | 43 427     | 64 072     | 66 643  | 44 156 | 56 847 | 61 566 |  |  |  |  |
| 2 | The fraction of agents with final wealth greater than initial wealth,% | 10.31      | 5.47       | 7.67    | 10.35  | 5.51   | 9.06   |  |  |  |  |
| 3 | The fraction of bankrupts,%                                            | 88.54      | 93.95      | 91.16   | 88.12  | 93.66  | 89.86  |  |  |  |  |
|   |                                                                        |            |            | Leveraş | ge=10  |        |        |  |  |  |  |
| 1 | Average wealth of not-bankrupts                                        | 2e+05      | 3e+05      | 2e+05   | 3e+05  | 5e+05  | 3e+05  |  |  |  |  |
| 2 | The fraction of agents with final wealth greater than initial wealth,% | 1.32       | 0.21       | 0.67    | 1.26   | 0.47   | 0.89   |  |  |  |  |
| 3 | The fraction of bankrupts,%                                            | 98.62      | 99.79      | 99.27   | 98.63  | 99.51  | 99.09  |  |  |  |  |


## Results for the 'follower' strategy

Leverage = 0  $p \sim R[0.4; 0.6]$ 

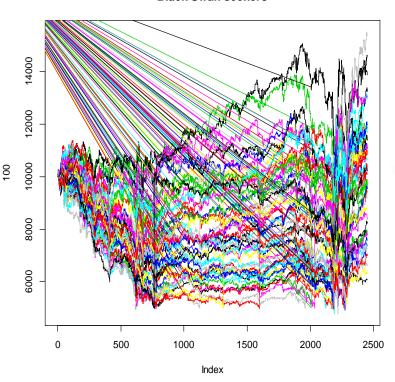
Leverage = 5  $p \sim R[0.4; 0.6]$ 

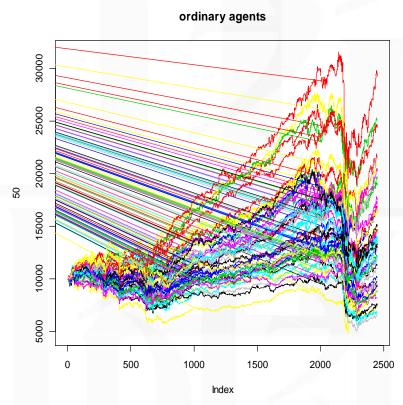
red for leaders, green for followers

red for leaders, green for followers



| 6      | 100L.ox.r.                   | leverage=0        |                  |                  | leverage=2     |                  |                  | leverage=5     |                  |                  | leverage=10    |                        |           |  |
|--------|------------------------------|-------------------|------------------|------------------|----------------|------------------|------------------|----------------|------------------|------------------|----------------|------------------------|-----------|--|
| Z MER. | IDNAL RESEARCH<br>UNIVERSITY | Average<br>wealth | Better<br>wealth | Bankrupt s among | Average wealth | Better<br>wealth | Bankrupt s among | Average wealth | Better<br>wealth | Bankrupt s among | Average wealth | Better<br>wealth<br>of | Bankrupt  |  |
|        | leader'                      | of<br>follower    | of<br>follower   | followers        | of<br>follower | of<br>follower   | followers        | of<br>follower | of<br>follower   | followers        | of<br>follower | followe<br>r           | followers |  |
|        | 0.44                         | 10 336            | 25.3             | 1.4              | 16 845         | 40.9             | 42.7             | 49 738         | 12.7             | 84.5             | 59 670         | 1.2                    | 98.8      |  |
|        | 0.45                         | 10 131            | 23.1             | 1.5              | 17 378         | 32.7             | 48.2             | 52 434         | 18.9             | 79.1             | 163 849        | 1.6                    | 98.64     |  |
|        | 0.46                         | 9 926             | 22.2             | 1.9              | 16 780         | 44.5             | 45.5             | 50 334         | 17.3             | 80.9             | 230 542        | 1.4                    | 98 .6     |  |
|        | 0.47                         | 9 970             | 21.2             | 2.1              | 15 188         | 38.2             | 44.5             | 85 579         | 8.3              | 89.1             | 18 023         | 1.3                    | 98.7      |  |
|        | 0.48                         | 9 946             | 19.8             | 2.3              | 15 383         | 28.2             | 59.1             | 37 389         | 14.8             | 83.6             | 59 015         | 0.7                    | 99.3      |  |
|        | 0.49                         | 9 603             | 19.3             | 2.5              | 13 030         | 27.3             | 60.9             | 65 388         | 19.1             | 79.1             | 29 822         | 1.9                    | 98.1      |  |
|        | 0.50                         | 9 590             | 17.5             | 3.2              | 13 006         | 31.8             | 50.8             | 39 833         | 10.6             | 87.3             | 28 308         | 2.8                    | 97.2      |  |
|        | 0.51                         | 9 559             | 17.0             | 3.1              | 12 995         | 28.2             | 48.2             | 52 156         | 16.1             | 82.7             | 18 291         | 1.5                    | 98.5      |  |
|        | 0.52                         | 9 408             | 15.8             | 3.6              | 13 141         | 25.5             | 54.5             | 39 057         | 8.5              | 87.3             | 1              | 0                      | 100       |  |
|        | 0.53                         | 9 443             | 13.9             | 4.4              | 12 949         | 21.8             | 58.2             | 87 119         | 4.5              | 95.5             | 14 227         | 0.1                    | 99.9      |  |
|        | 0.54                         | 9 050             | 12.9             | 4.7              | 12 185         | 16.4             | 67.3             | 36 900         | 10.9             | 88.2             | -              | 0                      | 100       |  |
|        | 0.55                         | 8 839             | 11.7             | 5.1              | 12 551         | 20.9             | 64.5             | 28 826         | 7.3              | 90.9             | 639 577        | 0.9                    | 99.1      |  |
|        | 0.56                         | 9 012             | 11.7             | 6.0              | 12 314         | 14.5             | 66.4             | 18 045         | 2.4              | 96.4             | -              | 0                      | 100       |  |
|        | 0.57                         | 9 069             | 10.0             | 6.8              | 11 164         | 13.6             | 73.6             | 16 397         | 6.4              | 90.9             | 55 243         | 1.4                    | 98.6      |  |
|        | 0.58                         | 8 592             | 9.2              | 7.5              | 10 527         | 10.0             | 70.0             | 95 561         | 5.9              | 93.6             | 18 908         | 2.1                    | 97.9      |  |
|        | 0.59                         | 8 414             | 8.1              | 8.1              | 10 961         | 8.2              | 81.8             | 28 376         | 1.8              | 97.3             |                | 0                      | 100       |  |
|        | 0.60                         | 8 590             | 7.4              | 9.0              | 11 061         | 12.7             | 76.4             | 16 725         | 2.7              | 95.5             | 75 147         | 2.2                    | 97.8      |  |


## Results for the Black Swan seekers' strategy


#### Black swan seekers

#### Ordinary agents

$$p_{sign}^{Q} \sim R[0.4;0.5]$$
  $p_{sign}^{R} \sim R[0.8;0.9]$  Black Swan seekers







#### Conclusion

We showed in a very simple model that with a small reward for the correct (with probability slightly higher than ½) identification of the routine events (and if crisis events are identified with very low probability) the average player's gain will be positive.

In other words, players do not need to play more sophisticated games, trying to identify crises events in advance.



#### **Publications**

- Aleskerov F. T., Egorova L. G. Is it so bad that we cannot recognize black swans? //
  Working papers by NRU Higher School of Economics, Series WP7 «Mathematical
  Methods of Decision Analysis in Economics, Business and Politics» 2010,
  WP7/2010/03.
- Aleskerov F. T., Egorova L. G. Black Swans and Stock Exchange // Higher School of Economics Economic Journal, 2010, 14(4), p. 492-506. (in Russian)
- Egorova L. G. Recognition of Stock Exchange processes as a Poisson Process of Events of Two Types: Models with Stimulation and Learning // Working papers by NRU Higher School of Economics, Series WP7 «Mathematical Methods of Decision Analysis in Economics, Business and Politics» 2011, WP7/2011/02.
- Aleskerov F. T., Egorova L. G. Is it so bad that we cannot recognize black swans? // Economics Letters, 2012, 117(3), p. 563-565.
- Egorova L. G. The Effectiveness Of Different Trading Strategies of Small Traders // Control Sciences, 2014, 5, p. 34-41. (in Russian)
- Egorova L. G. The Effectiveness Of Different Trading Strategies For Price-Takers //
  Working papers by NRU Higher School of Economics, Series FE «Financial
  Economics», 2014, WP BRP 29/FE/2014



# Thank you!

20, Myasnitskaya str., Moscow, Russia, 101000 Tel.: +7 (495) 628-8829, Fax: +7 (495) 628-7931

www.hse.ru