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Introduction 

Ambulance Service in Moscow has a long history, see, e. g. 

http://www.mos03.ru/about/about.php. The operative data about the calls is available on this site.  

The number of calls to the ambulance service in Moscow is about 5 million per year. About 

two thrids of the calls lead to ambulance trips. Here we analyse here only such calls. 

These trips are not distributed uniformly. The number of the ambulance trips (NAT3) 

depends on the season, and the day of the week. The impact of the public holidays is also significant 

as is the meteorological situation. Until 2013 the list of medicine diseases contained more than 350 

items (in 2014 the number tripled). The list includes fails callouts. The dynamics of NAT for various 

diseases varied significantly. 

Since these statistics have some temporal correlation, i.e. information from previous days 

can improve (and improve significantly) the forecast of NAT in comparison to the “climatic” 

forecast, when we know mean values that obtained by appropriate averaging over an archive only.  

We use the known statistics of NAT for some previous days (up to 35 days before) to 

forecast NAT for the following days (up to 28 days). We use this algorithm operatively, cyclically 

updating the available information and this provides a shift in the forecasting horizon. 

The accuracy of such forecasts depends on their lead time, and on which disease the 

ambulance was called out for. For comparison we used the error of the inertial forecast (tomorrow 

there will be the same NAT as today or as week ago). Our method was twice as accurate as the 

inertial forecast.  

We used the depersonalized database of trips during 2009-2013, that was kindly data 

provided by the A. S. Puchkov ambulance station and the meteorological databases of the Russian 

Hydrometeorological Centre. We evaluated the statistical regularities in the NAT overall and for 

separate groups of diseases, as functions of time, and to develop a method of forecasting these 

functions for various lead times. The problem of predicting NAT may be formulated in the different 

ways: we know or do not know NAT during the previous period. 

                                                   
3 In (Sun 2014) the abbreviations EDV (emergency department visits) and EAD (emergency Ambulance dispatches) 
were used. In (Turner 2012) is referred as “number of ambulance attendances” and in (Murakami 2012) as “ambulance 
transports”. 
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We obtained that NAT depends on the actual weather in the city. The weather’s impact 

differs significantly for different diseases. We were interested in the accuracy of the forecast for the 

12-hour sum of NAT in a real time, when the future weather is not known exactly. That is why we 

compare these results with the results of our weather forecasts (Bagrov 2014). We estimate the 

impact of the errors in these weather forecast on the forecast errors of the NAT. 

The numerical model of weather forecasts for several days (both its method and results) was 

described in Bagrov (2014). We describe here the numerical forecasting using Moscow data only, 

but the described methods can be applied to any megalopolis, where there are the similar NAT 

statistics. 

Our article is organised as follows. Section 1 contains short review of recent publications 

about connection between weather and health. Section 2 describes the statistics of the ambulance 

trips and their forecasting without concrete weather influence; 2.1 the separation of all trips into sub-

groups according to the reasons for the callouts (diseases); 2.2, 2.3 the dynamics of the ambulance 

trips per week and per year. The impact of the statistics of the weekly period is explained by social 

factors only, unlike the yearly period, because there is an essential difference in the weather in 

Moscow between winter and summer. 2.4 lists several unexplained phenomena in the medical data. 

2.5, 2.6 explain briefly (for details see Appendix) our computational approach to the statistical 

description of the NAT dynamics without the impact of the specific weather and its forecast. In 

Section 3 we add meteorological predictors. 3.1 takes into account the real (or forecasted) weather. 

3.2 describes the details of our computational experiments, comparing dependent and independent 

sampling. In 3.3 we consider the forecasting of NAT for cardiovascular diseases, because they 

correlate significantly with air temperature. 

 

1. A short review of the association between weather and health 

In the articles listed below the operative forecasting problem of the number of shifts (calls 

and hospitalizations) was not considered. However a general analysis of statistical information about 

impact of various factors on health may be useful for such forecasts. 

The dependence of Q (NAT) in the region of Pudong (Shanghai, China) on air temperature 

and on the day of the week was considered (Sun 2014). The plots of dependence of Q on the mean 

diurnal air temperature are represented. Several versions of the approximation of the dependence in 

the interval of high temperatures were also given. 
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The dependence of Q on the maximal air temperature during heat in August 2010 in 47 

Japanese prefectures (the mean value during the heat period of the maximal daily air temperature) 

was evaluated (Murakami 2012) as 1.8 shifts/ C  per 100 000 habitants. A similar dependence of Q 

on air temperature was observed in Sydney, Australia in 2011 (Schaffer 2012), in Toronto, Canada 

in 2005 (Dolney 2006; Bassil 2011), and in Emilia-Romania, Italy, (Alessandrini 2011). 

The dependence of the frequency of diseases (calls, hospitalizations, etc) for cardiovascular 

and respiratory diseases on various factors should be investigated separately. The dependence of 

NAT for these groups was considered in Makie (2002). The impact of the following factors was 

considered: air temperature (1, 3, or 7 days previously), the day of the week, and atmospheric 

pressure. The dependence on the air temperature was approximated by a piece-linear function. 

The number of admissions to the hospitals in New York, USA in 1991–2004 (H) was 

analysed in Lin (2009). The dependence of H on air temperature in hot periods ( 27day
airT C  ), and 

additionally on air humidity for any day of week j:    27 27 jH s T b T c


      . The best 

results were obtained if the air temperature, which substituted in the formula, was obtained on the 

same day for the cardiovascular group, unlike the respiratory group, where a lag of 3 days is 

preferable. The impact of humidity is high if 30day
airT C  . 

The association of NAT in Brisbane, Australia during hot and cold weather in 2000–2008 

was studied in Turner (2012). The optimal formulae for dependence includes data on air 

temperature, humidity with various lags.  

Multiple regressions of hospital admissions in Shaghai, China for five types of coronary 

heart disease with air temperature and concentrations of 2NO , 2SO , 10PM  was constructed in Xie 

(2012). 

The frequencies of admissions for four types of diseases increase with any concentration of 

2NO , 2SO , 10PM  in the range  0,9–4,24%/(10µg/m3).  There is one exclusion (occult coronary heart 

disease), which grows weakly. 

The dependence of the number of hospital admissions (H) with the diseases acute myocardial 

infarction in Melbourne, Australia in 1993–2004 was evaluated in Loughnan (2014). The number H 

was larger during temperature anomalies against climate values in the corresponding season. Growth 

of 1.5 times in 1994 (the anomaly was about 12OC) and 2 times in 2004 (the anomaly was about 
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10OC). We should establish that the dependence on the air temperature is not monotonic—there 

could be additional factors. 

The arterial pressure of a patient is a natural measure of hypertension. The impact of weather 

on the health of such patients may be investigated quantitatively. The connection between air 

temperature and mean arterial pressure was approximated linearly in Chen (2013); the 

corresponding coefficient is estimate about k≈–0.25±0.05mmHg/OC. 

The arterial pressure of patients may depend on physical activity, the time of day (the 

variation consists up to 30 mmHg), air temperature and the age of the patient (Goodwin 2001). 

The air temperature dynamics for various groups of patients may influence the arterial 

pressure differently. The dependences were considered in Alpérovitch (2009) for men, women, 

smokers, nonsmokers etc. 

Let us summarize the results. Health becomes worse as a result of adverse atmospheric 

conditions. In some articles quantitative assessments were obtained. Sometimes the results do not 

add up. To obtain non-trivial evaluations and results special singularities of groups of patients 

should be taken into account. Both social and meteorological factors are needed to predict NAT. 

 

2. Forecasting NAT without the impact of weather 

2.1. Classification of diseases  

The number of possible diseases requiring an ambulance is very large, and we grouped them 

as follows:  

I. Infectious diseases;  

II. Diseases of the cardiovascular system;  

III. Poisoning and diseases of the digestive system;  

IV. Injury (including unsuccessful trips to injury); 

V. Diseases of the nervous system;  

VI. Respiratory viral infections;  

VII. Diseases of the genitourinary system;  
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VIII. Fruitless trips.  

The statistics and dynamics of NAT for diseases of these groups differ significantly. This 

article describes the 12-hour sum of trips for daytime (from 09:00 to 21:00 local time) and night 

(from 21:00 to 09:00 the following day). 

We assume that the time t is measured in days and takes either integer values (for day) or 

half-integer values (for night). Let us define ( )XQ t  as NAT for disease X per 12 hours; Q(t) is the 

total NAT for all diseases. 

 

2.2. Impact of the weekly tendency  

NAT (in total and by groups of diseases) significantly depended on the day of the week. The 

greatest NAT in most groups of diseases falls on a Monday (Tab. 1 up to the day of the week in 

bold). The maximal values for daytime and night are usually neighbours. 

Weekly periodicity impacts the dynamics of NAT. We improve our forecasting if we 

preliminarily divide the time series into the typical values of the time series for the given day of the 

week. 

Tab. 1. The average NAT ( )Week XM Q t  and ( )WeekM Q t  (the last column) per 12 hours by different 

groups of diseases on different days of the week, separately for daytime and night shifts  

Group of diseases X 
I II III IV V VI VII VIII 

          
  

Night Sunday-
Monday 96 877 601 533 287 411 72 148 3025 

Monday 192 1407 898 956 480 770 106 293 5102 

Night Monday-
Tuesday 90 841 583 494 270 384 69 145 2876 

Tuesday 181 1328 845 916 462 736 102 286 4856 

Night Tuesday-
Wednesday 89 823 563 482 268 376 67 142 2810 

Wednesday 179 1323 838 906 468 730 100 288 4832 

Night Wednesday-
Thursday 87 810 556 484 267 372 68 142 2786 

Thursday 176 1305 816 906 463 727 98 290 4781 
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Night Thursday-
Friday 88 792 533 481 261 375 65 144 2739 

Friday 180 1244 803 928 454 739 97 300 4745 

Night Friday-
Saturday 81 682 494 544 237 369 59 152 2618 

Saturday 163 1134 746 971 426 734 88 279 4541 

Night Saturday-
Sunday 86 694 490 575 238 402 59 150 2694 

Sunday 171 1221 794 969 438 787 93 264 4737 

Mean for nights 88 789 546 513 261 384 66 146 2793 

Mean for daytimes 177 1280 820 936 456 746 98 286 4799 

Mean for days 133 1034 683 725 359 565 82 216 3797 

 

2.3. Long-term trend  

We give here some general information about NAT of the Moscow ambulance service. 

These dynamics total daily NAT and separately for daytime and night trips (Fig. 1a). We can see 

from the figures that public holidays and seasons influence the NAT. During the summer of 2010, 

the intense heat and smoke caused a sharp peak in NAT and there are strong oscillations during the 

New Year holidays. 

 

Fig. 1. a. The long-term trend changes NAT ( )Q t . b. Calculated (see. Appendix) typical NAT ( )Q t  - the 28 years 

periodic function, which depends only on the time of year and day of the week. It also shows daytime, night shifts and 

their sum. On the horizontal axis are marked on January 1. 
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We introduce in the Appendix (by averaging per our data archive) for any group X a 

normalizing function ( )X t . The new function takes into account an impact of weekly oscillation in 

the function  ( )Week X

Total X

M Q t
M Q

, that were described above, and the function ( )XK t  which is the 

dependence of the function on the specific day of the year (fig. 2, 3). 

 

 

Fig.2. The mean NAT per half-days according to the archive of NAT for 2009-2013 (i. e., averaged over 5 years) for 

several groups of diseases. Another three groups do not have significant seasonal variations. In a leap year 2012 the data 

for February 29, were discarded. On the t-axis marked the first days of the months. The dotted graphs with the same 

colors (were used mean square splines) demonstrate the values after smoothing, see Appendix. Let us note the sharp 

peaks in the functions ( )YearM Q t  in public holidays: January 1, February 23, March 8, May 1 and 9, and June 12. 

 

Since every forth year is a leap year, the period of the obtained function ( )X t  is equal to 

28 years. Century amendments are ignored. We take into account the shifts of some weekends to 

join public holidays. See for details on such normalizing functions ( )X t  in the Appendix. We 

denote the normalizing function for all diseases as ( )Q t . Fig.1b presents normalizing functions 

( )Q t  that are calculated for the functions ( )Q t  presented in Fig.1a. 
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Fig.3. Same as on Fig. 2, but with separation for different age groups, instead of diseases. Note that the behavior of 

graphs for different age groups near holidays is significantly different. So, NAT decreases for 5-14 year olds and for 70+ 

year olds at New Year, and increases for other age groups. The weakest seasonal variations were observed for the age 

group of 15-34. 

 

2.4. Some unexplained observations of dynamics  

We cannot explain some phenomena in the dynamics of the NAT. Probably, they could be 

associated with administrative changes in the regulations for recording diseases. The first 3 diseases 

from the list below additively influence the dynamics of the total NAT: on Fig. 1 graphs ( )Q t  for 

2011-2013 on average are higher than ( )Q t  and in 2009-2010 they are below them.  

1) Dorsopathy. To June 2010 (hereinafter inclusively) there are less than 50 trips per day and 

starting from 2011 more than 300. In the second half of 2010 we observed that growth of NAT is 

like a linear function of t. 

2) Disorders of autonomic nervous system. Until July 2010 this disease is almost absent from 

the statistics. Afterwards, there is an increase with time in NAT per day, it is approximately 

proportional to the function t , and by the end of 2013 this number is close to 220.   

3) Chronic cerebrovascular disease. Until June 2010 it is about 25 trips per day, thereafter 

about 170.  

4) Arthrosis, arthritis, polyarthritis. Until June 2010 it is equal to about 13 trips per day, 

afterwards it is equal to about 30.  
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5) Acute left ventricle failure. It is almost absent before June 2010. Then it is about 12 trips 

per day. 

The plots for other diseases which do not have a sharp change, or correspond to values less 

than 5 trips per day. 

 

2.5. Normalized NAT 

We introduce instead of the function ( )XQ t , i.e. the NAT (total or for separate groups of 

diseases) the corresponding normalized function, i.e. the normalized NAT per day (or per night), 

which will be calculated by formula: 

( )( ) .
( )

X
X

X

Q tt
t

 


    (1) 

Such normalizations allow us to find unified regression coefficients together for different 

times of the year and days of the week, and then allow us to increase the volume of the archive when 

we construct the regression. We obtain regression coefficients with better precision. Additionally, 

the normalizations (1) lead to smoother correlation functions (CF) for the normalized processes (Fig. 

4) than the CF of the original processes. 

Since the normalizing function ( )X t  depends on the day of the year and of the half-day of 

the week only, it can be calculated initially, for any data. Therefore, if we can predict the normalized 

function ( )X t , then it is also possible to forecast the original function ( )XQ t ; see (3). 

These normalized functions of time ( )X t  can be considered as realizations of a stationary 

random process (Priestley 1981). Their correlation functions can be estimated by the standard 

formula  

    
 

2

2

( ) ( ) ( )
( ) .

( )
X X X

X
X

M s s t M s
Corr t

t
    




 

Fig. 4 shows CF ( )XCorr t  for various groups of diseases X. An analysis of the plots shows 

that to aggregate the previously considered 8 groups of diseases into the following 3 larger super-

groups, which although different from a medical point of view, have a similar CF:  

(A) Diseases of the nervous system V and fruitless trips VIII;  
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(B) Viral respiratory infections VI;  

(C) All other trips.  

The correlation functions for different super-groups differ essentially. 

  

Such aggregation into super-groups is useful if we are going to predict the total NAT. When 

we transform our method from 8 groups to 3 super-groups the accuracy of the prediction of Q(t) 

increases. It was confirmed by our numerical experiments. 

 

 

Fig. 4. The correlation function ( )XCorr t  for the normalized NAT for various groups X of diseases  

 

3. Weather and forecasting algorithm 

3.1. Forecasting algorithm of the total NAT 

In this section we describe the forecasting algorithm for the total NAT Q(t) which uses 

dynamics of the NAT of the super-group A, B, C during the previous several weeks.  

To forecast the total NAT Q(t) we predict the normalized NAT ( )Q t . We recorded unusual 

NAT for public holidays. Therefore we exclude them as predictors in the days that follow them. To 

avoid a distortion in our forecast after public holiday days, we form so-called "year without 

holidays"—the series ( )QP t  instead of the series ( )Q t . The series ( )QP t  distinguishes from ( )Q t , 
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but on holidays and after holiday days only. We use for such day t the value *( )Q t  in the last day 

*t t , which is not a holiday, Friday, Saturday or Sunday. 

Let X be one of the super-groups of diseases (A, B or C). The average with weights (its 

decrease exponentially) for the previous 5 weeks by half-days NAT for a corresponding group of 

diseases are: 

14 1

0
14 1

0

exp
14 2( , ) ,

exp
14

T

X
k

X T

k

k kP t
M t

k













       
   

  
 





 

where the constant 0   will be defined below. 

The variation of the boundary of the averaging at the limits Т=2–10 weeks dos not influence 

significantly on the final result of the forecasting. However, for the choice T=5 weeks we obtain the 

minimum forecast error (3). 

According to Subsection 2.5 and Fig. 4, we aggregate our 8 groups into 3 super-groups of 

diseases that significantly differ from one another in their CF. So we obtain for the most numerous 

super-group C that the maximum impact for the forecast of 1–2 days is given by NAT yesterday and 

for the previous week. As for the forecasts with a longer lead time, the impact of NAT on the last 

day is not significant. The essential predictors for the super-group B (a group of respiratory viral 

diseases) give NAT for the last available day and the average NAT for the last available week. For 

the super-group A - we use as a principal predictor the mean weekly NAT only. 

We use formula (2) for the forecasting the total NAT ( )Q t  (without any impact of the air 

temperature yet) with the lead time z days. Various super-groups impact the following formula 

differently: 

  1 2 3

4 5

( ) ( , ) ( ( ) ( , ))(3 )

( , ) ( , ), (2)

z
Q Q C C C C C

B B A A

t z t z a a M t a P t M t z

a M t a M t

 

 
         

 

 

where the weights 1 5,...,a a  and , ,A B C    need to be determined. Here the expression  x x

 , 

when x>0, and =0 otherwise. 

In order to choose the optimal weights, we minimized the mean square error of the forecast 

of the NAT, i. e. the function which takes into account the weight function Q  (see formula (1)) is:  
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  2

,,
( ) ( ) ( ) min

i X

z
Q Q Q az t

t z t z t z


       , 

where the summation is over all half-days, i.e., z=1/2,1, 3/2...,28 and for all t, such that all values 

t+z in this formula lie inside the archive 2009-2013. The total weight function is obtained by 

summing the weight functions for all super-groups: ( ) ( ) ( ) ( )Q A B Ct t t t      . 

The best values of the parameters 1 5,...,a a  were obtained by the method of least squares and 

the parameters , ,A B C    by the gradient descent method. The optimal values are represented in the 

upper row of the Tab. 2. 

Tab. 2. The best values of numerical parameters for the forecasting by formula (2) 

Impact of air 

temperature 
A  B  C  a1 a2 a3 a4 a5 

No 0.59 2.72 0.74 0,648 -0,200 -0,578 0,085 0,844 

Yes 0.64 2.83 0.62 0.435 -0,173 -0,283 0,073 0,776 

 

The final forecast of the total NAT was calculated according to the formula 

    ( ).z
z Q QQ t z t z t z        (3) 

Fig. 5 represents the estimation of errors for various versions of the forecasting of NAT 

separately for daytime and night shifts. The plots of the errors in such division as functions of the 

variable z are proportional. The forecast error for night shifts is about 60% less than for day shifts — 

which corresponds to the real proportion of NAT (on day and night shifts) that are listed in the last 

column of tab. 3. 

We can compute the normalizing function ( )Q t  preliminary for any time t. Therefore its 

lead time is “infinite”. The error of forecast (2) grows with lead time z relatively weakly (Fig. 5) and 

tends to errors of forecast ( )Q t . For the inertial forecast “today as week ago” the RMS error NAT 

per day is equal: for daytime shifts 269, 337, 370 for the forecast on the first week, the second and 

the third week respectively; for night shifts 196, 236, 258 respectively.  
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Fig. 5. The RMS error of the forecast of the total NAT per 12 hours depending on the lead time z (days). Data is divided 

into daytime shifts (solid line) and night (dashed line). 1 – the deviation ( )Q t  from ( )Q t . 2 – the deviation ( )Q t  

from 
min max, , ( )Q T T t .  3 – the error of the forecast, which uses NAT from several previous days, but without separation 

into super-groups of diseases; the data about air temperature were ignored. 4 - forecast without separation onto super-

groups of diseases, but with impact of the temperature. 5 – we use the separation onto super-groups A, B, C, and do not 

use air temperature. 6 – we use the separation onto super-groups A, B, C, and take into account the  air temperature for 

our forecasting. Here the air temperature was assumed to be known exactly (we use the information from the synoptical 

station). The real air temperature was exchanged on the forecasted one, according to (Bagrov 2014).  

Fig. 5 represents the estimations of the errors of the forecasts, which take into account the 

real minimum and maximum daily air temperature in the city, see Subsection 3.2. The test sample 

used in Fig.5, 7 corresponds to the days on which we have forecasts of air temperature. The archive 

includes 1295 daytime and 1280 night shifts out of 1826 days (before March 2010 forecasts were 

not archived and small gaps exist due to computer failures). Constants were chosen for the full 

sample. 

 

3.2. Impact of the information on current weather 

There are seasonal tendencies in weather. Therefore, if we receive medical information about 

a specific city only, we need to separate the impacts of such predictors as “annual variations in the 

NAT” and “weather”. We need to determine the seasonal tendencies (e.g. associated with the 
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seasonal migration of the population) and the impact of the air temperature simultaneously, rather 

than sequentially. 

Here we used the meteorological observation data from the synoptical station № 27605 

Moscow-Baltschug, located in the centre of Moscow. We limited ourselves to studying the influence 

of daily maximal maxT  and minimal minT  air temperature (during the corresponding full day) on the 

NAT. If we are talking about the assessment of daytime NAT, then min ( )T t  is the half-sum of the 

minimal temperatures for the previous and the next nights for the day t. If we predict the night trips, 

then we use the half-sum of the maximum temperatures maxT (t) for the previous and next day. 

Let us introduce the following more sophisticated normalizing function min max( , , )Q t T T . The 

corresponding definition is given in Appendix. We take into account again: what day of the year and 

of the week correspond to t and what it is daytime or night shift. Also the normalizing function 

depends now on daily maximal maxT  and minimal minT  air temperature during the day.  

Then we use the function 

min max, ,
min max

( )( ) .
( , , )Q T T

Q

Q tt
t T T

 


 

Then we compute, as in Subsection 3.1, but with using the function 
min max, , ( )Q T T t  instead of 

( )Q t , and determine anew the constants , 1,...,5ia i   and , , ,X X A B C   in formula (2) (see 

tab.2). 

The RMS errors for several versions of the forecasts, depending on the lead time z, are 

represented in Fig. 5 (curves 3–7).  

We can forecast the air temperature near the Earth's surface for a lead time of up to five days 

(Bagrov 2014). The forecast errors for NAT increase if we use the forecasted air temperature instead 

of the actual one. We can see in Fig. 5 the comparison of the error for the forecast of NAT when we 

used the forecasted temperature according to Bagrov (2014), and when we used the real air 

temperature.  

We used for the forecast temperature the same parameters which were determined for the 

actual temperature. In final version of the forecast for NAT, it is preferable to use the parameters 

which are optimized according to the specific meteorological forecasting scheme. 
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3.3. Organization of computing—dependent and independent sampling 

To estimate the quality of our forecasting schemes both for the total NAT and for separate 

groups of diseases we need to use the same available database that we used for the development and 

optimization of these schemes. For example, the parameters 1 5, ...,a a  in formula (2) were chosen so 

that our sample RMS error for all dates was minimal.  

If the sample is larger and therefore more representative, we can estimate more reliably the 

optimal values of the numerical parameters of our forecasting scheme. On the other hand, if we use 

all available data for such a choice, then there is the danger that the choice of the values is ad hoc, 

when these values are oriented exactly for this specific archive. In this case, the further application 

of such numerical parameters for new data will lead to a significant increase of the error compared 

to the error for the archive which we used for our parameters choice.  

We tested our algorithm as follows: regression constants were chosen for the archive of 4 

years (from the 5 available), followed by checking the accuracy of the forecast independently with 

the fifth year. This approximation error of the original function Q(t) gives a larger error than in the 

reference case (when the training set includes the archive for all 5 years). In 2009, the difference 

proved to be very prominent, compared to the rest of the years, see Tab. 3. 

We give estimates only when the training set includes the archive for all 5 years. For the 

forecast errors with a lead time 21z   such estimates are shown in Fig. 5 (curves 6) separately for 

daytime and night shifts. 

Tab. 3. The RMS of forecast NAT with lead time z = 1, 2, 3 days if for selecting optimal parameters 

used archive for all 5 years or only 4 (the corresponding year is not used). 

Year z 2009 2010 2011 2012 2013 

The parameters choice by 5 years 1 144,9 163,4 154,2 161,9 144,5 

2 152,8 175,5 161,8 167,2 149,2 

3 154,9 177,1 164,4 167,5 149,1 

The parameters choice by 4 years 1 182,1 167,3 165,3 168,5 153,0 

2 188,9 180,4 178,3 176,2 160,1 

3 192,8 182,4 183,0 176,8 160,3 



 18 

3.4. About forecasting NAT for cardiovascular diseases 

We can apply our methodology to forecasting NAT for any separate group of diseases if it is 

sufficiently large. Let us consider, as an example, the cardiovascular group II. 

We divide it into two subgroups: G — hypertonia, and H — all other cardiovascular 

diseases. For the dynamics of NAT for these subgroups see Fig. 6. Cold weather contributes to the 

growth of NAT for G because blood vessels constrict. 

The essential influence of airT  on arterial pressure was statistically confirmed in Chen (2013) 

on an archive which consisted of histories of 1831 patients in Shanghai, China, over three years. 

We evaluate (see Fig.6) NAT with weekly correction      
Total X

Week X X
Week X

M QN Q t Q t
M Q t

  the 

dependences for diseases subgroups ,X G H  on the time t (day of the year, day of the week, 

shift) ( )X t  and on air temperature       min max,X XF t f T t T t . The sum of the functions 

min max, , ( )X T T t  approximates NAT ( )XQ t  at time t. Both functions ( ( )X t  and 
min max, , ( )X T T t ) are 

defined up to the additive constant. 

Our numerical experiments confirmed that the impact of the information on air temperature 

min max, , ( )X T T t  for the evaluation ( )HQ t  (for the subgroup H) is small (see Fig.6a). In other words, if 

we determined ( )H t , the impact of the real temperature airT  is small. 

Conversely, the impact of the information on air temperature in the function 
min max, , ( )G T T t  is 

more significant than impact of the seasons of year. But we need to consider the time of year: the 

impact of public holidays (see Fig.6b) cannot be evaluated by air temperature airT  only. 

The forecast ( )X t  is possible for any lead time and its error is 15–25% smaller than the 

errors of any inertial forecast (“today is like yesterday” or “today is like week ago”). 

We approximate the dependence of NAT for subgroup G on the air temperatures by the 

formula: 

     2
max min max min max min, 0.096 4.8 1264.Gf T T T T T T       
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Fig. 6. The dynamics for the five and a half-year (2009-2014) period of time of NAT for cardiovascular group II. The 

NAT with weekly correction (red curve  Week XN Q t ); two graphs, which were determined by simultaneous 

minimization of the functional (4):  averaged annual dynamics – smoothing spline (green curve) and the function 

      min max,IIF t f T t T t  - dependence of NAT on the maximal temperature (blue curve). The sum of the terms 

approximates the first curve. These two functions can be determined only with an accuracy of up to additive constant. 1-

st January of the corresponding years is marked on the t-axis. We can see on the graph clearly visible peaks, near public 

holidays: January 1, February 23, March 8, May 1 and 9 

 

We did not include such dependence for evaluation of ( )HQ t , since the improvement here 

was not significant, and we assumed 0Hf  . 

The results of the forecasting of NAT for the diseases of the cardiovascular group are shown 

in Fig.11. Here we used as predictors for the forecast only NAT of the cardiovascular group in the 

previous period. Information about the trips with other disease groups was ignored. If we add 

additional predictors to this regression, which take into account NAT for such groups that are not 

included in the group II, we can improve the result.  
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Fig. 8. The mean RMS error of the forecast of cardiovascular NAT per 12 hours depending on the lead time z (days). 

The dotted lines correspond to the independent sample (2013), solid lines – to the dependent one (2009-2012). 1 - 

deviation from the average calls value ( )II t ; 2 - deviation from average values 
min max, , ( )II T T t , which based on the 

real data about the air temperature; 3 - forecast without impact of the air temperature; 4 - forecast with impact of the air 

temperature. Here the temperature was assumed to be known exactly for the curves 2, 4, and 6. Curves 7 describe the 

forecast which is similar to 6, but it use the forecasted air temperature with corresponding lead time (see Bagrov 2014) 

instead of real air temperature. 

 

We also estimated RMS error for the inertial forecast for the subgroups G and H in Tab.4. 

For subgroup H the error of the forecast “today is like yesterday” is larger than of the forecast 

“today is like week ago”, and vice versa for the subgroup G. This can be explained by the significant 

weekly tendency for the NAT of subgroup H. The weekly tendency of the subgroup G is not 

significant. 

In a separate consideration of trips during daytime and night shifts the graphic dependence 

on the lead time z of the forecast errors is proportional. Curves 7 on fig. 7 shows RMS error when 

we use the forecast air temperature. 
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Tab. 4. The mean RMS error for some forecasts of cardiovascular subgroup G and H NAT per 12 

hours. The optimal version of the forecast written by bold font  

Forecast method 

X G  X H  X II  

Daytime 

shifts 

Night 

shifts 

Daytime 

shifts 

Night 

shifts 

Daytime 

shifts 

Night 

shifts 

Constant – mean value 
Total XM Q  148,6 82,2 96,7 63,9 221,7 134,8 

Forecast depends only on the day of 

the week ( )Week XM Q t  

144,8 76,6 79,7 50,6 206,1 116,3 

Today as yesterday: ( 1)XQ t   70,6 54,8 85,8 60,8 130,2 105,3 

Today as week ago: ( 7)XQ t   97,9 57,5 62,1 43,6 127,0 82,2 

Today as 2 weeks ago:  ( 14)XQ t   109,9 62,9 69,2 47,0 145,5 90,5 

Forecast according to the 

normalization function, depending 

on day of week and day of the year 

( )X t  

81,4 48,0 48,1 34,1 97,7 63,9 

Forecast according day of week and 

air temperature (but no according 

day of the year) 

81,1 46,4 58,0 40,1 110,0 73,2 

Forecast according to the 

normalization function, depending 

on day of week and day of the year 

and air temperature 
min max, , ( )X T T t  

69,9 43,2 48,0 34,0 89,0 62,1 

 

4. Conclusions and Discussion 

This article describes the method of forecasting of number of ambulance trips (NAT) for 

various lead times. The errors of such forecasts are shown in Figs. 5. They 1.5–2 times less than the 

error of the inertial forecast of NAT. We forecasted separately NAT with diseases of the 
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cardiovascular group, see Fig.7, where it was demonstrated in particular the advantage of the 

forecasting method, when we use as a predictor the maximal daily air temperature. We used the 

medicine database for the Moscow. However, the developed method can be applied for other 

megalopolises and groups of diseases, if we have the appropriate medical and meteorological 

databases, but only if this group of diseases is not less several tens of cases per day. 

Meteorological forecasts of surface air temperature according to the model (Bagrov 2014) 

introduce a relatively small additional error in the comparison to usage of the real meteorological 

data into the forecasting on a short lead time (several days) of NAT. The forecasted air temperature 

with a lead time that is more than 5 days seems unreliable.  

We plan in the future to study the influence of other meteorological factors as well as 

chemical ones on the dynamics of the disease and, consequently, to predict the dynamics of efforts 

that are required from medical institutions. 

We hope that the statistical evaluation of the influence of meteorological factors on the 

dynamics of medical problems may in some cases be useful for understanding the physiology of the 

disease and possible treatment options. 

We can assimilate individual medical histories of those with specific diseases, and the 

relative meteorological archive. As a result we hope to evaluate how weather can influence the 

intensity of the disease. Knowledge of the weather forecast for several days will help us to predict 

states of health. A person can be proactive to avoid the anticipated worsening of their health. 

 

We sincerely thank A. V. Sigachev for useful discussions. 
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University - Higher school of Economics. 
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Appendix 

NAT depends essentially on the time of the year. External conditions can change, e.g. 

average temperature, average rainfall and cloudiness. In addition, there are seasonal population 

movements (summer trips to dachas or vacations), which also affect NAT. The seasonal effect 

distinguishes different groups of diseases as well as different age groups, see Fig. 2, 3.  

We need smoothed graphics for each group of diseases. In such smooth graphics short-

period noises are filtered. These smoothed functions are shown in Fig. 2, 3 by the dotted lines of the 

same colour.  

Let  

1

1 ( )
N

Total X X
t

M Q Q t
N 

   
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- be the total sample mean for an arbitrary numerical series ( )XQ t ; 

4

0

1( ) ( 365 ),
5Year

k

M X t X t k


   

- be a periodical function with a period of 1 year sample mean over 5 years (where t=1/2, 1, 

3/2, …, 365); 

1

0

1( ) ( 7 ),
W

Week X X
k

M Q t Q t k
W





   

- be a periodical function with a period of 1 week (instead of a year), obtained by the 

averaging over all weeks—the sample mean over 5 years (where t=1/2, 1, 3/2,…, 7), W is the 

number of the weeks in the archive. The values ( )Week XM Q t  are represented in Tab. 1. 

All these averaged values are calculated separately for day and night shifts; t can be an 

integer or half-integer value, and the k only an integer.  

We normalize the original time series which consists of NAT ( )XQ t  from its mean weekly 

values (see tab. 1). For this goal we define the normalization facto—the periodical function 

   
Total X

Week X
Week X

M QF Q t
M Q t

 . The values of the multiplier are calculated by Tab. 1 or similar, and then 

we determine the normalized (non-periodical) function     ( )Week X X Week XN Q t Q t F Q t  . 

We calculate these functions  Year Week XM N Q t    and  Year Week XM F Q t    for every day of 

the year. The latter function depends on how many times a certain day of the year were in our 

database by specific day of the week. The function is close to periodic with a period of 7 days, while 

increasing the sample size will tend to a constant.   

The public holidays (which are celebrated on the same day every year) significantly affect 

the statistics (see Fig. 2, 3).  

We determine the mean square spline  spline
Year Week XM N Q t    (cubic periodic smoothing spline 

with a defect=1 and a period T=1 year, which provides the smallest mean-square deviation) with the 

weight  Year Week XM F Q t    by the values  Year Week XM N Q t    and with the following knots: 1, 7, 8, 9 

January; 19, 22, 23, 26 February; 6, 8, 9, 11, 12 March; 14, 28, 29 April; 7, 8, 11, 15 May; 9, 10, 18 
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June; 23 July, 4, 18, August; 9, 10 September; 25 November; 7, 26, 30 December. We used periodic 

boundary conditions for the splines. The graphs of the splines are represented in Figs. 2, 3. 

This set of knots optimizes the description of the fluctuations in NAT during the days near 

the public holidays. Our numerical experiments confirmed that for this choice of knots, the error of 

our final prediction of NAT is smaller. For the definition of the algorithm and the basic properties of 

mean square spline, see e.g. Bellman (1974). 

The typical NAT ( )X t  for this day of the week and time of the year is calculated by the 

formula 

 ( ) ( ) spline
X Week X Year Week Xt F Q t M N Q t      . 

Let us designate, as before, X as a super-group of diseases. To take into account the 

information about air temperature, we search a periodical spline ( )XK t   with a period of 1 year and 

with the set of knots that was specified above, together with such a function max min( , )Xf T T  of the 

maximal and minimal air temperatures so that the functional of the deviation took the smallest 

value: 

     2

max min ,
( ) ( ) ( ), ( ) min

X X
X X X Week X K ft

Q t K t f T t T t F Q t   . (4) 

We search simultaneously the best (in the sense of minimum (4)) spline ( )XK t  in this space 

and the best function   max min,Xf T T  (in order to describe the contribution of the air temperature into 

the forecasting of NAT) in the following form: 

     2
max min 2 max min 1 max min 0, .Xf T T c T T c T T c      (5) 

A further complication of expression (5) for the function  max min,Xf T T  can lead to a 

decrease of the functional (4), but, as was shown by our additional numerical experiments, this does 

not reduce the total error of the forecast of NAT (3).  

Since the functional (4) depends on sum of ( )XK t  and  max min,Xf T T  only, and the constant 

function is included both in the 33-dimensional space of the periodical splines with respect to t (33 

knots) and in the 3-dimensional space of quadratic polynomials on max minT T , then we need to 
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determine 33+3-1=35 parameters. Minimization with respect to these parameters in (4) is produced 

by the method of least squares. 

The typical NAT 
min max, , ( )X T T t  for this day of the week, time of the year, and temperature is 

calculated by the formula 

       min max, , max min( ) ( ) ,X T T Week X X Xt F Q t K t f T t T t    . 
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