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1. Introduction 
In the theory of imprecise probabilities [Walley, 1991; de Cooman, Troffaes, 

2014; Augustin et al., 2014] there are many models for describing uncertainty: credal 
sets, upper and lower probabilities, lower and upper coherent previsions, sets of de-
sirable gambles, etc. But in any case, we can equivalently represent the information 
with the help of the sets of probability measures. As one can check, up to now there 
are no many works concerning the case when the available information is contradic-
tory, i.e. the avoiding sure loss condition is not satisfied.  

However, in the theory of evidence [Shafer, 1976; Denoeux 2008; Smets, 2007] 
there is a possible way to describe contradiction based on transferable belief model. 
In that model contradictory information can described by assigning non-zero values 
to the corresponding belief function at empty set. In this paper we will try to exploit 
this idea that leads to some generalizations of the theory of imprecise probabilities, in 
particular based on this idea it is possible to extend the conjunction rule for aggregat-
ing belief functions for more general theories of imprecise probabilities [Bronevich, 
Rozenberg, 2014, 2015]. 

Let us notice that in the literature one can find results concerning the aggrega-
tion rules for imprecise probabilities [Troffaes, 2007; Destercke, Antoine, 2013; Nau, 
2002; Moral, Sagrado, 1997]. The rule from [Troffaes, 2007] deals with lower previ-
sions and generalizes the pooling method for aggregation of probability measures. In 
[Destercke, Antoine, 2013] the aggregation rule is based on an idea that non-
conflicting information should be aggregated in conjunction manner, and conflicting 
information should be aggregated in disjunction manner. In [Nau, 2002] the proposed 
aggregation rules are based on modeling the interaction among experts’ opinions. 
Moral and Sagrado [1997] try to get the aggregation rule for credal sets with proper-
ties close to the conjunction rule but their rule is based on some heuristic algorithmic 
procedure. 

The paper has the following structure. Sections 2 and 3 remind some definitions 
from the theory of monotone measures, belief functions and the theory of imprecise 
probabilities. Then in Sections 4 and 5 we describe the basic rules of aggregation in 
general theories of imprecise probabilities and investigate the connection of these 
rules to the Dempster-Shafer rule in evidence theory. After that we try to generalize 
the conjunction rule firstly for probability measures, and secondly for general models 
of imprecise probabilities using so-called generalized credal sets in Sections 6 and 7. 
Based on generalized credal sets it is possible to model contradiction in information 
and introduce analogous notions and constructions as in the traditional theory of im-
precise probabilities like coherence and natural extension, as shown in Sections 8  
and 9. 
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2. Some definitions and notations from the theory 
of non-additive measures 

Let  X  be a non-empty finite set and let   2
X  be the power set of  X . We will 

consider set functions on the algebra   2
X  of various types: monotone measures, 

probability measures, lower and upper probabilities. A set function    μ :2X → [0,1]  is 
called 

1) normalized if   μ(∅) = 0  and    μ(X ) =1 ; 

2) monotone if  A,B ∈2X  and  A ⊆ B  implies   μ( A) ≤ μ(B) ; 

3) additive if   μ( A)+μ(B) = μ( A∩B)+μ( A∪B)  for all  A,B ∈2X ; 

4) 2-monotone if  μ( A)+μ(B) ≤ μ( A∩B)+μ( A∪B)  for all    A,B ∈2X ; 

5) 2-alternative if   μ( A)+μ(B) ≥ μ( A∩B)+μ( A∪B)  for all    A,B ∈2X ; 

6) a monotone measure if it is monotone and normalized; 
7) a probability measure if it is additive and normalized; 

8) a belief function if there is a non-additive set function    m :2X → [0,1]  called 
the basic belief assignment (bba) such that 

   
m( A)

A∈2X
∑ =1  and 

  
μ(B) = m( A)

A⊆B
∑ . 

The following operations on set functions are defined: 

a) convex sum:    μ = aμ1 + (1− a)μ2 , where  a ∈[0,1] , if 

   μ( A) = aμ1( A)+ (1− a)μ2 ( A)  for all A ∈2X ; 

b) μ1 ≤ μ2  if  μ1( A) ≤ μ2 ( A)  for all   A ∈2X ; 

c) μd  is the dual of μ  if   μ
d ( A) =1−μ( A)  for all   A ∈2X . 

Let us remind that the theory of evidence models uncertainty with the help of 
belief functions. In this theory (e.g. transferable belief model) we describe contradic-
tion using non-normalized belief functions, i.e., it is possible that    Bel(∅) > 0  for 
belief function  Bel . Let  Bel  be a belief function with the bba  m . Then  

– a set   A ∈2X  is called focal for Bel  if  m( A) > 0 ; 

– the set of all focal elements is called the body of evidence; 
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–  Bel  is called categorical if its body of evidence contains only one focal ele-
ment. Any categorical belief function 

 
η B  with focal element B  can be computed 

as  

   
η B ( A) =

1, B ⊆ A,
0, otherwise;

⎧
⎨
⎪

⎩⎪
 

–  Bel  is a probability measure iff    m( A) = 0  for all   A ∈2X  with   A ≥ 2 . In this 
paper we also consider non-normalized probability measures  P  for which 

 P(∅) > 0 . 

– any belief function μ  has the following representation through categorical be-
lief functions:

   
Bel = m(B)η B

B∈2X
∑ . 

In the sequel we will use the following notations: 

 
M pr  is the set of all probability measures on   2

X and 
 
M pr  is the set of all prob-

ability measures including non-normalized probability measures. 

 M bel  and  M bel  are the sets of all belief functions on   2
X  and the bar indicates 

that belief functions from M bel  may be non-normalized; 

 M mon  is the set of all monotone measures on   2
X ; 

M 2−mon  is the set of all 2-monotone measures on   2
X ; 

if M  is a family of set functions, then we denote 
  
M d = μd |μ ∈M{ } . For ex-

ample,  M bel
d  denotes the set of all plausibility functions, which are dual to belief 

functions, or   M 2−mon
d  is the set of all 2-alternative measures on 2X . 

3. Models of imprecise probabilities:  
lower and upper probabilities and credal sets 

Assume that  μ :2X → [0,1]  is a set function that gives us lower bounds of prob-
abilities. Then this function avoids sure loss iff there is a probability measure 

 
P ∈M pr  such that  μ ≤ P . If avoiding sure loss condition is not fulfilled, then the 
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information described by μ  is contradictory. Any non-contradictory lower probabil-
ity function μ  defines the non-empty set of probability measures 

 
P(μ) = P ∈M pr | P ≥ μ{ }  

called the credal set. Generally, a set  P  of probability measures called a credal set if 
it is convex and closed.  

Analogously the model of upper probabilities is introduced. Let us suppose that 

   ν :2X → [0,1]  gives us the upper bounds of probabilities. Then this function avoids 
sure loss iff there is a probability measure 

 
P ∈M pr  such that  ν ≥ P . In this case we 

call an upper probability function non-contradictory and describe it by a credal set 

 
P(ν) = P ∈M pr | P ≤ ν{ } . 

We can equivalently replace the model based on lower probabilities by the 
model based on upper probabilities. For this purpose we transform any lower proba-
bility function μ  to the upper probability function  μ

d . It easy to show that  

  
P ∈M pr | P ≤ μd{ } = P ∈M pr | P ≥ μ{ } , 

i.e. the corresponding credal sets coincide.  
Let us introduce also coherent lower and upper probabilities. A non-

contradictory lower probability μ  is called coherent if for any   A ∈2X  there exists 

 
P ∈M pr  such that   μ( A) = P( A)  and  μ ≤ P , in other words,  

   μ( A) = inf P( A) | P ∈P(μ){ } , 

where 
 
P(μ) = P ∈M pr | P ≥ μ{ } . 

Analogously, a non-contradictory upper probability ν  is called coherent if for 
any   A ∈2X  there exists 

 
P ∈M pr  such that   ν( A) = P( A)  and  ν ≥ P , in other words,  

   ν( A) = inf P( A) | P ∈P(ν){ } , 

where 
 
P(ν) = P ∈M pr | P ≥ ν{ } . 

Coherent lower probabilities and coherent upper probabilities are connected 
with the dual relation, i.e., if μ  is a coherent lower probability then  μ

d  is the coher-
ent upper probability. We can also generate a coherent lower probability μ  and co-
herent lower probability ν  using a credal set  P  by formulas 
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   μ( A) = inf P( A) | P ∈P{ } ,    ν( A) = sup P( A) | P ∈P{ } , 

where   A ∈2X , and obviously,  ν = μd  in this case.  

Let μ  be a non-contradictory lower probability. Then we can improve lower 
bounds of probabilities using the natural extension. It is defined as  

   μcoh( A) = inf P( A) | P ∈P(μ){ } , 

where   A ∈2X . Clearly, μcoh  is a coherent lower probability. 

Let use remind that any credal set can be equivalently defined with the help of 
lower previsions. Let  ′K  be a subset of the set  K  of all real functions of the type 
  f : X → . In some cases we assume that ′K = K . Then lower previsions on ′K  
are defined by the functional   E : ′K → . This functional defines the credal set  

   
P(E ) = P ∈M pr |∀f ∈ ′K : f (x)P {x}( )

x∈X
∑ ≥ E f⎡⎣ ⎤⎦

⎧
⎨
⎩

⎫
⎬
⎭

. 

If the credal set  P(E )  is empty then lower previsions does not satisfy the 
avoiding sure loss condition and we say that lower previsions contain contradiction. 
In some sense lower previsions can be understood as lower bounds of expectations of 
random variables in  ′K .  

The model based on lower previsions is more general than the model based on 
lower probabilities because we obtain the last model if we assume that 

′K = 1A{ }A∈2X , where 
   
1A (x) =

1, x ∈A,
0, x ∉A,

⎧
⎨
⎪

⎩⎪
 is the characteristic function of the set 

A . We can improve the lower bounds of expectations using the procedure called the 
natural extension 

   
E ′ f⎡⎣ ⎤⎦ = inf f (x)P {x}( )

x∈X
∑ | P ∈P(E )

⎧
⎨
⎩

⎫
⎬
⎭

. 

Note that this procedure is not defined if    P(E ) =∅ . Let us remind that the function-

al  E  defines coherent lower previsions if  E
′ f⎡⎣ ⎤⎦ = E f⎡⎣ ⎤⎦  for all f ∈ ′K .  

Analogously, upper previsions are introduced. Any functional   E : ′K →  can 
be conceived as upper previsions. The upper previsions are not contradictory (or 
avoid sure loss) iff the credal set  
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P(E ) = P ∈M pr |∀f ∈ ′K : f (x)P {x}( )

x∈X
∑ ≤ E f⎡⎣ ⎤⎦

⎧
⎨
⎩

⎫
⎬
⎭

 

is not empty. We can improve the upper bounds of expectations using the natural 
extension 

   
E ′ f⎡⎣ ⎤⎦ = sup f (x)P {x}( )

x∈X
∑ | P ∈P(E )

⎧
⎨
⎩

⎫
⎬
⎭

. 

If E ′ f⎡⎣ ⎤⎦ = E f⎡⎣ ⎤⎦  for all  f ∈ ′K , then  E  is a coherent upper prevision. Let us 
notice that we can equivalently describe uncertain information by lower or upper 
previsions. If the functional    E : ′K →  describes the lower previsions then we can 
equivalently describe the same information by upper previsions defined by the for-
mula 

 E f⎡⎣ ⎤⎦ = −E − f⎡⎣ ⎤⎦  for all  − f ∈ ′K  

4. The disjunction and conjunction rules 
for aggregating sources of information 

Let we have n  sources of information described by credal sets     P1,...,Pn . Then 
there are several possible ways for aggregating this information that depends on prior 
assumptions. If we assume that each source of information is reliable then we can 
aggregate them using intersection of the corresponding sets 

    P = P1 ∩ ...∩Pn . 

This rule of aggregation is called the conjunction rule. It is easy to see that if we 
describe credal sets with the help of lower probability functions    μ1,...,μn , then the 
conjunction rule can be represented as  

   μ = μ1 ∨ ...∨μn , 

where ∨  is the maximum operation.  
The last formula is justified because in this case 

    P(μ) = P(μ1)∩ ...∩P(μn ) . 

If we describe sources of information by upper probabilities    μ1,...,μn , then the 
conjunction rule is clearly expressed with the minimum operation ∧  as  

   μ = μ1 ∧ ...∧μn . 
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Analogously, the conjunction rule is expressed in models based on lower previ-
sions 

   Ei : ′K → ,    i =1,...,n , or upper previsions 
   Ei : ′K → ,    i =1,...,n , as 

 E = E1 ∨ ...∨ En ,   E = E1 ∧ ...∧ En .    (1) 

We would like to emphasize that there are other rules for aggregation of infor-
mation sources. If we know that at least one source of information is reliable and all 
sources of information are represented by credal sets  P1,...,Pn , then we can use the 
disjunction rule, in which the result is the minimal credal set  P  that contains the 
corresponding credal sets   Pi ,  i =1,...,n . This disjunction rule is expressed through 

lower previsions 
  Ei : ′K → ,    i =1,...,n , or upper previsions 

  Ei : ′K → , 

   i =1,...,n , as 

 E = E1 ∧ ...∧ En ,  E = E1 ∨ ...∨ En . 

The mixture rule can be used if we can evaluate the reliability of information. 
Let us assume this reliability is given by non-negative numbers  ai ,  i =1,...,n , such 

that ai
i=1

n

∑ =1 . Then we can aggregate sources of information described by credal 

sets   Pi ,  i =1,...,n , as  

 
P = aiPi

i=1

n

∑ | Pi ∈Pi ,i =1,...,n
⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

. 

The counterparts of this rule for lower previsions 
   Ei : ′K → ,    i =1,...,n , or 

upper previsions 
   Ei : ′K → ,    i =1,...,n , are 

  
E = aiEi

i=1

n

∑  or 
  
E = aiEi

i=1

n

∑ . 

Let us notice that other possible aggregation rules have properties more or less 
similar to the considered rules. 

Let us observe that the conjunction rule can be used if the resulting credal 
set is not empty. In the opposite case we say that there is contradiction among 
sources of information. Meanwhile, in evidence theory the conjunction rule is also 
applicable if the sources of information are contradictory. In the next section we will 
introduce such conjunction rules, considered in [Bronevich, Rozenberg, 2015], and 
give some hints how they can be generalized in the theory of imprecise probabilities. 
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5. Conjunction rules of aggregation in evidence theory, 
 the order of specialization 

Let 
   
Bel1 = m1( A)η A

A∈2X
∑  and 

   
Bel2 = m2 (B)η B

B∈2X
∑  be belief functions. Then 

the generalized Dempster-Shafer (GD-S) rule in conjunctive form [Bronevich, Ro-
zenberg, 2015] is defined by  

   
Bel = m( A,B)η A∩B

A ,B∈2X
∑ , 

where the set function  m :2X × 2X → [0,1]  has to obey the following system of 
equalities 

 

m( A,B)
B∈2X
∑ = m1( A), A ∈2X ,

m( A,B)
A∈2X
∑ = m2 (B), B ∈2X .

⎧

⎨
⎪⎪

⎩
⎪
⎪

  (2) 

Observe that we get the classical Dempser-Shafer rule in conjunctive form if 

 m( A,B) = m1( A)m2 (B)  for any    A,B ∈2X . The use of such general rule can be ex-
plained using the interpretation of belief functions through random sets.  

A random set ξ  is a random variable taking its values in 2X . Any such random 
variable can be defined by probabilities   P(ξ = A) , and these probabilities can be 

identified with values   m( A)  in evidence theory. Let  ξ1  and  ξ2  be two random sets 

with values in 2X . If we assume that these random sets are independent, then  

 P(ξ1 = A,ξ2 = B) = P(ξ1 = A)P(ξ2 = B) . 

The using of classical D-S rule in conjunctive form means that from two 
sources of information described by independent random sets  ξ1  and  ξ2  we obtain a 

new random set ξ  defined by  

   
P(ξ =C ) = P(ξ1 = A)P(ξ2 = B)

A∩B=C
∑ . 

Thus, the generalization of D-S rule can be obtained if we assume that random 
sets  ξ1  and  ξ2  can be dependent. In this case we can only guarantee that the non-

negative set function    m( A,B) = P(ξ1 = A,ξ2 = B)  obeys (2).  

Let us notice that the GD-S rule is not uniquely defined and it can be also ap-
plied in a case, when the sources of information are contradictory. The ways of 
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choosing optimal GD-S rules according to several justified criteria can be found in 
[Bronevich, Rozenberg, 2015]. The main conclusion from [Bronevich, Rozenberg, 
2015] is that an optimal GD-S rule should be chosen among Pareto optimal GD-S 
rules w.r.t. the partial order on belief functions called specialization.  

Let   Bel1  and   Bel2  be belief functions with bbas   m1  and   m2 . We write 

   Bel1 Bel2  if   Bel2  can be obtained from   Bel1  using a linear contraction transform 

   Φ :2X × 2X → [0,1] , i.e. 
   
m2 (B) = Φ( A,B)m1( A)

A∈2X
∑ , and the set function 

 Φ :2X × 2X → [0,1]  has the following properties 

a) 
 

Φ( A,B)
B∈2X
∑ =1  for any   B ∈2X ; 

b)    Φ( A,B) = 0  if  A ⊂ B .  

The partial order   is called specialization. It is easy to show [Dubois & Prade, 
1986] that  Bel1 Bel2  implies Bel1 ≤ Bel2 , but the opposite is not true in general. 
The main results [Bronevich, Rozenberg, 2015] showing the connections of general-
ized D-S rules and the order   are given in the next propositions. 

Proposition 1. If  Bel  is the result of a GD-S rule applied to    Bel1,Bel2 ∈M bel , 

then    Bel1 Bel  and    Bel2 Bel . Furthermore, each minimal element of the set 

     Bel(Bel1,Bel2 ) = Bel ∈M bel | Bel1 Bel ,Bel2 Bel{ }  w.r.t. to the order   for arbi-

trary    Bel1,Bel2 ∈M bel  can be obtained by a GD-S rule.  

This result shows that the optimal choice of a GD-S rule should be made to get 
the best approximation of the set function    max{Bel1,Bel2} , and this choice should be 

obviously made in the set of minimal elements of     Bel(Bel1,Bel2 )  w.r.t.   that can 
be obtained by so called Pareto optimal GD-S rules.  

Proposition 2. The order   is equivalent to the order ≤  on the set M pr . In 

addition if  Bel ≤ P  for 
 
P ∈M pr  and  Bel ∈M Bel , then   Bel P . Furthermore, 

 Bel( A) = inf P( A) | P ∈P(Bel ){ } , 

where 
    P(Bel ) = P ∈M pr | Bel P{ } . 

Remark 1. Proposition 2 shows that in the evidence theory any belief function 
can be equivalently represented by    P(Bel )  that may be called a generalized credal 
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set. Such a construction with a slightly different definition will be introduced in the 
next section. Clearly, the above proposition allows us to write 

 
P(Bel ) = P ∈M pr | Bel ≤ P{ } . 

Let    Bel1,Bel2 ∈M bel . Then we denote by    GDS (Bel1,Bel2 )  the set of all possi-

ble belief measures that can be obtained by GD-S rules applied to Bel1  and Bel2 . 

Then the amount of contradiction between   Bel1  and   Bel2  by GD-S rules can be 
computed as 

   Con(Bel1,Bel2 ) = inf Bel(∅) | Bel ∈GDS (Bel1,Bel2 ){ } . 

Let us observe that this measure of contradiction (or conflict) is considered in 
many papers [Bronevich, Rozenberg, 2015; Cattaneo, 2003, 2011; Destercke & 
Burger, 2013], where authors show that  Con(Bel1,Bel2 )  has better properties than a 
measure of conflict based on classical D-S rule.  

Proposition 3. Let 
 
P(Beli ) = P ∈M pr | Beli ≤ P{ } , where  Beli ∈M bel ,    i =1,2 . 

Then  

    Con(Bel1,Bel2 ) = inf P(∅) | P ∈P(Bel1)∩P(Bel2 ){ } . 

Thus, in this section we has shown that it is possible to extend the model of 
non-normalized belief functions on more general theories of imprecise probabilities 
using generalized credal sets, and this problem will be investigated in the next sec-
tions.  

6. The conjunction rule for probability measures 
 admitting contradiction 

Let us consider the case when we have 2 sources of information described by 
probability measures   P1  and   P2 . These sources of information are absolutely contra-
dictory if we can divide the space  X  on two disjoint subsets  A  and  B  such that 

   P1( A) =1  and    P2 (B) =1 . In other words, sources of information support that events 

 A  and  B  are certain, but it is not possible because these events are disjoint. In clas-
sical logic false implies anything, thus we can write 

P1 ∧ P2 = ∧
Pi∈M pr

Pi = η X
d , 
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where 
 
η X

d  describes the result of conjunction of all possible probability measures 

on 2X . Now we will try to generalize the above rule for two probability measures 
that are not absolutely contradict each other. In this case we can divide probability 
measures on two parts 

   P1 = (1− a)P1
(1) + aP1

(2) ,    P2 = (1− a)P2
(1) + aP2

(2) , 

where    a ∈[0,1] , 
  
Pk

(i ) ∈M pr ,    i =1,2 ,    k =1,2 , and    P1
(1) ,    P2

(1)  are parts of probability 

measures that do not contradict each other, i.e.    P1
(1) = P2

(1) , and probability measures 

   P1
(2) ,    P2

(2)  are absolutely contradict each other. The value  

   
a =1− min{P1({xi}),P2 ({xi})}

xi∈X
∑  

is called the amount of contradiction and the above measures are defined by the fol-
lowing formulas 

   P1
(1) ({xi}) = P2

(1) ({xi}) =
   

1
1− a

min{P1({xi}),P2 ({xi})}, xi ∈X , 

for   a <1  (if   a =1  then the measure    P1
(1) = P2

(1)  is defined arbitrarily); 

 
P1

(2) ({xi}) = 1
a

P1({xi})− (1− a)P1
(1) ({xi})( ) ,  xi ∈X , 

 
P2

(2) ({xi}) = 1
a

P2 ({xi})− (1− a)P2
(1) ({xi})( ) , xi ∈X , 

for   a > 0  (if   a = 0  then absolutely contradictory measures    P1
(2) ,    P2

(2)  are defined 
arbitrarily). 

Example 1. Assume that  X ={x1, x2 , x3}. In this example any probability 

measure P  will be described by a vector 
   

P({x1}),P({x2}),P({x3})( ) . Let probabil-

ity measures P1  and P2  be described by vectors  P1 = (0.4,0.2,0.4)  and 

 P2 = (0.2,0.4,0.4) . Then,    a = 0.8 ,  

   
P1

(1) = P2
(1) = 0.25,0,25,0.5( ) , 

   
P1

(2) = 1,0,0( ) , 
   
P2

(2) = 0,1,0( ) . 

Let us observe that measures    P1
(2) ,    P2

(2)  are absolutely contradictory, because 

   P1
(2) ({x1}) =1  and    P2

(2) ({x2}) =1  for disjoint sets    {x1}  and    {x2} . 
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Summarizing the above discussion we can define the conjunction rule for prob-
ability measures as  

 
P1 ∧ P2 = (1− a)P2

(1) + aη X
d , 

where a  and    P2
(1)  are defined by the above formulas or equivalently 

   
P1 ∧ P2 = min{P1({xi}),P2 ({xi})}η {xi }

xi∈X
∑ + aη X

d , 

where 
 
a =1− min{P1({xi}),P2 ({xi})}

xi∈X
∑ . 

Let  X ={x1,..., xn} . Next, we will describe the contradiction in information us-
ing measures of the type  

   
P = aiη {xi }

i=1

n

∑ + a0η X
d ,   (3) 

where   ai ≥ 0 ,    i = 0,...,n , and 
  

ai
i=0

n

∑ =1 . Observe that 
 
P ∈M pr  if   a0 = 0 , and  P  is 

understood as a contradictory lower probability. If   a0 > 0 , then the value   a0  gives us 
the amount of contradiction. The set of all possible measures, represented by (3), is 
denoted by 

 
M cpr . Let us notice that 

 
M pr ⊆ M cpr .  

It is possible to describe the conjunction rule with the order ≤  on 
 
M cpr  consid-

ered as a partially ordered set.  

Lemma 1. Let 
   
P1,P2 ∈M cpr  and 

   
P1 = aiη {xi }

i=1

n

∑ + a0η X
d , 

   
P2 = biη {xi }

i=1

n

∑ + b0η X
d . Then   P1 ≤ P2  iff  ai ≥ bi ,  i =1,...,n . 

Corollary 1. Let 
   
P1,...,Pm ∈M cpr  and 

   
Pk = ai

(k )η {xi }
i=1

n

∑ +  
 
a0

(k )η X
d ,    k =1,...,m , 

then the exact upper bound  P  of    {P1,...,Pm}  can be computed by 

   
P = ciη {xi }

i=1

n

∑ + c0η X
d , where    ci = min{ai

(1) ,...,ai
(m)} ,    i =1,...,n , 

  
c0 =1− ci

i=1

n

∑ . 

Remark 2. Corollary 1 implies that the conjunction rule of probability 
measures 

   
P1,P2 ∈M pr is the exact upper bound of the set    {P1,P2}. Therefore, we 
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define next the conjunction rule for arbitrary measures 
   
P1,...,Pm ∈M cpr  as the exact 

bound of the set    {P1,...,Pm}  in M cpr . This bound is denoted as    P1 ∧ ...∧ Pm . 

7. Generalized upper and lower credal sets 

Observe that using measures from 
 
M cpr  we can describe contradictory and con-

flicting information. If we try to describe imprecise information with some contradic-
tion and conflict we should consider subsets of 

 
M cpr .  

Let us observe the following fact. Let 
  
P1 ∈M cpr , then 

  
P2 ∈M cpr  with   P2 ≥ P1  

can be used for description the same information but with a greater amount of con-
tradiction. Thus, the subset  P  in 

 
M cpr  describing imprecise information has to satis-

fy the following property 

a)    P1 ∈P , 
  
P2 ∈M pr ,   P1 ≤ P2  implies that    P2 ∈P . 

The next two properties are essential for the most models of imprecise probabil-
ities (cf. credal sets). 

b) if     P1,P2 ∈P  then any mixture of   P1  and   P2  is also in P , in other words, 

 aP1 + (1− a)P2 ∈P  for any  P1,P2 ∈P  and    a ∈[0,1] . 

c) the set  P  is closed in a sense that it can be considered as a subset of Euclidi-

an space (any 
   
P = a0η

d
X + aiη {xi }

i=1

n

∑  is a vector    (a0 ,a1,...,an )  in    
n+1 ).  

Now we can introduce the following definition. A subset P ⊆ M cpr  is called an 

upper generalized credal set if it satisfies conditions a), b), and c). 
The conjunction rule for generalized upper credal sets can be defined as fol-

lows. Let  P1,...,Pm  be non-empty credal sets in 
 
M cpr . Then the credal set P  pro-

duced by the conjunction rule is defined as  

    P = P1 ∩ ...∩Pm . 

Let us introduce new concepts that help to understand this definition. Let  P  be 
a credal set in 

 
M cpr . A subset consisting of all minimal elements in  P  is called the 

profile of  P  and it is denoted by    profile(P) . Evidently, any profile uniquely defines 
the corresponding credal set. If  P  describes the information without contradiction, 
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then    profile(P)  is a credal set in the usual sense, i.e. 
   
profile(P)⊆ M pr . In particular, 

if we have two credal sets    P1,P2  in 
 
M cpr  with 

   
profile(Pi )∈M pr , then applying the 

conjunction rule gives us the profile 

    profile(P1 ∩P2 ) = profile(P1)∧ profile(P2 ) . 

Observe that any upper generalized credal set give us many lower possible 
bounds of probabilities and each possible value is characterized by contradiction. Let 
us denote the amount of contradiction in 

 
P ∈M cpr  by   Con(P ) . Then to characterize 

the possible lower bounds of probabilities computed by an upper generalized credal 
set  P  we introduce the set function  μ

r , where  r  is the level of contradiction, and  

   μ
r ( A) = inf P( A) | P ∈P,Con(P ) ≤ r{ } ,  

where A ∈2X  and  r ∈[0,1] , that can be interpreted as a lower probability for the 
credal set  P  with a level of contradiction  r . 

Lemma 2. For any upper generalized credal set  P  

   μ
r ( A) = inf P( A) | P ∈ profile(P),Con(P ) ≤ r{ } . 

Remark 3. We can consider the generalized upper credal sets whose profiles 
are credal sets in usual sense. In the case, when profiles of upper generalized credal 
sets are credal sets in usual sense, μr  does not depend on  r , and the considered 
model coincides with the model of imprecise probabilities based on usual credal sets.  

We define next lower bounds of expectation. Consider first expectations w.r.t. 
the measures in 

 
M cpr . If 

 
P ∈M pr  then for any function    f : X →  the expectation 

 EP ( f )  is defined as  

  
EP ( f ) = f (x)P({x})

x∈X
∑ . 

We can extend the functional  EP  to the set of all measures in 
 
M cpr  using the 

considered interpretation of a measure 
 
P ∈M cpr  through the conjunction rule. Obvi-

ously,  

 
P = ∧

Pi∈M pr |Pi≤P
Pi , 

Then this conjunction rule is expressed through expectations 
 
EPi

,  Pi ≤ P , as 

(cf. formula (1))  
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E P = ∨

Pi∈M pr |Pi≤P
EPi

. 

Lemma 3. For any 
   
P = a0η

d
X + aiη {xi }

i=1

n

∑  and    f : X →  the value   E P ( f )  

can be computed as  

   
E P ( f ) = a0 max

x∈X
f (x)+ ai f (xi )

i=1

n

∑ . 

Let P  be a credal set in 
 
M cpr . We will define first the lower expectation 

 E P ( f )  for non-negative functions    f : X → . Let the set of all such functions be 

denoted by K + . Because    E P ( f )  is the lower expectation, we can define this value 

for any  f ∈K +  as  

 
E P ( f ) = inf

P∈P
E P ( f ) . 

Let us indicate some properties of E P  on  K
+ . Hereafter we denote by  

+  the 

set of all non-negative real numbers. The function in  K
+  with values equal to 

 a ∈ +  is denoted also by a . We write   f1 ≤ f2  for    f1, f2 ∈K +  if    f1(x) ≤ f2 (x)  for 
all  x ∈X . 

Lemma 4. The functional   E P  on K + has the following properties 

1)     E P (0) = 0 ;     E P (1) =1 ; 

2)  E P ( f + a) = E P ( f )+ a  for any  f ∈K +  and  a ∈ + ; 

3)    E P (af ) = aE P ( f )  for any  f ∈K +  and  a ∈ + ; 

4)     E P ( f1) ≤ E P ( f2 )  for    f1, f2 ∈K +  if   f1 ≤ f2 . 

Let us consider also the dual concept of generalized upper credal sets. In this 
case we describe uncertainty by set functions from the set M cpr

d . Any measure  P  in 

M cpr
d  is represented as 

   
P = a0η X + aiη {xi }

i=1

n

∑ , 
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where   ai ≥ 0 ,  i = 0,...,n , and 
  

ai
i=0

n

∑ =1 , and it is conceived as an upper probability. 

The value   a0  shows the amount of contradiction. If   a0 = 0 , then  P  is a probability 

measure. Evidently, measures from 
 
M cpr

d  describe conflict and contradiction in in-

formation and we can define the upper expectation   EP ( f )  for any  f ∈K  w.r.t. 

arbitrary P  in 
 
M cpr

d  through the Choquet integral 

   
EP ( f ) = f (x)dP =

X
∫ a0 min

x∈X
f (x)+ ai f (xi )

i=1

n

∑ . 

For describing conflict, contradiction and non-specificity with the help of 
measures in M cpr

d , we introduce the notion of lower generalized credal set. By defi-

nition, a lower generalized credal set  P  is a non-empty subset of 
 
M cpr

d  with the 

following properties 

a)    P1 ∈P , P2 ∈M cpr
d ,   P1 ≥ P2  implies that    P2 ∈P . 

b) if     P1,P2 ∈P , then any convex sum of   P1  and   P2  is also in  P , in other 

words,  aP1 + (1− a)P2 ∈P  for any  P1,P2 ∈P  and  a ∈[0,1] . 

c) P  is closed set if we consider it as a subset of Euclidian space (any 

   
P = a0η

d
X + aiη {xi }

i=1

n

∑  is a vector    (a0 ,a1,...,an )  in    
n+1 ).  

Let us observe that definitions of upper and lower credal sets formally differ by 
item a). The set of all maximal elements in a generalized lower credal set P  is called 
profile and it is denoted by    profile(P) . Emphasize that generalized lower and upper 

credal sets are dual concepts, for instance, if P  is a credal set in 
 
M cpr , then   P

d  is a 

credal set in M cpr
d ; profiles of  P  and   P

d  are also connected with the dual relation: 

   profile(P)d = profile(Pd ) ; if  P1,...,Pm  are credal sets in M cpr , then the expression 

for the conjunction rule is defined by the same way for the credal sets in M cpr  and 

 
M cpr

d , and 
    

P1 ∩ ...∩Pm( )d
= P1

d ∩ ...∩Pm
d . 

The upper expectation    EP ( f )  of  f ∈K +  w.r.t. the credal set  P  in 
 
M cpr

d  is de-

fined as 
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EP ( f ) = sup

P∈P
EP ( f ) . 

It is easy to check that the functional   EP  obeys the same properties as   E P  de-

scribed in Lemma 4. The duality property of functionals E P  and EP  on  K
+  is de-

scribed in the following lemma.  

Lemma 5. 
   
E

Pd ( f ) = a− E P (a− f ) , where P  is a credal set in 
 
M cpr , f ∈K + , 

and 
 
a = max

x∈X
f (x) . 

Remark 4. Next we will extend functionals   E P  and EP  on the set  K  of all 
real valued functions, assuming that the property 2) from Lemma 4 is valid for func-
tions in  K . Then for any  f ∈K  the values    E P ( f )  and    EP ( f )  are computed by  

   E P ( f ) = E P ( f )− a ,    EP ( f ) = EP ( f )− a ,  

where 
 
a = min

x∈X
f (x) , and  f = f − a . Clearly  f ∈K +  and there exists  x ∈X  such 

that  f (x) = 0 . We will call such functions normalized and keep the notation f  (us-
ing lower bar). Let us notice that all properties formulated in Lemma 4 remain valid 
for functionals E P  and   EP  on  K . The dual relation between E P  and   EP  can be 

reformulated as 
   
E

Pd ( f ) = −E P (− f )  for any credal set in 
 
M cpr  and f ∈K . 

The next lemma gives us the additional characteristic property of EP , which, as 

we will see later, helps us to describe the whole set of functionals   E P  and   EP . 

Lemma 6. Let 
   
f

1
, f

2
, f

3
 be normalized functions in  K

+  and 
  
f

1
+ f

2
= f

3
. 

Then the inequality EP f
1( ) + EP f

2( ) ≥ EP f
3( )  holds for any credal set P  in 

 
M cpr

d . 

Theorem 1. A functional    Φ : K + →  coincides with   EP  on  K
+  for some 

credal set P  in M cpr
d  iff it has the following properties 

1)   Φ(0) = 0 ;   Φ(1) =1 ; 

2)   Φ( f + a) = Φ( f )+ a  for any  f ∈K +  and   a ∈ + ; 

3)   Φ(af ) = aΦ( f )  for any  f ∈K +  and   a ∈ + ; 

4)    Φ( f1) ≤ Φ( f2 )  for    f1, f2 ∈K +  if   f1 ≤ f2 ; 
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5) 
  
Φ f

1( ) +Φ f
2( ) ≥ Φ f

3( )  for any normalized functions 
   
f

1
, f

2
, f

3
 in K +  

such that 
  
f

1
+ f

2
= f

3
. 

8. Generalized coherent upper previsions 
Let  ′K ⊆ K , where  K  is the set of all functions of the type    f : X → , and 

let    E : ′K →  be the functional that defines the upper previsions, that may not sat-
isfy the avoiding sure loss condition. Then  E  defines the non-empty lower general-
ized credal set  P  in 

 
M cpr

d  as 

 
P = P ∈M cpr

d |∀f ∈ ′K : EP ( f ) ≤ E ( f ){ }     (4) 

iff 
  
inf
x∈X

f (x) ≤ E ( f )  for all  f ∈ ′K . Based on generalized credal set  P , we can de-

fine the natural extension of  E  by  

   ′E ( f ) = sup EP ( f ) | P ∈P{ } = EP ( f )  for all  f ∈K . 

Theorem 2. Let    E : ′K →  be the functional that defines the upper previsions. 
Then its natural extension    ′E : K →  based on generalized credal sets can be com-
puted as  

    
′E f( ) = inf ak

k
∑ E fk( ) + a |

⎧
⎨
⎩

ak
k
∑ fk + a1 ≥ f , fk ∈ ′K ,ak ,a ≥ 0

⎫
⎬
⎭

,  

where  f , 
 
fk  are normalized functions and 

 
′E f( ) = ′E f( )− b , 

 
E fk( ) = E fk( )− bk , 

  
b = min

x∈X
f (x) , 

  
bk = min

x∈X
fk (x) . 

9. Conclusion 
We have generalized the conjunction rule for general theories of imprecise 

probabilities using the way of modeling contradiction (conflict) in the evidence theo-
ry. This allows us to introduce upper and lower generalized credal sets and represent 
the conjunction rule as the intersection of corresponding generalized credal sets. The 
paper contains also some insights of how this model can be used in the theory of 
imprecise probabilities admitting contradiction. 
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Appendix1 

Proof of Lemma 1. Necessity. Let P1 ≤ P2 , then in particular, 

   
P1 X \{xi}( ) ≤ P2 X \{xi}( ) ,    i =1,...,n , or equivalently, 1− ai ≤1− bi , or ai ≥ bi , 

   i =1,...,n . 

Sufficiency. Let ai ≥ bi ,    i =1,...,n , then  

   

P1 = biη {xi }
+ (ai − bi )η {xi }( )

i=1

n

∑ + a0η X
d ≤

≤ biη {xi }
+ (ai − bi )η X

d( )
i=1

n

∑ + a0η X
d = P2 .

 

Proof of Lemma 2. Because the set  P  is closed, we have 

   
P ={P ∈M cpr |∃ ′P ∈ profile(P) : P ≥ ′P } . This implies the required result. 

Proof of Lemma 3. Because  P  is a plausibility function (2-alternative meas-
ure), the value  E P ( f )  is expressed through the Choquet integral 

  
E P ( f ) = f (x)dP =

X
∫

   
a0 f (x)dηd

X
X
∫ + ai f (x)dη {xi }

X
∫

i=1

n

∑ =

   
= a0 max

x∈X
f (x)+ ai f (xi )

i=1

n

∑ . 

In the last expression we use the additivity of the Choquet integral w.r.t. the sum of 
measures, and also that 

  
f (x)dη {xi }

X
∫ = f (xi )  and 

  
f (x)dηd

X
X
∫ = max

x∈X
f (x) . 

Proof of Lemma 5. Notice that the validity of 
  
E

P d ( f ) = a− E P (a− f )  for 

 
P ∈M cpr  follows from the properties of the Choquet integral. By definition 

   
E

Pd ( f ) = sup
P d∈Pd

E
P d ( f ) = sup

P∈P
a− E P (a− f )( ) =  

   
= a− inf

P∈P
E P (a− f ) = a− E P (a− f ) . 

                                                             
1 Straightforward proofs are omitted. 
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Proof of Lemma 6. Because by definition the credal set P  is closed, there ex-

ists   P ∈P  such that 
   
EP f

3( ) = EP f
3( ) . Assume that 

 
P = a0η X + aiη {xi }

i=1

n

∑ . Notice 

that in this case  

   
EP f

k( ) = ai f
k
(xi )

i=1

n

∑ ,    k =1,2,3 , 

since 
 
min
x∈X

f
k
(x) = 0 . Thus, 

  
EP f

1( ) + EP f
2( ) = EP f

3( ) . In addition, clearly 

EP f
k( ) ≥ EP f

k( ) ,    k =1,2 . This implies the inequality from the lemma. 

Proof of Theorem 1. Necessity follows from Lemma 4 (see Remark 4) and 
Lemma 6. Let us prove sufficiency. It is sufficient to show that for any normalized 
function f  there is a 

 
P ∈M cpr

d  such that 
 
Φ f( ) = EP f( )  and Φ ≥ EP . Because f  

is normalized there is xk ∈X  such that  f (xk ) = 0 . Let us consider the set  ′K  of all 

functions  f  in  K
+  with  f (xk ) = 0 . Let us notice that the monotone functional Φ  

on  ′K  is sublinear, and by Hahn-Banach’s Theorem there is a linear functional on 
 ′K   

   
α( f ) = ai f (xi )

i=1

n

∑ , 

such that   ai ≥ 0 ,    i =1,...,n , ai
i=1

n

∑ ≤1 ,α ≤ Φ  and 
 
α f( ) = Φ f( ) . Obviously, we can 

assume that ak = 0 . Introduce into consideration 

 
P = a0η X + aiη {xi }

i=1

n

∑ , 

where a0 =1− ai
i=1

n

∑  and show that 
 
Φ f( ) = EP f( )  and Φ ≥ EP . The equality 

 
Φ f( ) = EP f( )  is obvious. Let us show that  Φ( g) ≥ EP ( g)  for any  g ∈K + . Obvi-

ously,   Φ( g) ≥ EP ( g)  iff Φ g( ) ≥ EP g( ) . Notice that EP g( ) = EP ′g( ) , where 

  ′g (xi ) = g(xi )  for  i ≠ k  and    ′g (xi ) = 0  otherwise. Since  ′g ≤ g , we get  

 
EP g( ) = EP ′g( ) ≤ Φ ′g( ) ≤ Φ g( ) . The theorem is proved.  
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Proof of Theorem 2. Let us show first that the functionals  E  and  ′E  define 
the same credal set, i.e. the credal set  P  defined by (4) is equal to  

   
′P = P ∈M cpr

d |∀f ∈K : EP ( f ) ≤ ′E ( f ){ } . 

The inclusion  ′P ⊆ P  is obvious. Let   P ∈P , then by our assumption 

 
EP fk( ) ≤ E fk( )  for  fk ∈ ′K  and  

   
EP f( ) = P({xi})

i=1

n

∑ f (xi ) ≤
   

P({xi})
i=1

n

∑ ak
k
∑ fk (xi )+ a

⎛
⎝⎜

⎞
⎠⎟
≤  

   
≤ P({xi})

i=1

n

∑ ak
k
∑ fk (xi )+ a =

 
ak

k
∑ EP fk( ) + a ≤ ak

k
∑ E fk( ) + a . 

Thus, P ⊆ ′P , i.e.  ′P = P . Let us show that the functional ′E  obeys all properties 

on K + given in Theorem 1. It is easy to check that properties 1),2),3),5) hold. Let us 
show that the monotonicity property 4) is also satisfied. For this purpose introduce 
into consideration the functional  

    
Φ f( ) = inf ak

k
∑ E fk( ) + a | ak

k
∑ fk + a1 ≥ f , fk ∈ ′K ,ak ,a ≥ 0

⎧
⎨
⎩

⎫
⎬
⎭

 

on  K
+ . Evidently, 

 
′E f( ) = Φ f( )  for every  f ∈K+ . It is easy to check that this 

functional on  K
+  has the following properties 

1)  Φ(0) = 0 ,  Φ(1) ≤1 ; 

2)  Φ(af ) = aΦ( f )  for any  f ∈K +  and   a ∈ + ; 

3)    Φ( f1) ≤ Φ( f2 )  for    f1, f2 ∈K +  if   f1 ≤ f2 ; 

4) Φ f1( ) +Φ f2( ) ≥ Φ f3( )  for any functions    f1, f2 , f3  in K +  such that 

f1 + f2 = f3 . 

By Hahn-Banach’s Theorem for every f ∈K +  there is a linear functional on 

K +  
   
α( f ) = ai f (xi )

i=1

n

∑  such that   ai ≥ 0 ,    i =1,...,n , 
  

ai
i=1

n

∑ ≤1 ,α ≤ Φ  and 

 
α f( ) = Φ f( ) . We will use next this functional for proving monotonicity of  ′E . 

Consider an arbitrary   f , g ∈K +  such that  f ≤ g . Let  f = f + c . Then inequality 
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  ′E ( f ) ≤ ′E ( g)  is equivalent to   ′E ( f ) ≤ ′E ( ′g ) , where ′g = g − c . Obviously, 

  
′E f( ) = Φ f( ) ≤ Φ( ′g ) . By previous conclusions, there is a linear functional 

 
α( f ) = ai f (xi )

i=1

n

∑  on  K
+  such that ai ≥ 0 ,    i =1,...,n , ai

i=1

n

∑ ≤1 , α ≤ Φ  and 

α ′g( ) = Φ ′g( ) . Let 
  
P = a0η X +

   
aiη {xi }

i=1

n

∑ , where 
  
a0 =1− ai

i=1

n

∑ . It is easy to see 

that P ∈P  and 
 
Φ ′g( ) ≤ EP ′g( ) ≤ ′E ′g( ) , i.e.   ′E ( f ) ≤ ′E ( ′g )  and  ′E ( f ) ≤ ′E ( g) . 

Thus, we prove that the functional  ′E  obeys all properties from Theorem 1. 
This means that it is the natural extension of  E . 
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Броневич, А. Г. 
Обобщение конъюнктивного правила для агрегирования противоречивых источников ин-

формации, базирующегося на обобщенных кредальных множествах: препринт WP7/2015/01 
[Текст] / А. Г. Броневич ; Нац. исслед. ун-т «Высшая школа экономики». – М. : Изд. дом Выс-
шей школы экономики, 2015. – 28 c. – 35 экз. (In English.)

Рассматривается обобщение конъюнктивного правила в теории неточных вероятностей. 
Напомним, что конъюнктивное правило, действующее на кредальные множества, дает их пере-
сечение, и оно не определяется, если это пересечение пусто. В последнем случае источники 
информации называются конфликтующими или противоречивыми. Между тем, в теории 
Демпстера-Шейфера оказывается возможным использовать конъюнктивное правило для кон-
фликтующих источников информации, где в качестве результата получается ненормированная 
функция доверия, которая может принимать положительное значение на пустом множестве. 
Мы используем эту модель и вводим в рассмотрение так называемые обобщенные кредальные 
множества, позволяющие моделировать неточность, конфликт и противоречивость информа-
ции. С помощью обобщенных кредальных множеств конъюктивное правило агрегирования 
информации корректно определяется, и это правило можно рассматривать как обобщение конъ-
юнктивного правила для функций доверия. В статье также показывается, как можно использо-
вать обобщенные кредальные множества для обработки противоречивой информации, и для 
этого случая исследуются условия когерентности и процедура естественного продолжения. 

Ключевые слова: неточные вероятности, конъюнктивное правило, обобщенные кредаль-
ные множества, конфликтующие (противоречивые) источники информации 
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