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1. Introduction

In the theory of imprecise probabilities [Walley, 1991; de Cooman, Troffaes,
2014; Augustin et al., 2014] there are many models for describing uncertainty: credal
sets, upper and lower probabilities, lower and upper coherent previsions, sets of de-
sirable gambles, etc. But in any case, we can equivalently represent the information
with the help of the sets of probability measures. As one can check, up to now there
are no many works concerning the case when the available information is contradic-
tory, i.e. the avoiding sure loss condition is not satisfied.

However, in the theory of evidence [Shafer, 1976; Denoeux 2008; Smets, 2007]
there is a possible way to describe contradiction based on transferable belief model.
In that model contradictory information can described by assigning non-zero values
to the corresponding belief function at empty set. In this paper we will try to exploit
this idea that leads to some generalizations of the theory of imprecise probabilities, in
particular based on this idea it is possible to extend the conjunction rule for aggregat-
ing belief functions for more general theories of imprecise probabilities [Bronevich,
Rozenberg, 2014, 2015].

Let us notice that in the literature one can find results concerning the aggrega-
tion rules for imprecise probabilities [Troffaes, 2007; Destercke, Antoine, 2013; Nau,
2002; Moral, Sagrado, 1997]. The rule from [Troffaes, 2007] deals with lower previ-
sions and generalizes the pooling method for aggregation of probability measures. In
[Destercke, Antoine, 2013] the aggregation rule is based on an idea that non-
conflicting information should be aggregated in conjunction manner, and conflicting
information should be aggregated in disjunction manner. In [Nau, 2002] the proposed
aggregation rules are based on modeling the interaction among experts’ opinions.
Moral and Sagrado [1997] try to get the aggregation rule for credal sets with proper-
ties close to the conjunction rule but their rule is based on some heuristic algorithmic
procedure.

The paper has the following structure. Sections 2 and 3 remind some definitions
from the theory of monotone measures, belief functions and the theory of imprecise
probabilities. Then in Sections 4 and 5 we describe the basic rules of aggregation in
general theories of imprecise probabilities and investigate the connection of these
rules to the Dempster-Shafer rule in evidence theory. After that we try to generalize
the conjunction rule firstly for probability measures, and secondly for general models
of imprecise probabilities using so-called generalized credal sets in Sections 6 and 7.
Based on generalized credal sets it is possible to model contradiction in information
and introduce analogous notions and constructions as in the traditional theory of im-
precise probabilities like coherence and natural extension, as shown in Sections 8
and 9.



2. Some definitions and notations from the theory
of non-additive measures

Let X be a non-empty finite set and let 2* be the power set of X . We will
consider set functions on the algebra 2* of various types: monotone measures,

probability measures, lower and upper probabilities. A set function w:2* —[0,1] is
called

1) normalized if W(&)=0 and u(X)=1;

2) monotone if 4,Be2* and Ac B implies u(A4) <u(B);

3) additive if w(A)+uw(B)=w(ANB)+u(AUB) forall 4,Be2”;

4) 2-monotone if w(A)+w(B)<u(AnB)+u(AUB) forall 4,Be2*;

5) 2-alternative if w(A)+u(B)=w(ANB)+u(AuB) forall 4,Be2”;

6) a monotone measure if it is monotone and normalized;
7) a probability measure if it is additive and normalized,

8) a belief function if there is a non-additive set function m:2* —[0,1] called
the basic belief assignment (bba) such that Y, m(4)=1 and p(B)= Y m(A).

Ae2¥ AcB
The following operations on set functions are defined:
a) convex sum: p=ap, +(1-a)u,, where a<[0,1], if

w(A) = ap, (A)+(1-a)u,(A) forall 4e2*;
b) w, <, if u,(A)<p,(A) forall A2

c) u isthe dual of p if u?(4)=1-p(A) forall Ae2”.

Let us remind that the theory of evidence models uncertainty with the help of
belief functions. In this theory (e.g. transferable belief model) we describe contradic-
tion using non-normalized belief functions, i.e., it is possible that Be/(J)>0 for

belief function Bel . Let Bel be a belief function with the bba m . Then
—aset Ae2” is called focal for Bel if m(A)>0;

— the set of all focal elements is called the body of evidence;



— Bel is called categorical if its body of evidence contains only one focal ele-
ment. Any categorical belief function W5 with focal element B can be computed

as

1 Bc A
A)= ' =
ﬂ<3>( ) { 0, otherwise;

— Bel is a probability measure iff m(4)=0 forall 4e2" with [4>2. In this
paper we also consider non-normalized probability measures P for which
P(D)>0.

—any belief function p has the following representation through categorical be-
lief functions: Bel/ = Y m(B)N,,, -

B2
In the sequel we will use the following notations:
M, is the set of all probability measures on 2% and Mp, is the set of all prob-
ability measures including non-normalized probability measures.
M,, and M, are the sets of all belief functions on 2* and the bar indicates

that belief functions from M,, may be non-normalized;
M, is the set of all monotone measures on 2* ;

M, is the set of all 2-monotone measures on 2* ;

if M is a family of set functions, then we denote M ={u" lue M} . For ex-
ample, M, denotes the set of all plausibility functions, which are dual to belief

functions, or M? s the set of all 2-alternative measures on 2% .

2-mon

3. Models of imprecise probabilities:
lower and upper probabilities and credal sets

Assume that p:2* —[0,1] is a set function that gives us lower bounds of prob-
abilities. Then this function avoids sure loss iff there is a probability measure
PeM, suchthat u<P . If avoiding sure loss condition is not fulfilled, then the



information described by  is contradictory. Any non-contradictory lower probabil-
ity function p defines the non-empty set of probability measures

P(u)={PeMW|P2u}

called the credal set. Generally, a set P of probability measures called a credal set if
it is convex and closed.

Analogously the model of upper probabilities is introduced. Let us suppose that
v:2% —0,1] gives us the upper bounds of probabilities. Then this function avoids
sure loss iff there is a probability measure P e M, such that v= P In this case we
call an upper probability function non-contradictory and describe it by a credal set

P(v):{PeMpr |P£v}.

We can equivalently replace the model based on lower probabilities by the
model based on upper probabilities. For this purpose we transform any lower proba-
bility function pu to the upper probability function u“. It easy to show that

{PeMW|Psw‘}={PeMW|P2u},

i.e. the corresponding credal sets coincide.

Let us introduce also coherent lower and upper probabilities. A non-
contradictory lower probability w is called coherent if for any Ae2” there exists
PeM, suchthat u(4)=P(A) and p< P, in other words,

u(4) = inf{P(4)| P e P(u)},
where P(u) ={P eM,|P zu} .

Analogously, a non-contradictory upper probability v is called coherent if for
any Ae2* there exists Pe M, suchthat v(A4)=P(A) and v= P, in other words,

v(A)=inf{P(4)| P eP(v)},
where P(v) ={PeMpr |P> v}.

Coherent lower probabilities and coherent upper probabilities are connected
with the dual relation, i.e., if | is a coherent lower probability then u“ is the coher-
ent upper probability. We can also generate a coherent lower probability p and co-
herent lower probability v using a credal set P by formulas



u(A4)=inf{P(4)| PP}, v(A)=sup{P(4)| PP},

where A e2”, and obviously, v=u? in this case.

Let u be a non-contradictory lower probability. Then we can improve lower
bounds of probabilities using the natural extension. It is defined as

W (A)=inf{P(4) | P P(W)],
where Ae2¥. Clearly, u_, is a coherent lower probability.

Let use remind that any credal set can be equivalently defined with the help of
lower previsions. Let K’ be a subset of the set K of all real functions of the type
f:X —R. Insome cases we assume that K= K . Then lower previsions on K’

are defined by the functional E: K’ — R. This functional defines the credal set

P(E):{PeMpr |erK':Zf(x)P({x})zg[f]}.
xeX
If the credal set P(E) is empty then lower previsions does not satisfy the

avoiding sure loss condition and we say that lower previsions contain contradiction.
In some sense lower previsions can be understood as lower bounds of expectations of
random variables in K’ .

The model based on lower previsions is more general than the model based on
lower probabilities because we obtain the last model if we assume that

1 A, . . .
k' ={1,} . where I (x) :{ * X€% i the characteristic function of the set
Ae2 0, xe A:

A . We can improve the lower bounds of expectations using the procedure called the
natural extension

E[f]= inf{zf(x)P({x}) |Pe P(E)} :
xeX

Note that this procedure is not defined if P(£)=O . Let us remind that the function-

al E defines coherent lower previsions if E'[ f]=E[ /] forall feK’.

Analogously, upper previsions are introduced. Any functional £:K’— R can
be conceived as upper previsions. The upper previsions are not contradictory (or
avoid sure loss) iff the credal set



P(E):{Pe M, \NfeK Y f(x)P{x})< E[f]}

xeX

is not empty. We can improve the upper bounds of expectations using the natural
extension

E'[f}zsup{Zf(x)P({x}NPeP(E)}.
If E'[f]=E[f] forall feKk’, then E is a coherent upper prevision. Let us

notice that we can equivalently describe uncertain information by lower or upper
previsions. If the functional E:K’— R describes the lower previsions then we can

equivalently describe the same information by upper previsions defined by the for-
mula

E[ f]=-E[-f] forall -f eK’

4. The disjunction and conjunction rules
for aggregating sources of information

Let we have n sources of information described by credal sets P,,...,P . Then

there are several possible ways for aggregating this information that depends on prior
assumptions. If we assume that each source of information is reliable then we can
aggregate them using intersection of the corresponding sets

P=Pn..nP,.

This rule of aggregation is called the conjunction rule. It is easy to see that if we
describe credal sets with the help of lower probability functions w,,...,u, , then the
conjunction rule can be represented as

LW=W, V..V,
where v is the maximum operation.

The last formula is justified because in this case

P(w)=P(u)n..nP,).

If we describe sources of information by upper probabilities w,,...,iu, , then the
conjunction rule is clearly expressed with the minimum operation A as

L= AAR .



Analogously, the conjunction rule is expressed in models based on lower previ-

sions £, :K’—=R, i=1,..,n, or upper previsions E,:K'—>R, i=1,...,n,as
E:QVMVQ,E=EAMAE. (1)

We would like to emphasize that there are other rules for aggregation of infor-
mation sources. If we know that at least one source of information is reliable and all
sources of information are represented by credal sets P,,...,P , then we can use the
disjunction rule, in which the result is the minimal credal set P that contains the
corresponding credal sets P, i=1,..,n. This disjunction rule is expressed through
lower previsions E :K’—R, i=1,.,n, or upper previsions E[ K'—>R,
i=1,.,n,as

E:QAMAQ,E=EVMVE.

The mixture rule can be used if we can evaluate the reliability of information.
Let us assume this reliability is given by non-negative numbers a,, i=1,...,n, such

that Za,. =1. Then we can aggregate sources of information described by credal

i=1

sets P, i=1,..,n,as

Pz{Zal.Pi | P eg,f=1,...,n}.

i=1
The counterparts of this rule for lower previsions £ :K’—R, i=1,..,n, or

upper previsions E.:K’—R, i=1,..,n, are
E=YaE or E=YaE,.
i=1 i=1

Let us notice that other possible aggregation rules have properties more or less
similar to the considered rules.

Let us observe that the conjunction rule can be used if the resulting credal
set is not empty. In the opposite case we say that there is contradiction among
sources of information. Meanwhile, in evidence theory the conjunction rule is also
applicable if the sources of information are contradictory. In the next section we will
introduce such conjunction rules, considered in [Bronevich, Rozenberg, 2015], and
give some hints how they can be generalized in the theory of imprecise probabilities.



5. Conjunction rules of aggregation in evidence theory,
the order of specialization

Let Bel = m(A)n,, and Bel, = Y m,(B)n,, be belief functions. Then

A2 Be2¥
the generalized Dempster-Shafer (GD-S) rule in conjunctive form [Bronevich, Ro-
zenberg, 2015] is defined by

Bel= 3, m(A,BM,, ;.

A,Be2X

where the set function m:2¥ x2* —[0,1] has to obey the following system of
equalities
Y, m(A,B)=m(A4), Ae2”,

Be2¥ )
Y m(A,B)=m,(B), Be2". @

Ae2¥

Observe that we get the classical Dempser-Shafer rule in conjunctive form if
m(A,B)=m (A)m,(B) for any A,Be2* . The use of such general rule can be ex-
plained using the interpretation of belief functions through random sets.

A random set & is a random variable taking its values in 2* . Any such random
variable can be defined by probabilities P(§= A), and these probabilities can be
identified with values m(A) in evidence theory. Let & and &, be two random sets
with values in 2* . If we assume that these random sets are independent, then

P& = A&, =B)=P(E = A)PE,=B).

The using of classical D-S rule in conjunctive form means that from two
sources of information described by independent random sets & and &, we obtain a
new random set & defined by

PE=C)= Y, P(§ =A)PE,=B).
ANB=C
Thus, the generalization of D-S rule can be obtained if we assume that random
sets & and &, can be dependent. In this case we can only guarantee that the non-
negative set function m(4,B)= P(E, = A,§, = B) obeys (2).

Let us notice that the GD-S rule is not uniquely defined and it can be also ap-
plied in a case, when the sources of information are contradictory. The ways of

10



choosing optimal GD-S rules according to several justified criteria can be found in
[Bronevich, Rozenberg, 2015]. The main conclusion from [Bronevich, Rozenberg,
2015] is that an optimal GD-S rule should be chosen among Pareto optimal GD-S
rules w.r.t. the partial order on belief functions called specialization.

Let Bel, and Bel, be belief functions with bbas m and m,. We write
Bel, < Bel, if Bel, can be obtained from Be/, using a linear contraction transform

®:2"x2* >[0,1], ie. my(B)=Y ®(A4 B)m(A), and the set function

Ae2*

®:2% x2% —-10,1] has the following properties
a) Y ®(4,B)=1 forany Be2*;

Be2¥
b) ®(4,B)=0 if AcB.
The partial order < is called specialization. It is easy to show [Dubois & Prade,

1986] that Bel, < Bel, implies Bel < Bel,, but the opposite is not true in general.

The main results [Bronevich, Rozenberg, 2015] showing the connections of general-
ized D-S rules and the order < are given in the next propositions.

Proposition 1. If Bel is the result of a GD-S rule applied to Bel,,Bel, e M, ,,
then Bel < Bel and Bel, < Bel . Furthermore, each minimal element of the set
Bel(Bel,, Bel,) ={Bel € M,, | Bel, < Bel, Bel, < Bel} w.r.t. to the order =< for arbi-
trary Bel,, Bel, € M,, can be obtained by a GD-S rule.

This result shows that the optimal choice of a GD-S rule should be made to get
the best approximation of the set function max{Bel/ , Bel,}, and this choice should be

obviously made in the set of minimal elements of Bel(Be/,, Bel,) w.rt. < that can
be obtained by so called Pareto optimal GD-S rules.

Proposition 2. The order =< is equivalent to the order < on the set Mp,- In

addition if Be/ < P for Pe]l_lpr and Bel e M, ,then Bel < P . Furthermore,

Bel !
Bel(A)=inf{P(A)| P eP(Bel)},
where P(Bel)= {P €M, | Bel < P} .

Remark 1. Proposition 2 shows that in the evidence theory any belief function
can be equivalently represented by P(Bel) that may be called a generalized credal

11



set. Such a construction with a slightly different definition will be introduced in the
next section. Clearly, the above proposition allows us to write

P(Bel) = {P €M, |Bel < P} .

Let Bel,, Bel, e M,,. Then we denote by GDS(Bel,, Bel,) the set of all possi-
ble belief measures that can be obtained by GD-S rules applied to Be/, and Bel, .

Then the amount of contradiction between Bel/, and Bel, by GD-S rules can be
computed as

Con(Bel,, Bel,) = inf { Bel(@)| Bel € GDS(Bel,, Bel,)} .

Let us observe that this measure of contradiction (or conflict) is considered in
many papers [Bronevich, Rozenberg, 2015; Cattaneo, 2003, 2011; Destercke &

Burger, 2013], where authors show that Con(Bel,, Bel,) has better properties than a

measure of conflict based on classical D-S rule.
Proposition 3. Let P(Bel,.)z{PeA_lpr | Bel, SP}, where Bel.eM,,, i=1,2.
Then
Con(Bel,, Bel,) = inf { P(Q) | P e P(Bel,) "P(Bel,)} .

Thus, in this section we has shown that it is possible to extend the model of
non-normalized belief functions on more general theories of imprecise probabilities
using generalized credal sets, and this problem will be investigated in the next sec-
tions.

6. The conjunction rule for probability measures
admitting contradiction

Let us consider the case when we have 2 sources of information described by
probability measures P, and P, . These sources of information are absolutely contra-

dictory if we can divide the space X on two disjoint subsets 4 and B such that
P(A)=1 and P,(B)=1. In other words, sources of information support that events

A and B are certain, but it is not possible because these events are disjoint. In clas-
sical logic false implies anything, thus we can write

PAP= A P=v'

pem, i X))’

12



where nz’x> describes the result of conjunction of all possible probability measures

on 2% . Now we will try to generalize the above rule for two probability measures
that are not absolutely contradict each other. In this case we can divide probability
measures on two parts

P=(1-a)P"+aP?, P,=(1-a)P" +aP?,
where a[0,1], P eM  , i=12, k=1,2,and PO, P! are parts of probability

measures that do not contradict each other, i.e. P =P", and probability measures

P P@ are absolutely contradict each other. The value

a=1-Y min{P{x}).,P,{x 1}

xeX

is called the amount of contradiction and the above measures are defined by the fol-
lowing formulas

POGY) = PV} = T mingPx . @D} K e X

for a<1 (if a=1 then the measure A" = P is defined arbitrarily);
1
PO =—(R@xD-1-a) P (xD), x e X,

PO =L (P H- (-0 P (Ex]). 52X

for a>0 (if a=0 then absolutely contradictory measures P, P are defined
arbitrarily).

Example 1. Assume that X ={x,x,,x,}. In this example any probability
measure P will be described by a vector (P({x,}), P{x,}), P{x,})). Let probabil-
ity measures P and P, be described by vectors P =(0.4,0.2,0.4) and

1

P,=(0.2,0.4,04). Then, a=0.8,
PO =P =(025,0,250.5), B =(1,0,0), P”=(0,1,0).

Let us observe that measures P®, P! are absolutely contradictory, because

PO{xP=1 and PP({x,})=1 for disjoint sets {x,} and {x,}.

13



Summarizing the above discussion we can define the conjunction rule for prob-
ability measures as

PAR=(1-a)P" +an,

where a and Pz“) are defined by the above formulas or equivalently

PAP= 3 min{B @, BEx I, +an

xeX

where a=1-Y min{P{x.}),P,{x}}.

xeX
Let X ={x,,...,x,}. Next, we will describe the contradiction in information us-

ing measures of the type

P= ;am oo F My ®)

where @20, i=0,..,n,and ) a =1.Observe that Pe M if q =0, and P is

i=0
understood as a contradictory lower probability. If a, >0, then the value a, gives us

the amount of contradiction. The set of all possible measures, represented by (3), is
denoted by M . Letusnoticethat M, < M_ .

It is possible to describe the conjunction rule with the order < on MW consid-
ered as a partially ordered set.

Lemmal. Let ,P,e M  and P, =Zal.n<{x}> +a0n2’X>,
i=l !

P, =;bin<{xr}>+b0nz’x> .Then P <P, iff a 2b,, i=1,.,n.

Corollary L. Let A,...P, €M, and B, =>ang  + a'ni,, k=1..m,
i=1 !

(x

then the exact upper bound P of {B,..., P} can be computed by

P=Zcin<{xl}>+c0nz’x>,where ¢,=min{a®,...a™}, i=1,..n, ¢,=1-Yc, .
i=1

Remark 2. Corollary 1 implies that the conjunction rule of probability
measures B, P, e M is the exact upper bound of the set {F,P,}. Therefore, we

14



define next the conjunction rule for arbitrary measures B,,..

bound of the set {#,,...,P,} in M_ . This bound is denoted as A A...A P, .

wP,eM_ as the exact

7. Generalized upper and lower credal sets

Observe that using measures from MW we can describe contradictory and con-

flicting information. If we try to describe imprecise information with some contradic-
tion and conflict we should consider subsets of M_ .

Let us observe the following fact. Let A e M, then P,e M with P, >P,

can be used for description the same information but with a greater amount of con-
tradiction. Thus, the subset P in MW describing imprecise information has to satis-

fy the following property

a) RbeP, PeM , P<P impliesthat P, cP.

The next two properties are essential for the most models of imprecise probabil-
ities (cf. credal sets).

b) if P,P, P then any mixture of P and P, is also in P, in other words,
aP,+(1-a)P,eP forany P,P eP and a<[0,1].

c) the set P is closed in a sense that it can be considered as a subset of Euclidi-

an space (any P= aonz’x> +2a,.n<{xl}> is a vector (a,,a,,...,a,) in R™).
i=1

Now we can introduce the following definition. A subset P c MW is called an

upper generalized credal set if it satisfies conditions a), b), and c).
The conjunction rule for generalized upper credal sets can be defined as fol-

lows. Let P,...P ~be non-empty credal sets in M _ . Then the credal set P pro-
duced by the conjunction rule is defined as
P=Pn..nP,.
Let us introduce new concepts that help to understand this definition. Let P be
acredal setin M_ . A subset consisting of all minimal elements in P is called the

profile of P and it is denoted by profile(P) . Evidently, any profile uniquely defines
the corresponding credal set. If P describes the information without contradiction,

15



then profile(P) is a credal set in the usual sense, i.e. profile(P)c M, . In particular,
if we have two credal sets P,P, in MW with profile(P,) e M, , then applying the
conjunction rule gives us the profile

profile(P. "\ P,) = profile(P,) A profile(P,) .

Observe that any upper generalized credal set give us many lower possible
bounds of probabilities and each possible value is characterized by contradiction. Let

us denote the amount of contradiction in P e MW by Con(P). Then to characterize
the possible lower bounds of probabilities computed by an upper generalized credal
set P we introduce the set function n", where r is the level of contradiction, and

W (A)=inf{P(4)| PP Con(P)<r},

where Ae2” and re[0,1], that can be interpreted as a lower probability for the
credal set P with a level of contradiction r .
Lemma 2. For any upper generalized credal set P
W (A)=inf{P(A)| P e profile(P),Con(P)<r}.

Remark 3. We can consider the generalized upper credal sets whose profiles
are credal sets in usual sense. In the case, when profiles of upper generalized credal

sets are credal sets in usual sense, u” does not depend on r, and the considered
model coincides with the model of imprecise probabilities based on usual credal sets.

We define next lower bounds of expectation. Consider first expectations w.r.t.
the measures in M_ . If Pe M then for any function f:X — R the expectation

E,(f) is defined as
E (/)= f(x)P{x3).

xeX
We can extend the functional E, to the set of all measures in M using the
considered interpretation of a measure P e M through the conjunction rule. Obvi-
ously,
p=

= A g
ReM,, |p<p

Then this conjunction rule is expressed through expectations £,, P<P, as
(cf. formula (1))

16



EP_

= \2 P
pem, <

Lemma 3. For any P=an’,+ Y an, ., and f:X ->R the value E,(f
07Hx) i)
can be computed as

E,(f)=a,max f(x) + 3,/ (x).

Let P be a credal set in MW. We will define first the lower expectation
EL(f) for non-negative functions f:X — R. Let the set of all such functions be
denoted by K™ . Because E,(f) is the lower expectation, we can define this value
forany fe K" as

Eo(f)=inf E,(f).
Let us indicate some properties of £, on K™ . Hereafter we denote by R* the

set of all non-negative real numbers. The function in K" with values equal to
aeR" is denoted also by a. We write f, < f for f,f, e K" if f(x)<f,(x) for
all xeX.

Lemma 4. The functional £, on K™ has the following properties
1) Ex(0)=0; Ep()=1;

2) Ep(f+a)=E(f)+a forany feK" and aeR";

3) Ep(af)=aE,(f) forany fe K" and aeR";

4) E (f)<Eu(f) for f.f,eK"if f<f,.

Let us consider also the dual concept of generalized upper credal sets. In this
case we describe uncertainty by set functions from the set Mc‘;r . Any measure P in

M is represented as

P=a,,+ ;ain<{x,}> :
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where a, 20, i=0,..,n, and Za,. =1, and it is conceived as an upper probability.
i=0

The value a, shows the amount of contradiction. If a, =0, then P is a probability
measure. Evidently, measures from Mc‘f” describe conflict and contradiction in in-
formation and we can define the upper expectation Ep(f) for any feK w.r.t.

arbitrary P in M through the Choquet integral

E, (/)= [ 7(x)dP =a,minf(x)+ 3./ (x).

For describing conflict, contradiction and non-specificity with the help of
measures in M;ﬁ , we introduce the notion of lower generalized credal set. By defi-
nition, a lower generalized credal set P is a non-empty subset of M;ﬁ with the
following properties

a) PeP, PeM?  P=P impliesthat P eP.

cpr’?
b) if P,P, eP, then any convex sum of P and P, is also in P, in other
words, aP,+(1-a)P, eP forany B,P,eP and a€[0,1].
c) P is closed set if we consider it as a subset of Euclidian space (any

Pzaonz’x>+;ain<{xl}> is a vector (a,,4,,...a,) in R™).

Let us observe that definitions of upper and lower credal sets formally differ by
item a). The set of all maximal elements in a generalized lower credal set P is called
profile and it is denoted by profile(P) . Emphasize that generalized lower and upper

credal sets are dual concepts, for instance, if P is a credal setin M_ , then P isa
credal set in Mc‘f” ; profiles of P and P“ are also connected with the dual relation:

profile(P)" = profile(P’) ; if P,,..,P_ are credal sets in M_ , then the expression

for the conjunction rule is defined by the same way for the credal sets in M and

M and (P.A..AP,) =P/ A..AP.

cpr !

The upper expectation E,(f) of /e K* w.r.t. the credal set P in M7 is de-
fined as
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Ey(f)=supE, (/).

It is easy to check that the functional £, obeys the same properties as E, de-

scribed in Lemma 4. The duality property of functionals E, and EP on K" is de-
scribed in the following lemma.

Lemma 5. Epd(f)za—gl,(a—f),where P is a credal set in MW, fek,

and azmaxxf(x).

Remark 4. Next we will extend functionals £, and EP on the set K of all

real valued functions, assuming that the property 2) from Lemma 4 is valid for func-
tionsin K . Then forany f e K the values E,(f) and EI,(f) are computed by

Eo(f)=Ep(f)-a, EJ(f)=E(f)-a,
where a=mi)pf(x), and f=f-a.Clearly feK" and there exists xe X such

that f(x)=0. We will call such functions normalized and keep the notation f* (us-
ing lower bar). Let us notice that all properties formulated in Lemma 4 remain valid
for functionals E, and EP on K . The dual relation between E, and EP can be

reformulated as £, (f)=—Ey(-f) forany credal setin M_ and feK.

The next lemma gives us the additional characteristic property of EP , which, as
we will see later, helps us to describe the whole set of functionals £, and EP .
Lemma 6. Let Z],£2,£3 be normalized functions in K* and j_‘]+j_‘2=j_‘3.

Then the inequality EP(L)+EP(1_‘2)ZEP(£3) holds for any credal set P in M .

Theorem 1. A functional ®: K" — R coincides with E, on K* for some

P

credal set P in Mc‘;r iff it has the following properties
1) ®0)=0; ®(1)=1;
2) ®(f+a)=DP(f)+a forany fe K" and aeR";
3) O(af)=ad(f) forany fe K" and aeR";
4) o(f,)<@(f,) for f,f,eK*if f,<f,;
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5) ®(£1)+®(£2)2®(£3) for any normalized functions Z],£2,£3 in K*
such that j_‘]+j_‘2=j_‘3.

8. Generalized coherent upper previsions

Let K’c K, where K is the set of all functions of the type f: X - R, and
let £:K’— R be the functional that defines the upper previsions, that may not sat-
isfy the avoiding sure loss condition. Then E defines the non-empty lower general-
ized credal set P in M? as

P={Pe M. |Vf K" :E,(f)<E(f)} )
iff |er1)1: f(x)<E(f) forall feK’. Based on generalized credal set P, we can de-
fine the natural extension of E by

E'(f)=sup{E,(f)|PeP}=E,(f) forall feK.

Theorem 2. Let E: K’ — R be the functional that defines the upper previsions.

Then its natural extension E”: K — R based on generalized credal sets can be com-
puted as

10 g St k)

where  f, f, are normalized functions and E’(£)=E’(f)—b,

E(Q):E(fk)—bk, b=min f(x), b =min, (x).

9. Conclusion

We have generalized the conjunction rule for general theories of imprecise
probabilities using the way of modeling contradiction (conflict) in the evidence theo-
ry. This allows us to introduce upper and lower generalized credal sets and represent
the conjunction rule as the intersection of corresponding generalized credal sets. The
paper contains also some insights of how this model can be used in the theory of
imprecise probabilities admitting contradiction.
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Appendix*

Proof of Lemma 1. Necessity. Let A <P, then in particular,
P(X\{x})<P(X\{x}), i=1...n, or equivalently, 1-a <1-b, or a=b,
i=1,..,n.

Sufficiency. Let a, =2b,, i=1,...n, then

n

Pl = ~ (bin<{x,}> + (ai - bi)n<{x’}> ) + ao“fx) <

=

< ¢ bi”({x,}> + (ai - bi)n<dx>)+ a0n<dx> = Pz

i=1
Proof of Lemma 2. Because the set P is closed, we have
P={Pe MW | 3P’ € profile(P): P> P’} . This implies the required result.

Proof of Lemma 3. Because P is a plausibility function (2-alternative meas-
ure), the value E,(f) is expressed through the Choquet integral

EN(f)=[F®)dP= a,[fx)ant, + D [ Fx)dny,, =

=a, m%{xf(x)+2"“aif(xi) .

In the last expression we use the additivity of the Choquet integral w.r.t. the sum of
- a _
measures, and also that )_[f(x)a’nw> = f(x,) and )_[f(x)a’m)(> = nxwg(xf(x) .

Proof of Lemma 5. Notice that the validity of Epd(f)za—ﬁ,,(a—f) for

Pe MW follows from the properties of the Choquet integral. By definition
E,(f)=sup E(f)= sPug(a—Ep(a—f))=
Plep? S

=a_ipn'ltﬁp(a_f)=a_gp(a_f) -

! Straightforward proofs are omitted.

21



Proof of Lemma 6. Because by definition the credal set P is closed, there ex-
ists PeP such that Ep(j_‘3): EP(£3) - Assume that P=an,,, +Zam<{x}> . Notice
i=1 !

that in this case
E,(f,)=Xaf (x), k=123,
i=1

since minf (x)=0. Thus, EP(£1)+EP(£2):EP(£3)' In addition, clearly
Ep(j_‘k) > EP(L() , k=1,2. This implies the inequality from the lemma.

Proof of Theorem 1. Necessity follows from Lemma 4 (see Remark 4) and
Lemma 6. Let us prove sufficiency. It is sufficient to show that for any normalized

function f thereisa Pe M such that ®(f)=E,(f) and ®>E, . Because f
is normalized there is x, € X such that f(x,)=0. Let us consider the set K’ of all

functions f in K™ with f(x,)=0. Let us notice that the monotone functional @

on K’ is sublinear, and by Hahn-Banach’s Theorem there is a linear functional on
K’

a(f)=ia,f(x,.),

such that @ 20, i=1,..,n, ia,sl ;o< d and a([)=¢(£). Obviously, we can

i=1

assume that a, =0 . Introduce into consideration
P=an,, +Z‘a"n<{x,}> ,

where aozl—iai and show that @(Z)=EP(£) and ®>FE,. The equality
i=1

(D(Z)=EP(£) is obvious. Let us show that d)(g)zﬁp(g) for any ge K*. Obvi-
ously, ®(g)=E,(g) iff dJ(g)ZEP(g). Notice that Ep(g)zﬁp(i’), where
g(x)=g(x) for i#k and g'(x)=0 otherwise. Since g'<g, we get

E,,(g) = Ep(g) < @(g) < (I)(g) . The theorem is proved.
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Proof of Theorem 2. Let us show first that the functionals £ and E’ define
the same credal set, i.e. the credal set P defined by (4) is equal to

P'={P€Md |erK:EP(f)sF'(f)}.

cpr
The inclusion P’cP is obvious. Let PeP, then by our assumption
Ep(fk)sE(fk) for f, e K’ and

E,(f)= iP({xi}) £(x)< iP({xi})(Zak A (x,.)+a] <

SgP({xi})ZakQ(xiHa: ZakEP(£)+aS;akE(£)+a.

Thus, Pc P’ i.e. P’=P. Let us show that the functional E’ obeys all properties

on K" given in Theorem 1. It is easy to check that properties 1),2),3),5) hold. Let us
show that the monotonicity property 4) is also satisfied. For this purpose introduce
into consideration the functional

@(f)= inf{ZakE(£)+a|2ak£+alZf,fk e K’,ak,aZO}

on K. Evidently, E’(}_‘):@(J_’) for every feK_ . Itis easy to check that this

functional on K™ has the following properties
1) ®(0)=0, ®(1)<1;

2) ®(af)=ad(f) forany fe K" and aeR";

3) d(f,) <D(f,) for £, f,e K" if f,<f,;

4) ©(f)+0(f,)2®(f,) for any functions f.f,.f, in K* such that
h+h=1.

By Hahn-Banach’s Theorem for every f e K™ there is a linear functional on

K* o(f)=>af(x) such that @20, i=l..n, Ya<l,a<d and
i=1

i=1

a(f):d)(f). We will use next this functional for proving monotonicity of E’.

Consider an arbitrary f,ge K" such that f<g. Let f=f+c. Then inequality
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E'(f)<E’(g) is equivalent to E’(f)<E’(g’), where g’=g—c. Obviously,

E'(f)=®(f)<®(g"). By previous conclusions, there is a linear functional

o(f)=Yaf(x) on K* such that a,>0, i=1l,..n, da<l, a<®d and

i=1 i=1
oc(gr)=<p(g')_ Let P=an,,,+ zn:ainqxv», where a, =1—zn:a,.. It is easy to see
i=1 ! i=1

that PeP and ®(g')<E,(g)<E'(g),ie. E'(f)<E'(g") and E'(f)<E'(g).

Thus, we prove that the functional E” obeys all properties from Theorem 1.
This means that it is the natural extension of E .
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Bponesnuy, A. I.

O06001eHne KOHBIOHKTUBHOTO TIPaBUIIa JUIS arperupoBaHus IPOTUBOPEUYUBBIX HCTOYHUKOB HH-
hopmariu, 6a3upyromerocs Ha 0000LMICHHBIX KPEAAIbHBIX MHOXKeCTBaxX: npenpuat WP7/2015/01
[Tekcr] / A. T. BponeBuu ; Hau. uccnen. yH-T «Bpicias mikona s3koHOMHKNY. — M. : 31, nom Beic-
1Ieif mKosel 3koHoMHKH, 2015. — 28 ¢. — 35 9x3. (In English.)

PaccmarpuBaercst 060011eHIE KOHBIOHKTHBHOTO TIPaBMJIa B TCOPHU HETOYHBIX BEPOSITHOCTEH.
HarnomMH#M, Y4TO KOHBIOHKTHBHOE [IPABHIIO, CHCTBYOLIEE Ha KPeAaIbHBIC MHOXKECTBA, JaeT HX [epe-
CCUCHHE, U OHO HE OIPEJICNACTCs, €CIIM 3TO NepeceyeHre MmycTo. B mocienHeM ciryuae HCTOUYHUKA
nH(OPMALMY HA3bIBAIOTCS KOH(IMKTYIOIMMMHI WM POTHBOPEYHBBIMH. MEXIy TeM, B TCOPHU
Jemncrepa-1lleiidepa okaspiBacTCst BO3MOXKHBIM HCIIONIB30BAaTh KOHBIOHKTUBHOE MPABMIIO JUIS KOH-
()IMKTYIOIMMX HCTOYHUKOB HH(OPMALINH, T/IE B KaYECTBE Pe3y/bTara Moy4aeTCss HCHOPMHUPOBAHHAS
(yHKIMS JOBEpHs, KOTOpas MOXET IPUHUMATh MOJIOKUTEIBHOE 3HAUYCHHE Ha ITyCTOM MHOXECTBC.
MBI HCIIONB3yeM 3Ty MOAETb ¥ BBOJUM B PACCMOTPEHHUE TaK Ha3bIBacMbIe 0000IICHHbBIC KPeaaIbHbIe
MHOKECTBA, MO3BOJISAIONINE MOJICINPOBATh HETOYHOCTh, KOH(IMKT M MPOTHBOPEUHBOCTh HH(OpPMa-
1. C IOMOIIBI0 0000IICHHBIX KPeaalbHbIX MHOXXECTB KOHBIOKTHBHOE IIPABHIIO arperupOBaHUs
MH(POPMAIIU KOPPEKTHO OIPEAEIACTCS, U 3TO IPABHIIO MOXKHO PaCCMaTPUBATh KaK 0000IICHIE KOHb-
FOHKTHUBHOTO IIpaBuiIa 1715 (yHKIHI JOBEpHs. B cTaThe Takke MOKa3bIBAaCTCs, KAK MOXKHO HCIIONIB30-
BaTh 000OIICHHBIC KpeladbHbIe MHOXKECTBA ISl 0OPaOOTKH NMPOTUBOPEUMBOM HH(YOPMALINH, U JUIS
9TOTO CITydasi HCCIIELYIOTCS YCIOBUSL KOTCPEHTHOCTH H IIPOLIELYPa €CTECTBEHHOTO IIPOIOJIKCHHMSL.

KitroueBbIe €I10Ba: HETOYHBIC BEPOSITHOCTH, KOHBIOHKTHBHOE MPABIJIO, 0000IICHHBIC KPeaaib-
HbIE MHOJKECTBA, KOH(IUKTYIONHE (IPOTHBOPEUHBBIC) HCTOYHUKN HH(POPMALIUK

Bponesuy Anopeii I'eopeuesuu, mpoeccop rernapraMeHTa MaTeMAaTHKH SKOHOMUYECKOTO (haKyIib-
tera HUY BIIID; abronevich@hse.ru; Temn. (495) 6211342
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